• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // rmepsilon.h
2 
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Copyright 2005-2010 Google, Inc.
16 // Author: allauzen@google.com (Cyril Allauzen)
17 //
18 // \file
19 // Functions and classes that implemement epsilon-removal.
20 
21 #ifndef FST_LIB_RMEPSILON_H__
22 #define FST_LIB_RMEPSILON_H__
23 
24 #include <tr1/unordered_map>
25 using std::tr1::unordered_map;
26 using std::tr1::unordered_multimap;
27 #include <fst/slist.h>
28 #include <stack>
29 #include <string>
30 #include <utility>
31 using std::pair; using std::make_pair;
32 #include <vector>
33 using std::vector;
34 
35 #include <fst/arcfilter.h>
36 #include <fst/cache.h>
37 #include <fst/connect.h>
38 #include <fst/factor-weight.h>
39 #include <fst/invert.h>
40 #include <fst/prune.h>
41 #include <fst/queue.h>
42 #include <fst/shortest-distance.h>
43 #include <fst/topsort.h>
44 
45 
46 namespace fst {
47 
48 template <class Arc, class Queue>
49 class RmEpsilonOptions
50     : public ShortestDistanceOptions<Arc, Queue, EpsilonArcFilter<Arc> > {
51  public:
52   typedef typename Arc::StateId StateId;
53   typedef typename Arc::Weight Weight;
54 
55   bool connect;              // Connect output
56   Weight weight_threshold;   // Pruning weight threshold.
57   StateId state_threshold;   // Pruning state threshold.
58 
59   explicit RmEpsilonOptions(Queue *q, float d = kDelta, bool c = true,
60                             Weight w = Weight::Zero(),
61                             StateId n = kNoStateId)
62       : ShortestDistanceOptions< Arc, Queue, EpsilonArcFilter<Arc> >(
63           q, EpsilonArcFilter<Arc>(), kNoStateId, d),
64         connect(c), weight_threshold(w), state_threshold(n) {}
65  private:
66   RmEpsilonOptions();  // disallow
67 };
68 
69 // Computation state of the epsilon-removal algorithm.
70 template <class Arc, class Queue>
71 class RmEpsilonState {
72  public:
73   typedef typename Arc::Label Label;
74   typedef typename Arc::StateId StateId;
75   typedef typename Arc::Weight Weight;
76 
RmEpsilonState(const Fst<Arc> & fst,vector<Weight> * distance,const RmEpsilonOptions<Arc,Queue> & opts)77   RmEpsilonState(const Fst<Arc> &fst,
78                  vector<Weight> *distance,
79                  const RmEpsilonOptions<Arc, Queue> &opts)
80       : fst_(fst), distance_(distance), sd_state_(fst_, distance, opts, true),
81         expand_id_(0) {}
82 
83   // Compute arcs and final weight for state 's'
84   void Expand(StateId s);
85 
86   // Returns arcs of expanded state.
Arcs()87   vector<Arc> &Arcs() { return arcs_; }
88 
89   // Returns final weight of expanded state.
Final()90   const Weight &Final() const { return final_; }
91 
92   // Return true if an error has occured.
Error()93   bool Error() const { return sd_state_.Error(); }
94 
95  private:
96   static const size_t kPrime0 = 7853;
97   static const size_t kPrime1 = 7867;
98 
99   struct Element {
100     Label ilabel;
101     Label olabel;
102     StateId nextstate;
103 
ElementElement104     Element() {}
105 
ElementElement106     Element(Label i, Label o, StateId s)
107         : ilabel(i), olabel(o), nextstate(s) {}
108   };
109 
110   class ElementKey {
111    public:
operator()112     size_t operator()(const Element& e) const {
113       return static_cast<size_t>(e.nextstate +
114                                  e.ilabel * kPrime0 +
115                                  e.olabel * kPrime1);
116     }
117 
118    private:
119   };
120 
121   class ElementEqual {
122    public:
operator()123     bool operator()(const Element &e1, const Element &e2) const {
124       return (e1.ilabel == e2.ilabel) &&  (e1.olabel == e2.olabel)
125                          && (e1.nextstate == e2.nextstate);
126     }
127   };
128 
129   typedef unordered_map<Element, pair<StateId, size_t>,
130                    ElementKey, ElementEqual> ElementMap;
131 
132   const Fst<Arc> &fst_;
133   // Distance from state being expanded in epsilon-closure.
134   vector<Weight> *distance_;
135   // Shortest distance algorithm computation state.
136   ShortestDistanceState<Arc, Queue, EpsilonArcFilter<Arc> > sd_state_;
137   // Maps an element 'e' to a pair 'p' corresponding to a position
138   // in the arcs vector of the state being expanded. 'e' corresponds
139   // to the position 'p.second' in the 'arcs_' vector if 'p.first' is
140   // equal to the state being expanded.
141   ElementMap element_map_;
142   EpsilonArcFilter<Arc> eps_filter_;
143   stack<StateId> eps_queue_;      // Queue used to visit the epsilon-closure
144   vector<bool> visited_;          // '[i] = true' if state 'i' has been visited
145   slist<StateId> visited_states_; // List of visited states
146   vector<Arc> arcs_;              // Arcs of state being expanded
147   Weight final_;                  // Final weight of state being expanded
148   StateId expand_id_;             // Unique ID for each call to Expand
149 
150   DISALLOW_COPY_AND_ASSIGN(RmEpsilonState);
151 };
152 
153 template <class Arc, class Queue>
154 const size_t RmEpsilonState<Arc, Queue>::kPrime0;
155 template <class Arc, class Queue>
156 const size_t RmEpsilonState<Arc, Queue>::kPrime1;
157 
158 
159 template <class Arc, class Queue>
Expand(typename Arc::StateId source)160 void RmEpsilonState<Arc,Queue>::Expand(typename Arc::StateId source) {
161    final_ = Weight::Zero();
162    arcs_.clear();
163    sd_state_.ShortestDistance(source);
164    if (sd_state_.Error())
165      return;
166    eps_queue_.push(source);
167 
168    while (!eps_queue_.empty()) {
169      StateId state = eps_queue_.top();
170      eps_queue_.pop();
171 
172      while (visited_.size() <= state) visited_.push_back(false);
173      if (visited_[state]) continue;
174      visited_[state] = true;
175      visited_states_.push_front(state);
176 
177      for (ArcIterator< Fst<Arc> > ait(fst_, state);
178           !ait.Done();
179           ait.Next()) {
180        Arc arc = ait.Value();
181        arc.weight = Times((*distance_)[state], arc.weight);
182 
183        if (eps_filter_(arc)) {
184          while (visited_.size() <= arc.nextstate)
185            visited_.push_back(false);
186          if (!visited_[arc.nextstate])
187            eps_queue_.push(arc.nextstate);
188        } else {
189           Element element(arc.ilabel, arc.olabel, arc.nextstate);
190           typename ElementMap::iterator it = element_map_.find(element);
191           if (it == element_map_.end()) {
192             element_map_.insert(
193                 pair<Element, pair<StateId, size_t> >
194                 (element, pair<StateId, size_t>(expand_id_, arcs_.size())));
195             arcs_.push_back(arc);
196           } else {
197             if (((*it).second).first == expand_id_) {
198               Weight &w = arcs_[((*it).second).second].weight;
199               w = Plus(w, arc.weight);
200             } else {
201               ((*it).second).first = expand_id_;
202               ((*it).second).second = arcs_.size();
203               arcs_.push_back(arc);
204             }
205           }
206         }
207      }
208      final_ = Plus(final_, Times((*distance_)[state], fst_.Final(state)));
209    }
210 
211    while (!visited_states_.empty()) {
212      visited_[visited_states_.front()] = false;
213      visited_states_.pop_front();
214    }
215    ++expand_id_;
216 }
217 
218 // Removes epsilon-transitions (when both the input and output label
219 // are an epsilon) from a transducer. The result will be an equivalent
220 // FST that has no such epsilon transitions.  This version modifies
221 // its input. It allows fine control via the options argument; see
222 // below for a simpler interface.
223 //
224 // The vector 'distance' will be used to hold the shortest distances
225 // during the epsilon-closure computation. The state queue discipline
226 // and convergence delta are taken in the options argument.
227 template <class Arc, class Queue>
RmEpsilon(MutableFst<Arc> * fst,vector<typename Arc::Weight> * distance,const RmEpsilonOptions<Arc,Queue> & opts)228 void RmEpsilon(MutableFst<Arc> *fst,
229                vector<typename Arc::Weight> *distance,
230                const RmEpsilonOptions<Arc, Queue> &opts) {
231   typedef typename Arc::StateId StateId;
232   typedef typename Arc::Weight Weight;
233   typedef typename Arc::Label Label;
234 
235   if (fst->Start() == kNoStateId) {
236     return;
237   }
238 
239   // 'noneps_in[s]' will be set to true iff 's' admits a non-epsilon
240   // incoming transition or is the start state.
241   vector<bool> noneps_in(fst->NumStates(), false);
242   noneps_in[fst->Start()] = true;
243   for (StateId i = 0; i < fst->NumStates(); ++i) {
244     for (ArcIterator<Fst<Arc> > aiter(*fst, i);
245          !aiter.Done();
246          aiter.Next()) {
247       if (aiter.Value().ilabel != 0 || aiter.Value().olabel != 0)
248         noneps_in[aiter.Value().nextstate] = true;
249     }
250   }
251 
252   // States sorted in topological order when (acyclic) or generic
253   // topological order (cyclic).
254   vector<StateId> states;
255   states.reserve(fst->NumStates());
256 
257   if (fst->Properties(kTopSorted, false) & kTopSorted) {
258     for (StateId i = 0; i < fst->NumStates(); i++)
259       states.push_back(i);
260   } else if (fst->Properties(kAcyclic, false) & kAcyclic) {
261     vector<StateId> order;
262     bool acyclic;
263     TopOrderVisitor<Arc> top_order_visitor(&order, &acyclic);
264     DfsVisit(*fst, &top_order_visitor, EpsilonArcFilter<Arc>());
265     // Sanity check: should be acyclic if property bit is set.
266     if(!acyclic) {
267       FSTERROR() << "RmEpsilon: inconsistent acyclic property bit";
268       fst->SetProperties(kError, kError);
269       return;
270     }
271     states.resize(order.size());
272     for (StateId i = 0; i < order.size(); i++)
273       states[order[i]] = i;
274   } else {
275      uint64 props;
276      vector<StateId> scc;
277      SccVisitor<Arc> scc_visitor(&scc, 0, 0, &props);
278      DfsVisit(*fst, &scc_visitor, EpsilonArcFilter<Arc>());
279      vector<StateId> first(scc.size(), kNoStateId);
280      vector<StateId> next(scc.size(), kNoStateId);
281      for (StateId i = 0; i < scc.size(); i++) {
282        if (first[scc[i]] != kNoStateId)
283          next[i] = first[scc[i]];
284        first[scc[i]] = i;
285      }
286      for (StateId i = 0; i < first.size(); i++)
287        for (StateId j = first[i]; j != kNoStateId; j = next[j])
288          states.push_back(j);
289   }
290 
291   RmEpsilonState<Arc, Queue>
292     rmeps_state(*fst, distance, opts);
293 
294   while (!states.empty()) {
295     StateId state = states.back();
296     states.pop_back();
297     if (!noneps_in[state])
298       continue;
299     rmeps_state.Expand(state);
300     fst->SetFinal(state, rmeps_state.Final());
301     fst->DeleteArcs(state);
302     vector<Arc> &arcs = rmeps_state.Arcs();
303     fst->ReserveArcs(state, arcs.size());
304     while (!arcs.empty()) {
305       fst->AddArc(state, arcs.back());
306       arcs.pop_back();
307     }
308   }
309 
310   for (StateId s = 0; s < fst->NumStates(); ++s) {
311     if (!noneps_in[s])
312       fst->DeleteArcs(s);
313   }
314 
315   if(rmeps_state.Error())
316     fst->SetProperties(kError, kError);
317   fst->SetProperties(
318       RmEpsilonProperties(fst->Properties(kFstProperties, false)),
319       kFstProperties);
320 
321   if (opts.weight_threshold != Weight::Zero() ||
322       opts.state_threshold != kNoStateId)
323     Prune(fst, opts.weight_threshold, opts.state_threshold);
324   if (opts.connect && (opts.weight_threshold == Weight::Zero() ||
325                        opts.state_threshold != kNoStateId))
326     Connect(fst);
327 }
328 
329 // Removes epsilon-transitions (when both the input and output label
330 // are an epsilon) from a transducer. The result will be an equivalent
331 // FST that has no such epsilon transitions. This version modifies its
332 // input. It has a simplified interface; see above for a version that
333 // allows finer control.
334 //
335 // Complexity:
336 // - Time:
337 //   - Unweighted: O(V2 + V E)
338 //   - Acyclic: O(V2 + V E)
339 //   - Tropical semiring: O(V2 log V + V E)
340 //   - General: exponential
341 // - Space: O(V E)
342 // where V = # of states visited, E = # of arcs.
343 //
344 // References:
345 // - Mehryar Mohri. Generic Epsilon-Removal and Input
346 //   Epsilon-Normalization Algorithms for Weighted Transducers,
347 //   "International Journal of Computer Science", 13(1):129-143 (2002).
348 template <class Arc>
349 void RmEpsilon(MutableFst<Arc> *fst,
350                bool connect = true,
351                typename Arc::Weight weight_threshold = Arc::Weight::Zero(),
352                typename Arc::StateId state_threshold = kNoStateId,
353                float delta = kDelta) {
354   typedef typename Arc::StateId StateId;
355   typedef typename Arc::Weight Weight;
356   typedef typename Arc::Label Label;
357 
358   vector<Weight> distance;
359   AutoQueue<StateId> state_queue(*fst, &distance, EpsilonArcFilter<Arc>());
360   RmEpsilonOptions<Arc, AutoQueue<StateId> >
361       opts(&state_queue, delta, connect, weight_threshold, state_threshold);
362 
363   RmEpsilon(fst, &distance, opts);
364 }
365 
366 
367 struct RmEpsilonFstOptions : CacheOptions {
368   float delta;
369 
370   RmEpsilonFstOptions(const CacheOptions &opts, float delta = kDelta)
CacheOptionsRmEpsilonFstOptions371       : CacheOptions(opts), delta(delta) {}
372 
deltaRmEpsilonFstOptions373   explicit RmEpsilonFstOptions(float delta = kDelta) : delta(delta) {}
374 };
375 
376 
377 // Implementation of delayed RmEpsilonFst.
378 template <class A>
379 class RmEpsilonFstImpl : public CacheImpl<A> {
380  public:
381   using FstImpl<A>::SetType;
382   using FstImpl<A>::SetProperties;
383   using FstImpl<A>::SetInputSymbols;
384   using FstImpl<A>::SetOutputSymbols;
385 
386   using CacheBaseImpl< CacheState<A> >::PushArc;
387   using CacheBaseImpl< CacheState<A> >::HasArcs;
388   using CacheBaseImpl< CacheState<A> >::HasFinal;
389   using CacheBaseImpl< CacheState<A> >::HasStart;
390   using CacheBaseImpl< CacheState<A> >::SetArcs;
391   using CacheBaseImpl< CacheState<A> >::SetFinal;
392   using CacheBaseImpl< CacheState<A> >::SetStart;
393 
394   typedef typename A::Label Label;
395   typedef typename A::Weight Weight;
396   typedef typename A::StateId StateId;
397   typedef CacheState<A> State;
398 
RmEpsilonFstImpl(const Fst<A> & fst,const RmEpsilonFstOptions & opts)399   RmEpsilonFstImpl(const Fst<A>& fst, const RmEpsilonFstOptions &opts)
400       : CacheImpl<A>(opts),
401         fst_(fst.Copy()),
402         delta_(opts.delta),
403         rmeps_state_(
404             *fst_,
405             &distance_,
406             RmEpsilonOptions<A, FifoQueue<StateId> >(&queue_, delta_, false)) {
407     SetType("rmepsilon");
408     uint64 props = fst.Properties(kFstProperties, false);
409     SetProperties(RmEpsilonProperties(props, true), kCopyProperties);
410     SetInputSymbols(fst.InputSymbols());
411     SetOutputSymbols(fst.OutputSymbols());
412   }
413 
RmEpsilonFstImpl(const RmEpsilonFstImpl & impl)414   RmEpsilonFstImpl(const RmEpsilonFstImpl &impl)
415       : CacheImpl<A>(impl),
416         fst_(impl.fst_->Copy(true)),
417         delta_(impl.delta_),
418         rmeps_state_(
419             *fst_,
420             &distance_,
421             RmEpsilonOptions<A, FifoQueue<StateId> >(&queue_, delta_, false)) {
422     SetType("rmepsilon");
423     SetProperties(impl.Properties(), kCopyProperties);
424     SetInputSymbols(impl.InputSymbols());
425     SetOutputSymbols(impl.OutputSymbols());
426   }
427 
~RmEpsilonFstImpl()428   ~RmEpsilonFstImpl() {
429     delete fst_;
430   }
431 
Start()432   StateId Start() {
433     if (!HasStart()) {
434       SetStart(fst_->Start());
435     }
436     return CacheImpl<A>::Start();
437   }
438 
Final(StateId s)439   Weight Final(StateId s) {
440     if (!HasFinal(s)) {
441       Expand(s);
442     }
443     return CacheImpl<A>::Final(s);
444   }
445 
NumArcs(StateId s)446   size_t NumArcs(StateId s) {
447     if (!HasArcs(s))
448       Expand(s);
449     return CacheImpl<A>::NumArcs(s);
450   }
451 
NumInputEpsilons(StateId s)452   size_t NumInputEpsilons(StateId s) {
453     if (!HasArcs(s))
454       Expand(s);
455     return CacheImpl<A>::NumInputEpsilons(s);
456   }
457 
NumOutputEpsilons(StateId s)458   size_t NumOutputEpsilons(StateId s) {
459     if (!HasArcs(s))
460       Expand(s);
461     return CacheImpl<A>::NumOutputEpsilons(s);
462   }
463 
Properties()464   uint64 Properties() const { return Properties(kFstProperties); }
465 
466   // Set error if found; return FST impl properties.
Properties(uint64 mask)467   uint64 Properties(uint64 mask) const {
468     if ((mask & kError) &&
469         (fst_->Properties(kError, false) || rmeps_state_.Error()))
470       SetProperties(kError, kError);
471     return FstImpl<A>::Properties(mask);
472   }
473 
InitArcIterator(StateId s,ArcIteratorData<A> * data)474   void InitArcIterator(StateId s, ArcIteratorData<A> *data) {
475     if (!HasArcs(s))
476       Expand(s);
477     CacheImpl<A>::InitArcIterator(s, data);
478   }
479 
Expand(StateId s)480   void Expand(StateId s) {
481     rmeps_state_.Expand(s);
482     SetFinal(s, rmeps_state_.Final());
483     vector<A> &arcs = rmeps_state_.Arcs();
484     while (!arcs.empty()) {
485       PushArc(s, arcs.back());
486       arcs.pop_back();
487     }
488     SetArcs(s);
489   }
490 
491  private:
492   const Fst<A> *fst_;
493   float delta_;
494   vector<Weight> distance_;
495   FifoQueue<StateId> queue_;
496   RmEpsilonState<A, FifoQueue<StateId> > rmeps_state_;
497 
498   void operator=(const RmEpsilonFstImpl<A> &);  // disallow
499 };
500 
501 
502 // Removes epsilon-transitions (when both the input and output label
503 // are an epsilon) from a transducer. The result will be an equivalent
504 // FST that has no such epsilon transitions.  This version is a
505 // delayed Fst.
506 //
507 // Complexity:
508 // - Time:
509 //   - Unweighted: O(v^2 + v e)
510 //   - General: exponential
511 // - Space: O(v e)
512 // where v = # of states visited, e = # of arcs visited. Constant time
513 // to visit an input state or arc is assumed and exclusive of caching.
514 //
515 // References:
516 // - Mehryar Mohri. Generic Epsilon-Removal and Input
517 //   Epsilon-Normalization Algorithms for Weighted Transducers,
518 //   "International Journal of Computer Science", 13(1):129-143 (2002).
519 //
520 // This class attaches interface to implementation and handles
521 // reference counting, delegating most methods to ImplToFst.
522 template <class A>
523 class RmEpsilonFst : public ImplToFst< RmEpsilonFstImpl<A> > {
524  public:
525   friend class ArcIterator< RmEpsilonFst<A> >;
526   friend class StateIterator< RmEpsilonFst<A> >;
527 
528   typedef A Arc;
529   typedef typename A::StateId StateId;
530   typedef CacheState<A> State;
531   typedef RmEpsilonFstImpl<A> Impl;
532 
RmEpsilonFst(const Fst<A> & fst)533   RmEpsilonFst(const Fst<A> &fst)
534       : ImplToFst<Impl>(new Impl(fst, RmEpsilonFstOptions())) {}
535 
RmEpsilonFst(const Fst<A> & fst,const RmEpsilonFstOptions & opts)536   RmEpsilonFst(const Fst<A> &fst, const RmEpsilonFstOptions &opts)
537       : ImplToFst<Impl>(new Impl(fst, opts)) {}
538 
539   // See Fst<>::Copy() for doc.
540   RmEpsilonFst(const RmEpsilonFst<A> &fst, bool safe = false)
541       : ImplToFst<Impl>(fst, safe) {}
542 
543   // Get a copy of this RmEpsilonFst. See Fst<>::Copy() for further doc.
544   virtual RmEpsilonFst<A> *Copy(bool safe = false) const {
545     return new RmEpsilonFst<A>(*this, safe);
546   }
547 
548   virtual inline void InitStateIterator(StateIteratorData<A> *data) const;
549 
InitArcIterator(StateId s,ArcIteratorData<Arc> * data)550   virtual void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const {
551     GetImpl()->InitArcIterator(s, data);
552   }
553 
554  private:
555   // Makes visible to friends.
GetImpl()556   Impl *GetImpl() const { return ImplToFst<Impl>::GetImpl(); }
557 
558   void operator=(const RmEpsilonFst<A> &fst);  // disallow
559 };
560 
561 // Specialization for RmEpsilonFst.
562 template<class A>
563 class StateIterator< RmEpsilonFst<A> >
564     : public CacheStateIterator< RmEpsilonFst<A> > {
565  public:
StateIterator(const RmEpsilonFst<A> & fst)566   explicit StateIterator(const RmEpsilonFst<A> &fst)
567       : CacheStateIterator< RmEpsilonFst<A> >(fst, fst.GetImpl()) {}
568 };
569 
570 
571 // Specialization for RmEpsilonFst.
572 template <class A>
573 class ArcIterator< RmEpsilonFst<A> >
574     : public CacheArcIterator< RmEpsilonFst<A> > {
575  public:
576   typedef typename A::StateId StateId;
577 
ArcIterator(const RmEpsilonFst<A> & fst,StateId s)578   ArcIterator(const RmEpsilonFst<A> &fst, StateId s)
579       : CacheArcIterator< RmEpsilonFst<A> >(fst.GetImpl(), s) {
580     if (!fst.GetImpl()->HasArcs(s))
581       fst.GetImpl()->Expand(s);
582   }
583 
584  private:
585   DISALLOW_COPY_AND_ASSIGN(ArcIterator);
586 };
587 
588 
589 template <class A> inline
InitStateIterator(StateIteratorData<A> * data)590 void RmEpsilonFst<A>::InitStateIterator(StateIteratorData<A> *data) const {
591   data->base = new StateIterator< RmEpsilonFst<A> >(*this);
592 }
593 
594 
595 // Useful alias when using StdArc.
596 typedef RmEpsilonFst<StdArc> StdRmEpsilonFst;
597 
598 }  // namespace fst
599 
600 #endif  // FST_LIB_RMEPSILON_H__
601