• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; RUN: opt < %s -instsimplify -S | FileCheck %s
2target datalayout = "p:32:32"
3
4define i1 @ptrtoint() {
5; CHECK-LABEL: @ptrtoint(
6  %a = alloca i8
7  %tmp = ptrtoint i8* %a to i32
8  %r = icmp eq i32 %tmp, 0
9  ret i1 %r
10; CHECK: ret i1 false
11}
12
13define i1 @bitcast() {
14; CHECK-LABEL: @bitcast(
15  %a = alloca i32
16  %b = alloca i64
17  %x = bitcast i32* %a to i8*
18  %y = bitcast i64* %b to i8*
19  %cmp = icmp eq i8* %x, %y
20  ret i1 %cmp
21; CHECK-NEXT: ret i1 false
22}
23
24define i1 @gep() {
25; CHECK-LABEL: @gep(
26  %a = alloca [3 x i8], align 8
27  %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
28  %cmp = icmp eq i8* %x, null
29  ret i1 %cmp
30; CHECK-NEXT: ret i1 false
31}
32
33define i1 @gep2() {
34; CHECK-LABEL: @gep2(
35  %a = alloca [3 x i8], align 8
36  %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
37  %y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
38  %cmp = icmp eq i8* %x, %y
39  ret i1 %cmp
40; CHECK-NEXT: ret i1 true
41}
42
43; PR11238
44%gept = type { i32, i32 }
45@gepy = global %gept zeroinitializer, align 8
46@gepz = extern_weak global %gept
47
48define i1 @gep3() {
49; CHECK-LABEL: @gep3(
50  %x = alloca %gept, align 8
51  %a = getelementptr %gept, %gept* %x, i64 0, i32 0
52  %b = getelementptr %gept, %gept* %x, i64 0, i32 1
53  %equal = icmp eq i32* %a, %b
54  ret i1 %equal
55; CHECK-NEXT: ret i1 false
56}
57
58define i1 @gep4() {
59; CHECK-LABEL: @gep4(
60  %x = alloca %gept, align 8
61  %a = getelementptr %gept, %gept* @gepy, i64 0, i32 0
62  %b = getelementptr %gept, %gept* @gepy, i64 0, i32 1
63  %equal = icmp eq i32* %a, %b
64  ret i1 %equal
65; CHECK-NEXT: ret i1 false
66}
67
68define i1 @gep5() {
69; CHECK-LABEL: @gep5(
70  %x = alloca %gept, align 8
71  %a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1
72  %b = getelementptr %gept, %gept* @gepy, i64 0, i32 0
73  %equal = icmp eq i32* %a, %b
74  ret i1 %equal
75; CHECK-NEXT: ret i1 false
76}
77
78define i1 @gep6(%gept* %x) {
79; Same as @gep3 but potentially null.
80; CHECK-LABEL: @gep6(
81  %a = getelementptr %gept, %gept* %x, i64 0, i32 0
82  %b = getelementptr %gept, %gept* %x, i64 0, i32 1
83  %equal = icmp eq i32* %a, %b
84  ret i1 %equal
85; CHECK-NEXT: ret i1 false
86}
87
88define i1 @gep7(%gept* %x) {
89; CHECK-LABEL: @gep7(
90  %a = getelementptr %gept, %gept* %x, i64 0, i32 0
91  %b = getelementptr %gept, %gept* @gepz, i64 0, i32 0
92  %equal = icmp eq i32* %a, %b
93  ret i1 %equal
94; CHECK: ret i1 %equal
95}
96
97define i1 @gep8(%gept* %x) {
98; CHECK-LABEL: @gep8(
99  %a = getelementptr %gept, %gept* %x, i32 1
100  %b = getelementptr %gept, %gept* %x, i32 -1
101  %equal = icmp ugt %gept* %a, %b
102  ret i1 %equal
103; CHECK: ret i1 %equal
104}
105
106define i1 @gep9(i8* %ptr) {
107; CHECK-LABEL: @gep9(
108; CHECK-NOT: ret
109; CHECK: ret i1 true
110
111entry:
112  %first1 = getelementptr inbounds i8, i8* %ptr, i32 0
113  %first2 = getelementptr inbounds i8, i8* %first1, i32 1
114  %first3 = getelementptr inbounds i8, i8* %first2, i32 2
115  %first4 = getelementptr inbounds i8, i8* %first3, i32 4
116  %last1 = getelementptr inbounds i8, i8* %first2, i32 48
117  %last2 = getelementptr inbounds i8, i8* %last1, i32 8
118  %last3 = getelementptr inbounds i8, i8* %last2, i32 -4
119  %last4 = getelementptr inbounds i8, i8* %last3, i32 -4
120  %first.int = ptrtoint i8* %first4 to i32
121  %last.int = ptrtoint i8* %last4 to i32
122  %cmp = icmp ne i32 %last.int, %first.int
123  ret i1 %cmp
124}
125
126define i1 @gep10(i8* %ptr) {
127; CHECK-LABEL: @gep10(
128; CHECK-NOT: ret
129; CHECK: ret i1 true
130
131entry:
132  %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
133  %first2 = getelementptr inbounds i8, i8* %first1, i32 44
134  %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
135  %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
136  %first.int = ptrtoint i8* %first2 to i32
137  %last.int = ptrtoint i8* %last2 to i32
138  %cmp = icmp eq i32 %last.int, %first.int
139  ret i1 %cmp
140}
141
142define i1 @gep11(i8* %ptr) {
143; CHECK-LABEL: @gep11(
144; CHECK-NOT: ret
145; CHECK: ret i1 true
146
147entry:
148  %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
149  %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
150  %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
151  %cmp = icmp ult i8* %first1, %last2
152  ret i1 %cmp
153}
154
155define i1 @gep12(i8* %ptr) {
156; CHECK-LABEL: @gep12(
157; CHECK-NOT: ret
158; CHECK: ret i1 %cmp
159
160entry:
161  %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
162  %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
163  %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
164  %cmp = icmp slt i8* %first1, %last2
165  ret i1 %cmp
166}
167
168define i1 @gep13(i8* %ptr) {
169; CHECK-LABEL: @gep13(
170; We can prove this GEP is non-null because it is inbounds.
171  %x = getelementptr inbounds i8, i8* %ptr, i32 1
172  %cmp = icmp eq i8* %x, null
173  ret i1 %cmp
174; CHECK-NEXT: ret i1 false
175}
176
177define i1 @gep14({ {}, i8 }* %ptr) {
178; CHECK-LABEL: @gep14(
179; We can't simplify this because the offset of one in the GEP actually doesn't
180; move the pointer.
181  %x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1
182  %cmp = icmp eq i8* %x, null
183  ret i1 %cmp
184; CHECK-NOT: ret i1 false
185}
186
187define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) {
188; CHECK-LABEL: @gep15(
189; We can prove this GEP is non-null even though there is a user value, as we
190; would necessarily violate inbounds on one side or the other.
191  %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
192  %cmp = icmp eq i8* %x, null
193  ret i1 %cmp
194; CHECK-NEXT: ret i1 false
195}
196
197define i1 @gep16(i8* %ptr, i32 %a) {
198; CHECK-LABEL: @gep16(
199; We can prove this GEP is non-null because it is inbounds and because we know
200; %b is non-zero even though we don't know its value.
201  %b = or i32 %a, 1
202  %x = getelementptr inbounds i8, i8* %ptr, i32 %b
203  %cmp = icmp eq i8* %x, null
204  ret i1 %cmp
205; CHECK-NEXT: ret i1 false
206}
207
208define i1 @zext(i32 %x) {
209; CHECK-LABEL: @zext(
210  %e1 = zext i32 %x to i64
211  %e2 = zext i32 %x to i64
212  %r = icmp eq i64 %e1, %e2
213  ret i1 %r
214; CHECK: ret i1 true
215}
216
217define i1 @zext2(i1 %x) {
218; CHECK-LABEL: @zext2(
219  %e = zext i1 %x to i32
220  %c = icmp ne i32 %e, 0
221  ret i1 %c
222; CHECK: ret i1 %x
223}
224
225define i1 @zext3() {
226; CHECK-LABEL: @zext3(
227  %e = zext i1 1 to i32
228  %c = icmp ne i32 %e, 0
229  ret i1 %c
230; CHECK: ret i1 true
231}
232
233define i1 @sext(i32 %x) {
234; CHECK-LABEL: @sext(
235  %e1 = sext i32 %x to i64
236  %e2 = sext i32 %x to i64
237  %r = icmp eq i64 %e1, %e2
238  ret i1 %r
239; CHECK: ret i1 true
240}
241
242define i1 @sext2(i1 %x) {
243; CHECK-LABEL: @sext2(
244  %e = sext i1 %x to i32
245  %c = icmp ne i32 %e, 0
246  ret i1 %c
247; CHECK: ret i1 %x
248}
249
250define i1 @sext3() {
251; CHECK-LABEL: @sext3(
252  %e = sext i1 1 to i32
253  %c = icmp ne i32 %e, 0
254  ret i1 %c
255; CHECK: ret i1 true
256}
257
258define i1 @add(i32 %x, i32 %y) {
259; CHECK-LABEL: @add(
260  %l = lshr i32 %x, 1
261  %q = lshr i32 %y, 1
262  %r = or i32 %q, 1
263  %s = add i32 %l, %r
264  %c = icmp eq i32 %s, 0
265  ret i1 %c
266; CHECK: ret i1 false
267}
268
269define i1 @add2(i8 %x, i8 %y) {
270; CHECK-LABEL: @add2(
271  %l = or i8 %x, 128
272  %r = or i8 %y, 129
273  %s = add i8 %l, %r
274  %c = icmp eq i8 %s, 0
275  ret i1 %c
276; CHECK: ret i1 false
277}
278
279define i1 @add3(i8 %x, i8 %y) {
280; CHECK-LABEL: @add3(
281  %l = zext i8 %x to i32
282  %r = zext i8 %y to i32
283  %s = add i32 %l, %r
284  %c = icmp eq i32 %s, 0
285  ret i1 %c
286; CHECK: ret i1 %c
287}
288
289define i1 @add4(i32 %x, i32 %y) {
290; CHECK-LABEL: @add4(
291  %z = add nsw i32 %y, 1
292  %s1 = add nsw i32 %x, %y
293  %s2 = add nsw i32 %x, %z
294  %c = icmp slt i32 %s1, %s2
295  ret i1 %c
296; CHECK: ret i1 true
297}
298
299define i1 @add5(i32 %x, i32 %y) {
300; CHECK-LABEL: @add5(
301  %z = add nuw i32 %y, 1
302  %s1 = add nuw i32 %x, %z
303  %s2 = add nuw i32 %x, %y
304  %c = icmp ugt i32 %s1, %s2
305  ret i1 %c
306; CHECK: ret i1 true
307}
308
309define i1 @add6(i64 %A, i64 %B) {
310; CHECK-LABEL: @add6(
311  %s1 = add i64 %A, %B
312  %s2 = add i64 %B, %A
313  %cmp = icmp eq i64 %s1, %s2
314  ret i1 %cmp
315; CHECK: ret i1 true
316}
317
318define i1 @addpowtwo(i32 %x, i32 %y) {
319; CHECK-LABEL: @addpowtwo(
320  %l = lshr i32 %x, 1
321  %r = shl i32 1, %y
322  %s = add i32 %l, %r
323  %c = icmp eq i32 %s, 0
324  ret i1 %c
325; CHECK: ret i1 false
326}
327
328define i1 @or(i32 %x) {
329; CHECK-LABEL: @or(
330  %o = or i32 %x, 1
331  %c = icmp eq i32 %o, 0
332  ret i1 %c
333; CHECK: ret i1 false
334}
335
336define i1 @shl1(i32 %x) {
337; CHECK-LABEL: @shl1(
338  %s = shl i32 1, %x
339  %c = icmp eq i32 %s, 0
340  ret i1 %c
341; CHECK: ret i1 false
342}
343
344define i1 @shl2(i32 %X) {
345; CHECK: @shl2
346  %sub = shl nsw i32 -1, %X
347  %cmp = icmp eq i32 %sub, 31
348  ret i1 %cmp
349; CHECK-NEXT: ret i1 false
350}
351
352define i1 @shl3(i32 %X) {
353; CHECK: @shl3
354  %sub = shl nuw i32 4, %X
355  %cmp = icmp eq i32 %sub, 31
356  ret i1 %cmp
357; CHECK-NEXT: ret i1 false
358}
359
360define i1 @shl4(i32 %X) {
361; CHECK: @shl4
362  %sub = shl nsw i32 -1, %X
363  %cmp = icmp sle i32 %sub, -1
364  ret i1 %cmp
365; CHECK-NEXT: ret i1 true
366}
367
368define i1 @shl5(i32 %X) {
369; CHECK: @shl5
370  %sub = shl nuw i32 4, %X
371  %cmp = icmp ugt i32 %sub, 3
372  ret i1 %cmp
373; CHECK-NEXT: ret i1 true
374}
375
376define i1 @lshr1(i32 %x) {
377; CHECK-LABEL: @lshr1(
378  %s = lshr i32 -1, %x
379  %c = icmp eq i32 %s, 0
380  ret i1 %c
381; CHECK: ret i1 false
382}
383
384define i1 @lshr2(i32 %x) {
385; CHECK-LABEL: @lshr2(
386  %s = lshr i32 %x, 30
387  %c = icmp ugt i32 %s, 8
388  ret i1 %c
389; CHECK: ret i1 false
390}
391
392define i1 @lshr3(i32 %x) {
393; CHECK-LABEL: @lshr3(
394  %s = lshr i32 %x, %x
395  %c = icmp eq i32 %s, 0
396  ret i1 %c
397; CHECK: ret i1 true
398}
399
400define i1 @ashr1(i32 %x) {
401; CHECK-LABEL: @ashr1(
402  %s = ashr i32 -1, %x
403  %c = icmp eq i32 %s, 0
404  ret i1 %c
405; CHECK: ret i1 false
406}
407
408define i1 @ashr2(i32 %x) {
409; CHECK-LABEL: @ashr2(
410  %s = ashr i32 %x, 30
411  %c = icmp slt i32 %s, -5
412  ret i1 %c
413; CHECK: ret i1 false
414}
415
416define i1 @ashr3(i32 %x) {
417; CHECK-LABEL: @ashr3(
418  %s = ashr i32 %x, %x
419  %c = icmp eq i32 %s, 0
420  ret i1 %c
421; CHECK: ret i1 true
422}
423
424define i1 @select1(i1 %cond) {
425; CHECK-LABEL: @select1(
426  %s = select i1 %cond, i32 1, i32 0
427  %c = icmp eq i32 %s, 1
428  ret i1 %c
429; CHECK: ret i1 %cond
430}
431
432define i1 @select2(i1 %cond) {
433; CHECK-LABEL: @select2(
434  %x = zext i1 %cond to i32
435  %s = select i1 %cond, i32 %x, i32 0
436  %c = icmp ne i32 %s, 0
437  ret i1 %c
438; CHECK: ret i1 %cond
439}
440
441define i1 @select3(i1 %cond) {
442; CHECK-LABEL: @select3(
443  %x = zext i1 %cond to i32
444  %s = select i1 %cond, i32 1, i32 %x
445  %c = icmp ne i32 %s, 0
446  ret i1 %c
447; CHECK: ret i1 %cond
448}
449
450define i1 @select4(i1 %cond) {
451; CHECK-LABEL: @select4(
452  %invert = xor i1 %cond, 1
453  %s = select i1 %invert, i32 0, i32 1
454  %c = icmp ne i32 %s, 0
455  ret i1 %c
456; CHECK: ret i1 %cond
457}
458
459define i1 @select5(i32 %x) {
460; CHECK-LABEL: @select5(
461  %c = icmp eq i32 %x, 0
462  %s = select i1 %c, i32 1, i32 %x
463  %c2 = icmp eq i32 %s, 0
464  ret i1 %c2
465; CHECK: ret i1 false
466}
467
468define i1 @select6(i32 %x) {
469; CHECK-LABEL: @select6(
470  %c = icmp sgt i32 %x, 0
471  %s = select i1 %c, i32 %x, i32 4
472  %c2 = icmp eq i32 %s, 0
473  ret i1 %c2
474; CHECK: ret i1 %c2
475}
476
477define i1 @urem1(i32 %X, i32 %Y) {
478; CHECK-LABEL: @urem1(
479  %A = urem i32 %X, %Y
480  %B = icmp ult i32 %A, %Y
481  ret i1 %B
482; CHECK: ret i1 true
483}
484
485define i1 @urem2(i32 %X, i32 %Y) {
486; CHECK-LABEL: @urem2(
487  %A = urem i32 %X, %Y
488  %B = icmp eq i32 %A, %Y
489  ret i1 %B
490; CHECK: ret i1 false
491}
492
493define i1 @urem3(i32 %X) {
494; CHECK-LABEL: @urem3(
495  %A = urem i32 %X, 10
496  %B = icmp ult i32 %A, 15
497  ret i1 %B
498; CHECK: ret i1 true
499}
500
501define i1 @urem4(i32 %X) {
502; CHECK-LABEL: @urem4(
503  %A = urem i32 %X, 15
504  %B = icmp ult i32 %A, 10
505  ret i1 %B
506; CHECK: ret i1 %B
507}
508
509define i1 @urem5(i16 %X, i32 %Y) {
510; CHECK-LABEL: @urem5(
511  %A = zext i16 %X to i32
512  %B = urem i32 %A, %Y
513  %C = icmp slt i32 %B, %Y
514  ret i1 %C
515; CHECK-NOT: ret i1 true
516}
517
518define i1 @urem6(i32 %X, i32 %Y) {
519; CHECK-LABEL: @urem6(
520  %A = urem i32 %X, %Y
521  %B = icmp ugt i32 %Y, %A
522  ret i1 %B
523; CHECK: ret i1 true
524}
525
526define i1 @urem7(i32 %X) {
527; CHECK-LABEL: @urem7(
528  %A = urem i32 1, %X
529  %B = icmp sgt i32 %A, %X
530  ret i1 %B
531; CHECK-NOT: ret i1 false
532}
533
534define i1 @srem1(i32 %X) {
535; CHECK-LABEL: @srem1(
536  %A = srem i32 %X, -5
537  %B = icmp sgt i32 %A, 5
538  ret i1 %B
539; CHECK: ret i1 false
540}
541
542; PR9343 #15
543; CHECK-LABEL: @srem2(
544; CHECK: ret i1 false
545define i1 @srem2(i16 %X, i32 %Y) {
546  %A = zext i16 %X to i32
547  %B = add nsw i32 %A, 1
548  %C = srem i32 %B, %Y
549  %D = icmp slt i32 %C, 0
550  ret i1 %D
551}
552
553; CHECK-LABEL: @srem3(
554; CHECK-NEXT: ret i1 false
555define i1 @srem3(i16 %X, i32 %Y) {
556  %A = zext i16 %X to i32
557  %B = or i32 2147483648, %A
558  %C = sub nsw i32 1, %B
559  %D = srem i32 %C, %Y
560  %E = icmp slt i32 %D, 0
561  ret i1 %E
562}
563
564define i1 @udiv1(i32 %X) {
565; CHECK-LABEL: @udiv1(
566  %A = udiv i32 %X, 1000000
567  %B = icmp ult i32 %A, 5000
568  ret i1 %B
569; CHECK: ret i1 true
570}
571
572define i1 @udiv2(i32 %X, i32 %Y, i32 %Z) {
573; CHECK-LABEL: @udiv2(
574  %A = udiv exact i32 10, %Z
575  %B = udiv exact i32 20, %Z
576  %C = icmp ult i32 %A, %B
577  ret i1 %C
578; CHECK: ret i1 true
579}
580
581define i1 @udiv3(i32 %X, i32 %Y) {
582; CHECK-LABEL: @udiv3(
583  %A = udiv i32 %X, %Y
584  %C = icmp ugt i32 %A, %X
585  ret i1 %C
586; CHECK: ret i1 false
587}
588
589define i1 @udiv4(i32 %X, i32 %Y) {
590; CHECK-LABEL: @udiv4(
591  %A = udiv i32 %X, %Y
592  %C = icmp ule i32 %A, %X
593  ret i1 %C
594; CHECK: ret i1 true
595}
596
597define i1 @udiv5(i32 %X) {
598; CHECK-LABEL: @udiv5(
599  %A = udiv i32 123, %X
600  %C = icmp ugt i32 %A, 124
601  ret i1 %C
602; CHECK: ret i1 false
603}
604
605; PR11340
606define i1 @udiv6(i32 %X) nounwind {
607; CHECK-LABEL: @udiv6(
608  %A = udiv i32 1, %X
609  %C = icmp eq i32 %A, 0
610  ret i1 %C
611; CHECK: ret i1 %C
612}
613
614
615define i1 @sdiv1(i32 %X) {
616; CHECK-LABEL: @sdiv1(
617  %A = sdiv i32 %X, 1000000
618  %B = icmp slt i32 %A, 3000
619  ret i1 %B
620; CHECK: ret i1 true
621}
622
623define i1 @or1(i32 %X) {
624; CHECK-LABEL: @or1(
625  %A = or i32 %X, 62
626  %B = icmp ult i32 %A, 50
627  ret i1 %B
628; CHECK: ret i1 false
629}
630
631define i1 @and1(i32 %X) {
632; CHECK-LABEL: @and1(
633  %A = and i32 %X, 62
634  %B = icmp ugt i32 %A, 70
635  ret i1 %B
636; CHECK: ret i1 false
637}
638
639define i1 @mul1(i32 %X) {
640; CHECK-LABEL: @mul1(
641; Square of a non-zero number is non-zero if there is no overflow.
642  %Y = or i32 %X, 1
643  %M = mul nuw i32 %Y, %Y
644  %C = icmp eq i32 %M, 0
645  ret i1 %C
646; CHECK: ret i1 false
647}
648
649define i1 @mul2(i32 %X) {
650; CHECK-LABEL: @mul2(
651; Square of a non-zero number is positive if there is no signed overflow.
652  %Y = or i32 %X, 1
653  %M = mul nsw i32 %Y, %Y
654  %C = icmp sgt i32 %M, 0
655  ret i1 %C
656; CHECK: ret i1 true
657}
658
659define i1 @mul3(i32 %X, i32 %Y) {
660; CHECK-LABEL: @mul3(
661; Product of non-negative numbers is non-negative if there is no signed overflow.
662  %XX = mul nsw i32 %X, %X
663  %YY = mul nsw i32 %Y, %Y
664  %M = mul nsw i32 %XX, %YY
665  %C = icmp sge i32 %M, 0
666  ret i1 %C
667; CHECK: ret i1 true
668}
669
670define <2 x i1> @vectorselect1(<2 x i1> %cond) {
671; CHECK-LABEL: @vectorselect1(
672  %invert = xor <2 x i1> %cond, <i1 1, i1 1>
673  %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1>
674  %c = icmp ne <2 x i32> %s, <i32 0, i32 0>
675  ret <2 x i1> %c
676; CHECK: ret <2 x i1> %cond
677}
678
679; PR11948
680define <2 x i1> @vectorselectcrash(i32 %arg1) {
681  %tobool40 = icmp ne i32 %arg1, 0
682  %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
683  %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21>
684  ret <2 x i1> %cmp45
685}
686
687; PR12013
688define i1 @alloca_compare(i64 %idx) {
689  %sv = alloca { i32, i32, [124 x i32] }
690  %1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
691  %2 = icmp eq i32* %1, null
692  ret i1 %2
693  ; CHECK: alloca_compare
694  ; CHECK: ret i1 false
695}
696
697; PR12075
698define i1 @infinite_gep() {
699  ret i1 1
700
701unreachableblock:
702  %X = getelementptr i32, i32 *%X, i32 1
703  %Y = icmp eq i32* %X, null
704  ret i1 %Y
705}
706
707; It's not valid to fold a comparison of an argument with an alloca, even though
708; that's tempting. An argument can't *alias* an alloca, however the aliasing rule
709; relies on restrictions against guessing an object's address and dereferencing.
710; There are no restrictions against guessing an object's address and comparing.
711
712define i1 @alloca_argument_compare(i64* %arg) {
713  %alloc = alloca i64
714  %cmp = icmp eq i64* %arg, %alloc
715  ret i1 %cmp
716  ; CHECK: alloca_argument_compare
717  ; CHECK: ret i1 %cmp
718}
719
720; As above, but with the operands reversed.
721
722define i1 @alloca_argument_compare_swapped(i64* %arg) {
723  %alloc = alloca i64
724  %cmp = icmp eq i64* %alloc, %arg
725  ret i1 %cmp
726  ; CHECK: alloca_argument_compare_swapped
727  ; CHECK: ret i1 %cmp
728}
729
730; Don't assume that a noalias argument isn't equal to a global variable's
731; address. This is an example where AliasAnalysis' NoAlias concept is
732; different from actual pointer inequality.
733
734@y = external global i32
735define zeroext i1 @external_compare(i32* noalias %x) {
736  %cmp = icmp eq i32* %x, @y
737  ret i1 %cmp
738  ; CHECK: external_compare
739  ; CHECK: ret i1 %cmp
740}
741
742define i1 @alloca_gep(i64 %a, i64 %b) {
743; CHECK-LABEL: @alloca_gep(
744; We can prove this GEP is non-null because it is inbounds and the pointer
745; is non-null.
746  %strs = alloca [1000 x [1001 x i8]], align 16
747  %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
748  %cmp = icmp eq i8* %x, null
749  ret i1 %cmp
750; CHECK-NEXT: ret i1 false
751}
752
753define i1 @non_inbounds_gep_compare(i64* %a) {
754; CHECK-LABEL: @non_inbounds_gep_compare(
755; Equality compares with non-inbounds GEPs can be folded.
756  %x = getelementptr i64, i64* %a, i64 42
757  %y = getelementptr inbounds i64, i64* %x, i64 -42
758  %z = getelementptr i64, i64* %a, i64 -42
759  %w = getelementptr inbounds i64, i64* %z, i64 42
760  %cmp = icmp eq i64* %y, %w
761  ret i1 %cmp
762; CHECK-NEXT: ret i1 true
763}
764
765define i1 @non_inbounds_gep_compare2(i64* %a) {
766; CHECK-LABEL: @non_inbounds_gep_compare2(
767; Equality compares with non-inbounds GEPs can be folded.
768  %x = getelementptr i64, i64* %a, i64 4294967297
769  %y = getelementptr i64, i64* %a, i64 1
770  %cmp = icmp eq i64* %y, %y
771  ret i1 %cmp
772; CHECK-NEXT: ret i1 true
773}
774
775define <4 x i8> @vectorselectfold(<4 x i8> %a, <4 x i8> %b) {
776  %false = icmp ne <4 x i8> zeroinitializer, zeroinitializer
777  %sel = select <4 x i1> %false, <4 x i8> %a, <4 x i8> %b
778  ret <4 x i8> %sel
779
780; CHECK-LABEL: @vectorselectfold
781; CHECK-NEXT: ret <4 x i8> %b
782}
783
784define <4 x i8> @vectorselectfold2(<4 x i8> %a, <4 x i8> %b) {
785  %true = icmp eq <4 x i8> zeroinitializer, zeroinitializer
786  %sel = select <4 x i1> %true, <4 x i8> %a, <4 x i8> %b
787  ret <4 x i8> %sel
788
789; CHECK-LABEL: @vectorselectfold
790; CHECK-NEXT: ret <4 x i8> %a
791}
792
793define i1 @compare_always_true_slt(i16 %a) {
794  %1 = zext i16 %a to i32
795  %2 = sub nsw i32 0, %1
796  %3 = icmp slt i32 %2, 1
797  ret i1 %3
798
799; CHECK-LABEL: @compare_always_true_slt
800; CHECK-NEXT: ret i1 true
801}
802
803define i1 @compare_always_true_sle(i16 %a) {
804  %1 = zext i16 %a to i32
805  %2 = sub nsw i32 0, %1
806  %3 = icmp sle i32 %2, 0
807  ret i1 %3
808
809; CHECK-LABEL: @compare_always_true_sle
810; CHECK-NEXT: ret i1 true
811}
812
813define i1 @compare_always_false_sgt(i16 %a) {
814  %1 = zext i16 %a to i32
815  %2 = sub nsw i32 0, %1
816  %3 = icmp sgt i32 %2, 0
817  ret i1 %3
818
819; CHECK-LABEL: @compare_always_false_sgt
820; CHECK-NEXT: ret i1 false
821}
822
823define i1 @compare_always_false_sge(i16 %a) {
824  %1 = zext i16 %a to i32
825  %2 = sub nsw i32 0, %1
826  %3 = icmp sge i32 %2, 1
827  ret i1 %3
828
829; CHECK-LABEL: @compare_always_false_sge
830; CHECK-NEXT: ret i1 false
831}
832
833define i1 @compare_always_false_eq(i16 %a) {
834  %1 = zext i16 %a to i32
835  %2 = sub nsw i32 0, %1
836  %3 = icmp eq i32 %2, 1
837  ret i1 %3
838
839; CHECK-LABEL: @compare_always_false_eq
840; CHECK-NEXT: ret i1 false
841}
842
843define i1 @compare_always_false_ne(i16 %a) {
844  %1 = zext i16 %a to i32
845  %2 = sub nsw i32 0, %1
846  %3 = icmp ne i32 %2, 1
847  ret i1 %3
848
849; CHECK-LABEL: @compare_always_false_ne
850; CHECK-NEXT: ret i1 true
851}
852
853define i1 @compare_dividend(i32 %a) {
854  %div = sdiv i32 2, %a
855  %cmp = icmp eq i32 %div, 3
856  ret i1 %cmp
857
858; CHECK-LABEL: @compare_dividend
859; CHECK-NEXT: ret i1 false
860}
861
862define i1 @lshr_ugt_false(i32 %a) {
863  %shr = lshr i32 1, %a
864  %cmp = icmp ugt i32 %shr, 1
865  ret i1 %cmp
866; CHECK-LABEL: @lshr_ugt_false
867; CHECK-NEXT: ret i1 false
868}
869
870define i1 @exact_lshr_ugt_false(i32 %a) {
871  %shr = lshr exact i32 30, %a
872  %cmp = icmp ult i32 %shr, 15
873  ret i1 %cmp
874; CHECK-LABEL: @exact_lshr_ugt_false
875; CHECK-NEXT: ret i1 false
876}
877
878define i1 @lshr_sgt_false(i32 %a) {
879  %shr = lshr i32 1, %a
880  %cmp = icmp sgt i32 %shr, 1
881  ret i1 %cmp
882; CHECK-LABEL: @lshr_sgt_false
883; CHECK-NEXT: ret i1 false
884}
885
886define i1 @ashr_sgt_false(i32 %a) {
887  %shr = ashr i32 -30, %a
888  %cmp = icmp sgt i32 %shr, -1
889  ret i1 %cmp
890; CHECK-LABEL: @ashr_sgt_false
891; CHECK-NEXT: ret i1 false
892}
893
894define i1 @exact_ashr_sgt_false(i32 %a) {
895  %shr = ashr exact i32 -30, %a
896  %cmp = icmp sgt i32 %shr, -15
897  ret i1 %cmp
898; CHECK-LABEL: @exact_ashr_sgt_false
899; CHECK-NEXT: ret i1 false
900}
901
902define i1 @nonnull_arg(i32* nonnull %i) {
903  %cmp = icmp eq i32* %i, null
904  ret i1 %cmp
905; CHECK-LABEL: @nonnull_arg
906; CHECK: ret i1 false
907}
908
909define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) {
910  %cmp = icmp eq i32* %i, null
911  ret i1 %cmp
912; CHECK-LABEL: @nonnull_deref_arg
913; CHECK: ret i1 false
914}
915
916define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) {
917  %cmp = icmp eq i32 addrspace(1)* %i, null
918  ret i1 %cmp
919; CHECK-LABEL: @nonnull_deref_as_arg
920; CHECK: icmp
921; CHECK: ret
922}
923
924declare nonnull i32* @returns_nonnull_helper()
925define i1 @returns_nonnull() {
926  %call = call nonnull i32* @returns_nonnull_helper()
927  %cmp = icmp eq i32* %call, null
928  ret i1 %cmp
929; CHECK-LABEL: @returns_nonnull
930; CHECK: ret i1 false
931}
932
933declare dereferenceable(4) i32* @returns_nonnull_deref_helper()
934define i1 @returns_nonnull_deref() {
935  %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
936  %cmp = icmp eq i32* %call, null
937  ret i1 %cmp
938; CHECK-LABEL: @returns_nonnull_deref
939; CHECK: ret i1 false
940}
941
942declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
943define i1 @returns_nonnull_as_deref() {
944  %call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
945  %cmp = icmp eq i32 addrspace(1)* %call, null
946  ret i1 %cmp
947; CHECK-LABEL: @returns_nonnull_as_deref
948; CHECK: icmp
949; CHECK: ret
950}
951
952define i1 @nonnull_load(i32** %addr) {
953  %ptr = load i32*, i32** %addr, !nonnull !{}
954  %cmp = icmp eq i32* %ptr, null
955  ret i1 %cmp
956; CHECK-LABEL: @nonnull_load
957; CHECK: ret i1 false
958}
959
960define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) {
961  %ptr = load i32*, i32* addrspace(1)* %addr, !nonnull !{}
962  %cmp = icmp eq i32* %ptr, null
963  ret i1 %cmp
964; CHECK-LABEL: @nonnull_load_as_outer
965; CHECK: ret i1 false
966}
967define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) {
968  %ptr = load i32 addrspace(1)*, i32 addrspace(1)** %addr, !nonnull !{}
969  %cmp = icmp eq i32 addrspace(1)* %ptr, null
970  ret i1 %cmp
971; CHECK-LABEL: @nonnull_load_as_inner
972; CHECK: ret i1 false
973}
974
975; If a bit is known to be zero for A and known to be one for B,
976; then A and B cannot be equal.
977define i1 @icmp_eq_const(i32 %a) nounwind {
978  %b = mul nsw i32 %a, -2
979  %c = icmp eq i32 %b, 1
980  ret i1 %c
981
982; CHECK-LABEL: @icmp_eq_const
983; CHECK-NEXT: ret i1 false
984}
985
986define i1 @icmp_ne_const(i32 %a) nounwind {
987  %b = mul nsw i32 %a, -2
988  %c = icmp ne i32 %b, 1
989  ret i1 %c
990
991; CHECK-LABEL: @icmp_ne_const
992; CHECK-NEXT: ret i1 true
993}
994
995define i1 @icmp_sdiv_int_min(i32 %a) {
996  %div = sdiv i32 -2147483648, %a
997  %cmp = icmp ne i32 %div, -1073741824
998  ret i1 %cmp
999
1000; CHECK-LABEL: @icmp_sdiv_int_min
1001; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, %a
1002; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824
1003; CHECK-NEXT: ret i1 [[CMP]]
1004}
1005
1006define i1 @icmp_sdiv_pr20288(i64 %a) {
1007   %div = sdiv i64 %a, -8589934592
1008   %cmp = icmp ne i64 %div, 1073741824
1009   ret i1 %cmp
1010
1011; CHECK-LABEL: @icmp_sdiv_pr20288
1012; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -8589934592
1013; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
1014; CHECK-NEXT: ret i1 [[CMP]]
1015}
1016
1017define i1 @icmp_sdiv_neg1(i64 %a) {
1018 %div = sdiv i64 %a, -1
1019 %cmp = icmp ne i64 %div, 1073741824
1020 ret i1 %cmp
1021
1022; CHECK-LABEL: @icmp_sdiv_neg1
1023; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -1
1024; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
1025; CHECK-NEXT: ret i1 [[CMP]]
1026}
1027
1028define i1 @icmp_known_bits(i4 %x, i4 %y) {
1029  %and1 = and i4 %y, -7
1030  %and2 = and i4 %x, -7
1031  %or1 = or i4 %and1, 2
1032  %or2 = or i4 %and2, 2
1033  %add = add i4 %or1, %or2
1034  %cmp = icmp eq i4 %add, 0
1035  ret i1 %cmp
1036
1037; CHECK-LABEL: @icmp_known_bits
1038; CHECK-NEXT: ret i1 false
1039}
1040
1041define i1 @icmp_shl_nuw_1(i64 %a) {
1042 %shl = shl nuw i64 1, %a
1043 %cmp = icmp ne i64 %shl, 0
1044 ret i1 %cmp
1045
1046; CHECK-LABEL: @icmp_shl_nuw_1
1047; CHECK-NEXT: ret i1 true
1048}
1049
1050define i1 @icmp_shl_nsw_neg1(i64 %a) {
1051 %shl = shl nsw i64 -1, %a
1052 %cmp = icmp sge i64 %shl, 3
1053 ret i1 %cmp
1054
1055; CHECK-LABEL: @icmp_shl_nsw_neg1
1056; CHECK-NEXT: ret i1 false
1057}
1058
1059define i1 @icmp_shl_nsw_1(i64 %a) {
1060 %shl = shl nsw i64 1, %a
1061 %cmp = icmp sge i64 %shl, 0
1062 ret i1 %cmp
1063
1064; CHECK-LABEL: @icmp_shl_nsw_1
1065; CHECK-NEXT: ret i1 true
1066}
1067
1068define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) {
1069  %shl = shl i32 1, %V
1070  %cmp = icmp ugt i32 %shl, 2147483648
1071  ret i1 %cmp
1072
1073; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648(
1074; CHECK-NEXT: ret i1 false
1075}
1076
1077define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) {
1078  %shl = shl i32 1, %V
1079  %cmp = icmp ule i32 %shl, 2147483648
1080  ret i1 %cmp
1081
1082; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648(
1083; CHECK-NEXT: ret i1 true
1084}
1085
1086define i1 @icmp_shl_1_V_eq_31(i32 %V) {
1087  %shl = shl i32 1, %V
1088  %cmp = icmp eq i32 %shl, 31
1089  ret i1 %cmp
1090
1091; CHECK-LABEL: @icmp_shl_1_V_eq_31(
1092; CHECK-NEXT: ret i1 false
1093}
1094
1095define i1 @icmp_shl_1_V_ne_31(i32 %V) {
1096  %shl = shl i32 1, %V
1097  %cmp = icmp ne i32 %shl, 31
1098  ret i1 %cmp
1099
1100; CHECK-LABEL: @icmp_shl_1_V_ne_31(
1101; CHECK-NEXT: ret i1 true
1102}
1103
1104define i1 @tautological1(i32 %A, i32 %B) {
1105  %C = and i32 %A, %B
1106  %D = icmp ugt i32 %C, %A
1107  ret i1 %D
1108; CHECK-LABEL: @tautological1(
1109; CHECK: ret i1 false
1110}
1111
1112define i1 @tautological2(i32 %A, i32 %B) {
1113  %C = and i32 %A, %B
1114  %D = icmp ule i32 %C, %A
1115  ret i1 %D
1116; CHECK-LABEL: @tautological2(
1117; CHECK: ret i1 true
1118}
1119
1120define i1 @tautological3(i32 %A, i32 %B) {
1121  %C = or i32 %A, %B
1122  %D = icmp ule i32 %A, %C
1123  ret i1 %D
1124; CHECK-LABEL: @tautological3(
1125; CHECK: ret i1 true
1126}
1127
1128define i1 @tautological4(i32 %A, i32 %B) {
1129  %C = or i32 %A, %B
1130  %D = icmp ugt i32 %A, %C
1131  ret i1 %D
1132; CHECK-LABEL: @tautological4(
1133; CHECK: ret i1 false
1134}
1135
1136define i1 @tautological5(i32 %A, i32 %B) {
1137  %C = or i32 %A, %B
1138  %D = icmp ult i32 %C, %A
1139  ret i1 %D
1140; CHECK-LABEL: @tautological5(
1141; CHECK: ret i1 false
1142}
1143
1144define i1 @tautological6(i32 %A, i32 %B) {
1145  %C = or i32 %A, %B
1146  %D = icmp uge i32 %C, %A
1147  ret i1 %D
1148; CHECK-LABEL: @tautological6(
1149; CHECK: ret i1 true
1150}
1151
1152define i1 @tautological7(i32 %A, i32 %B) {
1153  %C = and i32 %A, %B
1154  %D = icmp uge i32 %A, %C
1155  ret i1 %D
1156; CHECK-LABEL: @tautological7(
1157; CHECK: ret i1 true
1158}
1159
1160define i1 @tautological8(i32 %A, i32 %B) {
1161  %C = and i32 %A, %B
1162  %D = icmp ult i32 %A, %C
1163  ret i1 %D
1164; CHECK-LABEL: @tautological8(
1165; CHECK: ret i1 false
1166}
1167