• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86TargetMachine.h"
15 #include "X86.h"
16 #include "X86TargetObjectFile.h"
17 #include "X86TargetTransformInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/LegacyPassManager.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/FormattedStream.h"
23 #include "llvm/Support/TargetRegistry.h"
24 #include "llvm/Target/TargetOptions.h"
25 using namespace llvm;
26 
LLVMInitializeX86Target()27 extern "C" void LLVMInitializeX86Target() {
28   // Register the target.
29   RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
30   RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
31 }
32 
createTLOF(const Triple & TT)33 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
34   if (TT.isOSBinFormatMachO()) {
35     if (TT.getArch() == Triple::x86_64)
36       return make_unique<X86_64MachoTargetObjectFile>();
37     return make_unique<TargetLoweringObjectFileMachO>();
38   }
39 
40   if (TT.isOSLinux() || TT.isOSNaCl())
41     return make_unique<X86LinuxNaClTargetObjectFile>();
42   if (TT.isOSBinFormatELF())
43     return make_unique<X86ELFTargetObjectFile>();
44   if (TT.isKnownWindowsMSVCEnvironment())
45     return make_unique<X86WindowsTargetObjectFile>();
46   if (TT.isOSBinFormatCOFF())
47     return make_unique<TargetLoweringObjectFileCOFF>();
48   llvm_unreachable("unknown subtarget type");
49 }
50 
computeDataLayout(const Triple & TT)51 static std::string computeDataLayout(const Triple &TT) {
52   // X86 is little endian
53   std::string Ret = "e";
54 
55   Ret += DataLayout::getManglingComponent(TT);
56   // X86 and x32 have 32 bit pointers.
57   if ((TT.isArch64Bit() &&
58        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
59       !TT.isArch64Bit())
60     Ret += "-p:32:32";
61 
62   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
63   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
64     Ret += "-i64:64";
65   else
66     Ret += "-f64:32:64";
67 
68   // Some ABIs align long double to 128 bits, others to 32.
69   if (TT.isOSNaCl())
70     ; // No f80
71   else if (TT.isArch64Bit() || TT.isOSDarwin())
72     Ret += "-f80:128";
73   else
74     Ret += "-f80:32";
75 
76   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
77   if (TT.isArch64Bit())
78     Ret += "-n8:16:32:64";
79   else
80     Ret += "-n8:16:32";
81 
82   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
83   if (!TT.isArch64Bit() && TT.isOSWindows())
84     Ret += "-S32";
85   else
86     Ret += "-S128";
87 
88   return Ret;
89 }
90 
91 /// X86TargetMachine ctor - Create an X86 target.
92 ///
X86TargetMachine(const Target & T,StringRef TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Reloc::Model RM,CodeModel::Model CM,CodeGenOpt::Level OL)93 X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
94                                    StringRef FS, const TargetOptions &Options,
95                                    Reloc::Model RM, CodeModel::Model CM,
96                                    CodeGenOpt::Level OL)
97     : LLVMTargetMachine(T, computeDataLayout(Triple(TT)), TT, CPU, FS, Options,
98                         RM, CM, OL),
99       TLOF(createTLOF(Triple(getTargetTriple()))),
100       Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
101   // default to hard float ABI
102   if (Options.FloatABIType == FloatABI::Default)
103     this->Options.FloatABIType = FloatABI::Hard;
104 
105   // Windows stack unwinder gets confused when execution flow "falls through"
106   // after a call to 'noreturn' function.
107   // To prevent that, we emit a trap for 'unreachable' IR instructions.
108   // (which on X86, happens to be the 'ud2' instruction)
109   if (Subtarget.isTargetWin64())
110     this->Options.TrapUnreachable = true;
111 
112   initAsmInfo();
113 }
114 
~X86TargetMachine()115 X86TargetMachine::~X86TargetMachine() {}
116 
117 const X86Subtarget *
getSubtargetImpl(const Function & F) const118 X86TargetMachine::getSubtargetImpl(const Function &F) const {
119   Attribute CPUAttr = F.getFnAttribute("target-cpu");
120   Attribute FSAttr = F.getFnAttribute("target-features");
121 
122   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
123                         ? CPUAttr.getValueAsString().str()
124                         : TargetCPU;
125   std::string FS = !FSAttr.hasAttribute(Attribute::None)
126                        ? FSAttr.getValueAsString().str()
127                        : TargetFS;
128 
129   // FIXME: This is related to the code below to reset the target options,
130   // we need to know whether or not the soft float flag is set on the
131   // function before we can generate a subtarget. We also need to use
132   // it as a key for the subtarget since that can be the only difference
133   // between two functions.
134   Attribute SFAttr = F.getFnAttribute("use-soft-float");
135   bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
136                        ? SFAttr.getValueAsString() == "true"
137                        : Options.UseSoftFloat;
138 
139   auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
140                                                : "use-soft-float=false")];
141   if (!I) {
142     // This needs to be done before we create a new subtarget since any
143     // creation will depend on the TM and the code generation flags on the
144     // function that reside in TargetOptions.
145     resetTargetOptions(F);
146     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
147                                         Options.StackAlignmentOverride);
148   }
149   return I.get();
150 }
151 
152 //===----------------------------------------------------------------------===//
153 // Command line options for x86
154 //===----------------------------------------------------------------------===//
155 static cl::opt<bool>
156 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
157   cl::desc("Minimize AVX to SSE transition penalty"),
158   cl::init(true));
159 
160 //===----------------------------------------------------------------------===//
161 // X86 TTI query.
162 //===----------------------------------------------------------------------===//
163 
getTargetIRAnalysis()164 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() {
165   return TargetIRAnalysis(
166       [this](Function &F) { return TargetTransformInfo(X86TTIImpl(this, F)); });
167 }
168 
169 
170 //===----------------------------------------------------------------------===//
171 // Pass Pipeline Configuration
172 //===----------------------------------------------------------------------===//
173 
174 namespace {
175 /// X86 Code Generator Pass Configuration Options.
176 class X86PassConfig : public TargetPassConfig {
177 public:
X86PassConfig(X86TargetMachine * TM,PassManagerBase & PM)178   X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
179     : TargetPassConfig(TM, PM) {}
180 
getX86TargetMachine() const181   X86TargetMachine &getX86TargetMachine() const {
182     return getTM<X86TargetMachine>();
183   }
184 
185   void addIRPasses() override;
186   bool addInstSelector() override;
187   bool addILPOpts() override;
188   void addPreRegAlloc() override;
189   void addPostRegAlloc() override;
190   void addPreEmitPass() override;
191 };
192 } // namespace
193 
createPassConfig(PassManagerBase & PM)194 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
195   return new X86PassConfig(this, PM);
196 }
197 
addIRPasses()198 void X86PassConfig::addIRPasses() {
199   addPass(createAtomicExpandPass(&getX86TargetMachine()));
200 
201   TargetPassConfig::addIRPasses();
202 }
203 
addInstSelector()204 bool X86PassConfig::addInstSelector() {
205   // Install an instruction selector.
206   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
207 
208   // For ELF, cleanup any local-dynamic TLS accesses.
209   if (Triple(TM->getTargetTriple()).isOSBinFormatELF() &&
210       getOptLevel() != CodeGenOpt::None)
211     addPass(createCleanupLocalDynamicTLSPass());
212 
213   addPass(createX86GlobalBaseRegPass());
214 
215   return false;
216 }
217 
addILPOpts()218 bool X86PassConfig::addILPOpts() {
219   addPass(&EarlyIfConverterID);
220   return true;
221 }
222 
addPreRegAlloc()223 void X86PassConfig::addPreRegAlloc() {
224   addPass(createX86CallFrameOptimization());
225 }
226 
addPostRegAlloc()227 void X86PassConfig::addPostRegAlloc() {
228   addPass(createX86FloatingPointStackifierPass());
229 }
230 
addPreEmitPass()231 void X86PassConfig::addPreEmitPass() {
232   if (getOptLevel() != CodeGenOpt::None)
233     addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
234 
235   if (UseVZeroUpper)
236     addPass(createX86IssueVZeroUpperPass());
237 
238   if (getOptLevel() != CodeGenOpt::None) {
239     addPass(createX86PadShortFunctions());
240     addPass(createX86FixupLEAs());
241   }
242 }
243