• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15 #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 
23 namespace llvm {
24 
25 /// AArch64_AM - AArch64 Addressing Mode Stuff
26 namespace AArch64_AM {
27 
28 //===----------------------------------------------------------------------===//
29 // Shifts
30 //
31 
32 enum ShiftExtendType {
33   InvalidShiftExtend = -1,
34   LSL = 0,
35   LSR,
36   ASR,
37   ROR,
38   MSL,
39 
40   UXTB,
41   UXTH,
42   UXTW,
43   UXTX,
44 
45   SXTB,
46   SXTH,
47   SXTW,
48   SXTX,
49 };
50 
51 /// getShiftName - Get the string encoding for the shift type.
getShiftExtendName(AArch64_AM::ShiftExtendType ST)52 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53   switch (ST) {
54   default: llvm_unreachable("unhandled shift type!");
55   case AArch64_AM::LSL: return "lsl";
56   case AArch64_AM::LSR: return "lsr";
57   case AArch64_AM::ASR: return "asr";
58   case AArch64_AM::ROR: return "ror";
59   case AArch64_AM::MSL: return "msl";
60   case AArch64_AM::UXTB: return "uxtb";
61   case AArch64_AM::UXTH: return "uxth";
62   case AArch64_AM::UXTW: return "uxtw";
63   case AArch64_AM::UXTX: return "uxtx";
64   case AArch64_AM::SXTB: return "sxtb";
65   case AArch64_AM::SXTH: return "sxth";
66   case AArch64_AM::SXTW: return "sxtw";
67   case AArch64_AM::SXTX: return "sxtx";
68   }
69   return nullptr;
70 }
71 
72 /// getShiftType - Extract the shift type.
getShiftType(unsigned Imm)73 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74   switch ((Imm >> 6) & 0x7) {
75   default: return AArch64_AM::InvalidShiftExtend;
76   case 0: return AArch64_AM::LSL;
77   case 1: return AArch64_AM::LSR;
78   case 2: return AArch64_AM::ASR;
79   case 3: return AArch64_AM::ROR;
80   case 4: return AArch64_AM::MSL;
81   }
82 }
83 
84 /// getShiftValue - Extract the shift value.
getShiftValue(unsigned Imm)85 static inline unsigned getShiftValue(unsigned Imm) {
86   return Imm & 0x3f;
87 }
88 
89 /// getShifterImm - Encode the shift type and amount:
90 ///   imm:     6-bit shift amount
91 ///   shifter: 000 ==> lsl
92 ///            001 ==> lsr
93 ///            010 ==> asr
94 ///            011 ==> ror
95 ///            100 ==> msl
96 ///   {8-6}  = shifter
97 ///   {5-0}  = imm
getShifterImm(AArch64_AM::ShiftExtendType ST,unsigned Imm)98 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99                                      unsigned Imm) {
100   assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101   unsigned STEnc = 0;
102   switch (ST) {
103   default:  llvm_unreachable("Invalid shift requested");
104   case AArch64_AM::LSL: STEnc = 0; break;
105   case AArch64_AM::LSR: STEnc = 1; break;
106   case AArch64_AM::ASR: STEnc = 2; break;
107   case AArch64_AM::ROR: STEnc = 3; break;
108   case AArch64_AM::MSL: STEnc = 4; break;
109   }
110   return (STEnc << 6) | (Imm & 0x3f);
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Extends
115 //
116 
117 /// getArithShiftValue - get the arithmetic shift value.
getArithShiftValue(unsigned Imm)118 static inline unsigned getArithShiftValue(unsigned Imm) {
119   return Imm & 0x7;
120 }
121 
122 /// getExtendType - Extract the extend type for operands of arithmetic ops.
getExtendType(unsigned Imm)123 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124   assert((Imm & 0x7) == Imm && "invalid immediate!");
125   switch (Imm) {
126   default: llvm_unreachable("Compiler bug!");
127   case 0: return AArch64_AM::UXTB;
128   case 1: return AArch64_AM::UXTH;
129   case 2: return AArch64_AM::UXTW;
130   case 3: return AArch64_AM::UXTX;
131   case 4: return AArch64_AM::SXTB;
132   case 5: return AArch64_AM::SXTH;
133   case 6: return AArch64_AM::SXTW;
134   case 7: return AArch64_AM::SXTX;
135   }
136 }
137 
getArithExtendType(unsigned Imm)138 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139   return getExtendType((Imm >> 3) & 0x7);
140 }
141 
142 /// Mapping from extend bits to required operation:
143 ///   shifter: 000 ==> uxtb
144 ///            001 ==> uxth
145 ///            010 ==> uxtw
146 ///            011 ==> uxtx
147 ///            100 ==> sxtb
148 ///            101 ==> sxth
149 ///            110 ==> sxtw
150 ///            111 ==> sxtx
getExtendEncoding(AArch64_AM::ShiftExtendType ET)151 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152   switch (ET) {
153   default: llvm_unreachable("Invalid extend type requested");
154   case AArch64_AM::UXTB: return 0; break;
155   case AArch64_AM::UXTH: return 1; break;
156   case AArch64_AM::UXTW: return 2; break;
157   case AArch64_AM::UXTX: return 3; break;
158   case AArch64_AM::SXTB: return 4; break;
159   case AArch64_AM::SXTH: return 5; break;
160   case AArch64_AM::SXTW: return 6; break;
161   case AArch64_AM::SXTX: return 7; break;
162   }
163 }
164 
165 /// getArithExtendImm - Encode the extend type and shift amount for an
166 ///                     arithmetic instruction:
167 ///   imm:     3-bit extend amount
168 ///   {5-3}  = shifter
169 ///   {2-0}  = imm3
getArithExtendImm(AArch64_AM::ShiftExtendType ET,unsigned Imm)170 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171                                          unsigned Imm) {
172   assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173   return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174 }
175 
176 /// getMemDoShift - Extract the "do shift" flag value for load/store
177 /// instructions.
getMemDoShift(unsigned Imm)178 static inline bool getMemDoShift(unsigned Imm) {
179   return (Imm & 0x1) != 0;
180 }
181 
182 /// getExtendType - Extract the extend type for the offset operand of
183 /// loads/stores.
getMemExtendType(unsigned Imm)184 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185   return getExtendType((Imm >> 1) & 0x7);
186 }
187 
188 /// getExtendImm - Encode the extend type and amount for a load/store inst:
189 ///   doshift:     should the offset be scaled by the access size
190 ///   shifter: 000 ==> uxtb
191 ///            001 ==> uxth
192 ///            010 ==> uxtw
193 ///            011 ==> uxtx
194 ///            100 ==> sxtb
195 ///            101 ==> sxth
196 ///            110 ==> sxtw
197 ///            111 ==> sxtx
198 ///   {3-1}  = shifter
199 ///   {0}  = doshift
getMemExtendImm(AArch64_AM::ShiftExtendType ET,bool DoShift)200 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201                                        bool DoShift) {
202   return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203 }
204 
ror(uint64_t elt,unsigned size)205 static inline uint64_t ror(uint64_t elt, unsigned size) {
206   return ((elt & 1) << (size-1)) | (elt >> 1);
207 }
208 
209 /// processLogicalImmediate - Determine if an immediate value can be encoded
210 /// as the immediate operand of a logical instruction for the given register
211 /// size.  If so, return true with "encoding" set to the encoded value in
212 /// the form N:immr:imms.
processLogicalImmediate(uint64_t Imm,unsigned RegSize,uint64_t & Encoding)213 static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214                                            uint64_t &Encoding) {
215   if (Imm == 0ULL || Imm == ~0ULL ||
216       (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U)))
217     return false;
218 
219   // First, determine the element size.
220   unsigned Size = RegSize;
221 
222   do {
223     Size /= 2;
224     uint64_t Mask = (1ULL << Size) - 1;
225 
226     if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
227       Size *= 2;
228       break;
229     }
230   } while (Size > 2);
231 
232   // Second, determine the rotation to make the element be: 0^m 1^n.
233   uint32_t CTO, I;
234   uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
235   Imm &= Mask;
236 
237   if (isShiftedMask_64(Imm)) {
238     I = countTrailingZeros(Imm);
239     assert(I < 64 && "undefined behavior");
240     CTO = countTrailingOnes(Imm >> I);
241   } else {
242     Imm |= ~Mask;
243     if (!isShiftedMask_64(~Imm))
244       return false;
245 
246     unsigned CLO = countLeadingOnes(Imm);
247     I = 64 - CLO;
248     CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
249   }
250 
251   // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
252   // to our target value, where I is the number of RORs to go the opposite
253   // direction.
254   assert(Size > I && "I should be smaller than element size");
255   unsigned Immr = (Size - I) & (Size - 1);
256 
257   // If size has a 1 in the n'th bit, create a value that has zeroes in
258   // bits [0, n] and ones above that.
259   uint64_t NImms = ~(Size-1) << 1;
260 
261   // Or the CTO value into the low bits, which must be below the Nth bit
262   // bit mentioned above.
263   NImms |= (CTO-1);
264 
265   // Extract the seventh bit and toggle it to create the N field.
266   unsigned N = ((NImms >> 6) & 1) ^ 1;
267 
268   Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
269   return true;
270 }
271 
272 /// isLogicalImmediate - Return true if the immediate is valid for a logical
273 /// immediate instruction of the given register size. Return false otherwise.
isLogicalImmediate(uint64_t imm,unsigned regSize)274 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
275   uint64_t encoding;
276   return processLogicalImmediate(imm, regSize, encoding);
277 }
278 
279 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
280 /// immediate instruction of the given register size.
encodeLogicalImmediate(uint64_t imm,unsigned regSize)281 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
282   uint64_t encoding = 0;
283   bool res = processLogicalImmediate(imm, regSize, encoding);
284   assert(res && "invalid logical immediate");
285   (void)res;
286   return encoding;
287 }
288 
289 /// decodeLogicalImmediate - Decode a logical immediate value in the form
290 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
291 /// integer value it represents with regSize bits.
decodeLogicalImmediate(uint64_t val,unsigned regSize)292 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
293   // Extract the N, imms, and immr fields.
294   unsigned N = (val >> 12) & 1;
295   unsigned immr = (val >> 6) & 0x3f;
296   unsigned imms = val & 0x3f;
297 
298   assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
299   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
300   assert(len >= 0 && "undefined logical immediate encoding");
301   unsigned size = (1 << len);
302   unsigned R = immr & (size - 1);
303   unsigned S = imms & (size - 1);
304   assert(S != size - 1 && "undefined logical immediate encoding");
305   uint64_t pattern = (1ULL << (S + 1)) - 1;
306   for (unsigned i = 0; i < R; ++i)
307     pattern = ror(pattern, size);
308 
309   // Replicate the pattern to fill the regSize.
310   while (size != regSize) {
311     pattern |= (pattern << size);
312     size *= 2;
313   }
314   return pattern;
315 }
316 
317 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
318 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
319 /// is a valid encoding for an integer value with regSize bits.
isValidDecodeLogicalImmediate(uint64_t val,unsigned regSize)320 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
321                                                  unsigned regSize) {
322   // Extract the N and imms fields needed for checking.
323   unsigned N = (val >> 12) & 1;
324   unsigned imms = val & 0x3f;
325 
326   if (regSize == 32 && N != 0) // undefined logical immediate encoding
327     return false;
328   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
329   if (len < 0) // undefined logical immediate encoding
330     return false;
331   unsigned size = (1 << len);
332   unsigned S = imms & (size - 1);
333   if (S == size - 1) // undefined logical immediate encoding
334     return false;
335 
336   return true;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 // Floating-point Immediates
341 //
getFPImmFloat(unsigned Imm)342 static inline float getFPImmFloat(unsigned Imm) {
343   // We expect an 8-bit binary encoding of a floating-point number here.
344   union {
345     uint32_t I;
346     float F;
347   } FPUnion;
348 
349   uint8_t Sign = (Imm >> 7) & 0x1;
350   uint8_t Exp = (Imm >> 4) & 0x7;
351   uint8_t Mantissa = Imm & 0xf;
352 
353   //   8-bit FP    iEEEE Float Encoding
354   //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
355   //
356   // where B = NOT(b);
357 
358   FPUnion.I = 0;
359   FPUnion.I |= Sign << 31;
360   FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
361   FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
362   FPUnion.I |= (Exp & 0x3) << 23;
363   FPUnion.I |= Mantissa << 19;
364   return FPUnion.F;
365 }
366 
367 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
368 /// floating-point value. If the value cannot be represented as an 8-bit
369 /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)370 static inline int getFP32Imm(const APInt &Imm) {
371   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
372   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
373   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
374 
375   // We can handle 4 bits of mantissa.
376   // mantissa = (16+UInt(e:f:g:h))/16.
377   if (Mantissa & 0x7ffff)
378     return -1;
379   Mantissa >>= 19;
380   if ((Mantissa & 0xf) != Mantissa)
381     return -1;
382 
383   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
384   if (Exp < -3 || Exp > 4)
385     return -1;
386   Exp = ((Exp+3) & 0x7) ^ 4;
387 
388   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
389 }
390 
getFP32Imm(const APFloat & FPImm)391 static inline int getFP32Imm(const APFloat &FPImm) {
392   return getFP32Imm(FPImm.bitcastToAPInt());
393 }
394 
395 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
396 /// floating-point value. If the value cannot be represented as an 8-bit
397 /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)398 static inline int getFP64Imm(const APInt &Imm) {
399   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
400   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
401   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
402 
403   // We can handle 4 bits of mantissa.
404   // mantissa = (16+UInt(e:f:g:h))/16.
405   if (Mantissa & 0xffffffffffffULL)
406     return -1;
407   Mantissa >>= 48;
408   if ((Mantissa & 0xf) != Mantissa)
409     return -1;
410 
411   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
412   if (Exp < -3 || Exp > 4)
413     return -1;
414   Exp = ((Exp+3) & 0x7) ^ 4;
415 
416   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
417 }
418 
getFP64Imm(const APFloat & FPImm)419 static inline int getFP64Imm(const APFloat &FPImm) {
420   return getFP64Imm(FPImm.bitcastToAPInt());
421 }
422 
423 //===--------------------------------------------------------------------===//
424 // AdvSIMD Modified Immediates
425 //===--------------------------------------------------------------------===//
426 
427 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
isAdvSIMDModImmType1(uint64_t Imm)428 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
429   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
430          ((Imm & 0xffffff00ffffff00ULL) == 0);
431 }
432 
encodeAdvSIMDModImmType1(uint64_t Imm)433 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
434   return (Imm & 0xffULL);
435 }
436 
decodeAdvSIMDModImmType1(uint8_t Imm)437 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
438   uint64_t EncVal = Imm;
439   return (EncVal << 32) | EncVal;
440 }
441 
442 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
isAdvSIMDModImmType2(uint64_t Imm)443 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
444   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
445          ((Imm & 0xffff00ffffff00ffULL) == 0);
446 }
447 
encodeAdvSIMDModImmType2(uint64_t Imm)448 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
449   return (Imm & 0xff00ULL) >> 8;
450 }
451 
decodeAdvSIMDModImmType2(uint8_t Imm)452 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
453   uint64_t EncVal = Imm;
454   return (EncVal << 40) | (EncVal << 8);
455 }
456 
457 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
isAdvSIMDModImmType3(uint64_t Imm)458 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
459   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
460          ((Imm & 0xff00ffffff00ffffULL) == 0);
461 }
462 
encodeAdvSIMDModImmType3(uint64_t Imm)463 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
464   return (Imm & 0xff0000ULL) >> 16;
465 }
466 
decodeAdvSIMDModImmType3(uint8_t Imm)467 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
468   uint64_t EncVal = Imm;
469   return (EncVal << 48) | (EncVal << 16);
470 }
471 
472 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
isAdvSIMDModImmType4(uint64_t Imm)473 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
474   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
475          ((Imm & 0x00ffffff00ffffffULL) == 0);
476 }
477 
encodeAdvSIMDModImmType4(uint64_t Imm)478 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
479   return (Imm & 0xff000000ULL) >> 24;
480 }
481 
decodeAdvSIMDModImmType4(uint8_t Imm)482 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
483   uint64_t EncVal = Imm;
484   return (EncVal << 56) | (EncVal << 24);
485 }
486 
487 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
isAdvSIMDModImmType5(uint64_t Imm)488 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
489   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
490          (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
491          ((Imm & 0xff00ff00ff00ff00ULL) == 0);
492 }
493 
encodeAdvSIMDModImmType5(uint64_t Imm)494 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
495   return (Imm & 0xffULL);
496 }
497 
decodeAdvSIMDModImmType5(uint8_t Imm)498 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
499   uint64_t EncVal = Imm;
500   return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
501 }
502 
503 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
isAdvSIMDModImmType6(uint64_t Imm)504 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
505   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
506          (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
507          ((Imm & 0x00ff00ff00ff00ffULL) == 0);
508 }
509 
encodeAdvSIMDModImmType6(uint64_t Imm)510 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
511   return (Imm & 0xff00ULL) >> 8;
512 }
513 
decodeAdvSIMDModImmType6(uint8_t Imm)514 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
515   uint64_t EncVal = Imm;
516   return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
517 }
518 
519 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
isAdvSIMDModImmType7(uint64_t Imm)520 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
521   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
522          ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
523 }
524 
encodeAdvSIMDModImmType7(uint64_t Imm)525 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
526   return (Imm & 0xff00ULL) >> 8;
527 }
528 
decodeAdvSIMDModImmType7(uint8_t Imm)529 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
530   uint64_t EncVal = Imm;
531   return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
532 }
533 
534 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
isAdvSIMDModImmType8(uint64_t Imm)535 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
536   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
537          ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
538 }
539 
decodeAdvSIMDModImmType8(uint8_t Imm)540 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
541   uint64_t EncVal = Imm;
542   return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
543 }
544 
encodeAdvSIMDModImmType8(uint64_t Imm)545 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
546   return (Imm & 0x00ff0000ULL) >> 16;
547 }
548 
549 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
isAdvSIMDModImmType9(uint64_t Imm)550 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
551   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
552          ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
553          ((Imm >> 56) == (Imm & 0x000000ffULL));
554 }
555 
encodeAdvSIMDModImmType9(uint64_t Imm)556 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
557   return (Imm & 0xffULL);
558 }
559 
decodeAdvSIMDModImmType9(uint8_t Imm)560 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
561   uint64_t EncVal = Imm;
562   EncVal |= (EncVal << 8);
563   EncVal |= (EncVal << 16);
564   EncVal |= (EncVal << 32);
565   return EncVal;
566 }
567 
568 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
569 // cmode: 1110, op: 1
isAdvSIMDModImmType10(uint64_t Imm)570 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
571   uint64_t ByteA = Imm & 0xff00000000000000ULL;
572   uint64_t ByteB = Imm & 0x00ff000000000000ULL;
573   uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
574   uint64_t ByteD = Imm & 0x000000ff00000000ULL;
575   uint64_t ByteE = Imm & 0x00000000ff000000ULL;
576   uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
577   uint64_t ByteG = Imm & 0x000000000000ff00ULL;
578   uint64_t ByteH = Imm & 0x00000000000000ffULL;
579 
580   return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
581          (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
582          (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
583          (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
584          (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
585          (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
586          (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
587          (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
588 }
589 
encodeAdvSIMDModImmType10(uint64_t Imm)590 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
591   uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
592   uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
593   uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
594   uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
595   uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
596   uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
597   uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
598   uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
599 
600   uint8_t EncVal = BitA;
601   EncVal <<= 1;
602   EncVal |= BitB;
603   EncVal <<= 1;
604   EncVal |= BitC;
605   EncVal <<= 1;
606   EncVal |= BitD;
607   EncVal <<= 1;
608   EncVal |= BitE;
609   EncVal <<= 1;
610   EncVal |= BitF;
611   EncVal <<= 1;
612   EncVal |= BitG;
613   EncVal <<= 1;
614   EncVal |= BitH;
615   return EncVal;
616 }
617 
decodeAdvSIMDModImmType10(uint8_t Imm)618 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
619   uint64_t EncVal = 0;
620   if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
621   if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
622   if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
623   if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
624   if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
625   if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
626   if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
627   if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
628   return EncVal;
629 }
630 
631 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
isAdvSIMDModImmType11(uint64_t Imm)632 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
633   uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
634   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
635          (BString == 0x1f || BString == 0x20) &&
636          ((Imm & 0x0007ffff0007ffffULL) == 0);
637 }
638 
encodeAdvSIMDModImmType11(uint64_t Imm)639 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
640   uint8_t BitA = (Imm & 0x80000000ULL) != 0;
641   uint8_t BitB = (Imm & 0x20000000ULL) != 0;
642   uint8_t BitC = (Imm & 0x01000000ULL) != 0;
643   uint8_t BitD = (Imm & 0x00800000ULL) != 0;
644   uint8_t BitE = (Imm & 0x00400000ULL) != 0;
645   uint8_t BitF = (Imm & 0x00200000ULL) != 0;
646   uint8_t BitG = (Imm & 0x00100000ULL) != 0;
647   uint8_t BitH = (Imm & 0x00080000ULL) != 0;
648 
649   uint8_t EncVal = BitA;
650   EncVal <<= 1;
651   EncVal |= BitB;
652   EncVal <<= 1;
653   EncVal |= BitC;
654   EncVal <<= 1;
655   EncVal |= BitD;
656   EncVal <<= 1;
657   EncVal |= BitE;
658   EncVal <<= 1;
659   EncVal |= BitF;
660   EncVal <<= 1;
661   EncVal |= BitG;
662   EncVal <<= 1;
663   EncVal |= BitH;
664   return EncVal;
665 }
666 
decodeAdvSIMDModImmType11(uint8_t Imm)667 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
668   uint64_t EncVal = 0;
669   if (Imm & 0x80) EncVal |= 0x80000000ULL;
670   if (Imm & 0x40) EncVal |= 0x3e000000ULL;
671   else            EncVal |= 0x40000000ULL;
672   if (Imm & 0x20) EncVal |= 0x01000000ULL;
673   if (Imm & 0x10) EncVal |= 0x00800000ULL;
674   if (Imm & 0x08) EncVal |= 0x00400000ULL;
675   if (Imm & 0x04) EncVal |= 0x00200000ULL;
676   if (Imm & 0x02) EncVal |= 0x00100000ULL;
677   if (Imm & 0x01) EncVal |= 0x00080000ULL;
678   return (EncVal << 32) | EncVal;
679 }
680 
681 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
isAdvSIMDModImmType12(uint64_t Imm)682 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
683   uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
684   return ((BString == 0xff || BString == 0x100) &&
685          ((Imm & 0x0000ffffffffffffULL) == 0));
686 }
687 
encodeAdvSIMDModImmType12(uint64_t Imm)688 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
689   uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
690   uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
691   uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
692   uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
693   uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
694   uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
695   uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
696   uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
697 
698   uint8_t EncVal = BitA;
699   EncVal <<= 1;
700   EncVal |= BitB;
701   EncVal <<= 1;
702   EncVal |= BitC;
703   EncVal <<= 1;
704   EncVal |= BitD;
705   EncVal <<= 1;
706   EncVal |= BitE;
707   EncVal <<= 1;
708   EncVal |= BitF;
709   EncVal <<= 1;
710   EncVal |= BitG;
711   EncVal <<= 1;
712   EncVal |= BitH;
713   return EncVal;
714 }
715 
decodeAdvSIMDModImmType12(uint8_t Imm)716 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
717   uint64_t EncVal = 0;
718   if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
719   if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
720   else            EncVal |= 0x4000000000000000ULL;
721   if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
722   if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
723   if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
724   if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
725   if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
726   if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
727   return (EncVal << 32) | EncVal;
728 }
729 
730 } // end namespace AArch64_AM
731 
732 } // end namespace llvm
733 
734 #endif
735