1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
11 // copies.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "PPCInstrInfo.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
42 cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
43
44 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
45
46 namespace llvm { namespace PPC {
47 int getAltVSXFMAOpcode(uint16_t Opcode);
48 } }
49
50 namespace {
51 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
52 // (Altivec and scalar floating-point registers), we need to transform the
53 // copies into subregister copies with other restrictions.
54 struct PPCVSXFMAMutate : public MachineFunctionPass {
55 static char ID;
PPCVSXFMAMutate__anond0c7d75f0111::PPCVSXFMAMutate56 PPCVSXFMAMutate() : MachineFunctionPass(ID) {
57 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
58 }
59
60 LiveIntervals *LIS;
61 const PPCInstrInfo *TII;
62
63 protected:
processBlock__anond0c7d75f0111::PPCVSXFMAMutate64 bool processBlock(MachineBasicBlock &MBB) {
65 bool Changed = false;
66
67 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
68 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
69 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
70 I != IE; ++I) {
71 MachineInstr *MI = I;
72
73 // The default (A-type) VSX FMA form kills the addend (it is taken from
74 // the target register, which is then updated to reflect the result of
75 // the FMA). If the instruction, however, kills one of the registers
76 // used for the product, then we can use the M-form instruction (which
77 // will take that value from the to-be-defined register).
78
79 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
80 if (AltOpc == -1)
81 continue;
82
83 // This pass is run after register coalescing, and so we're looking for
84 // a situation like this:
85 // ...
86 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
87 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
88 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
89 // ...
90 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
91 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
92 // ...
93 // Where we can eliminate the copy by changing from the A-type to the
94 // M-type instruction. Specifically, for this example, this means:
95 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
96 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
97 // is replaced by:
98 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
99 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
100 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
101
102 SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
103
104 VNInfo *AddendValNo =
105 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
106 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
107
108 // The addend and this instruction must be in the same block.
109
110 if (!AddendMI || AddendMI->getParent() != MI->getParent())
111 continue;
112
113 // The addend must be a full copy within the same register class.
114
115 if (!AddendMI->isFullCopy())
116 continue;
117
118 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
119 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
120 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
121 MRI.getRegClass(AddendSrcReg))
122 continue;
123 } else {
124 // If AddendSrcReg is a physical register, make sure the destination
125 // register class contains it.
126 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
127 ->contains(AddendSrcReg))
128 continue;
129 }
130
131 // In theory, there could be other uses of the addend copy before this
132 // fma. We could deal with this, but that would require additional
133 // logic below and I suspect it will not occur in any relevant
134 // situations. Additionally, check whether the copy source is killed
135 // prior to the fma. In order to replace the addend here with the
136 // source of the copy, it must still be live here. We can't use
137 // interval testing for a physical register, so as long as we're
138 // walking the MIs we may as well test liveness here.
139 bool OtherUsers = false, KillsAddendSrc = false;
140 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
141 J != JE; --J) {
142 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
143 OtherUsers = true;
144 break;
145 }
146 if (J->modifiesRegister(AddendSrcReg, TRI) ||
147 J->killsRegister(AddendSrcReg, TRI)) {
148 KillsAddendSrc = true;
149 break;
150 }
151 }
152
153 if (OtherUsers || KillsAddendSrc)
154 continue;
155
156 // Find one of the product operands that is killed by this instruction.
157
158 unsigned KilledProdOp = 0, OtherProdOp = 0;
159 if (LIS->getInterval(MI->getOperand(2).getReg())
160 .Query(FMAIdx).isKill()) {
161 KilledProdOp = 2;
162 OtherProdOp = 3;
163 } else if (LIS->getInterval(MI->getOperand(3).getReg())
164 .Query(FMAIdx).isKill()) {
165 KilledProdOp = 3;
166 OtherProdOp = 2;
167 }
168
169 // If there are no killed product operands, then this transformation is
170 // likely not profitable.
171 if (!KilledProdOp)
172 continue;
173
174 // For virtual registers, verify that the addend source register
175 // is live here (as should have been assured above).
176 assert((!TargetRegisterInfo::isVirtualRegister(AddendSrcReg) ||
177 LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) &&
178 "Addend source register is not live!");
179
180 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
181
182 unsigned AddReg = AddendMI->getOperand(1).getReg();
183 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
184 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg();
185
186 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
187 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
188 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg();
189
190 bool AddRegKill = AddendMI->getOperand(1).isKill();
191 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
192 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill();
193
194 bool AddRegUndef = AddendMI->getOperand(1).isUndef();
195 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
196 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef();
197
198 unsigned OldFMAReg = MI->getOperand(0).getReg();
199
200 // The transformation doesn't work well with things like:
201 // %vreg5 = A-form-op %vreg5, %vreg11, %vreg5;
202 // so leave such things alone.
203 if (OldFMAReg == KilledProdReg)
204 continue;
205
206 assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
207 "Addend copy not tied to old FMA output!");
208
209 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;);
210
211 MI->getOperand(0).setReg(KilledProdReg);
212 MI->getOperand(1).setReg(KilledProdReg);
213 MI->getOperand(3).setReg(AddReg);
214 MI->getOperand(2).setReg(OtherProdReg);
215
216 MI->getOperand(0).setSubReg(KilledProdSubReg);
217 MI->getOperand(1).setSubReg(KilledProdSubReg);
218 MI->getOperand(3).setSubReg(AddSubReg);
219 MI->getOperand(2).setSubReg(OtherProdSubReg);
220
221 MI->getOperand(1).setIsKill(KilledProdRegKill);
222 MI->getOperand(3).setIsKill(AddRegKill);
223 MI->getOperand(2).setIsKill(OtherProdRegKill);
224
225 MI->getOperand(1).setIsUndef(KilledProdRegUndef);
226 MI->getOperand(3).setIsUndef(AddRegUndef);
227 MI->getOperand(2).setIsUndef(OtherProdRegUndef);
228
229 MI->setDesc(TII->get(AltOpc));
230
231 DEBUG(dbgs() << " -> " << *MI);
232
233 // The killed product operand was killed here, so we can reuse it now
234 // for the result of the fma.
235
236 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
237 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
238 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
239 UI != UE;) {
240 MachineOperand &UseMO = *UI;
241 MachineInstr *UseMI = UseMO.getParent();
242 ++UI;
243
244 // Don't replace the result register of the copy we're about to erase.
245 if (UseMI == AddendMI)
246 continue;
247
248 UseMO.setReg(KilledProdReg);
249 UseMO.setSubReg(KilledProdSubReg);
250 }
251
252 // Extend the live intervals of the killed product operand to hold the
253 // fma result.
254
255 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
256 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
257 AI != AE; ++AI) {
258 // Don't add the segment that corresponds to the original copy.
259 if (AI->valno == AddendValNo)
260 continue;
261
262 VNInfo *NewFMAValNo =
263 NewFMAInt.getNextValue(AI->start,
264 LIS->getVNInfoAllocator());
265
266 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
267 NewFMAValNo));
268 }
269 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
270
271 FMAInt.removeValNo(FMAValNo);
272 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
273
274 // Remove the (now unused) copy.
275
276 DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
277 LIS->RemoveMachineInstrFromMaps(AddendMI);
278 AddendMI->eraseFromParent();
279
280 Changed = true;
281 }
282
283 return Changed;
284 }
285
286 public:
runOnMachineFunction__anond0c7d75f0111::PPCVSXFMAMutate287 bool runOnMachineFunction(MachineFunction &MF) override {
288 // If we don't have VSX then go ahead and return without doing
289 // anything.
290 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
291 if (!STI.hasVSX())
292 return false;
293
294 LIS = &getAnalysis<LiveIntervals>();
295
296 TII = STI.getInstrInfo();
297
298 bool Changed = false;
299
300 if (DisableVSXFMAMutate)
301 return Changed;
302
303 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
304 MachineBasicBlock &B = *I++;
305 if (processBlock(B))
306 Changed = true;
307 }
308
309 return Changed;
310 }
311
getAnalysisUsage__anond0c7d75f0111::PPCVSXFMAMutate312 void getAnalysisUsage(AnalysisUsage &AU) const override {
313 AU.addRequired<LiveIntervals>();
314 AU.addPreserved<LiveIntervals>();
315 AU.addRequired<SlotIndexes>();
316 AU.addPreserved<SlotIndexes>();
317 MachineFunctionPass::getAnalysisUsage(AU);
318 }
319 };
320 }
321
322 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
323 "PowerPC VSX FMA Mutation", false, false)
324 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
325 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
326 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
327 "PowerPC VSX FMA Mutation", false, false)
328
329 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
330
331 char PPCVSXFMAMutate::ID = 0;
332 FunctionPass*
createPPCVSXFMAMutatePass()333 llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
334
335
336