• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // Order relation is defined on set of functions. It was made through
13 // special function comparison procedure that returns
14 // 0 when functions are equal,
15 // -1 when Left function is less than right function, and
16 // 1 for opposite case. We need total-ordering, so we need to maintain
17 // four properties on the functions set:
18 // a <= a (reflexivity)
19 // if a <= b and b <= a then a = b (antisymmetry)
20 // if a <= b and b <= c then a <= c (transitivity).
21 // for all a and b: a <= b or b <= a (totality).
22 //
23 // Comparison iterates through each instruction in each basic block.
24 // Functions are kept on binary tree. For each new function F we perform
25 // lookup in binary tree.
26 // In practice it works the following way:
27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
28 // -- "FunctionPtr" instances are stored in std::set collection, so every
29 //    std::set::insert operation will give you result in log(N) time.
30 //
31 // When a match is found the functions are folded. If both functions are
32 // overridable, we move the functionality into a new internal function and
33 // leave two overridable thunks to it.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 // Future work:
38 //
39 // * virtual functions.
40 //
41 // Many functions have their address taken by the virtual function table for
42 // the object they belong to. However, as long as it's only used for a lookup
43 // and call, this is irrelevant, and we'd like to fold such functions.
44 //
45 // * be smarter about bitcasts.
46 //
47 // In order to fold functions, we will sometimes add either bitcast instructions
48 // or bitcast constant expressions. Unfortunately, this can confound further
49 // analysis since the two functions differ where one has a bitcast and the
50 // other doesn't. We should learn to look through bitcasts.
51 //
52 // * Compare complex types with pointer types inside.
53 // * Compare cross-reference cases.
54 // * Compare complex expressions.
55 //
56 // All the three issues above could be described as ability to prove that
57 // fA == fB == fC == fE == fF == fG in example below:
58 //
59 //  void fA() {
60 //    fB();
61 //  }
62 //  void fB() {
63 //    fA();
64 //  }
65 //
66 //  void fE() {
67 //    fF();
68 //  }
69 //  void fF() {
70 //    fG();
71 //  }
72 //  void fG() {
73 //    fE();
74 //  }
75 //
76 // Simplest cross-reference case (fA <--> fB) was implemented in previous
77 // versions of MergeFunctions, though it presented only in two function pairs
78 // in test-suite (that counts >50k functions)
79 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
80 // could cover much more cases.
81 //
82 //===----------------------------------------------------------------------===//
83 
84 #include "llvm/Transforms/IPO.h"
85 #include "llvm/ADT/DenseSet.h"
86 #include "llvm/ADT/FoldingSet.h"
87 #include "llvm/ADT/STLExtras.h"
88 #include "llvm/ADT/SmallSet.h"
89 #include "llvm/ADT/Statistic.h"
90 #include "llvm/IR/CallSite.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/IRBuilder.h"
94 #include "llvm/IR/InlineAsm.h"
95 #include "llvm/IR/Instructions.h"
96 #include "llvm/IR/LLVMContext.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include <vector>
106 using namespace llvm;
107 
108 #define DEBUG_TYPE "mergefunc"
109 
110 STATISTIC(NumFunctionsMerged, "Number of functions merged");
111 STATISTIC(NumThunksWritten, "Number of thunks generated");
112 STATISTIC(NumAliasesWritten, "Number of aliases generated");
113 STATISTIC(NumDoubleWeak, "Number of new functions created");
114 
115 static cl::opt<unsigned> NumFunctionsForSanityCheck(
116     "mergefunc-sanity",
117     cl::desc("How many functions in module could be used for "
118              "MergeFunctions pass sanity check. "
119              "'0' disables this check. Works only with '-debug' key."),
120     cl::init(0), cl::Hidden);
121 
122 namespace {
123 
124 /// FunctionComparator - Compares two functions to determine whether or not
125 /// they will generate machine code with the same behaviour. DataLayout is
126 /// used if available. The comparator always fails conservatively (erring on the
127 /// side of claiming that two functions are different).
128 class FunctionComparator {
129 public:
FunctionComparator(const Function * F1,const Function * F2)130   FunctionComparator(const Function *F1, const Function *F2)
131       : FnL(F1), FnR(F2) {}
132 
133   /// Test whether the two functions have equivalent behaviour.
134   int compare();
135 
136 private:
137   /// Test whether two basic blocks have equivalent behaviour.
138   int compare(const BasicBlock *BBL, const BasicBlock *BBR);
139 
140   /// Constants comparison.
141   /// Its analog to lexicographical comparison between hypothetical numbers
142   /// of next format:
143   /// <bitcastability-trait><raw-bit-contents>
144   ///
145   /// 1. Bitcastability.
146   /// Check whether L's type could be losslessly bitcasted to R's type.
147   /// On this stage method, in case when lossless bitcast is not possible
148   /// method returns -1 or 1, thus also defining which type is greater in
149   /// context of bitcastability.
150   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
151   ///          to the contents comparison.
152   ///          If types differ, remember types comparison result and check
153   ///          whether we still can bitcast types.
154   /// Stage 1: Types that satisfies isFirstClassType conditions are always
155   ///          greater then others.
156   /// Stage 2: Vector is greater then non-vector.
157   ///          If both types are vectors, then vector with greater bitwidth is
158   ///          greater.
159   ///          If both types are vectors with the same bitwidth, then types
160   ///          are bitcastable, and we can skip other stages, and go to contents
161   ///          comparison.
162   /// Stage 3: Pointer types are greater than non-pointers. If both types are
163   ///          pointers of the same address space - go to contents comparison.
164   ///          Different address spaces: pointer with greater address space is
165   ///          greater.
166   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
167   ///          We don't know how to bitcast them. So, we better don't do it,
168   ///          and return types comparison result (so it determines the
169   ///          relationship among constants we don't know how to bitcast).
170   ///
171   /// Just for clearance, let's see how the set of constants could look
172   /// on single dimension axis:
173   ///
174   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
175   /// Where: NFCT - Not a FirstClassType
176   ///        FCT - FirstClassTyp:
177   ///
178   /// 2. Compare raw contents.
179   /// It ignores types on this stage and only compares bits from L and R.
180   /// Returns 0, if L and R has equivalent contents.
181   /// -1 or 1 if values are different.
182   /// Pretty trivial:
183   /// 2.1. If contents are numbers, compare numbers.
184   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
185   ///    compared by their contents.
186   /// 2.2. "And so on". Just to avoid discrepancies with comments
187   /// perhaps it would be better to read the implementation itself.
188   /// 3. And again about overall picture. Let's look back at how the ordered set
189   /// of constants will look like:
190   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
191   ///
192   /// Now look, what could be inside [FCT, "others"], for example:
193   /// [FCT, "others"] =
194   /// [
195   ///   [double 0.1], [double 1.23],
196   ///   [i32 1], [i32 2],
197   ///   { double 1.0 },       ; StructTyID, NumElements = 1
198   ///   { i32 1 },            ; StructTyID, NumElements = 1
199   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
200   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
201   /// ]
202   ///
203   /// Let's explain the order. Float numbers will be less than integers, just
204   /// because of cmpType terms: FloatTyID < IntegerTyID.
205   /// Floats (with same fltSemantics) are sorted according to their value.
206   /// Then you can see integers, and they are, like a floats,
207   /// could be easy sorted among each others.
208   /// The structures. Structures are grouped at the tail, again because of their
209   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
210   /// Structures with greater number of elements are greater. Structures with
211   /// greater elements going first are greater.
212   /// The same logic with vectors, arrays and other possible complex types.
213   ///
214   /// Bitcastable constants.
215   /// Let's assume, that some constant, belongs to some group of
216   /// "so-called-equal" values with different types, and at the same time
217   /// belongs to another group of constants with equal types
218   /// and "really" equal values.
219   ///
220   /// Now, prove that this is impossible:
221   ///
222   /// If constant A with type TyA is bitcastable to B with type TyB, then:
223   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
224   ///    those should be vectors (if TyA is vector), pointers
225   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
226   ///    be equal to TyB.
227   /// 2. All constants with non-equal, but bitcastable types to TyA, are
228   ///    bitcastable to B.
229   ///    Once again, just because we allow it to vectors and pointers only.
230   ///    This statement could be expanded as below:
231   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
232   ///      vector B, and thus bitcastable to B as well.
233   /// 2.2. All pointers of the same address space, no matter what they point to,
234   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
235   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
236   /// QED.
237   ///
238   /// In another words, for pointers and vectors, we ignore top-level type and
239   /// look at their particular properties (bit-width for vectors, and
240   /// address space for pointers).
241   /// If these properties are equal - compare their contents.
242   int cmpConstants(const Constant *L, const Constant *R);
243 
244   /// Assign or look up previously assigned numbers for the two values, and
245   /// return whether the numbers are equal. Numbers are assigned in the order
246   /// visited.
247   /// Comparison order:
248   /// Stage 0: Value that is function itself is always greater then others.
249   ///          If left and right values are references to their functions, then
250   ///          they are equal.
251   /// Stage 1: Constants are greater than non-constants.
252   ///          If both left and right are constants, then the result of
253   ///          cmpConstants is used as cmpValues result.
254   /// Stage 2: InlineAsm instances are greater than others. If both left and
255   ///          right are InlineAsm instances, InlineAsm* pointers casted to
256   ///          integers and compared as numbers.
257   /// Stage 3: For all other cases we compare order we meet these values in
258   ///          their functions. If right value was met first during scanning,
259   ///          then left value is greater.
260   ///          In another words, we compare serial numbers, for more details
261   ///          see comments for sn_mapL and sn_mapR.
262   int cmpValues(const Value *L, const Value *R);
263 
264   /// Compare two Instructions for equivalence, similar to
265   /// Instruction::isSameOperationAs but with modifications to the type
266   /// comparison.
267   /// Stages are listed in "most significant stage first" order:
268   /// On each stage below, we do comparison between some left and right
269   /// operation parts. If parts are non-equal, we assign parts comparison
270   /// result to the operation comparison result and exit from method.
271   /// Otherwise we proceed to the next stage.
272   /// Stages:
273   /// 1. Operations opcodes. Compared as numbers.
274   /// 2. Number of operands.
275   /// 3. Operation types. Compared with cmpType method.
276   /// 4. Compare operation subclass optional data as stream of bytes:
277   /// just convert it to integers and call cmpNumbers.
278   /// 5. Compare in operation operand types with cmpType in
279   /// most significant operand first order.
280   /// 6. Last stage. Check operations for some specific attributes.
281   /// For example, for Load it would be:
282   /// 6.1.Load: volatile (as boolean flag)
283   /// 6.2.Load: alignment (as integer numbers)
284   /// 6.3.Load: synch-scope (as integer numbers)
285   /// 6.4.Load: range metadata (as integer numbers)
286   /// On this stage its better to see the code, since its not more than 10-15
287   /// strings for particular instruction, and could change sometimes.
288   int cmpOperations(const Instruction *L, const Instruction *R) const;
289 
290   /// Compare two GEPs for equivalent pointer arithmetic.
291   /// Parts to be compared for each comparison stage,
292   /// most significant stage first:
293   /// 1. Address space. As numbers.
294   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
295   /// 3. Pointer operand type (using cmpType method).
296   /// 4. Number of operands.
297   /// 5. Compare operands, using cmpValues method.
298   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
cmpGEPs(const GetElementPtrInst * GEPL,const GetElementPtrInst * GEPR)299   int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
300     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
301   }
302 
303   /// cmpType - compares two types,
304   /// defines total ordering among the types set.
305   ///
306   /// Return values:
307   /// 0 if types are equal,
308   /// -1 if Left is less than Right,
309   /// +1 if Left is greater than Right.
310   ///
311   /// Description:
312   /// Comparison is broken onto stages. Like in lexicographical comparison
313   /// stage coming first has higher priority.
314   /// On each explanation stage keep in mind total ordering properties.
315   ///
316   /// 0. Before comparison we coerce pointer types of 0 address space to
317   /// integer.
318   /// We also don't bother with same type at left and right, so
319   /// just return 0 in this case.
320   ///
321   /// 1. If types are of different kind (different type IDs).
322   ///    Return result of type IDs comparison, treating them as numbers.
323   /// 2. If types are vectors or integers, compare Type* values as numbers.
324   /// 3. Types has same ID, so check whether they belongs to the next group:
325   /// * Void
326   /// * Float
327   /// * Double
328   /// * X86_FP80
329   /// * FP128
330   /// * PPC_FP128
331   /// * Label
332   /// * Metadata
333   /// If so - return 0, yes - we can treat these types as equal only because
334   /// their IDs are same.
335   /// 4. If Left and Right are pointers, return result of address space
336   /// comparison (numbers comparison). We can treat pointer types of same
337   /// address space as equal.
338   /// 5. If types are complex.
339   /// Then both Left and Right are to be expanded and their element types will
340   /// be checked with the same way. If we get Res != 0 on some stage, return it.
341   /// Otherwise return 0.
342   /// 6. For all other cases put llvm_unreachable.
343   int cmpTypes(Type *TyL, Type *TyR) const;
344 
345   int cmpNumbers(uint64_t L, uint64_t R) const;
346 
347   int cmpAPInts(const APInt &L, const APInt &R) const;
348   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
349   int cmpStrings(StringRef L, StringRef R) const;
350   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
351 
352   // The two functions undergoing comparison.
353   const Function *FnL, *FnR;
354 
355   /// Assign serial numbers to values from left function, and values from
356   /// right function.
357   /// Explanation:
358   /// Being comparing functions we need to compare values we meet at left and
359   /// right sides.
360   /// Its easy to sort things out for external values. It just should be
361   /// the same value at left and right.
362   /// But for local values (those were introduced inside function body)
363   /// we have to ensure they were introduced at exactly the same place,
364   /// and plays the same role.
365   /// Let's assign serial number to each value when we meet it first time.
366   /// Values that were met at same place will be with same serial numbers.
367   /// In this case it would be good to explain few points about values assigned
368   /// to BBs and other ways of implementation (see below).
369   ///
370   /// 1. Safety of BB reordering.
371   /// It's safe to change the order of BasicBlocks in function.
372   /// Relationship with other functions and serial numbering will not be
373   /// changed in this case.
374   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
375   /// from the entry, and then take each terminator. So it doesn't matter how in
376   /// fact BBs are ordered in function. And since cmpValues are called during
377   /// this walk, the numbering depends only on how BBs located inside the CFG.
378   /// So the answer is - yes. We will get the same numbering.
379   ///
380   /// 2. Impossibility to use dominance properties of values.
381   /// If we compare two instruction operands: first is usage of local
382   /// variable AL from function FL, and second is usage of local variable AR
383   /// from FR, we could compare their origins and check whether they are
384   /// defined at the same place.
385   /// But, we are still not able to compare operands of PHI nodes, since those
386   /// could be operands from further BBs we didn't scan yet.
387   /// So it's impossible to use dominance properties in general.
388   DenseMap<const Value*, int> sn_mapL, sn_mapR;
389 };
390 
391 class FunctionNode {
392   AssertingVH<Function> F;
393 
394 public:
FunctionNode(Function * F)395   FunctionNode(Function *F) : F(F) {}
getFunc() const396   Function *getFunc() const { return F; }
release()397   void release() { F = 0; }
operator <(const FunctionNode & RHS) const398   bool operator<(const FunctionNode &RHS) const {
399     return (FunctionComparator(F, RHS.getFunc()).compare()) == -1;
400   }
401 };
402 }
403 
cmpNumbers(uint64_t L,uint64_t R) const404 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
405   if (L < R) return -1;
406   if (L > R) return 1;
407   return 0;
408 }
409 
cmpAPInts(const APInt & L,const APInt & R) const410 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
411   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
412     return Res;
413   if (L.ugt(R)) return 1;
414   if (R.ugt(L)) return -1;
415   return 0;
416 }
417 
cmpAPFloats(const APFloat & L,const APFloat & R) const418 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
419   if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
420                            (uint64_t)&R.getSemantics()))
421     return Res;
422   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
423 }
424 
cmpStrings(StringRef L,StringRef R) const425 int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
426   // Prevent heavy comparison, compare sizes first.
427   if (int Res = cmpNumbers(L.size(), R.size()))
428     return Res;
429 
430   // Compare strings lexicographically only when it is necessary: only when
431   // strings are equal in size.
432   return L.compare(R);
433 }
434 
cmpAttrs(const AttributeSet L,const AttributeSet R) const435 int FunctionComparator::cmpAttrs(const AttributeSet L,
436                                  const AttributeSet R) const {
437   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
438     return Res;
439 
440   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
441     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
442                            RE = R.end(i);
443     for (; LI != LE && RI != RE; ++LI, ++RI) {
444       Attribute LA = *LI;
445       Attribute RA = *RI;
446       if (LA < RA)
447         return -1;
448       if (RA < LA)
449         return 1;
450     }
451     if (LI != LE)
452       return 1;
453     if (RI != RE)
454       return -1;
455   }
456   return 0;
457 }
458 
459 /// Constants comparison:
460 /// 1. Check whether type of L constant could be losslessly bitcasted to R
461 /// type.
462 /// 2. Compare constant contents.
463 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R)464 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
465 
466   Type *TyL = L->getType();
467   Type *TyR = R->getType();
468 
469   // Check whether types are bitcastable. This part is just re-factored
470   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
471   // we also pack into result which type is "less" for us.
472   int TypesRes = cmpTypes(TyL, TyR);
473   if (TypesRes != 0) {
474     // Types are different, but check whether we can bitcast them.
475     if (!TyL->isFirstClassType()) {
476       if (TyR->isFirstClassType())
477         return -1;
478       // Neither TyL nor TyR are values of first class type. Return the result
479       // of comparing the types
480       return TypesRes;
481     }
482     if (!TyR->isFirstClassType()) {
483       if (TyL->isFirstClassType())
484         return 1;
485       return TypesRes;
486     }
487 
488     // Vector -> Vector conversions are always lossless if the two vector types
489     // have the same size, otherwise not.
490     unsigned TyLWidth = 0;
491     unsigned TyRWidth = 0;
492 
493     if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
494       TyLWidth = VecTyL->getBitWidth();
495     if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
496       TyRWidth = VecTyR->getBitWidth();
497 
498     if (TyLWidth != TyRWidth)
499       return cmpNumbers(TyLWidth, TyRWidth);
500 
501     // Zero bit-width means neither TyL nor TyR are vectors.
502     if (!TyLWidth) {
503       PointerType *PTyL = dyn_cast<PointerType>(TyL);
504       PointerType *PTyR = dyn_cast<PointerType>(TyR);
505       if (PTyL && PTyR) {
506         unsigned AddrSpaceL = PTyL->getAddressSpace();
507         unsigned AddrSpaceR = PTyR->getAddressSpace();
508         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
509           return Res;
510       }
511       if (PTyL)
512         return 1;
513       if (PTyR)
514         return -1;
515 
516       // TyL and TyR aren't vectors, nor pointers. We don't know how to
517       // bitcast them.
518       return TypesRes;
519     }
520   }
521 
522   // OK, types are bitcastable, now check constant contents.
523 
524   if (L->isNullValue() && R->isNullValue())
525     return TypesRes;
526   if (L->isNullValue() && !R->isNullValue())
527     return 1;
528   if (!L->isNullValue() && R->isNullValue())
529     return -1;
530 
531   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
532     return Res;
533 
534   switch (L->getValueID()) {
535   case Value::UndefValueVal: return TypesRes;
536   case Value::ConstantIntVal: {
537     const APInt &LInt = cast<ConstantInt>(L)->getValue();
538     const APInt &RInt = cast<ConstantInt>(R)->getValue();
539     return cmpAPInts(LInt, RInt);
540   }
541   case Value::ConstantFPVal: {
542     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
543     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
544     return cmpAPFloats(LAPF, RAPF);
545   }
546   case Value::ConstantArrayVal: {
547     const ConstantArray *LA = cast<ConstantArray>(L);
548     const ConstantArray *RA = cast<ConstantArray>(R);
549     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
550     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
551     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
552       return Res;
553     for (uint64_t i = 0; i < NumElementsL; ++i) {
554       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
555                                  cast<Constant>(RA->getOperand(i))))
556         return Res;
557     }
558     return 0;
559   }
560   case Value::ConstantStructVal: {
561     const ConstantStruct *LS = cast<ConstantStruct>(L);
562     const ConstantStruct *RS = cast<ConstantStruct>(R);
563     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
564     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
565     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
566       return Res;
567     for (unsigned i = 0; i != NumElementsL; ++i) {
568       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
569                                  cast<Constant>(RS->getOperand(i))))
570         return Res;
571     }
572     return 0;
573   }
574   case Value::ConstantVectorVal: {
575     const ConstantVector *LV = cast<ConstantVector>(L);
576     const ConstantVector *RV = cast<ConstantVector>(R);
577     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
578     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
579     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
580       return Res;
581     for (uint64_t i = 0; i < NumElementsL; ++i) {
582       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
583                                  cast<Constant>(RV->getOperand(i))))
584         return Res;
585     }
586     return 0;
587   }
588   case Value::ConstantExprVal: {
589     const ConstantExpr *LE = cast<ConstantExpr>(L);
590     const ConstantExpr *RE = cast<ConstantExpr>(R);
591     unsigned NumOperandsL = LE->getNumOperands();
592     unsigned NumOperandsR = RE->getNumOperands();
593     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
594       return Res;
595     for (unsigned i = 0; i < NumOperandsL; ++i) {
596       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
597                                  cast<Constant>(RE->getOperand(i))))
598         return Res;
599     }
600     return 0;
601   }
602   case Value::FunctionVal:
603   case Value::GlobalVariableVal:
604   case Value::GlobalAliasVal:
605   default: // Unknown constant, cast L and R pointers to numbers and compare.
606     return cmpNumbers((uint64_t)L, (uint64_t)R);
607   }
608 }
609 
610 /// cmpType - compares two types,
611 /// defines total ordering among the types set.
612 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const613 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
614 
615   PointerType *PTyL = dyn_cast<PointerType>(TyL);
616   PointerType *PTyR = dyn_cast<PointerType>(TyR);
617 
618   const DataLayout &DL = FnL->getParent()->getDataLayout();
619   if (PTyL && PTyL->getAddressSpace() == 0)
620     TyL = DL.getIntPtrType(TyL);
621   if (PTyR && PTyR->getAddressSpace() == 0)
622     TyR = DL.getIntPtrType(TyR);
623 
624   if (TyL == TyR)
625     return 0;
626 
627   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
628     return Res;
629 
630   switch (TyL->getTypeID()) {
631   default:
632     llvm_unreachable("Unknown type!");
633     // Fall through in Release mode.
634   case Type::IntegerTyID:
635   case Type::VectorTyID:
636     // TyL == TyR would have returned true earlier.
637     return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
638 
639   case Type::VoidTyID:
640   case Type::FloatTyID:
641   case Type::DoubleTyID:
642   case Type::X86_FP80TyID:
643   case Type::FP128TyID:
644   case Type::PPC_FP128TyID:
645   case Type::LabelTyID:
646   case Type::MetadataTyID:
647     return 0;
648 
649   case Type::PointerTyID: {
650     assert(PTyL && PTyR && "Both types must be pointers here.");
651     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
652   }
653 
654   case Type::StructTyID: {
655     StructType *STyL = cast<StructType>(TyL);
656     StructType *STyR = cast<StructType>(TyR);
657     if (STyL->getNumElements() != STyR->getNumElements())
658       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
659 
660     if (STyL->isPacked() != STyR->isPacked())
661       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
662 
663     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
664       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
665         return Res;
666     }
667     return 0;
668   }
669 
670   case Type::FunctionTyID: {
671     FunctionType *FTyL = cast<FunctionType>(TyL);
672     FunctionType *FTyR = cast<FunctionType>(TyR);
673     if (FTyL->getNumParams() != FTyR->getNumParams())
674       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
675 
676     if (FTyL->isVarArg() != FTyR->isVarArg())
677       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
678 
679     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
680       return Res;
681 
682     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
683       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
684         return Res;
685     }
686     return 0;
687   }
688 
689   case Type::ArrayTyID: {
690     ArrayType *ATyL = cast<ArrayType>(TyL);
691     ArrayType *ATyR = cast<ArrayType>(TyR);
692     if (ATyL->getNumElements() != ATyR->getNumElements())
693       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
694     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
695   }
696   }
697 }
698 
699 // Determine whether the two operations are the same except that pointer-to-A
700 // and pointer-to-B are equivalent. This should be kept in sync with
701 // Instruction::isSameOperationAs.
702 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R) const703 int FunctionComparator::cmpOperations(const Instruction *L,
704                                       const Instruction *R) const {
705   // Differences from Instruction::isSameOperationAs:
706   //  * replace type comparison with calls to isEquivalentType.
707   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
708   //  * because of the above, we don't test for the tail bit on calls later on
709   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
710     return Res;
711 
712   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
713     return Res;
714 
715   if (int Res = cmpTypes(L->getType(), R->getType()))
716     return Res;
717 
718   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
719                            R->getRawSubclassOptionalData()))
720     return Res;
721 
722   // We have two instructions of identical opcode and #operands.  Check to see
723   // if all operands are the same type
724   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
725     if (int Res =
726             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
727       return Res;
728   }
729 
730   // Check special state that is a part of some instructions.
731   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
732     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
733       return Res;
734     if (int Res =
735             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
736       return Res;
737     if (int Res =
738             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
739       return Res;
740     if (int Res =
741             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
742       return Res;
743     return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
744                       (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
745   }
746   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
747     if (int Res =
748             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
749       return Res;
750     if (int Res =
751             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
752       return Res;
753     if (int Res =
754             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
755       return Res;
756     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
757   }
758   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
759     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
760   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
761     if (int Res = cmpNumbers(CI->getCallingConv(),
762                              cast<CallInst>(R)->getCallingConv()))
763       return Res;
764     if (int Res =
765             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
766       return Res;
767     return cmpNumbers(
768         (uint64_t)CI->getMetadata(LLVMContext::MD_range),
769         (uint64_t)cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
770   }
771   if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
772     if (int Res = cmpNumbers(CI->getCallingConv(),
773                              cast<InvokeInst>(R)->getCallingConv()))
774       return Res;
775     if (int Res =
776             cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
777       return Res;
778     return cmpNumbers(
779         (uint64_t)CI->getMetadata(LLVMContext::MD_range),
780         (uint64_t)cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
781   }
782   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
783     ArrayRef<unsigned> LIndices = IVI->getIndices();
784     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
785     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
786       return Res;
787     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
788       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
789         return Res;
790     }
791   }
792   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
793     ArrayRef<unsigned> LIndices = EVI->getIndices();
794     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
795     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
796       return Res;
797     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
798       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
799         return Res;
800     }
801   }
802   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
803     if (int Res =
804             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
805       return Res;
806     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
807   }
808 
809   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
810     if (int Res = cmpNumbers(CXI->isVolatile(),
811                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
812       return Res;
813     if (int Res = cmpNumbers(CXI->isWeak(),
814                              cast<AtomicCmpXchgInst>(R)->isWeak()))
815       return Res;
816     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
817                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
818       return Res;
819     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
820                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
821       return Res;
822     return cmpNumbers(CXI->getSynchScope(),
823                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
824   }
825   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
826     if (int Res = cmpNumbers(RMWI->getOperation(),
827                              cast<AtomicRMWInst>(R)->getOperation()))
828       return Res;
829     if (int Res = cmpNumbers(RMWI->isVolatile(),
830                              cast<AtomicRMWInst>(R)->isVolatile()))
831       return Res;
832     if (int Res = cmpNumbers(RMWI->getOrdering(),
833                              cast<AtomicRMWInst>(R)->getOrdering()))
834       return Res;
835     return cmpNumbers(RMWI->getSynchScope(),
836                       cast<AtomicRMWInst>(R)->getSynchScope());
837   }
838   return 0;
839 }
840 
841 // Determine whether two GEP operations perform the same underlying arithmetic.
842 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR)843 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
844                                const GEPOperator *GEPR) {
845 
846   unsigned int ASL = GEPL->getPointerAddressSpace();
847   unsigned int ASR = GEPR->getPointerAddressSpace();
848 
849   if (int Res = cmpNumbers(ASL, ASR))
850     return Res;
851 
852   // When we have target data, we can reduce the GEP down to the value in bytes
853   // added to the address.
854   const DataLayout &DL = FnL->getParent()->getDataLayout();
855   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
856   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
857   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
858       GEPR->accumulateConstantOffset(DL, OffsetR))
859     return cmpAPInts(OffsetL, OffsetR);
860 
861   if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
862                            (uint64_t)GEPR->getPointerOperand()->getType()))
863     return Res;
864 
865   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
866     return Res;
867 
868   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
869     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
870       return Res;
871   }
872 
873   return 0;
874 }
875 
876 /// Compare two values used by the two functions under pair-wise comparison. If
877 /// this is the first time the values are seen, they're added to the mapping so
878 /// that we will detect mismatches on next use.
879 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R)880 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
881   // Catch self-reference case.
882   if (L == FnL) {
883     if (R == FnR)
884       return 0;
885     return -1;
886   }
887   if (R == FnR) {
888     if (L == FnL)
889       return 0;
890     return 1;
891   }
892 
893   const Constant *ConstL = dyn_cast<Constant>(L);
894   const Constant *ConstR = dyn_cast<Constant>(R);
895   if (ConstL && ConstR) {
896     if (L == R)
897       return 0;
898     return cmpConstants(ConstL, ConstR);
899   }
900 
901   if (ConstL)
902     return 1;
903   if (ConstR)
904     return -1;
905 
906   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
907   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
908 
909   if (InlineAsmL && InlineAsmR)
910     return cmpNumbers((uint64_t)L, (uint64_t)R);
911   if (InlineAsmL)
912     return 1;
913   if (InlineAsmR)
914     return -1;
915 
916   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
917        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
918 
919   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
920 }
921 // Test whether two basic blocks have equivalent behaviour.
compare(const BasicBlock * BBL,const BasicBlock * BBR)922 int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
923   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
924   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
925 
926   do {
927     if (int Res = cmpValues(InstL, InstR))
928       return Res;
929 
930     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
931     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
932 
933     if (GEPL && !GEPR)
934       return 1;
935     if (GEPR && !GEPL)
936       return -1;
937 
938     if (GEPL && GEPR) {
939       if (int Res =
940               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
941         return Res;
942       if (int Res = cmpGEPs(GEPL, GEPR))
943         return Res;
944     } else {
945       if (int Res = cmpOperations(InstL, InstR))
946         return Res;
947       assert(InstL->getNumOperands() == InstR->getNumOperands());
948 
949       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
950         Value *OpL = InstL->getOperand(i);
951         Value *OpR = InstR->getOperand(i);
952         if (int Res = cmpValues(OpL, OpR))
953           return Res;
954         if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
955           return Res;
956         // TODO: Already checked in cmpOperation
957         if (int Res = cmpTypes(OpL->getType(), OpR->getType()))
958           return Res;
959       }
960     }
961 
962     ++InstL, ++InstR;
963   } while (InstL != InstLE && InstR != InstRE);
964 
965   if (InstL != InstLE && InstR == InstRE)
966     return 1;
967   if (InstL == InstLE && InstR != InstRE)
968     return -1;
969   return 0;
970 }
971 
972 // Test whether the two functions have equivalent behaviour.
compare()973 int FunctionComparator::compare() {
974 
975   sn_mapL.clear();
976   sn_mapR.clear();
977 
978   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
979     return Res;
980 
981   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
982     return Res;
983 
984   if (FnL->hasGC()) {
985     if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
986       return Res;
987   }
988 
989   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
990     return Res;
991 
992   if (FnL->hasSection()) {
993     if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
994       return Res;
995   }
996 
997   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
998     return Res;
999 
1000   // TODO: if it's internal and only used in direct calls, we could handle this
1001   // case too.
1002   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
1003     return Res;
1004 
1005   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
1006     return Res;
1007 
1008   assert(FnL->arg_size() == FnR->arg_size() &&
1009          "Identically typed functions have different numbers of args!");
1010 
1011   // Visit the arguments so that they get enumerated in the order they're
1012   // passed in.
1013   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1014                                     ArgRI = FnR->arg_begin(),
1015                                     ArgLE = FnL->arg_end();
1016        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1017     if (cmpValues(ArgLI, ArgRI) != 0)
1018       llvm_unreachable("Arguments repeat!");
1019   }
1020 
1021   // We do a CFG-ordered walk since the actual ordering of the blocks in the
1022   // linked list is immaterial. Our walk starts at the entry block for both
1023   // functions, then takes each block from each terminator in order. As an
1024   // artifact, this also means that unreachable blocks are ignored.
1025   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1026   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1027 
1028   FnLBBs.push_back(&FnL->getEntryBlock());
1029   FnRBBs.push_back(&FnR->getEntryBlock());
1030 
1031   VisitedBBs.insert(FnLBBs[0]);
1032   while (!FnLBBs.empty()) {
1033     const BasicBlock *BBL = FnLBBs.pop_back_val();
1034     const BasicBlock *BBR = FnRBBs.pop_back_val();
1035 
1036     if (int Res = cmpValues(BBL, BBR))
1037       return Res;
1038 
1039     if (int Res = compare(BBL, BBR))
1040       return Res;
1041 
1042     const TerminatorInst *TermL = BBL->getTerminator();
1043     const TerminatorInst *TermR = BBR->getTerminator();
1044 
1045     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1046     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1047       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1048         continue;
1049 
1050       FnLBBs.push_back(TermL->getSuccessor(i));
1051       FnRBBs.push_back(TermR->getSuccessor(i));
1052     }
1053   }
1054   return 0;
1055 }
1056 
1057 namespace {
1058 
1059 /// MergeFunctions finds functions which will generate identical machine code,
1060 /// by considering all pointer types to be equivalent. Once identified,
1061 /// MergeFunctions will fold them by replacing a call to one to a call to a
1062 /// bitcast of the other.
1063 ///
1064 class MergeFunctions : public ModulePass {
1065 public:
1066   static char ID;
MergeFunctions()1067   MergeFunctions()
1068     : ModulePass(ID), HasGlobalAliases(false) {
1069     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1070   }
1071 
1072   bool runOnModule(Module &M) override;
1073 
1074 private:
1075   typedef std::set<FunctionNode> FnTreeType;
1076 
1077   /// A work queue of functions that may have been modified and should be
1078   /// analyzed again.
1079   std::vector<WeakVH> Deferred;
1080 
1081   /// Checks the rules of order relation introduced among functions set.
1082   /// Returns true, if sanity check has been passed, and false if failed.
1083   bool doSanityCheck(std::vector<WeakVH> &Worklist);
1084 
1085   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1086   /// equal to one that's already present.
1087   bool insert(Function *NewFunction);
1088 
1089   /// Remove a Function from the FnTree and queue it up for a second sweep of
1090   /// analysis.
1091   void remove(Function *F);
1092 
1093   /// Find the functions that use this Value and remove them from FnTree and
1094   /// queue the functions.
1095   void removeUsers(Value *V);
1096 
1097   /// Replace all direct calls of Old with calls of New. Will bitcast New if
1098   /// necessary to make types match.
1099   void replaceDirectCallers(Function *Old, Function *New);
1100 
1101   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1102   /// be converted into a thunk. In either case, it should never be visited
1103   /// again.
1104   void mergeTwoFunctions(Function *F, Function *G);
1105 
1106   /// Replace G with a thunk or an alias to F. Deletes G.
1107   void writeThunkOrAlias(Function *F, Function *G);
1108 
1109   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1110   /// of G with bitcast(F). Deletes G.
1111   void writeThunk(Function *F, Function *G);
1112 
1113   /// Replace G with an alias to F. Deletes G.
1114   void writeAlias(Function *F, Function *G);
1115 
1116   /// The set of all distinct functions. Use the insert() and remove() methods
1117   /// to modify it.
1118   FnTreeType FnTree;
1119 
1120   /// Whether or not the target supports global aliases.
1121   bool HasGlobalAliases;
1122 };
1123 
1124 }  // end anonymous namespace
1125 
1126 char MergeFunctions::ID = 0;
1127 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1128 
createMergeFunctionsPass()1129 ModulePass *llvm::createMergeFunctionsPass() {
1130   return new MergeFunctions();
1131 }
1132 
doSanityCheck(std::vector<WeakVH> & Worklist)1133 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1134   if (const unsigned Max = NumFunctionsForSanityCheck) {
1135     unsigned TripleNumber = 0;
1136     bool Valid = true;
1137 
1138     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1139 
1140     unsigned i = 0;
1141     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1142          I != E && i < Max; ++I, ++i) {
1143       unsigned j = i;
1144       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1145         Function *F1 = cast<Function>(*I);
1146         Function *F2 = cast<Function>(*J);
1147         int Res1 = FunctionComparator(F1, F2).compare();
1148         int Res2 = FunctionComparator(F2, F1).compare();
1149 
1150         // If F1 <= F2, then F2 >= F1, otherwise report failure.
1151         if (Res1 != -Res2) {
1152           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1153                  << "\n";
1154           F1->dump();
1155           F2->dump();
1156           Valid = false;
1157         }
1158 
1159         if (Res1 == 0)
1160           continue;
1161 
1162         unsigned k = j;
1163         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1164              ++k, ++K, ++TripleNumber) {
1165           if (K == J)
1166             continue;
1167 
1168           Function *F3 = cast<Function>(*K);
1169           int Res3 = FunctionComparator(F1, F3).compare();
1170           int Res4 = FunctionComparator(F2, F3).compare();
1171 
1172           bool Transitive = true;
1173 
1174           if (Res1 != 0 && Res1 == Res4) {
1175             // F1 > F2, F2 > F3 => F1 > F3
1176             Transitive = Res3 == Res1;
1177           } else if (Res3 != 0 && Res3 == -Res4) {
1178             // F1 > F3, F3 > F2 => F1 > F2
1179             Transitive = Res3 == Res1;
1180           } else if (Res4 != 0 && -Res3 == Res4) {
1181             // F2 > F3, F3 > F1 => F2 > F1
1182             Transitive = Res4 == -Res1;
1183           }
1184 
1185           if (!Transitive) {
1186             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1187                    << TripleNumber << "\n";
1188             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1189                    << Res4 << "\n";
1190             F1->dump();
1191             F2->dump();
1192             F3->dump();
1193             Valid = false;
1194           }
1195         }
1196       }
1197     }
1198 
1199     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1200     return Valid;
1201   }
1202   return true;
1203 }
1204 
runOnModule(Module & M)1205 bool MergeFunctions::runOnModule(Module &M) {
1206   bool Changed = false;
1207 
1208   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1209     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
1210       Deferred.push_back(WeakVH(I));
1211   }
1212 
1213   do {
1214     std::vector<WeakVH> Worklist;
1215     Deferred.swap(Worklist);
1216 
1217     DEBUG(doSanityCheck(Worklist));
1218 
1219     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1220     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1221 
1222     // Insert only strong functions and merge them. Strong function merging
1223     // always deletes one of them.
1224     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1225            E = Worklist.end(); I != E; ++I) {
1226       if (!*I) continue;
1227       Function *F = cast<Function>(*I);
1228       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1229           !F->mayBeOverridden()) {
1230         Changed |= insert(F);
1231       }
1232     }
1233 
1234     // Insert only weak functions and merge them. By doing these second we
1235     // create thunks to the strong function when possible. When two weak
1236     // functions are identical, we create a new strong function with two weak
1237     // weak thunks to it which are identical but not mergable.
1238     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1239            E = Worklist.end(); I != E; ++I) {
1240       if (!*I) continue;
1241       Function *F = cast<Function>(*I);
1242       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1243           F->mayBeOverridden()) {
1244         Changed |= insert(F);
1245       }
1246     }
1247     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1248   } while (!Deferred.empty());
1249 
1250   FnTree.clear();
1251 
1252   return Changed;
1253 }
1254 
1255 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)1256 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1257   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1258   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1259     Use *U = &*UI;
1260     ++UI;
1261     CallSite CS(U->getUser());
1262     if (CS && CS.isCallee(U)) {
1263       remove(CS.getInstruction()->getParent()->getParent());
1264       U->set(BitcastNew);
1265     }
1266   }
1267 }
1268 
1269 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)1270 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1271   if (HasGlobalAliases && G->hasUnnamedAddr()) {
1272     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1273         G->hasWeakLinkage()) {
1274       writeAlias(F, G);
1275       return;
1276     }
1277   }
1278 
1279   writeThunk(F, G);
1280 }
1281 
1282 // Helper for writeThunk,
1283 // Selects proper bitcast operation,
1284 // but a bit simpler then CastInst::getCastOpcode.
createCast(IRBuilder<false> & Builder,Value * V,Type * DestTy)1285 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1286   Type *SrcTy = V->getType();
1287   if (SrcTy->isStructTy()) {
1288     assert(DestTy->isStructTy());
1289     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1290     Value *Result = UndefValue::get(DestTy);
1291     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1292       Value *Element = createCast(
1293           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
1294           DestTy->getStructElementType(I));
1295 
1296       Result =
1297           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
1298     }
1299     return Result;
1300   }
1301   assert(!DestTy->isStructTy());
1302   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1303     return Builder.CreateIntToPtr(V, DestTy);
1304   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1305     return Builder.CreatePtrToInt(V, DestTy);
1306   else
1307     return Builder.CreateBitCast(V, DestTy);
1308 }
1309 
1310 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1311 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)1312 void MergeFunctions::writeThunk(Function *F, Function *G) {
1313   if (!G->mayBeOverridden()) {
1314     // Redirect direct callers of G to F.
1315     replaceDirectCallers(G, F);
1316   }
1317 
1318   // If G was internal then we may have replaced all uses of G with F. If so,
1319   // stop here and delete G. There's no need for a thunk.
1320   if (G->hasLocalLinkage() && G->use_empty()) {
1321     G->eraseFromParent();
1322     return;
1323   }
1324 
1325   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1326                                     G->getParent());
1327   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1328   IRBuilder<false> Builder(BB);
1329 
1330   SmallVector<Value *, 16> Args;
1331   unsigned i = 0;
1332   FunctionType *FFTy = F->getFunctionType();
1333   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
1334        AI != AE; ++AI) {
1335     Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
1336     ++i;
1337   }
1338 
1339   CallInst *CI = Builder.CreateCall(F, Args);
1340   CI->setTailCall();
1341   CI->setCallingConv(F->getCallingConv());
1342   if (NewG->getReturnType()->isVoidTy()) {
1343     Builder.CreateRetVoid();
1344   } else {
1345     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1346   }
1347 
1348   NewG->copyAttributesFrom(G);
1349   NewG->takeName(G);
1350   removeUsers(G);
1351   G->replaceAllUsesWith(NewG);
1352   G->eraseFromParent();
1353 
1354   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1355   ++NumThunksWritten;
1356 }
1357 
1358 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)1359 void MergeFunctions::writeAlias(Function *F, Function *G) {
1360   PointerType *PTy = G->getType();
1361   auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1362                                  G->getLinkage(), "", F);
1363   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1364   GA->takeName(G);
1365   GA->setVisibility(G->getVisibility());
1366   removeUsers(G);
1367   G->replaceAllUsesWith(GA);
1368   G->eraseFromParent();
1369 
1370   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1371   ++NumAliasesWritten;
1372 }
1373 
1374 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)1375 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1376   if (F->mayBeOverridden()) {
1377     assert(G->mayBeOverridden());
1378 
1379     if (HasGlobalAliases) {
1380       // Make them both thunks to the same internal function.
1381       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1382                                      F->getParent());
1383       H->copyAttributesFrom(F);
1384       H->takeName(F);
1385       removeUsers(F);
1386       F->replaceAllUsesWith(H);
1387 
1388       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1389 
1390       writeAlias(F, G);
1391       writeAlias(F, H);
1392 
1393       F->setAlignment(MaxAlignment);
1394       F->setLinkage(GlobalValue::PrivateLinkage);
1395     } else {
1396       // We can't merge them. Instead, pick one and update all direct callers
1397       // to call it and hope that we improve the instruction cache hit rate.
1398       replaceDirectCallers(G, F);
1399     }
1400 
1401     ++NumDoubleWeak;
1402   } else {
1403     writeThunkOrAlias(F, G);
1404   }
1405 
1406   ++NumFunctionsMerged;
1407 }
1408 
1409 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1410 // that was already inserted.
insert(Function * NewFunction)1411 bool MergeFunctions::insert(Function *NewFunction) {
1412   std::pair<FnTreeType::iterator, bool> Result =
1413       FnTree.insert(FunctionNode(NewFunction));
1414 
1415   if (Result.second) {
1416     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1417     return false;
1418   }
1419 
1420   const FunctionNode &OldF = *Result.first;
1421 
1422   // Don't merge tiny functions, since it can just end up making the function
1423   // larger.
1424   // FIXME: Should still merge them if they are unnamed_addr and produce an
1425   // alias.
1426   if (NewFunction->size() == 1) {
1427     if (NewFunction->front().size() <= 2) {
1428       DEBUG(dbgs() << NewFunction->getName()
1429                    << " is to small to bother merging\n");
1430       return false;
1431     }
1432   }
1433 
1434   // Never thunk a strong function to a weak function.
1435   assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1436 
1437   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
1438                << " == " << NewFunction->getName() << '\n');
1439 
1440   Function *DeleteF = NewFunction;
1441   mergeTwoFunctions(OldF.getFunc(), DeleteF);
1442   return true;
1443 }
1444 
1445 // Remove a function from FnTree. If it was already in FnTree, add
1446 // it to Deferred so that we'll look at it in the next round.
remove(Function * F)1447 void MergeFunctions::remove(Function *F) {
1448   // We need to make sure we remove F, not a function "equal" to F per the
1449   // function equality comparator.
1450   FnTreeType::iterator found = FnTree.find(FunctionNode(F));
1451   size_t Erased = 0;
1452   if (found != FnTree.end() && found->getFunc() == F) {
1453     Erased = 1;
1454     FnTree.erase(found);
1455   }
1456 
1457   if (Erased) {
1458     DEBUG(dbgs() << "Removed " << F->getName()
1459                  << " from set and deferred it.\n");
1460     Deferred.push_back(F);
1461   }
1462 }
1463 
1464 // For each instruction used by the value, remove() the function that contains
1465 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)1466 void MergeFunctions::removeUsers(Value *V) {
1467   std::vector<Value *> Worklist;
1468   Worklist.push_back(V);
1469   while (!Worklist.empty()) {
1470     Value *V = Worklist.back();
1471     Worklist.pop_back();
1472 
1473     for (User *U : V->users()) {
1474       if (Instruction *I = dyn_cast<Instruction>(U)) {
1475         remove(I->getParent()->getParent());
1476       } else if (isa<GlobalValue>(U)) {
1477         // do nothing
1478       } else if (Constant *C = dyn_cast<Constant>(U)) {
1479         for (User *UU : C->users())
1480           Worklist.push_back(UU);
1481       }
1482     }
1483   }
1484 }
1485