1 //===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an iterator that enumerates the intervals in a control flow
11 // graph of some sort. This iterator is parametric, allowing iterator over the
12 // following types of graphs:
13 //
14 // 1. A Function* object, composed of BasicBlock nodes.
15 // 2. An IntervalPartition& object, composed of Interval nodes.
16 //
17 // This iterator is defined to walk the control flow graph, returning intervals
18 // in depth first order. These intervals are completely filled in except for
19 // the predecessor fields (the successor information is filled in however).
20 //
21 // By default, the intervals created by this iterator are deleted after they
22 // are no longer any use to the iterator. This behavior can be changed by
23 // passing a false value into the intervals_begin() function. This causes the
24 // IOwnMem member to be set, and the intervals to not be deleted.
25 //
26 // It is only safe to use this if all of the intervals are deleted by the caller
27 // and all of the intervals are processed. However, the user of the iterator is
28 // not allowed to modify or delete the intervals until after the iterator has
29 // been used completely. The IntervalPartition class uses this functionality.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
34 #define LLVM_ANALYSIS_INTERVALITERATOR_H
35
36 #include "llvm/Analysis/IntervalPartition.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Function.h"
39 #include <algorithm>
40 #include <set>
41 #include <vector>
42
43 namespace llvm {
44
45 // getNodeHeader - Given a source graph node and the source graph, return the
46 // BasicBlock that is the header node. This is the opposite of
47 // getSourceGraphNode.
48 //
getNodeHeader(BasicBlock * BB)49 inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
getNodeHeader(Interval * I)50 inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
51
52 // getSourceGraphNode - Given a BasicBlock and the source graph, return the
53 // source graph node that corresponds to the BasicBlock. This is the opposite
54 // of getNodeHeader.
55 //
getSourceGraphNode(Function *,BasicBlock * BB)56 inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
57 return BB;
58 }
getSourceGraphNode(IntervalPartition * IP,BasicBlock * BB)59 inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
60 return IP->getBlockInterval(BB);
61 }
62
63 // addNodeToInterval - This method exists to assist the generic ProcessNode
64 // with the task of adding a node to the new interval, depending on the
65 // type of the source node. In the case of a CFG source graph (BasicBlock
66 // case), the BasicBlock itself is added to the interval.
67 //
addNodeToInterval(Interval * Int,BasicBlock * BB)68 inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
69 Int->Nodes.push_back(BB);
70 }
71
72 // addNodeToInterval - This method exists to assist the generic ProcessNode
73 // with the task of adding a node to the new interval, depending on the
74 // type of the source node. In the case of a CFG source graph (BasicBlock
75 // case), the BasicBlock itself is added to the interval. In the case of
76 // an IntervalPartition source graph (Interval case), all of the member
77 // BasicBlocks are added to the interval.
78 //
addNodeToInterval(Interval * Int,Interval * I)79 inline void addNodeToInterval(Interval *Int, Interval *I) {
80 // Add all of the nodes in I as new nodes in Int.
81 Int->Nodes.insert(Int->Nodes.end(), I->Nodes.begin(), I->Nodes.end());
82 }
83
84
85
86
87
88 template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy*>,
89 class IGT = GraphTraits<Inverse<NodeTy*> > >
90 class IntervalIterator {
91 std::vector<std::pair<Interval*, typename Interval::succ_iterator> > IntStack;
92 std::set<BasicBlock*> Visited;
93 OrigContainer_t *OrigContainer;
94 bool IOwnMem; // If True, delete intervals when done with them
95 // See file header for conditions of use
96 public:
97 typedef std::forward_iterator_tag iterator_category;
98
IntervalIterator()99 IntervalIterator() {} // End iterator, empty stack
IntervalIterator(Function * M,bool OwnMemory)100 IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
101 OrigContainer = M;
102 if (!ProcessInterval(&M->front())) {
103 llvm_unreachable("ProcessInterval should never fail for first interval!");
104 }
105 }
106
IntervalIterator(IntervalIterator && x)107 IntervalIterator(IntervalIterator &&x)
108 : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
109 OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
110 x.IOwnMem = false;
111 }
112
IntervalIterator(IntervalPartition & IP,bool OwnMemory)113 IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
114 OrigContainer = &IP;
115 if (!ProcessInterval(IP.getRootInterval())) {
116 llvm_unreachable("ProcessInterval should never fail for first interval!");
117 }
118 }
119
~IntervalIterator()120 ~IntervalIterator() {
121 if (IOwnMem)
122 while (!IntStack.empty()) {
123 delete operator*();
124 IntStack.pop_back();
125 }
126 }
127
128 bool operator==(const IntervalIterator &x) const {
129 return IntStack == x.IntStack;
130 }
131 bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
132
133 const Interval *operator*() const { return IntStack.back().first; }
134 Interval *operator*() { return IntStack.back().first; }
135 const Interval *operator->() const { return operator*(); }
136 Interval *operator->() { return operator*(); }
137
138 IntervalIterator &operator++() { // Preincrement
139 assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
140 do {
141 // All of the intervals on the stack have been visited. Try visiting
142 // their successors now.
143 Interval::succ_iterator &SuccIt = IntStack.back().second,
144 EndIt = succ_end(IntStack.back().first);
145 while (SuccIt != EndIt) { // Loop over all interval succs
146 bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
147 ++SuccIt; // Increment iterator
148 if (Done) return *this; // Found a new interval! Use it!
149 }
150
151 // Free interval memory... if necessary
152 if (IOwnMem) delete IntStack.back().first;
153
154 // We ran out of successors for this interval... pop off the stack
155 IntStack.pop_back();
156 } while (!IntStack.empty());
157
158 return *this;
159 }
160 IntervalIterator operator++(int) { // Postincrement
161 IntervalIterator tmp = *this;
162 ++*this;
163 return tmp;
164 }
165
166 private:
167 // ProcessInterval - This method is used during the construction of the
168 // interval graph. It walks through the source graph, recursively creating
169 // an interval per invocation until the entire graph is covered. This uses
170 // the ProcessNode method to add all of the nodes to the interval.
171 //
172 // This method is templated because it may operate on two different source
173 // graphs: a basic block graph, or a preexisting interval graph.
174 //
ProcessInterval(NodeTy * Node)175 bool ProcessInterval(NodeTy *Node) {
176 BasicBlock *Header = getNodeHeader(Node);
177 if (!Visited.insert(Header).second)
178 return false;
179
180 Interval *Int = new Interval(Header);
181
182 // Check all of our successors to see if they are in the interval...
183 for (typename GT::ChildIteratorType I = GT::child_begin(Node),
184 E = GT::child_end(Node); I != E; ++I)
185 ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
186
187 IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
188 return true;
189 }
190
191 // ProcessNode - This method is called by ProcessInterval to add nodes to the
192 // interval being constructed, and it is also called recursively as it walks
193 // the source graph. A node is added to the current interval only if all of
194 // its predecessors are already in the graph. This also takes care of keeping
195 // the successor set of an interval up to date.
196 //
197 // This method is templated because it may operate on two different source
198 // graphs: a basic block graph, or a preexisting interval graph.
199 //
ProcessNode(Interval * Int,NodeTy * Node)200 void ProcessNode(Interval *Int, NodeTy *Node) {
201 assert(Int && "Null interval == bad!");
202 assert(Node && "Null Node == bad!");
203
204 BasicBlock *NodeHeader = getNodeHeader(Node);
205
206 if (Visited.count(NodeHeader)) { // Node already been visited?
207 if (Int->contains(NodeHeader)) { // Already in this interval...
208 return;
209 } else { // In other interval, add as successor
210 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
211 Int->Successors.push_back(NodeHeader);
212 }
213 } else { // Otherwise, not in interval yet
214 for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
215 E = IGT::child_end(Node); I != E; ++I) {
216 if (!Int->contains(*I)) { // If pred not in interval, we can't be
217 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
218 Int->Successors.push_back(NodeHeader);
219 return; // See you later
220 }
221 }
222
223 // If we get here, then all of the predecessors of BB are in the interval
224 // already. In this case, we must add BB to the interval!
225 addNodeToInterval(Int, Node);
226 Visited.insert(NodeHeader); // The node has now been visited!
227
228 if (Int->isSuccessor(NodeHeader)) {
229 // If we were in the successor list from before... remove from succ list
230 Int->Successors.erase(std::remove(Int->Successors.begin(),
231 Int->Successors.end(), NodeHeader),
232 Int->Successors.end());
233 }
234
235 // Now that we have discovered that Node is in the interval, perhaps some
236 // of its successors are as well?
237 for (typename GT::ChildIteratorType It = GT::child_begin(Node),
238 End = GT::child_end(Node); It != End; ++It)
239 ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
240 }
241 }
242 };
243
244 typedef IntervalIterator<BasicBlock, Function> function_interval_iterator;
245 typedef IntervalIterator<Interval, IntervalPartition>
246 interval_part_interval_iterator;
247
248
249 inline function_interval_iterator intervals_begin(Function *F,
250 bool DeleteInts = true) {
251 return function_interval_iterator(F, DeleteInts);
252 }
intervals_end(Function *)253 inline function_interval_iterator intervals_end(Function *) {
254 return function_interval_iterator();
255 }
256
257 inline interval_part_interval_iterator
258 intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
259 return interval_part_interval_iterator(IP, DeleteIntervals);
260 }
261
intervals_end(IntervalPartition & IP)262 inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
263 return interval_part_interval_iterator();
264 }
265
266 } // End llvm namespace
267
268 #endif
269