1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrTessellatingPathRenderer.h"
9
10 #include "GrBatch.h"
11 #include "GrBatchTarget.h"
12 #include "GrBatchTest.h"
13 #include "GrDefaultGeoProcFactory.h"
14 #include "GrPathUtils.h"
15 #include "GrVertices.h"
16 #include "SkChunkAlloc.h"
17 #include "SkGeometry.h"
18
19 #include <stdio.h>
20
21 /*
22 * This path renderer tessellates the path into triangles, uploads the triangles to a
23 * vertex buffer, and renders them with a single draw call. It does not currently do
24 * antialiasing, so it must be used in conjunction with multisampling.
25 *
26 * There are six stages to the algorithm:
27 *
28 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
29 * 2) Build a mesh of edges connecting the vertices (build_edges()).
30 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
31 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
32 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
33 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
34 *
35 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
36 * of vertices (and the necessity of inserting new vertices on intersection).
37 *
38 * Stages (4) and (5) use an active edge list, which a list of all edges for which the
39 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
40 * left-to-right based on the point where both edges are active (when both top vertices
41 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
42 * (shared), it's sorted based on the last point where both edges are active, so the
43 * "upper" bottom vertex.
44 *
45 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
46 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
47 * not exact and may violate the mesh topology or active edge list ordering. We
48 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
49 * points. This occurs in three ways:
50 *
51 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
52 * neighbouring edges at the top or bottom vertex. This is handled by merging the
53 * edges (merge_collinear_edges()).
54 * B) Intersections may cause an edge to violate the left-to-right ordering of the
55 * active edge list. This is handled by splitting the neighbour edge on the
56 * intersected vertex (cleanup_active_edges()).
57 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
58 * to become active. This is handled by removing or inserting the edge in the active
59 * edge list (fix_active_state()).
60 *
61 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
62 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
63 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
64 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
65 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
66 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
67 * linked list implementation. With the latter, all removals are O(1), and most insertions
68 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
69 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
70 * frequent. There may be other data structures worth investigating, however.
71 *
72 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
73 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
74 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
75 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
76 * that the "left" and "right" orientation in the code remains correct (edges to the left are
77 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
78 * degrees counterclockwise, rather that transposing.
79 */
80 #define LOGGING_ENABLED 0
81 #define WIREFRAME 0
82
83 #if LOGGING_ENABLED
84 #define LOG printf
85 #else
86 #define LOG(...)
87 #endif
88
89 #define ALLOC_NEW(Type, args, alloc) \
90 SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
91
92 namespace {
93
94 struct Vertex;
95 struct Edge;
96 struct Poly;
97
98 template <class T, T* T::*Prev, T* T::*Next>
insert(T * t,T * prev,T * next,T ** head,T ** tail)99 void insert(T* t, T* prev, T* next, T** head, T** tail) {
100 t->*Prev = prev;
101 t->*Next = next;
102 if (prev) {
103 prev->*Next = t;
104 } else if (head) {
105 *head = t;
106 }
107 if (next) {
108 next->*Prev = t;
109 } else if (tail) {
110 *tail = t;
111 }
112 }
113
114 template <class T, T* T::*Prev, T* T::*Next>
remove(T * t,T ** head,T ** tail)115 void remove(T* t, T** head, T** tail) {
116 if (t->*Prev) {
117 t->*Prev->*Next = t->*Next;
118 } else if (head) {
119 *head = t->*Next;
120 }
121 if (t->*Next) {
122 t->*Next->*Prev = t->*Prev;
123 } else if (tail) {
124 *tail = t->*Prev;
125 }
126 t->*Prev = t->*Next = NULL;
127 }
128
129 /**
130 * Vertices are used in three ways: first, the path contours are converted into a
131 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
132 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
133 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
134 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
135 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
136 * an individual Vertex from the path mesh may belong to multiple
137 * MonotonePolys, so the original Vertices cannot be re-used.
138 */
139
140 struct Vertex {
Vertex__anon274dde570111::Vertex141 Vertex(const SkPoint& point)
142 : fPoint(point), fPrev(NULL), fNext(NULL)
143 , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
144 , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
145 , fProcessed(false)
146 #if LOGGING_ENABLED
147 , fID (-1.0f)
148 #endif
149 {}
150 SkPoint fPoint; // Vertex position
151 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
152 Vertex* fNext; // "
153 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
154 Edge* fLastEdgeAbove; // "
155 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
156 Edge* fLastEdgeBelow; // "
157 bool fProcessed; // Has this vertex been seen in simplify()?
158 #if LOGGING_ENABLED
159 float fID; // Identifier used for logging.
160 #endif
161 };
162
163 /***************************************************************************************/
164
165 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
166
167 struct Comparator {
168 CompareFunc sweep_lt;
169 CompareFunc sweep_gt;
170 };
171
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)172 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
173 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
174 }
175
sweep_lt_vert(const SkPoint & a,const SkPoint & b)176 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
177 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
178 }
179
sweep_gt_horiz(const SkPoint & a,const SkPoint & b)180 bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
181 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
182 }
183
sweep_gt_vert(const SkPoint & a,const SkPoint & b)184 bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
185 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
186 }
187
emit_vertex(Vertex * v,SkPoint * data)188 inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
189 *data++ = v->fPoint;
190 return data;
191 }
192
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,SkPoint * data)193 SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
194 #if WIREFRAME
195 data = emit_vertex(v0, data);
196 data = emit_vertex(v1, data);
197 data = emit_vertex(v1, data);
198 data = emit_vertex(v2, data);
199 data = emit_vertex(v2, data);
200 data = emit_vertex(v0, data);
201 #else
202 data = emit_vertex(v0, data);
203 data = emit_vertex(v1, data);
204 data = emit_vertex(v2, data);
205 #endif
206 return data;
207 }
208
209 struct EdgeList {
EdgeList__anon274dde570111::EdgeList210 EdgeList() : fHead(NULL), fTail(NULL) {}
211 Edge* fHead;
212 Edge* fTail;
213 };
214
215 /**
216 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
217 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
218 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
219 * point). For speed, that case is only tested by the callers which require it (e.g.,
220 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
221 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
222 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
223 * a lot faster in the "not found" case.
224 *
225 * The coefficients of the line equation stored in double precision to avoid catastrphic
226 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
227 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
228 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
229 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
230 * this file).
231 */
232
233 struct Edge {
Edge__anon274dde570111::Edge234 Edge(Vertex* top, Vertex* bottom, int winding)
235 : fWinding(winding)
236 , fTop(top)
237 , fBottom(bottom)
238 , fLeft(NULL)
239 , fRight(NULL)
240 , fPrevEdgeAbove(NULL)
241 , fNextEdgeAbove(NULL)
242 , fPrevEdgeBelow(NULL)
243 , fNextEdgeBelow(NULL)
244 , fLeftPoly(NULL)
245 , fRightPoly(NULL) {
246 recompute();
247 }
248 int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
249 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
250 Vertex* fBottom; // The bottom vertex in vertex-sort-order.
251 Edge* fLeft; // The linked list of edges in the active edge list.
252 Edge* fRight; // "
253 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
254 Edge* fNextEdgeAbove; // "
255 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
256 Edge* fNextEdgeBelow; // "
257 Poly* fLeftPoly; // The Poly to the left of this edge, if any.
258 Poly* fRightPoly; // The Poly to the right of this edge, if any.
259 double fDX; // The line equation for this edge, in implicit form.
260 double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
261 double fC;
dist__anon274dde570111::Edge262 double dist(const SkPoint& p) const {
263 return fDY * p.fX - fDX * p.fY + fC;
264 }
isRightOf__anon274dde570111::Edge265 bool isRightOf(Vertex* v) const {
266 return dist(v->fPoint) < 0.0;
267 }
isLeftOf__anon274dde570111::Edge268 bool isLeftOf(Vertex* v) const {
269 return dist(v->fPoint) > 0.0;
270 }
recompute__anon274dde570111::Edge271 void recompute() {
272 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
273 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
274 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
275 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
276 }
intersect__anon274dde570111::Edge277 bool intersect(const Edge& other, SkPoint* p) {
278 LOG("intersecting %g -> %g with %g -> %g\n",
279 fTop->fID, fBottom->fID,
280 other.fTop->fID, other.fBottom->fID);
281 if (fTop == other.fTop || fBottom == other.fBottom) {
282 return false;
283 }
284 double denom = fDX * other.fDY - fDY * other.fDX;
285 if (denom == 0.0) {
286 return false;
287 }
288 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
289 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
290 double sNumer = dy * other.fDX - dx * other.fDY;
291 double tNumer = dy * fDX - dx * fDY;
292 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
293 // This saves us doing the divide below unless absolutely necessary.
294 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
295 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
296 return false;
297 }
298 double s = sNumer / denom;
299 SkASSERT(s >= 0.0 && s <= 1.0);
300 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
301 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
302 return true;
303 }
isActive__anon274dde570111::Edge304 bool isActive(EdgeList* activeEdges) const {
305 return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
306 }
307 };
308
309 /***************************************************************************************/
310
311 struct Poly {
Poly__anon274dde570111::Poly312 Poly(int winding)
313 : fWinding(winding)
314 , fHead(NULL)
315 , fTail(NULL)
316 , fActive(NULL)
317 , fNext(NULL)
318 , fPartner(NULL)
319 , fCount(0)
320 {
321 #if LOGGING_ENABLED
322 static int gID = 0;
323 fID = gID++;
324 LOG("*** created Poly %d\n", fID);
325 #endif
326 }
327 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
328 struct MonotonePoly {
MonotonePoly__anon274dde570111::Poly::MonotonePoly329 MonotonePoly()
330 : fSide(kNeither_Side)
331 , fHead(NULL)
332 , fTail(NULL)
333 , fPrev(NULL)
334 , fNext(NULL) {}
335 Side fSide;
336 Vertex* fHead;
337 Vertex* fTail;
338 MonotonePoly* fPrev;
339 MonotonePoly* fNext;
addVertex__anon274dde570111::Poly::MonotonePoly340 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
341 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
342 bool done = false;
343 if (fSide == kNeither_Side) {
344 fSide = side;
345 } else {
346 done = side != fSide;
347 }
348 if (fHead == NULL) {
349 fHead = fTail = newV;
350 } else if (fSide == kRight_Side) {
351 newV->fPrev = fTail;
352 fTail->fNext = newV;
353 fTail = newV;
354 } else {
355 newV->fNext = fHead;
356 fHead->fPrev = newV;
357 fHead = newV;
358 }
359 return done;
360 }
361
emit__anon274dde570111::Poly::MonotonePoly362 SkPoint* emit(SkPoint* data) {
363 Vertex* first = fHead;
364 Vertex* v = first->fNext;
365 while (v != fTail) {
366 SkASSERT(v && v->fPrev && v->fNext);
367 Vertex* prev = v->fPrev;
368 Vertex* curr = v;
369 Vertex* next = v->fNext;
370 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
371 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
372 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
373 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
374 if (ax * by - ay * bx >= 0.0) {
375 data = emit_triangle(prev, curr, next, data);
376 v->fPrev->fNext = v->fNext;
377 v->fNext->fPrev = v->fPrev;
378 if (v->fPrev == first) {
379 v = v->fNext;
380 } else {
381 v = v->fPrev;
382 }
383 } else {
384 v = v->fNext;
385 }
386 }
387 return data;
388 }
389 };
addVertex__anon274dde570111::Poly390 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
391 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
392 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
393 Poly* partner = fPartner;
394 Poly* poly = this;
395 if (partner) {
396 fPartner = partner->fPartner = NULL;
397 }
398 if (!fActive) {
399 fActive = ALLOC_NEW(MonotonePoly, (), alloc);
400 }
401 if (fActive->addVertex(v, side, alloc)) {
402 if (fTail) {
403 fActive->fPrev = fTail;
404 fTail->fNext = fActive;
405 fTail = fActive;
406 } else {
407 fHead = fTail = fActive;
408 }
409 if (partner) {
410 partner->addVertex(v, side, alloc);
411 poly = partner;
412 } else {
413 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
414 fActive->fHead->fNext : fActive->fTail->fPrev;
415 fActive = ALLOC_NEW(MonotonePoly, , alloc);
416 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
417 fActive->addVertex(v, side, alloc);
418 }
419 }
420 fCount++;
421 return poly;
422 }
end__anon274dde570111::Poly423 void end(Vertex* v, SkChunkAlloc& alloc) {
424 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
425 if (fPartner) {
426 fPartner = fPartner->fPartner = NULL;
427 }
428 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
429 }
emit__anon274dde570111::Poly430 SkPoint* emit(SkPoint *data) {
431 if (fCount < 3) {
432 return data;
433 }
434 LOG("emit() %d, size %d\n", fID, fCount);
435 for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
436 data = m->emit(data);
437 }
438 return data;
439 }
440 int fWinding;
441 MonotonePoly* fHead;
442 MonotonePoly* fTail;
443 MonotonePoly* fActive;
444 Poly* fNext;
445 Poly* fPartner;
446 int fCount;
447 #if LOGGING_ENABLED
448 int fID;
449 #endif
450 };
451
452 /***************************************************************************************/
453
coincident(const SkPoint & a,const SkPoint & b)454 bool coincident(const SkPoint& a, const SkPoint& b) {
455 return a == b;
456 }
457
new_poly(Poly ** head,Vertex * v,int winding,SkChunkAlloc & alloc)458 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
459 Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
460 poly->addVertex(v, Poly::kNeither_Side, alloc);
461 poly->fNext = *head;
462 *head = poly;
463 return poly;
464 }
465
append_point_to_contour(const SkPoint & p,Vertex * prev,Vertex ** head,SkChunkAlloc & alloc)466 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
467 SkChunkAlloc& alloc) {
468 Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
469 #if LOGGING_ENABLED
470 static float gID = 0.0f;
471 v->fID = gID++;
472 #endif
473 if (prev) {
474 prev->fNext = v;
475 v->fPrev = prev;
476 } else {
477 *head = v;
478 }
479 return v;
480 }
481
generate_quadratic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,Vertex * prev,Vertex ** head,int pointsLeft,SkChunkAlloc & alloc)482 Vertex* generate_quadratic_points(const SkPoint& p0,
483 const SkPoint& p1,
484 const SkPoint& p2,
485 SkScalar tolSqd,
486 Vertex* prev,
487 Vertex** head,
488 int pointsLeft,
489 SkChunkAlloc& alloc) {
490 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
491 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
492 return append_point_to_contour(p2, prev, head, alloc);
493 }
494
495 const SkPoint q[] = {
496 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
497 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
498 };
499 const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
500
501 pointsLeft >>= 1;
502 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
503 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
504 return prev;
505 }
506
generate_cubic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,Vertex * prev,Vertex ** head,int pointsLeft,SkChunkAlloc & alloc)507 Vertex* generate_cubic_points(const SkPoint& p0,
508 const SkPoint& p1,
509 const SkPoint& p2,
510 const SkPoint& p3,
511 SkScalar tolSqd,
512 Vertex* prev,
513 Vertex** head,
514 int pointsLeft,
515 SkChunkAlloc& alloc) {
516 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
517 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
518 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
519 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
520 return append_point_to_contour(p3, prev, head, alloc);
521 }
522 const SkPoint q[] = {
523 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
524 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
525 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
526 };
527 const SkPoint r[] = {
528 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
529 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
530 };
531 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
532 pointsLeft >>= 1;
533 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
534 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
535 return prev;
536 }
537
538 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
539
path_to_contours(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,Vertex ** contours,SkChunkAlloc & alloc)540 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
541 Vertex** contours, SkChunkAlloc& alloc) {
542
543 SkScalar toleranceSqd = tolerance * tolerance;
544
545 SkPoint pts[4];
546 bool done = false;
547 SkPath::Iter iter(path, false);
548 Vertex* prev = NULL;
549 Vertex* head = NULL;
550 if (path.isInverseFillType()) {
551 SkPoint quad[4];
552 clipBounds.toQuad(quad);
553 for (int i = 3; i >= 0; i--) {
554 prev = append_point_to_contour(quad[i], prev, &head, alloc);
555 }
556 head->fPrev = prev;
557 prev->fNext = head;
558 *contours++ = head;
559 head = prev = NULL;
560 }
561 SkAutoConicToQuads converter;
562 while (!done) {
563 SkPath::Verb verb = iter.next(pts);
564 switch (verb) {
565 case SkPath::kConic_Verb: {
566 SkScalar weight = iter.conicWeight();
567 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
568 for (int i = 0; i < converter.countQuads(); ++i) {
569 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
570 prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
571 toleranceSqd, prev, &head, pointsLeft, alloc);
572 quadPts += 2;
573 }
574 break;
575 }
576 case SkPath::kMove_Verb:
577 if (head) {
578 head->fPrev = prev;
579 prev->fNext = head;
580 *contours++ = head;
581 }
582 head = prev = NULL;
583 prev = append_point_to_contour(pts[0], prev, &head, alloc);
584 break;
585 case SkPath::kLine_Verb: {
586 prev = append_point_to_contour(pts[1], prev, &head, alloc);
587 break;
588 }
589 case SkPath::kQuad_Verb: {
590 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
591 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
592 &head, pointsLeft, alloc);
593 break;
594 }
595 case SkPath::kCubic_Verb: {
596 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
597 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
598 toleranceSqd, prev, &head, pointsLeft, alloc);
599 break;
600 }
601 case SkPath::kClose_Verb:
602 if (head) {
603 head->fPrev = prev;
604 prev->fNext = head;
605 *contours++ = head;
606 }
607 head = prev = NULL;
608 break;
609 case SkPath::kDone_Verb:
610 if (head) {
611 head->fPrev = prev;
612 prev->fNext = head;
613 *contours++ = head;
614 }
615 done = true;
616 break;
617 }
618 }
619 }
620
apply_fill_type(SkPath::FillType fillType,int winding)621 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
622 switch (fillType) {
623 case SkPath::kWinding_FillType:
624 return winding != 0;
625 case SkPath::kEvenOdd_FillType:
626 return (winding & 1) != 0;
627 case SkPath::kInverseWinding_FillType:
628 return winding == 1;
629 case SkPath::kInverseEvenOdd_FillType:
630 return (winding & 1) == 1;
631 default:
632 SkASSERT(false);
633 return false;
634 }
635 }
636
new_edge(Vertex * prev,Vertex * next,SkChunkAlloc & alloc,Comparator & c)637 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
638 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
639 Vertex* top = winding < 0 ? next : prev;
640 Vertex* bottom = winding < 0 ? prev : next;
641 return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
642 }
643
remove_edge(Edge * edge,EdgeList * edges)644 void remove_edge(Edge* edge, EdgeList* edges) {
645 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
646 SkASSERT(edge->isActive(edges));
647 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
648 }
649
insert_edge(Edge * edge,Edge * prev,EdgeList * edges)650 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
651 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
652 SkASSERT(!edge->isActive(edges));
653 Edge* next = prev ? prev->fRight : edges->fHead;
654 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
655 }
656
find_enclosing_edges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)657 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
658 if (v->fFirstEdgeAbove) {
659 *left = v->fFirstEdgeAbove->fLeft;
660 *right = v->fLastEdgeAbove->fRight;
661 return;
662 }
663 Edge* next = NULL;
664 Edge* prev;
665 for (prev = edges->fTail; prev != NULL; prev = prev->fLeft) {
666 if (prev->isLeftOf(v)) {
667 break;
668 }
669 next = prev;
670 }
671 *left = prev;
672 *right = next;
673 return;
674 }
675
find_enclosing_edges(Edge * edge,EdgeList * edges,Comparator & c,Edge ** left,Edge ** right)676 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
677 Edge* prev = NULL;
678 Edge* next;
679 for (next = edges->fHead; next != NULL; next = next->fRight) {
680 if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
681 (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
682 (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
683 next->isRightOf(edge->fBottom)) ||
684 (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
685 edge->isLeftOf(next->fBottom))) {
686 break;
687 }
688 prev = next;
689 }
690 *left = prev;
691 *right = next;
692 return;
693 }
694
fix_active_state(Edge * edge,EdgeList * activeEdges,Comparator & c)695 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
696 if (edge->isActive(activeEdges)) {
697 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
698 remove_edge(edge, activeEdges);
699 }
700 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
701 Edge* left;
702 Edge* right;
703 find_enclosing_edges(edge, activeEdges, c, &left, &right);
704 insert_edge(edge, left, activeEdges);
705 }
706 }
707
insert_edge_above(Edge * edge,Vertex * v,Comparator & c)708 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
709 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
710 c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
711 return;
712 }
713 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
714 Edge* prev = NULL;
715 Edge* next;
716 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
717 if (next->isRightOf(edge->fTop)) {
718 break;
719 }
720 prev = next;
721 }
722 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
723 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
724 }
725
insert_edge_below(Edge * edge,Vertex * v,Comparator & c)726 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
727 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
728 c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
729 return;
730 }
731 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
732 Edge* prev = NULL;
733 Edge* next;
734 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
735 if (next->isRightOf(edge->fBottom)) {
736 break;
737 }
738 prev = next;
739 }
740 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
741 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
742 }
743
remove_edge_above(Edge * edge)744 void remove_edge_above(Edge* edge) {
745 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
746 edge->fBottom->fID);
747 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
748 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
749 }
750
remove_edge_below(Edge * edge)751 void remove_edge_below(Edge* edge) {
752 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
753 edge->fTop->fID);
754 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
755 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
756 }
757
erase_edge_if_zero_winding(Edge * edge,EdgeList * edges)758 void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
759 if (edge->fWinding != 0) {
760 return;
761 }
762 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
763 remove_edge_above(edge);
764 remove_edge_below(edge);
765 if (edge->isActive(edges)) {
766 remove_edge(edge, edges);
767 }
768 }
769
770 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
771
set_top(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)772 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
773 remove_edge_below(edge);
774 edge->fTop = v;
775 edge->recompute();
776 insert_edge_below(edge, v, c);
777 fix_active_state(edge, activeEdges, c);
778 merge_collinear_edges(edge, activeEdges, c);
779 }
780
set_bottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)781 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
782 remove_edge_above(edge);
783 edge->fBottom = v;
784 edge->recompute();
785 insert_edge_above(edge, v, c);
786 fix_active_state(edge, activeEdges, c);
787 merge_collinear_edges(edge, activeEdges, c);
788 }
789
merge_edges_above(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)790 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
791 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
792 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
793 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
794 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
795 other->fWinding += edge->fWinding;
796 erase_edge_if_zero_winding(other, activeEdges);
797 edge->fWinding = 0;
798 erase_edge_if_zero_winding(edge, activeEdges);
799 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
800 other->fWinding += edge->fWinding;
801 erase_edge_if_zero_winding(other, activeEdges);
802 set_bottom(edge, other->fTop, activeEdges, c);
803 } else {
804 edge->fWinding += other->fWinding;
805 erase_edge_if_zero_winding(edge, activeEdges);
806 set_bottom(other, edge->fTop, activeEdges, c);
807 }
808 }
809
merge_edges_below(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)810 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
811 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
812 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
813 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
814 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
815 other->fWinding += edge->fWinding;
816 erase_edge_if_zero_winding(other, activeEdges);
817 edge->fWinding = 0;
818 erase_edge_if_zero_winding(edge, activeEdges);
819 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
820 edge->fWinding += other->fWinding;
821 erase_edge_if_zero_winding(edge, activeEdges);
822 set_top(other, edge->fBottom, activeEdges, c);
823 } else {
824 other->fWinding += edge->fWinding;
825 erase_edge_if_zero_winding(other, activeEdges);
826 set_top(edge, other->fBottom, activeEdges, c);
827 }
828 }
829
merge_collinear_edges(Edge * edge,EdgeList * activeEdges,Comparator & c)830 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
831 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
832 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
833 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
834 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
835 !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
836 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
837 }
838 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
839 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
840 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
841 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
842 !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
843 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
844 }
845 }
846
847 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
848
cleanup_active_edges(Edge * edge,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)849 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
850 Vertex* top = edge->fTop;
851 Vertex* bottom = edge->fBottom;
852 if (edge->fLeft) {
853 Vertex* leftTop = edge->fLeft->fTop;
854 Vertex* leftBottom = edge->fLeft->fBottom;
855 if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
856 split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
857 } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
858 split_edge(edge, leftTop, activeEdges, c, alloc);
859 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
860 !edge->fLeft->isLeftOf(bottom)) {
861 split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
862 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
863 split_edge(edge, leftBottom, activeEdges, c, alloc);
864 }
865 }
866 if (edge->fRight) {
867 Vertex* rightTop = edge->fRight->fTop;
868 Vertex* rightBottom = edge->fRight->fBottom;
869 if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
870 split_edge(edge->fRight, top, activeEdges, c, alloc);
871 } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
872 split_edge(edge, rightTop, activeEdges, c, alloc);
873 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
874 !edge->fRight->isRightOf(bottom)) {
875 split_edge(edge->fRight, bottom, activeEdges, c, alloc);
876 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
877 !edge->isLeftOf(rightBottom)) {
878 split_edge(edge, rightBottom, activeEdges, c, alloc);
879 }
880 }
881 }
882
split_edge(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)883 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
884 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
885 edge->fTop->fID, edge->fBottom->fID,
886 v->fID, v->fPoint.fX, v->fPoint.fY);
887 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
888 set_top(edge, v, activeEdges, c);
889 } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
890 set_bottom(edge, v, activeEdges, c);
891 } else {
892 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
893 insert_edge_below(newEdge, v, c);
894 insert_edge_above(newEdge, edge->fBottom, c);
895 set_bottom(edge, v, activeEdges, c);
896 cleanup_active_edges(edge, activeEdges, c, alloc);
897 fix_active_state(newEdge, activeEdges, c);
898 merge_collinear_edges(newEdge, activeEdges, c);
899 }
900 }
901
merge_vertices(Vertex * src,Vertex * dst,Vertex ** head,Comparator & c,SkChunkAlloc & alloc)902 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
903 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
904 src->fID, dst->fID);
905 for (Edge* edge = src->fFirstEdgeAbove; edge;) {
906 Edge* next = edge->fNextEdgeAbove;
907 set_bottom(edge, dst, NULL, c);
908 edge = next;
909 }
910 for (Edge* edge = src->fFirstEdgeBelow; edge;) {
911 Edge* next = edge->fNextEdgeBelow;
912 set_top(edge, dst, NULL, c);
913 edge = next;
914 }
915 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
916 }
917
check_for_intersection(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)918 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
919 SkChunkAlloc& alloc) {
920 SkPoint p;
921 if (!edge || !other) {
922 return NULL;
923 }
924 if (edge->intersect(*other, &p)) {
925 Vertex* v;
926 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
927 if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
928 split_edge(other, edge->fTop, activeEdges, c, alloc);
929 v = edge->fTop;
930 } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
931 split_edge(other, edge->fBottom, activeEdges, c, alloc);
932 v = edge->fBottom;
933 } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
934 split_edge(edge, other->fTop, activeEdges, c, alloc);
935 v = other->fTop;
936 } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
937 split_edge(edge, other->fBottom, activeEdges, c, alloc);
938 v = other->fBottom;
939 } else {
940 Vertex* nextV = edge->fTop;
941 while (c.sweep_lt(p, nextV->fPoint)) {
942 nextV = nextV->fPrev;
943 }
944 while (c.sweep_lt(nextV->fPoint, p)) {
945 nextV = nextV->fNext;
946 }
947 Vertex* prevV = nextV->fPrev;
948 if (coincident(prevV->fPoint, p)) {
949 v = prevV;
950 } else if (coincident(nextV->fPoint, p)) {
951 v = nextV;
952 } else {
953 v = ALLOC_NEW(Vertex, (p), alloc);
954 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
955 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
956 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
957 #if LOGGING_ENABLED
958 v->fID = (nextV->fID + prevV->fID) * 0.5f;
959 #endif
960 v->fPrev = prevV;
961 v->fNext = nextV;
962 prevV->fNext = v;
963 nextV->fPrev = v;
964 }
965 split_edge(edge, v, activeEdges, c, alloc);
966 split_edge(other, v, activeEdges, c, alloc);
967 }
968 return v;
969 }
970 return NULL;
971 }
972
sanitize_contours(Vertex ** contours,int contourCnt)973 void sanitize_contours(Vertex** contours, int contourCnt) {
974 for (int i = 0; i < contourCnt; ++i) {
975 SkASSERT(contours[i]);
976 for (Vertex* v = contours[i];;) {
977 if (coincident(v->fPrev->fPoint, v->fPoint)) {
978 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
979 if (v->fPrev == v) {
980 contours[i] = NULL;
981 break;
982 }
983 v->fPrev->fNext = v->fNext;
984 v->fNext->fPrev = v->fPrev;
985 if (contours[i] == v) {
986 contours[i] = v->fNext;
987 }
988 v = v->fPrev;
989 } else {
990 v = v->fNext;
991 if (v == contours[i]) break;
992 }
993 }
994 }
995 }
996
merge_coincident_vertices(Vertex ** vertices,Comparator & c,SkChunkAlloc & alloc)997 void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
998 for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
999 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1000 v->fPoint = v->fPrev->fPoint;
1001 }
1002 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1003 merge_vertices(v->fPrev, v, vertices, c, alloc);
1004 }
1005 }
1006 }
1007
1008 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1009
build_edges(Vertex ** contours,int contourCnt,Comparator & c,SkChunkAlloc & alloc)1010 Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1011 Vertex* vertices = NULL;
1012 Vertex* prev = NULL;
1013 for (int i = 0; i < contourCnt; ++i) {
1014 for (Vertex* v = contours[i]; v != NULL;) {
1015 Vertex* vNext = v->fNext;
1016 Edge* edge = new_edge(v->fPrev, v, alloc, c);
1017 if (edge->fWinding > 0) {
1018 insert_edge_below(edge, v->fPrev, c);
1019 insert_edge_above(edge, v, c);
1020 } else {
1021 insert_edge_below(edge, v, c);
1022 insert_edge_above(edge, v->fPrev, c);
1023 }
1024 merge_collinear_edges(edge, NULL, c);
1025 if (prev) {
1026 prev->fNext = v;
1027 v->fPrev = prev;
1028 } else {
1029 vertices = v;
1030 }
1031 prev = v;
1032 v = vNext;
1033 if (v == contours[i]) break;
1034 }
1035 }
1036 if (prev) {
1037 prev->fNext = vertices->fPrev = NULL;
1038 }
1039 return vertices;
1040 }
1041
1042 // Stage 3: sort the vertices by increasing sweep direction.
1043
1044 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
1045
front_back_split(Vertex * v,Vertex ** pFront,Vertex ** pBack)1046 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1047 Vertex* fast;
1048 Vertex* slow;
1049 if (!v || !v->fNext) {
1050 *pFront = v;
1051 *pBack = NULL;
1052 } else {
1053 slow = v;
1054 fast = v->fNext;
1055
1056 while (fast != NULL) {
1057 fast = fast->fNext;
1058 if (fast != NULL) {
1059 slow = slow->fNext;
1060 fast = fast->fNext;
1061 }
1062 }
1063
1064 *pFront = v;
1065 *pBack = slow->fNext;
1066 slow->fNext->fPrev = NULL;
1067 slow->fNext = NULL;
1068 }
1069 }
1070
merge_sort(Vertex ** head,Comparator & c)1071 void merge_sort(Vertex** head, Comparator& c) {
1072 if (!*head || !(*head)->fNext) {
1073 return;
1074 }
1075
1076 Vertex* a;
1077 Vertex* b;
1078 front_back_split(*head, &a, &b);
1079
1080 merge_sort(&a, c);
1081 merge_sort(&b, c);
1082
1083 *head = sorted_merge(a, b, c);
1084 }
1085
append_vertex(Vertex * v,Vertex ** head,Vertex ** tail)1086 inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
1087 insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, NULL, head, tail);
1088 }
1089
append_vertex_list(Vertex * v,Vertex ** head,Vertex ** tail)1090 inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
1091 insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
1092 }
1093
sorted_merge(Vertex * a,Vertex * b,Comparator & c)1094 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
1095 Vertex* head = NULL;
1096 Vertex* tail = NULL;
1097
1098 while (a && b) {
1099 if (c.sweep_lt(a->fPoint, b->fPoint)) {
1100 Vertex* next = a->fNext;
1101 append_vertex(a, &head, &tail);
1102 a = next;
1103 } else {
1104 Vertex* next = b->fNext;
1105 append_vertex(b, &head, &tail);
1106 b = next;
1107 }
1108 }
1109 if (a) {
1110 append_vertex_list(a, &head, &tail);
1111 }
1112 if (b) {
1113 append_vertex_list(b, &head, &tail);
1114 }
1115 return head;
1116 }
1117
1118 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1119
simplify(Vertex * vertices,Comparator & c,SkChunkAlloc & alloc)1120 void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
1121 LOG("simplifying complex polygons\n");
1122 EdgeList activeEdges;
1123 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1124 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1125 continue;
1126 }
1127 #if LOGGING_ENABLED
1128 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1129 #endif
1130 Edge* leftEnclosingEdge = NULL;
1131 Edge* rightEnclosingEdge = NULL;
1132 bool restartChecks;
1133 do {
1134 restartChecks = false;
1135 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1136 if (v->fFirstEdgeBelow) {
1137 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
1138 if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1139 restartChecks = true;
1140 break;
1141 }
1142 if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1143 restartChecks = true;
1144 break;
1145 }
1146 }
1147 } else {
1148 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1149 &activeEdges, c, alloc)) {
1150 if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1151 v = pv;
1152 }
1153 restartChecks = true;
1154 }
1155
1156 }
1157 } while (restartChecks);
1158 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1159 remove_edge(e, &activeEdges);
1160 }
1161 Edge* leftEdge = leftEnclosingEdge;
1162 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1163 insert_edge(e, leftEdge, &activeEdges);
1164 leftEdge = e;
1165 }
1166 v->fProcessed = true;
1167 }
1168 }
1169
1170 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1171
tessellate(Vertex * vertices,SkChunkAlloc & alloc)1172 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1173 LOG("tessellating simple polygons\n");
1174 EdgeList activeEdges;
1175 Poly* polys = NULL;
1176 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1177 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1178 continue;
1179 }
1180 #if LOGGING_ENABLED
1181 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1182 #endif
1183 Edge* leftEnclosingEdge = NULL;
1184 Edge* rightEnclosingEdge = NULL;
1185 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1186 Poly* leftPoly = NULL;
1187 Poly* rightPoly = NULL;
1188 if (v->fFirstEdgeAbove) {
1189 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1190 rightPoly = v->fLastEdgeAbove->fRightPoly;
1191 } else {
1192 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
1193 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
1194 }
1195 #if LOGGING_ENABLED
1196 LOG("edges above:\n");
1197 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1198 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1199 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1200 }
1201 LOG("edges below:\n");
1202 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1203 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1204 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1205 }
1206 #endif
1207 if (v->fFirstEdgeAbove) {
1208 if (leftPoly) {
1209 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1210 }
1211 if (rightPoly) {
1212 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1213 }
1214 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1215 Edge* leftEdge = e;
1216 Edge* rightEdge = e->fNextEdgeAbove;
1217 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1218 remove_edge(leftEdge, &activeEdges);
1219 if (leftEdge->fRightPoly) {
1220 leftEdge->fRightPoly->end(v, alloc);
1221 }
1222 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1223 rightEdge->fLeftPoly->end(v, alloc);
1224 }
1225 }
1226 remove_edge(v->fLastEdgeAbove, &activeEdges);
1227 if (!v->fFirstEdgeBelow) {
1228 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1229 SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
1230 rightPoly->fPartner = leftPoly;
1231 leftPoly->fPartner = rightPoly;
1232 }
1233 }
1234 }
1235 if (v->fFirstEdgeBelow) {
1236 if (!v->fFirstEdgeAbove) {
1237 if (leftPoly && leftPoly == rightPoly) {
1238 // Split the poly.
1239 if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1240 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1241 alloc);
1242 leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1243 rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1244 leftEnclosingEdge->fRightPoly = leftPoly;
1245 } else {
1246 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1247 alloc);
1248 rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1249 leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1250 rightEnclosingEdge->fLeftPoly = rightPoly;
1251 }
1252 } else {
1253 if (leftPoly) {
1254 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1255 }
1256 if (rightPoly) {
1257 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1258 }
1259 }
1260 }
1261 Edge* leftEdge = v->fFirstEdgeBelow;
1262 leftEdge->fLeftPoly = leftPoly;
1263 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1264 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1265 rightEdge = rightEdge->fNextEdgeBelow) {
1266 insert_edge(rightEdge, leftEdge, &activeEdges);
1267 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1268 winding += leftEdge->fWinding;
1269 if (winding != 0) {
1270 Poly* poly = new_poly(&polys, v, winding, alloc);
1271 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1272 }
1273 leftEdge = rightEdge;
1274 }
1275 v->fLastEdgeBelow->fRightPoly = rightPoly;
1276 }
1277 #if LOGGING_ENABLED
1278 LOG("\nactive edges:\n");
1279 for (Edge* e = activeEdges.fHead; e != NULL; e = e->fRight) {
1280 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1281 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1282 }
1283 #endif
1284 }
1285 return polys;
1286 }
1287
1288 // This is a driver function which calls stages 2-5 in turn.
1289
contours_to_polys(Vertex ** contours,int contourCnt,Comparator & c,SkChunkAlloc & alloc)1290 Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1291 #if LOGGING_ENABLED
1292 for (int i = 0; i < contourCnt; ++i) {
1293 Vertex* v = contours[i];
1294 SkASSERT(v);
1295 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1296 for (v = v->fNext; v != contours[i]; v = v->fNext) {
1297 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1298 }
1299 }
1300 #endif
1301 sanitize_contours(contours, contourCnt);
1302 Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
1303 if (!vertices) {
1304 return NULL;
1305 }
1306
1307 // Sort vertices in Y (secondarily in X).
1308 merge_sort(&vertices, c);
1309 merge_coincident_vertices(&vertices, c, alloc);
1310 #if LOGGING_ENABLED
1311 for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1312 static float gID = 0.0f;
1313 v->fID = gID++;
1314 }
1315 #endif
1316 simplify(vertices, c, alloc);
1317 return tessellate(vertices, alloc);
1318 }
1319
1320 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1321
polys_to_triangles(Poly * polys,SkPath::FillType fillType,SkPoint * data)1322 SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
1323 SkPoint* d = data;
1324 for (Poly* poly = polys; poly; poly = poly->fNext) {
1325 if (apply_fill_type(fillType, poly->fWinding)) {
1326 d = poly->emit(d);
1327 }
1328 }
1329 return d;
1330 }
1331
1332 };
1333
GrTessellatingPathRenderer()1334 GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
1335 }
1336
onGetStencilSupport(const GrDrawTarget *,const GrPipelineBuilder *,const SkPath &,const GrStrokeInfo &) const1337 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
1338 const GrDrawTarget*,
1339 const GrPipelineBuilder*,
1340 const SkPath&,
1341 const GrStrokeInfo&) const {
1342 return GrPathRenderer::kNoSupport_StencilSupport;
1343 }
1344
canDrawPath(const GrDrawTarget * target,const GrPipelineBuilder * pipelineBuilder,const SkMatrix & viewMatrix,const SkPath & path,const GrStrokeInfo & stroke,bool antiAlias) const1345 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
1346 const GrPipelineBuilder* pipelineBuilder,
1347 const SkMatrix& viewMatrix,
1348 const SkPath& path,
1349 const GrStrokeInfo& stroke,
1350 bool antiAlias) const {
1351 // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
1352 // and concave paths, but we'll leave the convex ones to simpler algorithms.
1353 return stroke.isFillStyle() && !antiAlias && !path.isConvex();
1354 }
1355
1356 class TessellatingPathBatch : public GrBatch {
1357 public:
1358
Create(const GrColor & color,const SkPath & path,const SkMatrix & viewMatrix,SkRect clipBounds)1359 static GrBatch* Create(const GrColor& color,
1360 const SkPath& path,
1361 const SkMatrix& viewMatrix,
1362 SkRect clipBounds) {
1363 return SkNEW_ARGS(TessellatingPathBatch, (color, path, viewMatrix, clipBounds));
1364 }
1365
name() const1366 const char* name() const override { return "TessellatingPathBatch"; }
1367
getInvariantOutputColor(GrInitInvariantOutput * out) const1368 void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
1369 out->setKnownFourComponents(fColor);
1370 }
1371
getInvariantOutputCoverage(GrInitInvariantOutput * out) const1372 void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
1373 out->setUnknownSingleComponent();
1374 }
1375
initBatchTracker(const GrPipelineInfo & init)1376 void initBatchTracker(const GrPipelineInfo& init) override {
1377 // Handle any color overrides
1378 if (init.fColorIgnored) {
1379 fColor = GrColor_ILLEGAL;
1380 } else if (GrColor_ILLEGAL != init.fOverrideColor) {
1381 fColor = init.fOverrideColor;
1382 }
1383 fPipelineInfo = init;
1384 }
1385
generateGeometry(GrBatchTarget * batchTarget,const GrPipeline * pipeline)1386 void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
1387 SkRect pathBounds = fPath.getBounds();
1388 Comparator c;
1389 if (pathBounds.width() > pathBounds.height()) {
1390 c.sweep_lt = sweep_lt_horiz;
1391 c.sweep_gt = sweep_gt_horiz;
1392 } else {
1393 c.sweep_lt = sweep_lt_vert;
1394 c.sweep_gt = sweep_gt_vert;
1395 }
1396 SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
1397 SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
1398 int contourCnt;
1399 int maxPts = GrPathUtils::worstCasePointCount(fPath, &contourCnt, tol);
1400 if (maxPts <= 0) {
1401 return;
1402 }
1403 if (maxPts > ((int)SK_MaxU16 + 1)) {
1404 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1405 return;
1406 }
1407 SkPath::FillType fillType = fPath.getFillType();
1408 if (SkPath::IsInverseFillType(fillType)) {
1409 contourCnt++;
1410 }
1411
1412 LOG("got %d pts, %d contours\n", maxPts, contourCnt);
1413 uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
1414 SkAutoTUnref<const GrGeometryProcessor> gp(
1415 GrDefaultGeoProcFactory::Create(flags, fColor, fViewMatrix, SkMatrix::I()));
1416 batchTarget->initDraw(gp, pipeline);
1417 gp->initBatchTracker(batchTarget->currentBatchTracker(), fPipelineInfo);
1418
1419 SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
1420
1421 // For the initial size of the chunk allocator, estimate based on the point count:
1422 // one vertex per point for the initial passes, plus two for the vertices in the
1423 // resulting Polys, since the same point may end up in two Polys. Assume minimal
1424 // connectivity of one Edge per Vertex (will grow for intersections).
1425 SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
1426 path_to_contours(fPath, tol, fClipBounds, contours.get(), alloc);
1427 Poly* polys;
1428 polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
1429 int count = 0;
1430 for (Poly* poly = polys; poly; poly = poly->fNext) {
1431 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1432 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
1433 }
1434 }
1435 if (0 == count) {
1436 return;
1437 }
1438
1439 size_t stride = gp->getVertexStride();
1440 SkASSERT(stride == sizeof(SkPoint));
1441 const GrVertexBuffer* vertexBuffer;
1442 int firstVertex;
1443 SkPoint* verts = static_cast<SkPoint*>(
1444 batchTarget->makeVertSpace(stride, count, &vertexBuffer, &firstVertex));
1445 if (!verts) {
1446 SkDebugf("Could not allocate vertices\n");
1447 return;
1448 }
1449
1450 LOG("emitting %d verts\n", count);
1451 SkPoint* end = polys_to_triangles(polys, fillType, verts);
1452 int actualCount = static_cast<int>(end - verts);
1453 LOG("actual count: %d\n", actualCount);
1454 SkASSERT(actualCount <= count);
1455
1456 GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
1457 : kTriangles_GrPrimitiveType;
1458 GrVertices vertices;
1459 vertices.init(primitiveType, vertexBuffer, firstVertex, actualCount);
1460 batchTarget->draw(vertices);
1461
1462 batchTarget->putBackVertices((size_t)(count - actualCount), stride);
1463 return;
1464 }
1465
onCombineIfPossible(GrBatch *)1466 bool onCombineIfPossible(GrBatch*) override {
1467 return false;
1468 }
1469
1470 private:
TessellatingPathBatch(const GrColor & color,const SkPath & path,const SkMatrix & viewMatrix,const SkRect & clipBounds)1471 TessellatingPathBatch(const GrColor& color,
1472 const SkPath& path,
1473 const SkMatrix& viewMatrix,
1474 const SkRect& clipBounds)
1475 : fColor(color)
1476 , fPath(path)
1477 , fViewMatrix(viewMatrix)
1478 , fClipBounds(clipBounds) {
1479 this->initClassID<TessellatingPathBatch>();
1480
1481 fBounds = path.getBounds();
1482 viewMatrix.mapRect(&fBounds);
1483 }
1484
1485 GrColor fColor;
1486 SkPath fPath;
1487 SkMatrix fViewMatrix;
1488 SkRect fClipBounds; // in source space
1489 GrPipelineInfo fPipelineInfo;
1490 };
1491
onDrawPath(GrDrawTarget * target,GrPipelineBuilder * pipelineBuilder,GrColor color,const SkMatrix & viewM,const SkPath & path,const GrStrokeInfo &,bool antiAlias)1492 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
1493 GrPipelineBuilder* pipelineBuilder,
1494 GrColor color,
1495 const SkMatrix& viewM,
1496 const SkPath& path,
1497 const GrStrokeInfo&,
1498 bool antiAlias) {
1499 SkASSERT(!antiAlias);
1500 const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
1501 if (NULL == rt) {
1502 return false;
1503 }
1504
1505 SkIRect clipBoundsI;
1506 pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
1507 SkRect clipBounds = SkRect::Make(clipBoundsI);
1508 SkMatrix vmi;
1509 if (!viewM.invert(&vmi)) {
1510 return false;
1511 }
1512 vmi.mapRect(&clipBounds);
1513 SkAutoTUnref<GrBatch> batch(TessellatingPathBatch::Create(color, path, viewM, clipBounds));
1514 target->drawBatch(pipelineBuilder, batch);
1515
1516 return true;
1517 }
1518
1519 ///////////////////////////////////////////////////////////////////////////////////////////////////
1520
1521 #ifdef GR_TEST_UTILS
1522
BATCH_TEST_DEFINE(TesselatingPathBatch)1523 BATCH_TEST_DEFINE(TesselatingPathBatch) {
1524 GrColor color = GrRandomColor(random);
1525 SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
1526 SkPath path = GrTest::TestPath(random);
1527 SkRect clipBounds = GrTest::TestRect(random);
1528 SkMatrix vmi;
1529 bool result = viewMatrix.invert(&vmi);
1530 if (!result) {
1531 SkFAIL("Cannot invert matrix\n");
1532 }
1533 vmi.mapRect(&clipBounds);
1534 return TessellatingPathBatch::Create(color, path, viewMatrix, clipBounds);
1535 }
1536
1537 #endif
1538