• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // REQUIRES: long_tests
11 
12 // <random>
13 
14 // template<class _IntType = int>
15 // class uniform_int_distribution
16 
17 // template<class _URNG> result_type operator()(_URNG& g);
18 
19 #include <random>
20 #include <cassert>
21 #include <vector>
22 #include <numeric>
23 
24 template <class T>
25 inline
26 T
sqr(T x)27 sqr(T x)
28 {
29     return x * x;
30 }
31 
main()32 int main()
33 {
34     {
35         typedef std::uniform_int_distribution<> D;
36         typedef std::minstd_rand0 G;
37         G g;
38         D d;
39         const int N = 100000;
40         std::vector<D::result_type> u;
41         for (int i = 0; i < N; ++i)
42         {
43             D::result_type v = d(g);
44             assert(d.a() <= v && v <= d.b());
45             u.push_back(v);
46         }
47         double mean = std::accumulate(u.begin(), u.end(),
48                                               double(0)) / u.size();
49         double var = 0;
50         double skew = 0;
51         double kurtosis = 0;
52         for (int i = 0; i < u.size(); ++i)
53         {
54             double d = (u[i] - mean);
55             double d2 = sqr(d);
56             var += d2;
57             skew += d * d2;
58             kurtosis += d2 * d2;
59         }
60         var /= u.size();
61         double dev = std::sqrt(var);
62         skew /= u.size() * dev * var;
63         kurtosis /= u.size() * var * var;
64         kurtosis -= 3;
65         double x_mean = ((double)d.a() + d.b()) / 2;
66         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
67         double x_skew = 0;
68         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
69                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
70         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
71         assert(std::abs((var - x_var) / x_var) < 0.01);
72         assert(std::abs(skew - x_skew) < 0.01);
73         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
74     }
75     {
76         typedef std::uniform_int_distribution<> D;
77         typedef std::minstd_rand G;
78         G g;
79         D d;
80         const int N = 100000;
81         std::vector<D::result_type> u;
82         for (int i = 0; i < N; ++i)
83         {
84             D::result_type v = d(g);
85             assert(d.a() <= v && v <= d.b());
86             u.push_back(v);
87         }
88         double mean = std::accumulate(u.begin(), u.end(),
89                                               double(0)) / u.size();
90         double var = 0;
91         double skew = 0;
92         double kurtosis = 0;
93         for (int i = 0; i < u.size(); ++i)
94         {
95             double d = (u[i] - mean);
96             double d2 = sqr(d);
97             var += d2;
98             skew += d * d2;
99             kurtosis += d2 * d2;
100         }
101         var /= u.size();
102         double dev = std::sqrt(var);
103         skew /= u.size() * dev * var;
104         kurtosis /= u.size() * var * var;
105         kurtosis -= 3;
106         double x_mean = ((double)d.a() + d.b()) / 2;
107         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
108         double x_skew = 0;
109         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
110                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
111         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
112         assert(std::abs((var - x_var) / x_var) < 0.01);
113         assert(std::abs(skew - x_skew) < 0.01);
114         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
115     }
116     {
117         typedef std::uniform_int_distribution<> D;
118         typedef std::mt19937 G;
119         G g;
120         D d;
121         const int N = 100000;
122         std::vector<D::result_type> u;
123         for (int i = 0; i < N; ++i)
124         {
125             D::result_type v = d(g);
126             assert(d.a() <= v && v <= d.b());
127             u.push_back(v);
128         }
129         double mean = std::accumulate(u.begin(), u.end(),
130                                               double(0)) / u.size();
131         double var = 0;
132         double skew = 0;
133         double kurtosis = 0;
134         for (int i = 0; i < u.size(); ++i)
135         {
136             double d = (u[i] - mean);
137             double d2 = sqr(d);
138             var += d2;
139             skew += d * d2;
140             kurtosis += d2 * d2;
141         }
142         var /= u.size();
143         double dev = std::sqrt(var);
144         skew /= u.size() * dev * var;
145         kurtosis /= u.size() * var * var;
146         kurtosis -= 3;
147         double x_mean = ((double)d.a() + d.b()) / 2;
148         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
149         double x_skew = 0;
150         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
151                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
152         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
153         assert(std::abs((var - x_var) / x_var) < 0.01);
154         assert(std::abs(skew - x_skew) < 0.01);
155         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
156     }
157     {
158         typedef std::uniform_int_distribution<> D;
159         typedef std::mt19937_64 G;
160         G g;
161         D d;
162         const int N = 100000;
163         std::vector<D::result_type> u;
164         for (int i = 0; i < N; ++i)
165         {
166             D::result_type v = d(g);
167             assert(d.a() <= v && v <= d.b());
168             u.push_back(v);
169         }
170         double mean = std::accumulate(u.begin(), u.end(),
171                                               double(0)) / u.size();
172         double var = 0;
173         double skew = 0;
174         double kurtosis = 0;
175         for (int i = 0; i < u.size(); ++i)
176         {
177             double d = (u[i] - mean);
178             double d2 = sqr(d);
179             var += d2;
180             skew += d * d2;
181             kurtosis += d2 * d2;
182         }
183         var /= u.size();
184         double dev = std::sqrt(var);
185         skew /= u.size() * dev * var;
186         kurtosis /= u.size() * var * var;
187         kurtosis -= 3;
188         double x_mean = ((double)d.a() + d.b()) / 2;
189         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
190         double x_skew = 0;
191         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
192                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
193         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
194         assert(std::abs((var - x_var) / x_var) < 0.01);
195         assert(std::abs(skew - x_skew) < 0.01);
196         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
197     }
198     {
199         typedef std::uniform_int_distribution<> D;
200         typedef std::ranlux24_base G;
201         G g;
202         D d;
203         const int N = 100000;
204         std::vector<D::result_type> u;
205         for (int i = 0; i < N; ++i)
206         {
207             D::result_type v = d(g);
208             assert(d.a() <= v && v <= d.b());
209             u.push_back(v);
210         }
211         double mean = std::accumulate(u.begin(), u.end(),
212                                               double(0)) / u.size();
213         double var = 0;
214         double skew = 0;
215         double kurtosis = 0;
216         for (int i = 0; i < u.size(); ++i)
217         {
218             double d = (u[i] - mean);
219             double d2 = sqr(d);
220             var += d2;
221             skew += d * d2;
222             kurtosis += d2 * d2;
223         }
224         var /= u.size();
225         double dev = std::sqrt(var);
226         skew /= u.size() * dev * var;
227         kurtosis /= u.size() * var * var;
228         kurtosis -= 3;
229         double x_mean = ((double)d.a() + d.b()) / 2;
230         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
231         double x_skew = 0;
232         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
233                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
234         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
235         assert(std::abs((var - x_var) / x_var) < 0.01);
236         assert(std::abs(skew - x_skew) < 0.01);
237         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
238     }
239     {
240         typedef std::uniform_int_distribution<> D;
241         typedef std::ranlux48_base G;
242         G g;
243         D d;
244         const int N = 100000;
245         std::vector<D::result_type> u;
246         for (int i = 0; i < N; ++i)
247         {
248             D::result_type v = d(g);
249             assert(d.a() <= v && v <= d.b());
250             u.push_back(v);
251         }
252         double mean = std::accumulate(u.begin(), u.end(),
253                                               double(0)) / u.size();
254         double var = 0;
255         double skew = 0;
256         double kurtosis = 0;
257         for (int i = 0; i < u.size(); ++i)
258         {
259             double d = (u[i] - mean);
260             double d2 = sqr(d);
261             var += d2;
262             skew += d * d2;
263             kurtosis += d2 * d2;
264         }
265         var /= u.size();
266         double dev = std::sqrt(var);
267         skew /= u.size() * dev * var;
268         kurtosis /= u.size() * var * var;
269         kurtosis -= 3;
270         double x_mean = ((double)d.a() + d.b()) / 2;
271         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
272         double x_skew = 0;
273         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
274                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
275         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
276         assert(std::abs((var - x_var) / x_var) < 0.01);
277         assert(std::abs(skew - x_skew) < 0.01);
278         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
279     }
280     {
281         typedef std::uniform_int_distribution<> D;
282         typedef std::ranlux24 G;
283         G g;
284         D d;
285         const int N = 100000;
286         std::vector<D::result_type> u;
287         for (int i = 0; i < N; ++i)
288         {
289             D::result_type v = d(g);
290             assert(d.a() <= v && v <= d.b());
291             u.push_back(v);
292         }
293         double mean = std::accumulate(u.begin(), u.end(),
294                                               double(0)) / u.size();
295         double var = 0;
296         double skew = 0;
297         double kurtosis = 0;
298         for (int i = 0; i < u.size(); ++i)
299         {
300             double d = (u[i] - mean);
301             double d2 = sqr(d);
302             var += d2;
303             skew += d * d2;
304             kurtosis += d2 * d2;
305         }
306         var /= u.size();
307         double dev = std::sqrt(var);
308         skew /= u.size() * dev * var;
309         kurtosis /= u.size() * var * var;
310         kurtosis -= 3;
311         double x_mean = ((double)d.a() + d.b()) / 2;
312         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
313         double x_skew = 0;
314         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
315                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
316         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
317         assert(std::abs((var - x_var) / x_var) < 0.01);
318         assert(std::abs(skew - x_skew) < 0.01);
319         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
320     }
321     {
322         typedef std::uniform_int_distribution<> D;
323         typedef std::ranlux48 G;
324         G g;
325         D d;
326         const int N = 100000;
327         std::vector<D::result_type> u;
328         for (int i = 0; i < N; ++i)
329         {
330             D::result_type v = d(g);
331             assert(d.a() <= v && v <= d.b());
332             u.push_back(v);
333         }
334         double mean = std::accumulate(u.begin(), u.end(),
335                                               double(0)) / u.size();
336         double var = 0;
337         double skew = 0;
338         double kurtosis = 0;
339         for (int i = 0; i < u.size(); ++i)
340         {
341             double d = (u[i] - mean);
342             double d2 = sqr(d);
343             var += d2;
344             skew += d * d2;
345             kurtosis += d2 * d2;
346         }
347         var /= u.size();
348         double dev = std::sqrt(var);
349         skew /= u.size() * dev * var;
350         kurtosis /= u.size() * var * var;
351         kurtosis -= 3;
352         double x_mean = ((double)d.a() + d.b()) / 2;
353         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
354         double x_skew = 0;
355         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
356                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
357         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
358         assert(std::abs((var - x_var) / x_var) < 0.01);
359         assert(std::abs(skew - x_skew) < 0.01);
360         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
361     }
362     {
363         typedef std::uniform_int_distribution<> D;
364         typedef std::knuth_b G;
365         G g;
366         D d;
367         const int N = 100000;
368         std::vector<D::result_type> u;
369         for (int i = 0; i < N; ++i)
370         {
371             D::result_type v = d(g);
372             assert(d.a() <= v && v <= d.b());
373             u.push_back(v);
374         }
375         double mean = std::accumulate(u.begin(), u.end(),
376                                               double(0)) / u.size();
377         double var = 0;
378         double skew = 0;
379         double kurtosis = 0;
380         for (int i = 0; i < u.size(); ++i)
381         {
382             double d = (u[i] - mean);
383             double d2 = sqr(d);
384             var += d2;
385             skew += d * d2;
386             kurtosis += d2 * d2;
387         }
388         var /= u.size();
389         double dev = std::sqrt(var);
390         skew /= u.size() * dev * var;
391         kurtosis /= u.size() * var * var;
392         kurtosis -= 3;
393         double x_mean = ((double)d.a() + d.b()) / 2;
394         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
395         double x_skew = 0;
396         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
397                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
398         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
399         assert(std::abs((var - x_var) / x_var) < 0.01);
400         assert(std::abs(skew - x_skew) < 0.01);
401         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
402     }
403     {
404         typedef std::uniform_int_distribution<> D;
405         typedef std::minstd_rand0 G;
406         G g;
407         D d(-6, 106);
408         for (int i = 0; i < 10000; ++i)
409         {
410             int u = d(g);
411             assert(-6 <= u && u <= 106);
412         }
413     }
414     {
415         typedef std::uniform_int_distribution<> D;
416         typedef std::minstd_rand G;
417         G g;
418         D d(5, 100);
419         const int N = 100000;
420         std::vector<D::result_type> u;
421         for (int i = 0; i < N; ++i)
422         {
423             D::result_type v = d(g);
424             assert(d.a() <= v && v <= d.b());
425             u.push_back(v);
426         }
427         double mean = std::accumulate(u.begin(), u.end(),
428                                               double(0)) / u.size();
429         double var = 0;
430         double skew = 0;
431         double kurtosis = 0;
432         for (int i = 0; i < u.size(); ++i)
433         {
434             double d = (u[i] - mean);
435             double d2 = sqr(d);
436             var += d2;
437             skew += d * d2;
438             kurtosis += d2 * d2;
439         }
440         var /= u.size();
441         double dev = std::sqrt(var);
442         skew /= u.size() * dev * var;
443         kurtosis /= u.size() * var * var;
444         kurtosis -= 3;
445         double x_mean = ((double)d.a() + d.b()) / 2;
446         double x_var = (sqr((double)d.b() - d.a() + 1) - 1) / 12;
447         double x_skew = 0;
448         double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
449                             (5. * (sqr((double)d.b() - d.a() + 1) - 1));
450         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
451         assert(std::abs((var - x_var) / x_var) < 0.01);
452         assert(std::abs(skew - x_skew) < 0.01);
453         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
454     }
455 }
456