1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "reassociate"
45
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49
50 namespace {
51 struct ValueEntry {
52 unsigned Rank;
53 Value *Op;
ValueEntry__anonef1ffdc80111::ValueEntry54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
operator <(const ValueEntry & LHS,const ValueEntry & RHS)56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
59 }
60
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
PrintOps(Instruction * I,const SmallVectorImpl<ValueEntry> & Ops)64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65 Module *M = I->getParent()->getParent()->getParent();
66 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67 << *Ops[0].Op->getType() << '\t';
68 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69 dbgs() << "[ ";
70 Ops[i].Op->printAsOperand(dbgs(), false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
72 }
73 }
74 #endif
75
76 namespace {
77 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
Factor__anonef1ffdc80211::Factor83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
operator ()__anonef1ffdc80211::Factor::BaseSorter87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
operator ()__anonef1ffdc80211::Factor::BaseEqual94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
operator ()__anonef1ffdc80211::Factor::PowerDescendingSorter101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
operator ()__anonef1ffdc80211::Factor::PowerEqual108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
125
isInvalid() const126 bool isInvalid() const { return SymbolicPart == nullptr; }
isOrExpr() const127 bool isOrExpr() const { return isOr; }
getValue() const128 Value *getValue() const { return OrigVal; }
getSymbolicPart() const129 Value *getSymbolicPart() const { return SymbolicPart; }
getSymbolicRank() const130 unsigned getSymbolicRank() const { return SymbolicRank; }
getConstPart() const131 const APInt &getConstPart() const { return ConstPart; }
132
Invalidate()133 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
setSymbolicRank(unsigned R)134 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135
136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137 // The purpose is twofold:
138 // 1) Cluster together the operands sharing the same symbolic-value.
139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140 // could potentially shorten crital path, and expose more loop-invariants.
141 // Note that values' rank are basically defined in RPO order (FIXME).
142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144 // "z" in the order of X-Y-Z is better than any other orders.
145 struct PtrSortFunctor {
operator ()__anonef1ffdc80211::XorOpnd::PtrSortFunctor146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148 }
149 };
150 private:
151 Value *OrigVal;
152 Value *SymbolicPart;
153 APInt ConstPart;
154 unsigned SymbolicRank;
155 bool isOr;
156 };
157 }
158
159 namespace {
160 class Reassociate : public FunctionPass {
161 DenseMap<BasicBlock*, unsigned> RankMap;
162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
163 SetVector<AssertingVH<Instruction> > RedoInsts;
164 bool MadeChange;
165 public:
166 static char ID; // Pass identification, replacement for typeid
Reassociate()167 Reassociate() : FunctionPass(ID) {
168 initializeReassociatePass(*PassRegistry::getPassRegistry());
169 }
170
171 bool runOnFunction(Function &F) override;
172
getAnalysisUsage(AnalysisUsage & AU) const173 void getAnalysisUsage(AnalysisUsage &AU) const override {
174 AU.setPreservesCFG();
175 }
176 private:
177 void BuildRankMap(Function &F);
178 unsigned getRank(Value *V);
179 void canonicalizeOperands(Instruction *I);
180 void ReassociateExpression(BinaryOperator *I);
181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
182 Value *OptimizeExpression(BinaryOperator *I,
183 SmallVectorImpl<ValueEntry> &Ops);
184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187 Value *&Res);
188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189 APInt &ConstOpnd, Value *&Res);
190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191 SmallVectorImpl<Factor> &Factors);
192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193 SmallVectorImpl<Factor> &Factors);
194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
195 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
196 void EraseInst(Instruction *I);
197 void OptimizeInst(Instruction *I);
198 Instruction *canonicalizeNegConstExpr(Instruction *I);
199 };
200 }
201
XorOpnd(Value * V)202 XorOpnd::XorOpnd(Value *V) {
203 assert(!isa<ConstantInt>(V) && "No ConstantInt");
204 OrigVal = V;
205 Instruction *I = dyn_cast<Instruction>(V);
206 SymbolicRank = 0;
207
208 if (I && (I->getOpcode() == Instruction::Or ||
209 I->getOpcode() == Instruction::And)) {
210 Value *V0 = I->getOperand(0);
211 Value *V1 = I->getOperand(1);
212 if (isa<ConstantInt>(V0))
213 std::swap(V0, V1);
214
215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
216 ConstPart = C->getValue();
217 SymbolicPart = V0;
218 isOr = (I->getOpcode() == Instruction::Or);
219 return;
220 }
221 }
222
223 // view the operand as "V | 0"
224 SymbolicPart = V;
225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
226 isOr = true;
227 }
228
229 char Reassociate::ID = 0;
230 INITIALIZE_PASS(Reassociate, "reassociate",
231 "Reassociate expressions", false, false)
232
233 // Public interface to the Reassociate pass
createReassociatePass()234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
235
236 /// isReassociableOp - Return true if V is an instruction of the specified
237 /// opcode and if it only has one use.
isReassociableOp(Value * V,unsigned Opcode)238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
239 if (V->hasOneUse() && isa<Instruction>(V) &&
240 cast<Instruction>(V)->getOpcode() == Opcode &&
241 (!isa<FPMathOperator>(V) ||
242 cast<Instruction>(V)->hasUnsafeAlgebra()))
243 return cast<BinaryOperator>(V);
244 return nullptr;
245 }
246
isReassociableOp(Value * V,unsigned Opcode1,unsigned Opcode2)247 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
248 unsigned Opcode2) {
249 if (V->hasOneUse() && isa<Instruction>(V) &&
250 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
251 cast<Instruction>(V)->getOpcode() == Opcode2) &&
252 (!isa<FPMathOperator>(V) ||
253 cast<Instruction>(V)->hasUnsafeAlgebra()))
254 return cast<BinaryOperator>(V);
255 return nullptr;
256 }
257
isUnmovableInstruction(Instruction * I)258 static bool isUnmovableInstruction(Instruction *I) {
259 switch (I->getOpcode()) {
260 case Instruction::PHI:
261 case Instruction::LandingPad:
262 case Instruction::Alloca:
263 case Instruction::Load:
264 case Instruction::Invoke:
265 case Instruction::UDiv:
266 case Instruction::SDiv:
267 case Instruction::FDiv:
268 case Instruction::URem:
269 case Instruction::SRem:
270 case Instruction::FRem:
271 return true;
272 case Instruction::Call:
273 return !isa<DbgInfoIntrinsic>(I);
274 default:
275 return false;
276 }
277 }
278
BuildRankMap(Function & F)279 void Reassociate::BuildRankMap(Function &F) {
280 unsigned i = 2;
281
282 // Assign distinct ranks to function arguments.
283 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
284 ValueRankMap[&*I] = ++i;
285 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
286 }
287
288 ReversePostOrderTraversal<Function*> RPOT(&F);
289 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
290 E = RPOT.end(); I != E; ++I) {
291 BasicBlock *BB = *I;
292 unsigned BBRank = RankMap[BB] = ++i << 16;
293
294 // Walk the basic block, adding precomputed ranks for any instructions that
295 // we cannot move. This ensures that the ranks for these instructions are
296 // all different in the block.
297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
298 if (isUnmovableInstruction(I))
299 ValueRankMap[&*I] = ++BBRank;
300 }
301 }
302
getRank(Value * V)303 unsigned Reassociate::getRank(Value *V) {
304 Instruction *I = dyn_cast<Instruction>(V);
305 if (!I) {
306 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
307 return 0; // Otherwise it's a global or constant, rank 0.
308 }
309
310 if (unsigned Rank = ValueRankMap[I])
311 return Rank; // Rank already known?
312
313 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
314 // we can reassociate expressions for code motion! Since we do not recurse
315 // for PHI nodes, we cannot have infinite recursion here, because there
316 // cannot be loops in the value graph that do not go through PHI nodes.
317 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
318 for (unsigned i = 0, e = I->getNumOperands();
319 i != e && Rank != MaxRank; ++i)
320 Rank = std::max(Rank, getRank(I->getOperand(i)));
321
322 // If this is a not or neg instruction, do not count it for rank. This
323 // assures us that X and ~X will have the same rank.
324 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
325 !BinaryOperator::isFNeg(I))
326 ++Rank;
327
328 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
329
330 return ValueRankMap[I] = Rank;
331 }
332
333 // Canonicalize constants to RHS. Otherwise, sort the operands by rank.
canonicalizeOperands(Instruction * I)334 void Reassociate::canonicalizeOperands(Instruction *I) {
335 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
336 assert(I->isCommutative() && "Expected commutative operator.");
337
338 Value *LHS = I->getOperand(0);
339 Value *RHS = I->getOperand(1);
340 unsigned LHSRank = getRank(LHS);
341 unsigned RHSRank = getRank(RHS);
342
343 if (isa<Constant>(RHS))
344 return;
345
346 if (isa<Constant>(LHS) || RHSRank < LHSRank)
347 cast<BinaryOperator>(I)->swapOperands();
348 }
349
CreateAdd(Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore,Value * FlagsOp)350 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
351 Instruction *InsertBefore, Value *FlagsOp) {
352 if (S1->getType()->isIntOrIntVectorTy())
353 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
354 else {
355 BinaryOperator *Res =
356 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
357 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
358 return Res;
359 }
360 }
361
CreateMul(Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore,Value * FlagsOp)362 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
363 Instruction *InsertBefore, Value *FlagsOp) {
364 if (S1->getType()->isIntOrIntVectorTy())
365 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
366 else {
367 BinaryOperator *Res =
368 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
369 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
370 return Res;
371 }
372 }
373
CreateNeg(Value * S1,const Twine & Name,Instruction * InsertBefore,Value * FlagsOp)374 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
375 Instruction *InsertBefore, Value *FlagsOp) {
376 if (S1->getType()->isIntOrIntVectorTy())
377 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
378 else {
379 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
380 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
381 return Res;
382 }
383 }
384
385 /// LowerNegateToMultiply - Replace 0-X with X*-1.
386 ///
LowerNegateToMultiply(Instruction * Neg)387 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
388 Type *Ty = Neg->getType();
389 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
390 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
391
392 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
393 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
394 Res->takeName(Neg);
395 Neg->replaceAllUsesWith(Res);
396 Res->setDebugLoc(Neg->getDebugLoc());
397 return Res;
398 }
399
400 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
401 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
402 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
403 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
404 /// even x in Bitwidth-bit arithmetic.
CarmichaelShift(unsigned Bitwidth)405 static unsigned CarmichaelShift(unsigned Bitwidth) {
406 if (Bitwidth < 3)
407 return Bitwidth - 1;
408 return Bitwidth - 2;
409 }
410
411 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
412 /// reducing the combined weight using any special properties of the operation.
413 /// The existing weight LHS represents the computation X op X op ... op X where
414 /// X occurs LHS times. The combined weight represents X op X op ... op X with
415 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
416 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
417 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
IncorporateWeight(APInt & LHS,const APInt & RHS,unsigned Opcode)418 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
419 // If we were working with infinite precision arithmetic then the combined
420 // weight would be LHS + RHS. But we are using finite precision arithmetic,
421 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
422 // for nilpotent operations and addition, but not for idempotent operations
423 // and multiplication), so it is important to correctly reduce the combined
424 // weight back into range if wrapping would be wrong.
425
426 // If RHS is zero then the weight didn't change.
427 if (RHS.isMinValue())
428 return;
429 // If LHS is zero then the combined weight is RHS.
430 if (LHS.isMinValue()) {
431 LHS = RHS;
432 return;
433 }
434 // From this point on we know that neither LHS nor RHS is zero.
435
436 if (Instruction::isIdempotent(Opcode)) {
437 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
438 // weight of 1. Keeping weights at zero or one also means that wrapping is
439 // not a problem.
440 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
441 return; // Return a weight of 1.
442 }
443 if (Instruction::isNilpotent(Opcode)) {
444 // Nilpotent means X op X === 0, so reduce weights modulo 2.
445 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
446 LHS = 0; // 1 + 1 === 0 modulo 2.
447 return;
448 }
449 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
450 // TODO: Reduce the weight by exploiting nsw/nuw?
451 LHS += RHS;
452 return;
453 }
454
455 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
456 "Unknown associative operation!");
457 unsigned Bitwidth = LHS.getBitWidth();
458 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
459 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
460 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
461 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
462 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
463 // which by a happy accident means that they can always be represented using
464 // Bitwidth bits.
465 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
466 // the Carmichael number).
467 if (Bitwidth > 3) {
468 /// CM - The value of Carmichael's lambda function.
469 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
470 // Any weight W >= Threshold can be replaced with W - CM.
471 APInt Threshold = CM + Bitwidth;
472 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
473 // For Bitwidth 4 or more the following sum does not overflow.
474 LHS += RHS;
475 while (LHS.uge(Threshold))
476 LHS -= CM;
477 } else {
478 // To avoid problems with overflow do everything the same as above but using
479 // a larger type.
480 unsigned CM = 1U << CarmichaelShift(Bitwidth);
481 unsigned Threshold = CM + Bitwidth;
482 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
483 "Weights not reduced!");
484 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
485 while (Total >= Threshold)
486 Total -= CM;
487 LHS = Total;
488 }
489 }
490
491 typedef std::pair<Value*, APInt> RepeatedValue;
492
493 /// LinearizeExprTree - Given an associative binary expression, return the leaf
494 /// nodes in Ops along with their weights (how many times the leaf occurs). The
495 /// original expression is the same as
496 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
497 /// op
498 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
499 /// op
500 /// ...
501 /// op
502 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
503 ///
504 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
505 ///
506 /// This routine may modify the function, in which case it returns 'true'. The
507 /// changes it makes may well be destructive, changing the value computed by 'I'
508 /// to something completely different. Thus if the routine returns 'true' then
509 /// you MUST either replace I with a new expression computed from the Ops array,
510 /// or use RewriteExprTree to put the values back in.
511 ///
512 /// A leaf node is either not a binary operation of the same kind as the root
513 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
514 /// opcode), or is the same kind of binary operator but has a use which either
515 /// does not belong to the expression, or does belong to the expression but is
516 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
517 /// of the expression, while for non-leaf nodes (except for the root 'I') every
518 /// use is a non-leaf node of the expression.
519 ///
520 /// For example:
521 /// expression graph node names
522 ///
523 /// + | I
524 /// / \ |
525 /// + + | A, B
526 /// / \ / \ |
527 /// * + * | C, D, E
528 /// / \ / \ / \ |
529 /// + * | F, G
530 ///
531 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
532 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
533 ///
534 /// The expression is maximal: if some instruction is a binary operator of the
535 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
536 /// then the instruction also belongs to the expression, is not a leaf node of
537 /// it, and its operands also belong to the expression (but may be leaf nodes).
538 ///
539 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
540 /// order to ensure that every non-root node in the expression has *exactly one*
541 /// use by a non-leaf node of the expression. This destruction means that the
542 /// caller MUST either replace 'I' with a new expression or use something like
543 /// RewriteExprTree to put the values back in if the routine indicates that it
544 /// made a change by returning 'true'.
545 ///
546 /// In the above example either the right operand of A or the left operand of B
547 /// will be replaced by undef. If it is B's operand then this gives:
548 ///
549 /// + | I
550 /// / \ |
551 /// + + | A, B - operand of B replaced with undef
552 /// / \ \ |
553 /// * + * | C, D, E
554 /// / \ / \ / \ |
555 /// + * | F, G
556 ///
557 /// Note that such undef operands can only be reached by passing through 'I'.
558 /// For example, if you visit operands recursively starting from a leaf node
559 /// then you will never see such an undef operand unless you get back to 'I',
560 /// which requires passing through a phi node.
561 ///
562 /// Note that this routine may also mutate binary operators of the wrong type
563 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
564 /// of the expression) if it can turn them into binary operators of the right
565 /// type and thus make the expression bigger.
566
LinearizeExprTree(BinaryOperator * I,SmallVectorImpl<RepeatedValue> & Ops)567 static bool LinearizeExprTree(BinaryOperator *I,
568 SmallVectorImpl<RepeatedValue> &Ops) {
569 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
570 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
571 unsigned Opcode = I->getOpcode();
572 assert(I->isAssociative() && I->isCommutative() &&
573 "Expected an associative and commutative operation!");
574
575 // Visit all operands of the expression, keeping track of their weight (the
576 // number of paths from the expression root to the operand, or if you like
577 // the number of times that operand occurs in the linearized expression).
578 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
579 // while A has weight two.
580
581 // Worklist of non-leaf nodes (their operands are in the expression too) along
582 // with their weights, representing a certain number of paths to the operator.
583 // If an operator occurs in the worklist multiple times then we found multiple
584 // ways to get to it.
585 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
586 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
587 bool Changed = false;
588
589 // Leaves of the expression are values that either aren't the right kind of
590 // operation (eg: a constant, or a multiply in an add tree), or are, but have
591 // some uses that are not inside the expression. For example, in I = X + X,
592 // X = A + B, the value X has two uses (by I) that are in the expression. If
593 // X has any other uses, for example in a return instruction, then we consider
594 // X to be a leaf, and won't analyze it further. When we first visit a value,
595 // if it has more than one use then at first we conservatively consider it to
596 // be a leaf. Later, as the expression is explored, we may discover some more
597 // uses of the value from inside the expression. If all uses turn out to be
598 // from within the expression (and the value is a binary operator of the right
599 // kind) then the value is no longer considered to be a leaf, and its operands
600 // are explored.
601
602 // Leaves - Keeps track of the set of putative leaves as well as the number of
603 // paths to each leaf seen so far.
604 typedef DenseMap<Value*, APInt> LeafMap;
605 LeafMap Leaves; // Leaf -> Total weight so far.
606 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
607
608 #ifndef NDEBUG
609 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
610 #endif
611 while (!Worklist.empty()) {
612 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
613 I = P.first; // We examine the operands of this binary operator.
614
615 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
616 Value *Op = I->getOperand(OpIdx);
617 APInt Weight = P.second; // Number of paths to this operand.
618 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
619 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
620
621 // If this is a binary operation of the right kind with only one use then
622 // add its operands to the expression.
623 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
624 assert(Visited.insert(Op).second && "Not first visit!");
625 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
626 Worklist.push_back(std::make_pair(BO, Weight));
627 continue;
628 }
629
630 // Appears to be a leaf. Is the operand already in the set of leaves?
631 LeafMap::iterator It = Leaves.find(Op);
632 if (It == Leaves.end()) {
633 // Not in the leaf map. Must be the first time we saw this operand.
634 assert(Visited.insert(Op).second && "Not first visit!");
635 if (!Op->hasOneUse()) {
636 // This value has uses not accounted for by the expression, so it is
637 // not safe to modify. Mark it as being a leaf.
638 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
639 LeafOrder.push_back(Op);
640 Leaves[Op] = Weight;
641 continue;
642 }
643 // No uses outside the expression, try morphing it.
644 } else if (It != Leaves.end()) {
645 // Already in the leaf map.
646 assert(Visited.count(Op) && "In leaf map but not visited!");
647
648 // Update the number of paths to the leaf.
649 IncorporateWeight(It->second, Weight, Opcode);
650
651 #if 0 // TODO: Re-enable once PR13021 is fixed.
652 // The leaf already has one use from inside the expression. As we want
653 // exactly one such use, drop this new use of the leaf.
654 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
655 I->setOperand(OpIdx, UndefValue::get(I->getType()));
656 Changed = true;
657
658 // If the leaf is a binary operation of the right kind and we now see
659 // that its multiple original uses were in fact all by nodes belonging
660 // to the expression, then no longer consider it to be a leaf and add
661 // its operands to the expression.
662 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
663 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
664 Worklist.push_back(std::make_pair(BO, It->second));
665 Leaves.erase(It);
666 continue;
667 }
668 #endif
669
670 // If we still have uses that are not accounted for by the expression
671 // then it is not safe to modify the value.
672 if (!Op->hasOneUse())
673 continue;
674
675 // No uses outside the expression, try morphing it.
676 Weight = It->second;
677 Leaves.erase(It); // Since the value may be morphed below.
678 }
679
680 // At this point we have a value which, first of all, is not a binary
681 // expression of the right kind, and secondly, is only used inside the
682 // expression. This means that it can safely be modified. See if we
683 // can usefully morph it into an expression of the right kind.
684 assert((!isa<Instruction>(Op) ||
685 cast<Instruction>(Op)->getOpcode() != Opcode
686 || (isa<FPMathOperator>(Op) &&
687 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
688 "Should have been handled above!");
689 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
690
691 // If this is a multiply expression, turn any internal negations into
692 // multiplies by -1 so they can be reassociated.
693 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
694 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
695 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
696 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
697 BO = LowerNegateToMultiply(BO);
698 DEBUG(dbgs() << *BO << '\n');
699 Worklist.push_back(std::make_pair(BO, Weight));
700 Changed = true;
701 continue;
702 }
703
704 // Failed to morph into an expression of the right type. This really is
705 // a leaf.
706 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
707 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
708 LeafOrder.push_back(Op);
709 Leaves[Op] = Weight;
710 }
711 }
712
713 // The leaves, repeated according to their weights, represent the linearized
714 // form of the expression.
715 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
716 Value *V = LeafOrder[i];
717 LeafMap::iterator It = Leaves.find(V);
718 if (It == Leaves.end())
719 // Node initially thought to be a leaf wasn't.
720 continue;
721 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
722 APInt Weight = It->second;
723 if (Weight.isMinValue())
724 // Leaf already output or weight reduction eliminated it.
725 continue;
726 // Ensure the leaf is only output once.
727 It->second = 0;
728 Ops.push_back(std::make_pair(V, Weight));
729 }
730
731 // For nilpotent operations or addition there may be no operands, for example
732 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
733 // in both cases the weight reduces to 0 causing the value to be skipped.
734 if (Ops.empty()) {
735 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
736 assert(Identity && "Associative operation without identity!");
737 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
738 }
739
740 return Changed;
741 }
742
743 // RewriteExprTree - Now that the operands for this expression tree are
744 // linearized and optimized, emit them in-order.
RewriteExprTree(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)745 void Reassociate::RewriteExprTree(BinaryOperator *I,
746 SmallVectorImpl<ValueEntry> &Ops) {
747 assert(Ops.size() > 1 && "Single values should be used directly!");
748
749 // Since our optimizations should never increase the number of operations, the
750 // new expression can usually be written reusing the existing binary operators
751 // from the original expression tree, without creating any new instructions,
752 // though the rewritten expression may have a completely different topology.
753 // We take care to not change anything if the new expression will be the same
754 // as the original. If more than trivial changes (like commuting operands)
755 // were made then we are obliged to clear out any optional subclass data like
756 // nsw flags.
757
758 /// NodesToRewrite - Nodes from the original expression available for writing
759 /// the new expression into.
760 SmallVector<BinaryOperator*, 8> NodesToRewrite;
761 unsigned Opcode = I->getOpcode();
762 BinaryOperator *Op = I;
763
764 /// NotRewritable - The operands being written will be the leaves of the new
765 /// expression and must not be used as inner nodes (via NodesToRewrite) by
766 /// mistake. Inner nodes are always reassociable, and usually leaves are not
767 /// (if they were they would have been incorporated into the expression and so
768 /// would not be leaves), so most of the time there is no danger of this. But
769 /// in rare cases a leaf may become reassociable if an optimization kills uses
770 /// of it, or it may momentarily become reassociable during rewriting (below)
771 /// due it being removed as an operand of one of its uses. Ensure that misuse
772 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
773 /// leaves and refusing to reuse any of them as inner nodes.
774 SmallPtrSet<Value*, 8> NotRewritable;
775 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
776 NotRewritable.insert(Ops[i].Op);
777
778 // ExpressionChanged - Non-null if the rewritten expression differs from the
779 // original in some non-trivial way, requiring the clearing of optional flags.
780 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
781 BinaryOperator *ExpressionChanged = nullptr;
782 for (unsigned i = 0; ; ++i) {
783 // The last operation (which comes earliest in the IR) is special as both
784 // operands will come from Ops, rather than just one with the other being
785 // a subexpression.
786 if (i+2 == Ops.size()) {
787 Value *NewLHS = Ops[i].Op;
788 Value *NewRHS = Ops[i+1].Op;
789 Value *OldLHS = Op->getOperand(0);
790 Value *OldRHS = Op->getOperand(1);
791
792 if (NewLHS == OldLHS && NewRHS == OldRHS)
793 // Nothing changed, leave it alone.
794 break;
795
796 if (NewLHS == OldRHS && NewRHS == OldLHS) {
797 // The order of the operands was reversed. Swap them.
798 DEBUG(dbgs() << "RA: " << *Op << '\n');
799 Op->swapOperands();
800 DEBUG(dbgs() << "TO: " << *Op << '\n');
801 MadeChange = true;
802 ++NumChanged;
803 break;
804 }
805
806 // The new operation differs non-trivially from the original. Overwrite
807 // the old operands with the new ones.
808 DEBUG(dbgs() << "RA: " << *Op << '\n');
809 if (NewLHS != OldLHS) {
810 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
811 if (BO && !NotRewritable.count(BO))
812 NodesToRewrite.push_back(BO);
813 Op->setOperand(0, NewLHS);
814 }
815 if (NewRHS != OldRHS) {
816 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
817 if (BO && !NotRewritable.count(BO))
818 NodesToRewrite.push_back(BO);
819 Op->setOperand(1, NewRHS);
820 }
821 DEBUG(dbgs() << "TO: " << *Op << '\n');
822
823 ExpressionChanged = Op;
824 MadeChange = true;
825 ++NumChanged;
826
827 break;
828 }
829
830 // Not the last operation. The left-hand side will be a sub-expression
831 // while the right-hand side will be the current element of Ops.
832 Value *NewRHS = Ops[i].Op;
833 if (NewRHS != Op->getOperand(1)) {
834 DEBUG(dbgs() << "RA: " << *Op << '\n');
835 if (NewRHS == Op->getOperand(0)) {
836 // The new right-hand side was already present as the left operand. If
837 // we are lucky then swapping the operands will sort out both of them.
838 Op->swapOperands();
839 } else {
840 // Overwrite with the new right-hand side.
841 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
842 if (BO && !NotRewritable.count(BO))
843 NodesToRewrite.push_back(BO);
844 Op->setOperand(1, NewRHS);
845 ExpressionChanged = Op;
846 }
847 DEBUG(dbgs() << "TO: " << *Op << '\n');
848 MadeChange = true;
849 ++NumChanged;
850 }
851
852 // Now deal with the left-hand side. If this is already an operation node
853 // from the original expression then just rewrite the rest of the expression
854 // into it.
855 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
856 if (BO && !NotRewritable.count(BO)) {
857 Op = BO;
858 continue;
859 }
860
861 // Otherwise, grab a spare node from the original expression and use that as
862 // the left-hand side. If there are no nodes left then the optimizers made
863 // an expression with more nodes than the original! This usually means that
864 // they did something stupid but it might mean that the problem was just too
865 // hard (finding the mimimal number of multiplications needed to realize a
866 // multiplication expression is NP-complete). Whatever the reason, smart or
867 // stupid, create a new node if there are none left.
868 BinaryOperator *NewOp;
869 if (NodesToRewrite.empty()) {
870 Constant *Undef = UndefValue::get(I->getType());
871 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
872 Undef, Undef, "", I);
873 if (NewOp->getType()->isFPOrFPVectorTy())
874 NewOp->setFastMathFlags(I->getFastMathFlags());
875 } else {
876 NewOp = NodesToRewrite.pop_back_val();
877 }
878
879 DEBUG(dbgs() << "RA: " << *Op << '\n');
880 Op->setOperand(0, NewOp);
881 DEBUG(dbgs() << "TO: " << *Op << '\n');
882 ExpressionChanged = Op;
883 MadeChange = true;
884 ++NumChanged;
885 Op = NewOp;
886 }
887
888 // If the expression changed non-trivially then clear out all subclass data
889 // starting from the operator specified in ExpressionChanged, and compactify
890 // the operators to just before the expression root to guarantee that the
891 // expression tree is dominated by all of Ops.
892 if (ExpressionChanged)
893 do {
894 // Preserve FastMathFlags.
895 if (isa<FPMathOperator>(I)) {
896 FastMathFlags Flags = I->getFastMathFlags();
897 ExpressionChanged->clearSubclassOptionalData();
898 ExpressionChanged->setFastMathFlags(Flags);
899 } else
900 ExpressionChanged->clearSubclassOptionalData();
901
902 if (ExpressionChanged == I)
903 break;
904 ExpressionChanged->moveBefore(I);
905 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
906 } while (1);
907
908 // Throw away any left over nodes from the original expression.
909 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
910 RedoInsts.insert(NodesToRewrite[i]);
911 }
912
913 /// NegateValue - Insert instructions before the instruction pointed to by BI,
914 /// that computes the negative version of the value specified. The negative
915 /// version of the value is returned, and BI is left pointing at the instruction
916 /// that should be processed next by the reassociation pass.
NegateValue(Value * V,Instruction * BI)917 static Value *NegateValue(Value *V, Instruction *BI) {
918 if (Constant *C = dyn_cast<Constant>(V)) {
919 if (C->getType()->isFPOrFPVectorTy()) {
920 return ConstantExpr::getFNeg(C);
921 }
922 return ConstantExpr::getNeg(C);
923 }
924
925
926 // We are trying to expose opportunity for reassociation. One of the things
927 // that we want to do to achieve this is to push a negation as deep into an
928 // expression chain as possible, to expose the add instructions. In practice,
929 // this means that we turn this:
930 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
931 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
932 // the constants. We assume that instcombine will clean up the mess later if
933 // we introduce tons of unnecessary negation instructions.
934 //
935 if (BinaryOperator *I =
936 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
937 // Push the negates through the add.
938 I->setOperand(0, NegateValue(I->getOperand(0), BI));
939 I->setOperand(1, NegateValue(I->getOperand(1), BI));
940
941 // We must move the add instruction here, because the neg instructions do
942 // not dominate the old add instruction in general. By moving it, we are
943 // assured that the neg instructions we just inserted dominate the
944 // instruction we are about to insert after them.
945 //
946 I->moveBefore(BI);
947 I->setName(I->getName()+".neg");
948 return I;
949 }
950
951 // Okay, we need to materialize a negated version of V with an instruction.
952 // Scan the use lists of V to see if we have one already.
953 for (User *U : V->users()) {
954 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
955 continue;
956
957 // We found one! Now we have to make sure that the definition dominates
958 // this use. We do this by moving it to the entry block (if it is a
959 // non-instruction value) or right after the definition. These negates will
960 // be zapped by reassociate later, so we don't need much finesse here.
961 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
962
963 // Verify that the negate is in this function, V might be a constant expr.
964 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
965 continue;
966
967 BasicBlock::iterator InsertPt;
968 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
969 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
970 InsertPt = II->getNormalDest()->begin();
971 } else {
972 InsertPt = InstInput;
973 ++InsertPt;
974 }
975 while (isa<PHINode>(InsertPt)) ++InsertPt;
976 } else {
977 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
978 }
979 TheNeg->moveBefore(InsertPt);
980 return TheNeg;
981 }
982
983 // Insert a 'neg' instruction that subtracts the value from zero to get the
984 // negation.
985 return CreateNeg(V, V->getName() + ".neg", BI, BI);
986 }
987
988 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
989 /// X-Y into (X + -Y).
ShouldBreakUpSubtract(Instruction * Sub)990 static bool ShouldBreakUpSubtract(Instruction *Sub) {
991 // If this is a negation, we can't split it up!
992 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
993 return false;
994
995 // Don't breakup X - undef.
996 if (isa<UndefValue>(Sub->getOperand(1)))
997 return false;
998
999 // Don't bother to break this up unless either the LHS is an associable add or
1000 // subtract or if this is only used by one.
1001 Value *V0 = Sub->getOperand(0);
1002 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1003 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1004 return true;
1005 Value *V1 = Sub->getOperand(1);
1006 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1007 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1008 return true;
1009 Value *VB = Sub->user_back();
1010 if (Sub->hasOneUse() &&
1011 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1012 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1013 return true;
1014
1015 return false;
1016 }
1017
1018 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
1019 /// only used by an add, transform this into (X+(0-Y)) to promote better
1020 /// reassociation.
BreakUpSubtract(Instruction * Sub)1021 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
1022 // Convert a subtract into an add and a neg instruction. This allows sub
1023 // instructions to be commuted with other add instructions.
1024 //
1025 // Calculate the negative value of Operand 1 of the sub instruction,
1026 // and set it as the RHS of the add instruction we just made.
1027 //
1028 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
1029 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1030 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1031 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1032 New->takeName(Sub);
1033
1034 // Everyone now refers to the add instruction.
1035 Sub->replaceAllUsesWith(New);
1036 New->setDebugLoc(Sub->getDebugLoc());
1037
1038 DEBUG(dbgs() << "Negated: " << *New << '\n');
1039 return New;
1040 }
1041
1042 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
1043 /// by one, change this into a multiply by a constant to assist with further
1044 /// reassociation.
ConvertShiftToMul(Instruction * Shl)1045 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1046 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1047 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
1048
1049 BinaryOperator *Mul =
1050 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1051 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1052 Mul->takeName(Shl);
1053
1054 // Everyone now refers to the mul instruction.
1055 Shl->replaceAllUsesWith(Mul);
1056 Mul->setDebugLoc(Shl->getDebugLoc());
1057
1058 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1059 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1060 // handling.
1061 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1062 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1063 if (NSW && NUW)
1064 Mul->setHasNoSignedWrap(true);
1065 Mul->setHasNoUnsignedWrap(NUW);
1066 return Mul;
1067 }
1068
1069 /// FindInOperandList - Scan backwards and forwards among values with the same
1070 /// rank as element i to see if X exists. If X does not exist, return i. This
1071 /// is useful when scanning for 'x' when we see '-x' because they both get the
1072 /// same rank.
FindInOperandList(SmallVectorImpl<ValueEntry> & Ops,unsigned i,Value * X)1073 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
1074 Value *X) {
1075 unsigned XRank = Ops[i].Rank;
1076 unsigned e = Ops.size();
1077 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1078 if (Ops[j].Op == X)
1079 return j;
1080 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1081 if (Instruction *I2 = dyn_cast<Instruction>(X))
1082 if (I1->isIdenticalTo(I2))
1083 return j;
1084 }
1085 // Scan backwards.
1086 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1087 if (Ops[j].Op == X)
1088 return j;
1089 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1090 if (Instruction *I2 = dyn_cast<Instruction>(X))
1091 if (I1->isIdenticalTo(I2))
1092 return j;
1093 }
1094 return i;
1095 }
1096
1097 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
1098 /// and returning the result. Insert the tree before I.
EmitAddTreeOfValues(Instruction * I,SmallVectorImpl<WeakVH> & Ops)1099 static Value *EmitAddTreeOfValues(Instruction *I,
1100 SmallVectorImpl<WeakVH> &Ops){
1101 if (Ops.size() == 1) return Ops.back();
1102
1103 Value *V1 = Ops.back();
1104 Ops.pop_back();
1105 Value *V2 = EmitAddTreeOfValues(I, Ops);
1106 return CreateAdd(V2, V1, "tmp", I, I);
1107 }
1108
1109 /// RemoveFactorFromExpression - If V is an expression tree that is a
1110 /// multiplication sequence, and if this sequence contains a multiply by Factor,
1111 /// remove Factor from the tree and return the new tree.
RemoveFactorFromExpression(Value * V,Value * Factor)1112 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1113 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1114 if (!BO)
1115 return nullptr;
1116
1117 SmallVector<RepeatedValue, 8> Tree;
1118 MadeChange |= LinearizeExprTree(BO, Tree);
1119 SmallVector<ValueEntry, 8> Factors;
1120 Factors.reserve(Tree.size());
1121 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1122 RepeatedValue E = Tree[i];
1123 Factors.append(E.second.getZExtValue(),
1124 ValueEntry(getRank(E.first), E.first));
1125 }
1126
1127 bool FoundFactor = false;
1128 bool NeedsNegate = false;
1129 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1130 if (Factors[i].Op == Factor) {
1131 FoundFactor = true;
1132 Factors.erase(Factors.begin()+i);
1133 break;
1134 }
1135
1136 // If this is a negative version of this factor, remove it.
1137 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1138 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1139 if (FC1->getValue() == -FC2->getValue()) {
1140 FoundFactor = NeedsNegate = true;
1141 Factors.erase(Factors.begin()+i);
1142 break;
1143 }
1144 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1145 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1146 APFloat F1(FC1->getValueAPF());
1147 APFloat F2(FC2->getValueAPF());
1148 F2.changeSign();
1149 if (F1.compare(F2) == APFloat::cmpEqual) {
1150 FoundFactor = NeedsNegate = true;
1151 Factors.erase(Factors.begin() + i);
1152 break;
1153 }
1154 }
1155 }
1156 }
1157
1158 if (!FoundFactor) {
1159 // Make sure to restore the operands to the expression tree.
1160 RewriteExprTree(BO, Factors);
1161 return nullptr;
1162 }
1163
1164 BasicBlock::iterator InsertPt = BO; ++InsertPt;
1165
1166 // If this was just a single multiply, remove the multiply and return the only
1167 // remaining operand.
1168 if (Factors.size() == 1) {
1169 RedoInsts.insert(BO);
1170 V = Factors[0].Op;
1171 } else {
1172 RewriteExprTree(BO, Factors);
1173 V = BO;
1174 }
1175
1176 if (NeedsNegate)
1177 V = CreateNeg(V, "neg", InsertPt, BO);
1178
1179 return V;
1180 }
1181
1182 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1183 /// add its operands as factors, otherwise add V to the list of factors.
1184 ///
1185 /// Ops is the top-level list of add operands we're trying to factor.
FindSingleUseMultiplyFactors(Value * V,SmallVectorImpl<Value * > & Factors,const SmallVectorImpl<ValueEntry> & Ops)1186 static void FindSingleUseMultiplyFactors(Value *V,
1187 SmallVectorImpl<Value*> &Factors,
1188 const SmallVectorImpl<ValueEntry> &Ops) {
1189 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1190 if (!BO) {
1191 Factors.push_back(V);
1192 return;
1193 }
1194
1195 // Otherwise, add the LHS and RHS to the list of factors.
1196 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1197 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1198 }
1199
1200 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1201 /// instruction. This optimizes based on identities. If it can be reduced to
1202 /// a single Value, it is returned, otherwise the Ops list is mutated as
1203 /// necessary.
OptimizeAndOrXor(unsigned Opcode,SmallVectorImpl<ValueEntry> & Ops)1204 static Value *OptimizeAndOrXor(unsigned Opcode,
1205 SmallVectorImpl<ValueEntry> &Ops) {
1206 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1207 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1208 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1209 // First, check for X and ~X in the operand list.
1210 assert(i < Ops.size());
1211 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1212 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1213 unsigned FoundX = FindInOperandList(Ops, i, X);
1214 if (FoundX != i) {
1215 if (Opcode == Instruction::And) // ...&X&~X = 0
1216 return Constant::getNullValue(X->getType());
1217
1218 if (Opcode == Instruction::Or) // ...|X|~X = -1
1219 return Constant::getAllOnesValue(X->getType());
1220 }
1221 }
1222
1223 // Next, check for duplicate pairs of values, which we assume are next to
1224 // each other, due to our sorting criteria.
1225 assert(i < Ops.size());
1226 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1227 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1228 // Drop duplicate values for And and Or.
1229 Ops.erase(Ops.begin()+i);
1230 --i; --e;
1231 ++NumAnnihil;
1232 continue;
1233 }
1234
1235 // Drop pairs of values for Xor.
1236 assert(Opcode == Instruction::Xor);
1237 if (e == 2)
1238 return Constant::getNullValue(Ops[0].Op->getType());
1239
1240 // Y ^ X^X -> Y
1241 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1242 i -= 1; e -= 2;
1243 ++NumAnnihil;
1244 }
1245 }
1246 return nullptr;
1247 }
1248
1249 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1250 /// instruction with the given two operands, and return the resulting
1251 /// instruction. There are two special cases: 1) if the constant operand is 0,
1252 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1253 /// be returned.
createAndInstr(Instruction * InsertBefore,Value * Opnd,const APInt & ConstOpnd)1254 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1255 const APInt &ConstOpnd) {
1256 if (ConstOpnd != 0) {
1257 if (!ConstOpnd.isAllOnesValue()) {
1258 LLVMContext &Ctx = Opnd->getType()->getContext();
1259 Instruction *I;
1260 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1261 "and.ra", InsertBefore);
1262 I->setDebugLoc(InsertBefore->getDebugLoc());
1263 return I;
1264 }
1265 return Opnd;
1266 }
1267 return nullptr;
1268 }
1269
1270 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1271 // into "R ^ C", where C would be 0, and R is a symbolic value.
1272 //
1273 // If it was successful, true is returned, and the "R" and "C" is returned
1274 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1275 // and both "Res" and "ConstOpnd" remain unchanged.
1276 //
CombineXorOpnd(Instruction * I,XorOpnd * Opnd1,APInt & ConstOpnd,Value * & Res)1277 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1278 APInt &ConstOpnd, Value *&Res) {
1279 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1280 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1281 // = (x & ~c1) ^ (c1 ^ c2)
1282 // It is useful only when c1 == c2.
1283 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1284 if (!Opnd1->getValue()->hasOneUse())
1285 return false;
1286
1287 const APInt &C1 = Opnd1->getConstPart();
1288 if (C1 != ConstOpnd)
1289 return false;
1290
1291 Value *X = Opnd1->getSymbolicPart();
1292 Res = createAndInstr(I, X, ~C1);
1293 // ConstOpnd was C2, now C1 ^ C2.
1294 ConstOpnd ^= C1;
1295
1296 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1297 RedoInsts.insert(T);
1298 return true;
1299 }
1300 return false;
1301 }
1302
1303
1304 // Helper function of OptimizeXor(). It tries to simplify
1305 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1306 // symbolic value.
1307 //
1308 // If it was successful, true is returned, and the "R" and "C" is returned
1309 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1310 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1311 // returned, and both "Res" and "ConstOpnd" remain unchanged.
CombineXorOpnd(Instruction * I,XorOpnd * Opnd1,XorOpnd * Opnd2,APInt & ConstOpnd,Value * & Res)1312 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1313 APInt &ConstOpnd, Value *&Res) {
1314 Value *X = Opnd1->getSymbolicPart();
1315 if (X != Opnd2->getSymbolicPart())
1316 return false;
1317
1318 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1319 int DeadInstNum = 1;
1320 if (Opnd1->getValue()->hasOneUse())
1321 DeadInstNum++;
1322 if (Opnd2->getValue()->hasOneUse())
1323 DeadInstNum++;
1324
1325 // Xor-Rule 2:
1326 // (x | c1) ^ (x & c2)
1327 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1328 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1329 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1330 //
1331 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1332 if (Opnd2->isOrExpr())
1333 std::swap(Opnd1, Opnd2);
1334
1335 const APInt &C1 = Opnd1->getConstPart();
1336 const APInt &C2 = Opnd2->getConstPart();
1337 APInt C3((~C1) ^ C2);
1338
1339 // Do not increase code size!
1340 if (C3 != 0 && !C3.isAllOnesValue()) {
1341 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1342 if (NewInstNum > DeadInstNum)
1343 return false;
1344 }
1345
1346 Res = createAndInstr(I, X, C3);
1347 ConstOpnd ^= C1;
1348
1349 } else if (Opnd1->isOrExpr()) {
1350 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1351 //
1352 const APInt &C1 = Opnd1->getConstPart();
1353 const APInt &C2 = Opnd2->getConstPart();
1354 APInt C3 = C1 ^ C2;
1355
1356 // Do not increase code size
1357 if (C3 != 0 && !C3.isAllOnesValue()) {
1358 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1359 if (NewInstNum > DeadInstNum)
1360 return false;
1361 }
1362
1363 Res = createAndInstr(I, X, C3);
1364 ConstOpnd ^= C3;
1365 } else {
1366 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1367 //
1368 const APInt &C1 = Opnd1->getConstPart();
1369 const APInt &C2 = Opnd2->getConstPart();
1370 APInt C3 = C1 ^ C2;
1371 Res = createAndInstr(I, X, C3);
1372 }
1373
1374 // Put the original operands in the Redo list; hope they will be deleted
1375 // as dead code.
1376 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1377 RedoInsts.insert(T);
1378 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1379 RedoInsts.insert(T);
1380
1381 return true;
1382 }
1383
1384 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1385 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1386 /// necessary.
OptimizeXor(Instruction * I,SmallVectorImpl<ValueEntry> & Ops)1387 Value *Reassociate::OptimizeXor(Instruction *I,
1388 SmallVectorImpl<ValueEntry> &Ops) {
1389 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1390 return V;
1391
1392 if (Ops.size() == 1)
1393 return nullptr;
1394
1395 SmallVector<XorOpnd, 8> Opnds;
1396 SmallVector<XorOpnd*, 8> OpndPtrs;
1397 Type *Ty = Ops[0].Op->getType();
1398 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1399
1400 // Step 1: Convert ValueEntry to XorOpnd
1401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1402 Value *V = Ops[i].Op;
1403 if (!isa<ConstantInt>(V)) {
1404 XorOpnd O(V);
1405 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1406 Opnds.push_back(O);
1407 } else
1408 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1409 }
1410
1411 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1412 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1413 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1414 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1415 // when new elements are added to the vector.
1416 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1417 OpndPtrs.push_back(&Opnds[i]);
1418
1419 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1420 // the same symbolic value cluster together. For instance, the input operand
1421 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1422 // ("x | 123", "x & 789", "y & 456").
1423 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1424
1425 // Step 3: Combine adjacent operands
1426 XorOpnd *PrevOpnd = nullptr;
1427 bool Changed = false;
1428 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1429 XorOpnd *CurrOpnd = OpndPtrs[i];
1430 // The combined value
1431 Value *CV;
1432
1433 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1434 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1435 Changed = true;
1436 if (CV)
1437 *CurrOpnd = XorOpnd(CV);
1438 else {
1439 CurrOpnd->Invalidate();
1440 continue;
1441 }
1442 }
1443
1444 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1445 PrevOpnd = CurrOpnd;
1446 continue;
1447 }
1448
1449 // step 3.2: When previous and current operands share the same symbolic
1450 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1451 //
1452 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1453 // Remove previous operand
1454 PrevOpnd->Invalidate();
1455 if (CV) {
1456 *CurrOpnd = XorOpnd(CV);
1457 PrevOpnd = CurrOpnd;
1458 } else {
1459 CurrOpnd->Invalidate();
1460 PrevOpnd = nullptr;
1461 }
1462 Changed = true;
1463 }
1464 }
1465
1466 // Step 4: Reassemble the Ops
1467 if (Changed) {
1468 Ops.clear();
1469 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1470 XorOpnd &O = Opnds[i];
1471 if (O.isInvalid())
1472 continue;
1473 ValueEntry VE(getRank(O.getValue()), O.getValue());
1474 Ops.push_back(VE);
1475 }
1476 if (ConstOpnd != 0) {
1477 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1478 ValueEntry VE(getRank(C), C);
1479 Ops.push_back(VE);
1480 }
1481 int Sz = Ops.size();
1482 if (Sz == 1)
1483 return Ops.back().Op;
1484 else if (Sz == 0) {
1485 assert(ConstOpnd == 0);
1486 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1487 }
1488 }
1489
1490 return nullptr;
1491 }
1492
1493 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1494 /// optimizes based on identities. If it can be reduced to a single Value, it
1495 /// is returned, otherwise the Ops list is mutated as necessary.
OptimizeAdd(Instruction * I,SmallVectorImpl<ValueEntry> & Ops)1496 Value *Reassociate::OptimizeAdd(Instruction *I,
1497 SmallVectorImpl<ValueEntry> &Ops) {
1498 // Scan the operand lists looking for X and -X pairs. If we find any, we
1499 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1500 // scan for any
1501 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1502
1503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1504 Value *TheOp = Ops[i].Op;
1505 // Check to see if we've seen this operand before. If so, we factor all
1506 // instances of the operand together. Due to our sorting criteria, we know
1507 // that these need to be next to each other in the vector.
1508 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1509 // Rescan the list, remove all instances of this operand from the expr.
1510 unsigned NumFound = 0;
1511 do {
1512 Ops.erase(Ops.begin()+i);
1513 ++NumFound;
1514 } while (i != Ops.size() && Ops[i].Op == TheOp);
1515
1516 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1517 ++NumFactor;
1518
1519 // Insert a new multiply.
1520 Type *Ty = TheOp->getType();
1521 Constant *C = Ty->isIntOrIntVectorTy() ?
1522 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1523 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1524
1525 // Now that we have inserted a multiply, optimize it. This allows us to
1526 // handle cases that require multiple factoring steps, such as this:
1527 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1528 RedoInsts.insert(Mul);
1529
1530 // If every add operand was a duplicate, return the multiply.
1531 if (Ops.empty())
1532 return Mul;
1533
1534 // Otherwise, we had some input that didn't have the dupe, such as
1535 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1536 // things being added by this operation.
1537 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1538
1539 --i;
1540 e = Ops.size();
1541 continue;
1542 }
1543
1544 // Check for X and -X or X and ~X in the operand list.
1545 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1546 !BinaryOperator::isNot(TheOp))
1547 continue;
1548
1549 Value *X = nullptr;
1550 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1551 X = BinaryOperator::getNegArgument(TheOp);
1552 else if (BinaryOperator::isNot(TheOp))
1553 X = BinaryOperator::getNotArgument(TheOp);
1554
1555 unsigned FoundX = FindInOperandList(Ops, i, X);
1556 if (FoundX == i)
1557 continue;
1558
1559 // Remove X and -X from the operand list.
1560 if (Ops.size() == 2 &&
1561 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1562 return Constant::getNullValue(X->getType());
1563
1564 // Remove X and ~X from the operand list.
1565 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1566 return Constant::getAllOnesValue(X->getType());
1567
1568 Ops.erase(Ops.begin()+i);
1569 if (i < FoundX)
1570 --FoundX;
1571 else
1572 --i; // Need to back up an extra one.
1573 Ops.erase(Ops.begin()+FoundX);
1574 ++NumAnnihil;
1575 --i; // Revisit element.
1576 e -= 2; // Removed two elements.
1577
1578 // if X and ~X we append -1 to the operand list.
1579 if (BinaryOperator::isNot(TheOp)) {
1580 Value *V = Constant::getAllOnesValue(X->getType());
1581 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1582 e += 1;
1583 }
1584 }
1585
1586 // Scan the operand list, checking to see if there are any common factors
1587 // between operands. Consider something like A*A+A*B*C+D. We would like to
1588 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1589 // To efficiently find this, we count the number of times a factor occurs
1590 // for any ADD operands that are MULs.
1591 DenseMap<Value*, unsigned> FactorOccurrences;
1592
1593 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1594 // where they are actually the same multiply.
1595 unsigned MaxOcc = 0;
1596 Value *MaxOccVal = nullptr;
1597 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1598 BinaryOperator *BOp =
1599 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1600 if (!BOp)
1601 continue;
1602
1603 // Compute all of the factors of this added value.
1604 SmallVector<Value*, 8> Factors;
1605 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1606 assert(Factors.size() > 1 && "Bad linearize!");
1607
1608 // Add one to FactorOccurrences for each unique factor in this op.
1609 SmallPtrSet<Value*, 8> Duplicates;
1610 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1611 Value *Factor = Factors[i];
1612 if (!Duplicates.insert(Factor).second)
1613 continue;
1614
1615 unsigned Occ = ++FactorOccurrences[Factor];
1616 if (Occ > MaxOcc) {
1617 MaxOcc = Occ;
1618 MaxOccVal = Factor;
1619 }
1620
1621 // If Factor is a negative constant, add the negated value as a factor
1622 // because we can percolate the negate out. Watch for minint, which
1623 // cannot be positivified.
1624 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1625 if (CI->isNegative() && !CI->isMinValue(true)) {
1626 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1627 assert(!Duplicates.count(Factor) &&
1628 "Shouldn't have two constant factors, missed a canonicalize");
1629 unsigned Occ = ++FactorOccurrences[Factor];
1630 if (Occ > MaxOcc) {
1631 MaxOcc = Occ;
1632 MaxOccVal = Factor;
1633 }
1634 }
1635 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1636 if (CF->isNegative()) {
1637 APFloat F(CF->getValueAPF());
1638 F.changeSign();
1639 Factor = ConstantFP::get(CF->getContext(), F);
1640 assert(!Duplicates.count(Factor) &&
1641 "Shouldn't have two constant factors, missed a canonicalize");
1642 unsigned Occ = ++FactorOccurrences[Factor];
1643 if (Occ > MaxOcc) {
1644 MaxOcc = Occ;
1645 MaxOccVal = Factor;
1646 }
1647 }
1648 }
1649 }
1650 }
1651
1652 // If any factor occurred more than one time, we can pull it out.
1653 if (MaxOcc > 1) {
1654 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1655 ++NumFactor;
1656
1657 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1658 // this, we could otherwise run into situations where removing a factor
1659 // from an expression will drop a use of maxocc, and this can cause
1660 // RemoveFactorFromExpression on successive values to behave differently.
1661 Instruction *DummyInst =
1662 I->getType()->isIntOrIntVectorTy()
1663 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1664 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1665
1666 SmallVector<WeakVH, 4> NewMulOps;
1667 for (unsigned i = 0; i != Ops.size(); ++i) {
1668 // Only try to remove factors from expressions we're allowed to.
1669 BinaryOperator *BOp =
1670 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1671 if (!BOp)
1672 continue;
1673
1674 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1675 // The factorized operand may occur several times. Convert them all in
1676 // one fell swoop.
1677 for (unsigned j = Ops.size(); j != i;) {
1678 --j;
1679 if (Ops[j].Op == Ops[i].Op) {
1680 NewMulOps.push_back(V);
1681 Ops.erase(Ops.begin()+j);
1682 }
1683 }
1684 --i;
1685 }
1686 }
1687
1688 // No need for extra uses anymore.
1689 delete DummyInst;
1690
1691 unsigned NumAddedValues = NewMulOps.size();
1692 Value *V = EmitAddTreeOfValues(I, NewMulOps);
1693
1694 // Now that we have inserted the add tree, optimize it. This allows us to
1695 // handle cases that require multiple factoring steps, such as this:
1696 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1697 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1698 (void)NumAddedValues;
1699 if (Instruction *VI = dyn_cast<Instruction>(V))
1700 RedoInsts.insert(VI);
1701
1702 // Create the multiply.
1703 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1704
1705 // Rerun associate on the multiply in case the inner expression turned into
1706 // a multiply. We want to make sure that we keep things in canonical form.
1707 RedoInsts.insert(V2);
1708
1709 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1710 // entire result expression is just the multiply "A*(B+C)".
1711 if (Ops.empty())
1712 return V2;
1713
1714 // Otherwise, we had some input that didn't have the factor, such as
1715 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1716 // things being added by this operation.
1717 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1718 }
1719
1720 return nullptr;
1721 }
1722
1723 /// \brief Build up a vector of value/power pairs factoring a product.
1724 ///
1725 /// Given a series of multiplication operands, build a vector of factors and
1726 /// the powers each is raised to when forming the final product. Sort them in
1727 /// the order of descending power.
1728 ///
1729 /// (x*x) -> [(x, 2)]
1730 /// ((x*x)*x) -> [(x, 3)]
1731 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1732 ///
1733 /// \returns Whether any factors have a power greater than one.
collectMultiplyFactors(SmallVectorImpl<ValueEntry> & Ops,SmallVectorImpl<Factor> & Factors)1734 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1735 SmallVectorImpl<Factor> &Factors) {
1736 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1737 // Compute the sum of powers of simplifiable factors.
1738 unsigned FactorPowerSum = 0;
1739 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1740 Value *Op = Ops[Idx-1].Op;
1741
1742 // Count the number of occurrences of this value.
1743 unsigned Count = 1;
1744 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1745 ++Count;
1746 // Track for simplification all factors which occur 2 or more times.
1747 if (Count > 1)
1748 FactorPowerSum += Count;
1749 }
1750
1751 // We can only simplify factors if the sum of the powers of our simplifiable
1752 // factors is 4 or higher. When that is the case, we will *always* have
1753 // a simplification. This is an important invariant to prevent cyclicly
1754 // trying to simplify already minimal formations.
1755 if (FactorPowerSum < 4)
1756 return false;
1757
1758 // Now gather the simplifiable factors, removing them from Ops.
1759 FactorPowerSum = 0;
1760 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1761 Value *Op = Ops[Idx-1].Op;
1762
1763 // Count the number of occurrences of this value.
1764 unsigned Count = 1;
1765 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1766 ++Count;
1767 if (Count == 1)
1768 continue;
1769 // Move an even number of occurrences to Factors.
1770 Count &= ~1U;
1771 Idx -= Count;
1772 FactorPowerSum += Count;
1773 Factors.push_back(Factor(Op, Count));
1774 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1775 }
1776
1777 // None of the adjustments above should have reduced the sum of factor powers
1778 // below our mininum of '4'.
1779 assert(FactorPowerSum >= 4);
1780
1781 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1782 return true;
1783 }
1784
1785 /// \brief Build a tree of multiplies, computing the product of Ops.
buildMultiplyTree(IRBuilder<> & Builder,SmallVectorImpl<Value * > & Ops)1786 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1787 SmallVectorImpl<Value*> &Ops) {
1788 if (Ops.size() == 1)
1789 return Ops.back();
1790
1791 Value *LHS = Ops.pop_back_val();
1792 do {
1793 if (LHS->getType()->isIntOrIntVectorTy())
1794 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1795 else
1796 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1797 } while (!Ops.empty());
1798
1799 return LHS;
1800 }
1801
1802 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1803 ///
1804 /// Given a vector of values raised to various powers, where no two values are
1805 /// equal and the powers are sorted in decreasing order, compute the minimal
1806 /// DAG of multiplies to compute the final product, and return that product
1807 /// value.
buildMinimalMultiplyDAG(IRBuilder<> & Builder,SmallVectorImpl<Factor> & Factors)1808 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1809 SmallVectorImpl<Factor> &Factors) {
1810 assert(Factors[0].Power);
1811 SmallVector<Value *, 4> OuterProduct;
1812 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1813 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1814 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1815 LastIdx = Idx;
1816 continue;
1817 }
1818
1819 // We want to multiply across all the factors with the same power so that
1820 // we can raise them to that power as a single entity. Build a mini tree
1821 // for that.
1822 SmallVector<Value *, 4> InnerProduct;
1823 InnerProduct.push_back(Factors[LastIdx].Base);
1824 do {
1825 InnerProduct.push_back(Factors[Idx].Base);
1826 ++Idx;
1827 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1828
1829 // Reset the base value of the first factor to the new expression tree.
1830 // We'll remove all the factors with the same power in a second pass.
1831 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1832 if (Instruction *MI = dyn_cast<Instruction>(M))
1833 RedoInsts.insert(MI);
1834
1835 LastIdx = Idx;
1836 }
1837 // Unique factors with equal powers -- we've folded them into the first one's
1838 // base.
1839 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1840 Factor::PowerEqual()),
1841 Factors.end());
1842
1843 // Iteratively collect the base of each factor with an add power into the
1844 // outer product, and halve each power in preparation for squaring the
1845 // expression.
1846 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1847 if (Factors[Idx].Power & 1)
1848 OuterProduct.push_back(Factors[Idx].Base);
1849 Factors[Idx].Power >>= 1;
1850 }
1851 if (Factors[0].Power) {
1852 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1853 OuterProduct.push_back(SquareRoot);
1854 OuterProduct.push_back(SquareRoot);
1855 }
1856 if (OuterProduct.size() == 1)
1857 return OuterProduct.front();
1858
1859 Value *V = buildMultiplyTree(Builder, OuterProduct);
1860 return V;
1861 }
1862
OptimizeMul(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1863 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1864 SmallVectorImpl<ValueEntry> &Ops) {
1865 // We can only optimize the multiplies when there is a chain of more than
1866 // three, such that a balanced tree might require fewer total multiplies.
1867 if (Ops.size() < 4)
1868 return nullptr;
1869
1870 // Try to turn linear trees of multiplies without other uses of the
1871 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1872 // re-use.
1873 SmallVector<Factor, 4> Factors;
1874 if (!collectMultiplyFactors(Ops, Factors))
1875 return nullptr; // All distinct factors, so nothing left for us to do.
1876
1877 IRBuilder<> Builder(I);
1878 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1879 if (Ops.empty())
1880 return V;
1881
1882 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1883 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1884 return nullptr;
1885 }
1886
OptimizeExpression(BinaryOperator * I,SmallVectorImpl<ValueEntry> & Ops)1887 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1888 SmallVectorImpl<ValueEntry> &Ops) {
1889 // Now that we have the linearized expression tree, try to optimize it.
1890 // Start by folding any constants that we found.
1891 Constant *Cst = nullptr;
1892 unsigned Opcode = I->getOpcode();
1893 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1894 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1895 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1896 }
1897 // If there was nothing but constants then we are done.
1898 if (Ops.empty())
1899 return Cst;
1900
1901 // Put the combined constant back at the end of the operand list, except if
1902 // there is no point. For example, an add of 0 gets dropped here, while a
1903 // multiplication by zero turns the whole expression into zero.
1904 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1905 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1906 return Cst;
1907 Ops.push_back(ValueEntry(0, Cst));
1908 }
1909
1910 if (Ops.size() == 1) return Ops[0].Op;
1911
1912 // Handle destructive annihilation due to identities between elements in the
1913 // argument list here.
1914 unsigned NumOps = Ops.size();
1915 switch (Opcode) {
1916 default: break;
1917 case Instruction::And:
1918 case Instruction::Or:
1919 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1920 return Result;
1921 break;
1922
1923 case Instruction::Xor:
1924 if (Value *Result = OptimizeXor(I, Ops))
1925 return Result;
1926 break;
1927
1928 case Instruction::Add:
1929 case Instruction::FAdd:
1930 if (Value *Result = OptimizeAdd(I, Ops))
1931 return Result;
1932 break;
1933
1934 case Instruction::Mul:
1935 case Instruction::FMul:
1936 if (Value *Result = OptimizeMul(I, Ops))
1937 return Result;
1938 break;
1939 }
1940
1941 if (Ops.size() != NumOps)
1942 return OptimizeExpression(I, Ops);
1943 return nullptr;
1944 }
1945
1946 /// EraseInst - Zap the given instruction, adding interesting operands to the
1947 /// work list.
EraseInst(Instruction * I)1948 void Reassociate::EraseInst(Instruction *I) {
1949 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1950 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1951 // Erase the dead instruction.
1952 ValueRankMap.erase(I);
1953 RedoInsts.remove(I);
1954 I->eraseFromParent();
1955 // Optimize its operands.
1956 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1957 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1958 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1959 // If this is a node in an expression tree, climb to the expression root
1960 // and add that since that's where optimization actually happens.
1961 unsigned Opcode = Op->getOpcode();
1962 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1963 Visited.insert(Op).second)
1964 Op = Op->user_back();
1965 RedoInsts.insert(Op);
1966 }
1967 }
1968
1969 // Canonicalize expressions of the following form:
1970 // x + (-Constant * y) -> x - (Constant * y)
1971 // x - (-Constant * y) -> x + (Constant * y)
canonicalizeNegConstExpr(Instruction * I)1972 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1973 if (!I->hasOneUse() || I->getType()->isVectorTy())
1974 return nullptr;
1975
1976 // Must be a mul, fmul, or fdiv instruction.
1977 unsigned Opcode = I->getOpcode();
1978 if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
1979 Opcode != Instruction::FDiv)
1980 return nullptr;
1981
1982 // Must have at least one constant operand.
1983 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
1984 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
1985 if (!C0 && !C1)
1986 return nullptr;
1987
1988 // Must be a negative ConstantInt or ConstantFP.
1989 Constant *C = C0 ? C0 : C1;
1990 unsigned ConstIdx = C0 ? 0 : 1;
1991 if (auto *CI = dyn_cast<ConstantInt>(C)) {
1992 if (!CI->isNegative() || CI->isMinValue(true))
1993 return nullptr;
1994 } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
1995 if (!CF->isNegative())
1996 return nullptr;
1997 } else
1998 return nullptr;
1999
2000 // User must be a binary operator with one or more uses.
2001 Instruction *User = I->user_back();
2002 if (!isa<BinaryOperator>(User) || !User->getNumUses())
2003 return nullptr;
2004
2005 unsigned UserOpcode = User->getOpcode();
2006 if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
2007 UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
2008 return nullptr;
2009
2010 // Subtraction is not commutative. Explicitly, the following transform is
2011 // not valid: (-Constant * y) - x -> x + (Constant * y)
2012 if (!User->isCommutative() && User->getOperand(1) != I)
2013 return nullptr;
2014
2015 // Change the sign of the constant.
2016 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
2017 I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
2018 else {
2019 ConstantFP *CF = cast<ConstantFP>(C);
2020 APFloat Val = CF->getValueAPF();
2021 Val.changeSign();
2022 I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
2023 }
2024
2025 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2026 // ((-Const*y) + x) -> (x + (-Const*y)).
2027 if (User->getOperand(0) == I && User->isCommutative())
2028 cast<BinaryOperator>(User)->swapOperands();
2029
2030 Value *Op0 = User->getOperand(0);
2031 Value *Op1 = User->getOperand(1);
2032 BinaryOperator *NI;
2033 switch(UserOpcode) {
2034 default:
2035 llvm_unreachable("Unexpected Opcode!");
2036 case Instruction::Add:
2037 NI = BinaryOperator::CreateSub(Op0, Op1);
2038 break;
2039 case Instruction::Sub:
2040 NI = BinaryOperator::CreateAdd(Op0, Op1);
2041 break;
2042 case Instruction::FAdd:
2043 NI = BinaryOperator::CreateFSub(Op0, Op1);
2044 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2045 break;
2046 case Instruction::FSub:
2047 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2048 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2049 break;
2050 }
2051
2052 NI->insertBefore(User);
2053 NI->setName(User->getName());
2054 User->replaceAllUsesWith(NI);
2055 NI->setDebugLoc(I->getDebugLoc());
2056 RedoInsts.insert(I);
2057 MadeChange = true;
2058 return NI;
2059 }
2060
2061 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
2062 /// instructions is not allowed.
OptimizeInst(Instruction * I)2063 void Reassociate::OptimizeInst(Instruction *I) {
2064 // Only consider operations that we understand.
2065 if (!isa<BinaryOperator>(I))
2066 return;
2067
2068 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2069 // If an operand of this shift is a reassociable multiply, or if the shift
2070 // is used by a reassociable multiply or add, turn into a multiply.
2071 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2072 (I->hasOneUse() &&
2073 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2074 isReassociableOp(I->user_back(), Instruction::Add)))) {
2075 Instruction *NI = ConvertShiftToMul(I);
2076 RedoInsts.insert(I);
2077 MadeChange = true;
2078 I = NI;
2079 }
2080
2081 // Canonicalize negative constants out of expressions.
2082 if (Instruction *Res = canonicalizeNegConstExpr(I))
2083 I = Res;
2084
2085 // Commute binary operators, to canonicalize the order of their operands.
2086 // This can potentially expose more CSE opportunities, and makes writing other
2087 // transformations simpler.
2088 if (I->isCommutative())
2089 canonicalizeOperands(I);
2090
2091 // TODO: We should optimize vector Xor instructions, but they are
2092 // currently unsupported.
2093 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
2094 return;
2095
2096 // Don't optimize floating point instructions that don't have unsafe algebra.
2097 if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
2098 return;
2099
2100 // Do not reassociate boolean (i1) expressions. We want to preserve the
2101 // original order of evaluation for short-circuited comparisons that
2102 // SimplifyCFG has folded to AND/OR expressions. If the expression
2103 // is not further optimized, it is likely to be transformed back to a
2104 // short-circuited form for code gen, and the source order may have been
2105 // optimized for the most likely conditions.
2106 if (I->getType()->isIntegerTy(1))
2107 return;
2108
2109 // If this is a subtract instruction which is not already in negate form,
2110 // see if we can convert it to X+-Y.
2111 if (I->getOpcode() == Instruction::Sub) {
2112 if (ShouldBreakUpSubtract(I)) {
2113 Instruction *NI = BreakUpSubtract(I);
2114 RedoInsts.insert(I);
2115 MadeChange = true;
2116 I = NI;
2117 } else if (BinaryOperator::isNeg(I)) {
2118 // Otherwise, this is a negation. See if the operand is a multiply tree
2119 // and if this is not an inner node of a multiply tree.
2120 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2121 (!I->hasOneUse() ||
2122 !isReassociableOp(I->user_back(), Instruction::Mul))) {
2123 Instruction *NI = LowerNegateToMultiply(I);
2124 RedoInsts.insert(I);
2125 MadeChange = true;
2126 I = NI;
2127 }
2128 }
2129 } else if (I->getOpcode() == Instruction::FSub) {
2130 if (ShouldBreakUpSubtract(I)) {
2131 Instruction *NI = BreakUpSubtract(I);
2132 RedoInsts.insert(I);
2133 MadeChange = true;
2134 I = NI;
2135 } else if (BinaryOperator::isFNeg(I)) {
2136 // Otherwise, this is a negation. See if the operand is a multiply tree
2137 // and if this is not an inner node of a multiply tree.
2138 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2139 (!I->hasOneUse() ||
2140 !isReassociableOp(I->user_back(), Instruction::FMul))) {
2141 Instruction *NI = LowerNegateToMultiply(I);
2142 RedoInsts.insert(I);
2143 MadeChange = true;
2144 I = NI;
2145 }
2146 }
2147 }
2148
2149 // If this instruction is an associative binary operator, process it.
2150 if (!I->isAssociative()) return;
2151 BinaryOperator *BO = cast<BinaryOperator>(I);
2152
2153 // If this is an interior node of a reassociable tree, ignore it until we
2154 // get to the root of the tree, to avoid N^2 analysis.
2155 unsigned Opcode = BO->getOpcode();
2156 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
2157 return;
2158
2159 // If this is an add tree that is used by a sub instruction, ignore it
2160 // until we process the subtract.
2161 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2162 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2163 return;
2164 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2165 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2166 return;
2167
2168 ReassociateExpression(BO);
2169 }
2170
ReassociateExpression(BinaryOperator * I)2171 void Reassociate::ReassociateExpression(BinaryOperator *I) {
2172 // First, walk the expression tree, linearizing the tree, collecting the
2173 // operand information.
2174 SmallVector<RepeatedValue, 8> Tree;
2175 MadeChange |= LinearizeExprTree(I, Tree);
2176 SmallVector<ValueEntry, 8> Ops;
2177 Ops.reserve(Tree.size());
2178 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2179 RepeatedValue E = Tree[i];
2180 Ops.append(E.second.getZExtValue(),
2181 ValueEntry(getRank(E.first), E.first));
2182 }
2183
2184 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2185
2186 // Now that we have linearized the tree to a list and have gathered all of
2187 // the operands and their ranks, sort the operands by their rank. Use a
2188 // stable_sort so that values with equal ranks will have their relative
2189 // positions maintained (and so the compiler is deterministic). Note that
2190 // this sorts so that the highest ranking values end up at the beginning of
2191 // the vector.
2192 std::stable_sort(Ops.begin(), Ops.end());
2193
2194 // OptimizeExpression - Now that we have the expression tree in a convenient
2195 // sorted form, optimize it globally if possible.
2196 if (Value *V = OptimizeExpression(I, Ops)) {
2197 if (V == I)
2198 // Self-referential expression in unreachable code.
2199 return;
2200 // This expression tree simplified to something that isn't a tree,
2201 // eliminate it.
2202 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2203 I->replaceAllUsesWith(V);
2204 if (Instruction *VI = dyn_cast<Instruction>(V))
2205 VI->setDebugLoc(I->getDebugLoc());
2206 RedoInsts.insert(I);
2207 ++NumAnnihil;
2208 return;
2209 }
2210
2211 // We want to sink immediates as deeply as possible except in the case where
2212 // this is a multiply tree used only by an add, and the immediate is a -1.
2213 // In this case we reassociate to put the negation on the outside so that we
2214 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2215 if (I->hasOneUse()) {
2216 if (I->getOpcode() == Instruction::Mul &&
2217 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2218 isa<ConstantInt>(Ops.back().Op) &&
2219 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2220 ValueEntry Tmp = Ops.pop_back_val();
2221 Ops.insert(Ops.begin(), Tmp);
2222 } else if (I->getOpcode() == Instruction::FMul &&
2223 cast<Instruction>(I->user_back())->getOpcode() ==
2224 Instruction::FAdd &&
2225 isa<ConstantFP>(Ops.back().Op) &&
2226 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2227 ValueEntry Tmp = Ops.pop_back_val();
2228 Ops.insert(Ops.begin(), Tmp);
2229 }
2230 }
2231
2232 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2233
2234 if (Ops.size() == 1) {
2235 if (Ops[0].Op == I)
2236 // Self-referential expression in unreachable code.
2237 return;
2238
2239 // This expression tree simplified to something that isn't a tree,
2240 // eliminate it.
2241 I->replaceAllUsesWith(Ops[0].Op);
2242 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2243 OI->setDebugLoc(I->getDebugLoc());
2244 RedoInsts.insert(I);
2245 return;
2246 }
2247
2248 // Now that we ordered and optimized the expressions, splat them back into
2249 // the expression tree, removing any unneeded nodes.
2250 RewriteExprTree(I, Ops);
2251 }
2252
runOnFunction(Function & F)2253 bool Reassociate::runOnFunction(Function &F) {
2254 if (skipOptnoneFunction(F))
2255 return false;
2256
2257 // Calculate the rank map for F
2258 BuildRankMap(F);
2259
2260 MadeChange = false;
2261 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2262 // Optimize every instruction in the basic block.
2263 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2264 if (isInstructionTriviallyDead(II)) {
2265 EraseInst(II++);
2266 } else {
2267 OptimizeInst(II);
2268 assert(II->getParent() == BI && "Moved to a different block!");
2269 ++II;
2270 }
2271
2272 // If this produced extra instructions to optimize, handle them now.
2273 while (!RedoInsts.empty()) {
2274 Instruction *I = RedoInsts.pop_back_val();
2275 if (isInstructionTriviallyDead(I))
2276 EraseInst(I);
2277 else
2278 OptimizeInst(I);
2279 }
2280 }
2281
2282 // We are done with the rank map.
2283 RankMap.clear();
2284 ValueRankMap.clear();
2285
2286 return MadeChange;
2287 }
2288