• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrTessellatingPathRenderer.h"
9 
10 #include "GrBatch.h"
11 #include "GrBatchTarget.h"
12 #include "GrBatchTest.h"
13 #include "GrDefaultGeoProcFactory.h"
14 #include "GrPathUtils.h"
15 #include "GrVertices.h"
16 #include "SkChunkAlloc.h"
17 #include "SkGeometry.h"
18 
19 #include <stdio.h>
20 
21 /*
22  * This path renderer tessellates the path into triangles, uploads the triangles to a
23  * vertex buffer, and renders them with a single draw call. It does not currently do
24  * antialiasing, so it must be used in conjunction with multisampling.
25  *
26  * There are six stages to the algorithm:
27  *
28  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
29  * 2) Build a mesh of edges connecting the vertices (build_edges()).
30  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
31  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
32  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
33  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
34  *
35  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
36  * of vertices (and the necessity of inserting new vertices on intersection).
37  *
38  * Stages (4) and (5) use an active edge list, which a list of all edges for which the
39  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
40  * left-to-right based on the point where both edges are active (when both top vertices
41  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
42  * (shared), it's sorted based on the last point where both edges are active, so the
43  * "upper" bottom vertex.
44  *
45  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
46  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
47  * not exact and may violate the mesh topology or active edge list ordering. We
48  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
49  * points. This occurs in three ways:
50  *
51  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
52  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
53  *    edges (merge_collinear_edges()).
54  * B) Intersections may cause an edge to violate the left-to-right ordering of the
55  *    active edge list. This is handled by splitting the neighbour edge on the
56  *    intersected vertex (cleanup_active_edges()).
57  * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
58  *    to become active. This is handled by removing or inserting the edge in the active
59  *    edge list (fix_active_state()).
60  *
61  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
62  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
63  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
64  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
65  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
66  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
67  * linked list implementation. With the latter, all removals are O(1), and most insertions
68  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
69  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
70  * frequent. There may be other data structures worth investigating, however.
71  *
72  * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
73  * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
74  * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
75  * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
76  * that the "left" and "right" orientation in the code remains correct (edges to the left are
77  * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
78  * degrees counterclockwise, rather that transposing.
79  */
80 #define LOGGING_ENABLED 0
81 #define WIREFRAME 0
82 
83 #if LOGGING_ENABLED
84 #define LOG printf
85 #else
86 #define LOG(...)
87 #endif
88 
89 #define ALLOC_NEW(Type, args, alloc) \
90     SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
91 
92 namespace {
93 
94 struct Vertex;
95 struct Edge;
96 struct Poly;
97 
98 template <class T, T* T::*Prev, T* T::*Next>
insert(T * t,T * prev,T * next,T ** head,T ** tail)99 void insert(T* t, T* prev, T* next, T** head, T** tail) {
100     t->*Prev = prev;
101     t->*Next = next;
102     if (prev) {
103         prev->*Next = t;
104     } else if (head) {
105         *head = t;
106     }
107     if (next) {
108         next->*Prev = t;
109     } else if (tail) {
110         *tail = t;
111     }
112 }
113 
114 template <class T, T* T::*Prev, T* T::*Next>
remove(T * t,T ** head,T ** tail)115 void remove(T* t, T** head, T** tail) {
116     if (t->*Prev) {
117         t->*Prev->*Next = t->*Next;
118     } else if (head) {
119         *head = t->*Next;
120     }
121     if (t->*Next) {
122         t->*Next->*Prev = t->*Prev;
123     } else if (tail) {
124         *tail = t->*Prev;
125     }
126     t->*Prev = t->*Next = NULL;
127 }
128 
129 /**
130  * Vertices are used in three ways: first, the path contours are converted into a
131  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
132  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
133  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
134  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
135  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
136  * an individual Vertex from the path mesh may belong to multiple
137  * MonotonePolys, so the original Vertices cannot be re-used.
138  */
139 
140 struct Vertex {
Vertex__anon274dde570111::Vertex141   Vertex(const SkPoint& point)
142     : fPoint(point), fPrev(NULL), fNext(NULL)
143     , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
144     , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
145     , fProcessed(false)
146 #if LOGGING_ENABLED
147     , fID (-1.0f)
148 #endif
149     {}
150     SkPoint fPoint;           // Vertex position
151     Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
152     Vertex* fNext;            // "
153     Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
154     Edge*   fLastEdgeAbove;   // "
155     Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
156     Edge*   fLastEdgeBelow;   // "
157     bool    fProcessed;       // Has this vertex been seen in simplify()?
158 #if LOGGING_ENABLED
159     float   fID;              // Identifier used for logging.
160 #endif
161 };
162 
163 /***************************************************************************************/
164 
165 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
166 
167 struct Comparator {
168     CompareFunc sweep_lt;
169     CompareFunc sweep_gt;
170 };
171 
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)172 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
173     return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
174 }
175 
sweep_lt_vert(const SkPoint & a,const SkPoint & b)176 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
177     return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
178 }
179 
sweep_gt_horiz(const SkPoint & a,const SkPoint & b)180 bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
181     return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
182 }
183 
sweep_gt_vert(const SkPoint & a,const SkPoint & b)184 bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
185     return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
186 }
187 
emit_vertex(Vertex * v,SkPoint * data)188 inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
189     *data++ = v->fPoint;
190     return data;
191 }
192 
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,SkPoint * data)193 SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
194 #if WIREFRAME
195     data = emit_vertex(v0, data);
196     data = emit_vertex(v1, data);
197     data = emit_vertex(v1, data);
198     data = emit_vertex(v2, data);
199     data = emit_vertex(v2, data);
200     data = emit_vertex(v0, data);
201 #else
202     data = emit_vertex(v0, data);
203     data = emit_vertex(v1, data);
204     data = emit_vertex(v2, data);
205 #endif
206     return data;
207 }
208 
209 struct EdgeList {
EdgeList__anon274dde570111::EdgeList210     EdgeList() : fHead(NULL), fTail(NULL) {}
211     Edge* fHead;
212     Edge* fTail;
213 };
214 
215 /**
216  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
217  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
218  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
219  * point). For speed, that case is only tested by the callers which require it (e.g.,
220  * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
221  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
222  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
223  * a lot faster in the "not found" case.
224  *
225  * The coefficients of the line equation stored in double precision to avoid catastrphic
226  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
227  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
228  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
229  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
230  * this file).
231  */
232 
233 struct Edge {
Edge__anon274dde570111::Edge234     Edge(Vertex* top, Vertex* bottom, int winding)
235         : fWinding(winding)
236         , fTop(top)
237         , fBottom(bottom)
238         , fLeft(NULL)
239         , fRight(NULL)
240         , fPrevEdgeAbove(NULL)
241         , fNextEdgeAbove(NULL)
242         , fPrevEdgeBelow(NULL)
243         , fNextEdgeBelow(NULL)
244         , fLeftPoly(NULL)
245         , fRightPoly(NULL) {
246             recompute();
247         }
248     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
249     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
250     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
251     Edge*    fLeft;             // The linked list of edges in the active edge list.
252     Edge*    fRight;            // "
253     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
254     Edge*    fNextEdgeAbove;    // "
255     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
256     Edge*    fNextEdgeBelow;    // "
257     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
258     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
259     double   fDX;               // The line equation for this edge, in implicit form.
260     double   fDY;               // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
261     double   fC;
dist__anon274dde570111::Edge262     double dist(const SkPoint& p) const {
263         return fDY * p.fX - fDX * p.fY + fC;
264     }
isRightOf__anon274dde570111::Edge265     bool isRightOf(Vertex* v) const {
266         return dist(v->fPoint) < 0.0;
267     }
isLeftOf__anon274dde570111::Edge268     bool isLeftOf(Vertex* v) const {
269         return dist(v->fPoint) > 0.0;
270     }
recompute__anon274dde570111::Edge271     void recompute() {
272         fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
273         fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
274         fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
275              static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
276     }
intersect__anon274dde570111::Edge277     bool intersect(const Edge& other, SkPoint* p) {
278         LOG("intersecting %g -> %g with %g -> %g\n",
279                fTop->fID, fBottom->fID,
280                other.fTop->fID, other.fBottom->fID);
281         if (fTop == other.fTop || fBottom == other.fBottom) {
282             return false;
283         }
284         double denom = fDX * other.fDY - fDY * other.fDX;
285         if (denom == 0.0) {
286             return false;
287         }
288         double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
289         double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
290         double sNumer = dy * other.fDX - dx * other.fDY;
291         double tNumer = dy * fDX - dx * fDY;
292         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
293         // This saves us doing the divide below unless absolutely necessary.
294         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
295                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
296             return false;
297         }
298         double s = sNumer / denom;
299         SkASSERT(s >= 0.0 && s <= 1.0);
300         p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
301         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
302         return true;
303     }
isActive__anon274dde570111::Edge304     bool isActive(EdgeList* activeEdges) const {
305         return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
306     }
307 };
308 
309 /***************************************************************************************/
310 
311 struct Poly {
Poly__anon274dde570111::Poly312     Poly(int winding)
313         : fWinding(winding)
314         , fHead(NULL)
315         , fTail(NULL)
316         , fActive(NULL)
317         , fNext(NULL)
318         , fPartner(NULL)
319         , fCount(0)
320     {
321 #if LOGGING_ENABLED
322         static int gID = 0;
323         fID = gID++;
324         LOG("*** created Poly %d\n", fID);
325 #endif
326     }
327     typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
328     struct MonotonePoly {
MonotonePoly__anon274dde570111::Poly::MonotonePoly329         MonotonePoly()
330             : fSide(kNeither_Side)
331             , fHead(NULL)
332             , fTail(NULL)
333             , fPrev(NULL)
334             , fNext(NULL) {}
335         Side          fSide;
336         Vertex*       fHead;
337         Vertex*       fTail;
338         MonotonePoly* fPrev;
339         MonotonePoly* fNext;
addVertex__anon274dde570111::Poly::MonotonePoly340         bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
341             Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
342             bool done = false;
343             if (fSide == kNeither_Side) {
344                 fSide = side;
345             } else {
346                 done = side != fSide;
347             }
348             if (fHead == NULL) {
349                 fHead = fTail = newV;
350             } else if (fSide == kRight_Side) {
351                 newV->fPrev = fTail;
352                 fTail->fNext = newV;
353                 fTail = newV;
354             } else {
355                 newV->fNext = fHead;
356                 fHead->fPrev = newV;
357                 fHead = newV;
358             }
359             return done;
360         }
361 
emit__anon274dde570111::Poly::MonotonePoly362         SkPoint* emit(SkPoint* data) {
363             Vertex* first = fHead;
364             Vertex* v = first->fNext;
365             while (v != fTail) {
366                 SkASSERT(v && v->fPrev && v->fNext);
367                 Vertex* prev = v->fPrev;
368                 Vertex* curr = v;
369                 Vertex* next = v->fNext;
370                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
371                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
372                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
373                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
374                 if (ax * by - ay * bx >= 0.0) {
375                     data = emit_triangle(prev, curr, next, data);
376                     v->fPrev->fNext = v->fNext;
377                     v->fNext->fPrev = v->fPrev;
378                     if (v->fPrev == first) {
379                         v = v->fNext;
380                     } else {
381                         v = v->fPrev;
382                     }
383                 } else {
384                     v = v->fNext;
385                 }
386             }
387             return data;
388         }
389     };
addVertex__anon274dde570111::Poly390     Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
391         LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
392                side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
393         Poly* partner = fPartner;
394         Poly* poly = this;
395         if (partner) {
396             fPartner = partner->fPartner = NULL;
397         }
398         if (!fActive) {
399             fActive = ALLOC_NEW(MonotonePoly, (), alloc);
400         }
401         if (fActive->addVertex(v, side, alloc)) {
402             if (fTail) {
403                 fActive->fPrev = fTail;
404                 fTail->fNext = fActive;
405                 fTail = fActive;
406             } else {
407                 fHead = fTail = fActive;
408             }
409             if (partner) {
410                 partner->addVertex(v, side, alloc);
411                 poly = partner;
412             } else {
413                 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
414                                fActive->fHead->fNext : fActive->fTail->fPrev;
415                 fActive = ALLOC_NEW(MonotonePoly, , alloc);
416                 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
417                 fActive->addVertex(v, side, alloc);
418             }
419         }
420         fCount++;
421         return poly;
422     }
end__anon274dde570111::Poly423     void end(Vertex* v, SkChunkAlloc& alloc) {
424         LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
425         if (fPartner) {
426             fPartner = fPartner->fPartner = NULL;
427         }
428         addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
429     }
emit__anon274dde570111::Poly430     SkPoint* emit(SkPoint *data) {
431         if (fCount < 3) {
432             return data;
433         }
434         LOG("emit() %d, size %d\n", fID, fCount);
435         for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
436             data = m->emit(data);
437         }
438         return data;
439     }
440     int fWinding;
441     MonotonePoly* fHead;
442     MonotonePoly* fTail;
443     MonotonePoly* fActive;
444     Poly* fNext;
445     Poly* fPartner;
446     int fCount;
447 #if LOGGING_ENABLED
448     int fID;
449 #endif
450 };
451 
452 /***************************************************************************************/
453 
coincident(const SkPoint & a,const SkPoint & b)454 bool coincident(const SkPoint& a, const SkPoint& b) {
455     return a == b;
456 }
457 
new_poly(Poly ** head,Vertex * v,int winding,SkChunkAlloc & alloc)458 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
459     Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
460     poly->addVertex(v, Poly::kNeither_Side, alloc);
461     poly->fNext = *head;
462     *head = poly;
463     return poly;
464 }
465 
append_point_to_contour(const SkPoint & p,Vertex * prev,Vertex ** head,SkChunkAlloc & alloc)466 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
467                                 SkChunkAlloc& alloc) {
468     Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
469 #if LOGGING_ENABLED
470     static float gID = 0.0f;
471     v->fID = gID++;
472 #endif
473     if (prev) {
474         prev->fNext = v;
475         v->fPrev = prev;
476     } else {
477         *head = v;
478     }
479     return v;
480 }
481 
generate_quadratic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,Vertex * prev,Vertex ** head,int pointsLeft,SkChunkAlloc & alloc)482 Vertex* generate_quadratic_points(const SkPoint& p0,
483                                   const SkPoint& p1,
484                                   const SkPoint& p2,
485                                   SkScalar tolSqd,
486                                   Vertex* prev,
487                                   Vertex** head,
488                                   int pointsLeft,
489                                   SkChunkAlloc& alloc) {
490     SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
491     if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
492         return append_point_to_contour(p2, prev, head, alloc);
493     }
494 
495     const SkPoint q[] = {
496         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
497         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
498     };
499     const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
500 
501     pointsLeft >>= 1;
502     prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
503     prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
504     return prev;
505 }
506 
generate_cubic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,Vertex * prev,Vertex ** head,int pointsLeft,SkChunkAlloc & alloc)507 Vertex* generate_cubic_points(const SkPoint& p0,
508                               const SkPoint& p1,
509                               const SkPoint& p2,
510                               const SkPoint& p3,
511                               SkScalar tolSqd,
512                               Vertex* prev,
513                               Vertex** head,
514                               int pointsLeft,
515                               SkChunkAlloc& alloc) {
516     SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
517     SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
518     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
519         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
520         return append_point_to_contour(p3, prev, head, alloc);
521     }
522     const SkPoint q[] = {
523         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
524         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
525         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
526     };
527     const SkPoint r[] = {
528         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
529         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
530     };
531     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
532     pointsLeft >>= 1;
533     prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
534     prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
535     return prev;
536 }
537 
538 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
539 
path_to_contours(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,Vertex ** contours,SkChunkAlloc & alloc)540 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
541                       Vertex** contours, SkChunkAlloc& alloc) {
542 
543     SkScalar toleranceSqd = tolerance * tolerance;
544 
545     SkPoint pts[4];
546     bool done = false;
547     SkPath::Iter iter(path, false);
548     Vertex* prev = NULL;
549     Vertex* head = NULL;
550     if (path.isInverseFillType()) {
551         SkPoint quad[4];
552         clipBounds.toQuad(quad);
553         for (int i = 3; i >= 0; i--) {
554             prev = append_point_to_contour(quad[i], prev, &head, alloc);
555         }
556         head->fPrev = prev;
557         prev->fNext = head;
558         *contours++ = head;
559         head = prev = NULL;
560     }
561     SkAutoConicToQuads converter;
562     while (!done) {
563         SkPath::Verb verb = iter.next(pts);
564         switch (verb) {
565             case SkPath::kConic_Verb: {
566                 SkScalar weight = iter.conicWeight();
567                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
568                 for (int i = 0; i < converter.countQuads(); ++i) {
569                     int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
570                     prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
571                                                      toleranceSqd, prev, &head, pointsLeft, alloc);
572                     quadPts += 2;
573                 }
574                 break;
575             }
576             case SkPath::kMove_Verb:
577                 if (head) {
578                     head->fPrev = prev;
579                     prev->fNext = head;
580                     *contours++ = head;
581                 }
582                 head = prev = NULL;
583                 prev = append_point_to_contour(pts[0], prev, &head, alloc);
584                 break;
585             case SkPath::kLine_Verb: {
586                 prev = append_point_to_contour(pts[1], prev, &head, alloc);
587                 break;
588             }
589             case SkPath::kQuad_Verb: {
590                 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
591                 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
592                                                  &head, pointsLeft, alloc);
593                 break;
594             }
595             case SkPath::kCubic_Verb: {
596                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
597                 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
598                                 toleranceSqd, prev, &head, pointsLeft, alloc);
599                 break;
600             }
601             case SkPath::kClose_Verb:
602                 if (head) {
603                     head->fPrev = prev;
604                     prev->fNext = head;
605                     *contours++ = head;
606                 }
607                 head = prev = NULL;
608                 break;
609             case SkPath::kDone_Verb:
610                 if (head) {
611                     head->fPrev = prev;
612                     prev->fNext = head;
613                     *contours++ = head;
614                 }
615                 done = true;
616                 break;
617         }
618     }
619 }
620 
apply_fill_type(SkPath::FillType fillType,int winding)621 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
622     switch (fillType) {
623         case SkPath::kWinding_FillType:
624             return winding != 0;
625         case SkPath::kEvenOdd_FillType:
626             return (winding & 1) != 0;
627         case SkPath::kInverseWinding_FillType:
628             return winding == 1;
629         case SkPath::kInverseEvenOdd_FillType:
630             return (winding & 1) == 1;
631         default:
632             SkASSERT(false);
633             return false;
634     }
635 }
636 
new_edge(Vertex * prev,Vertex * next,SkChunkAlloc & alloc,Comparator & c)637 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
638     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
639     Vertex* top = winding < 0 ? next : prev;
640     Vertex* bottom = winding < 0 ? prev : next;
641     return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
642 }
643 
remove_edge(Edge * edge,EdgeList * edges)644 void remove_edge(Edge* edge, EdgeList* edges) {
645     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
646     SkASSERT(edge->isActive(edges));
647     remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
648 }
649 
insert_edge(Edge * edge,Edge * prev,EdgeList * edges)650 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
651     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
652     SkASSERT(!edge->isActive(edges));
653     Edge* next = prev ? prev->fRight : edges->fHead;
654     insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
655 }
656 
find_enclosing_edges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)657 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
658     if (v->fFirstEdgeAbove) {
659         *left = v->fFirstEdgeAbove->fLeft;
660         *right = v->fLastEdgeAbove->fRight;
661         return;
662     }
663     Edge* next = NULL;
664     Edge* prev;
665     for (prev = edges->fTail; prev != NULL; prev = prev->fLeft) {
666         if (prev->isLeftOf(v)) {
667             break;
668         }
669         next = prev;
670     }
671     *left = prev;
672     *right = next;
673     return;
674 }
675 
find_enclosing_edges(Edge * edge,EdgeList * edges,Comparator & c,Edge ** left,Edge ** right)676 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
677     Edge* prev = NULL;
678     Edge* next;
679     for (next = edges->fHead; next != NULL; next = next->fRight) {
680         if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
681             (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
682             (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
683              next->isRightOf(edge->fBottom)) ||
684             (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
685              edge->isLeftOf(next->fBottom))) {
686             break;
687         }
688         prev = next;
689     }
690     *left = prev;
691     *right = next;
692     return;
693 }
694 
fix_active_state(Edge * edge,EdgeList * activeEdges,Comparator & c)695 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
696     if (edge->isActive(activeEdges)) {
697         if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
698             remove_edge(edge, activeEdges);
699         }
700     } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
701         Edge* left;
702         Edge* right;
703         find_enclosing_edges(edge, activeEdges, c, &left, &right);
704         insert_edge(edge, left, activeEdges);
705     }
706 }
707 
insert_edge_above(Edge * edge,Vertex * v,Comparator & c)708 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
709     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
710         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
711         return;
712     }
713     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
714     Edge* prev = NULL;
715     Edge* next;
716     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
717         if (next->isRightOf(edge->fTop)) {
718             break;
719         }
720         prev = next;
721     }
722     insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
723         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
724 }
725 
insert_edge_below(Edge * edge,Vertex * v,Comparator & c)726 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
727     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
728         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
729         return;
730     }
731     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
732     Edge* prev = NULL;
733     Edge* next;
734     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
735         if (next->isRightOf(edge->fBottom)) {
736             break;
737         }
738         prev = next;
739     }
740     insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
741         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
742 }
743 
remove_edge_above(Edge * edge)744 void remove_edge_above(Edge* edge) {
745     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
746         edge->fBottom->fID);
747     remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
748         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
749 }
750 
remove_edge_below(Edge * edge)751 void remove_edge_below(Edge* edge) {
752     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
753         edge->fTop->fID);
754     remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
755         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
756 }
757 
erase_edge_if_zero_winding(Edge * edge,EdgeList * edges)758 void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
759     if (edge->fWinding != 0) {
760         return;
761     }
762     LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
763     remove_edge_above(edge);
764     remove_edge_below(edge);
765     if (edge->isActive(edges)) {
766         remove_edge(edge, edges);
767     }
768 }
769 
770 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
771 
set_top(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)772 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
773     remove_edge_below(edge);
774     edge->fTop = v;
775     edge->recompute();
776     insert_edge_below(edge, v, c);
777     fix_active_state(edge, activeEdges, c);
778     merge_collinear_edges(edge, activeEdges, c);
779 }
780 
set_bottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)781 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
782     remove_edge_above(edge);
783     edge->fBottom = v;
784     edge->recompute();
785     insert_edge_above(edge, v, c);
786     fix_active_state(edge, activeEdges, c);
787     merge_collinear_edges(edge, activeEdges, c);
788 }
789 
merge_edges_above(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)790 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
791     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
792         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
793             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
794             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
795         other->fWinding += edge->fWinding;
796         erase_edge_if_zero_winding(other, activeEdges);
797         edge->fWinding = 0;
798         erase_edge_if_zero_winding(edge, activeEdges);
799     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
800         other->fWinding += edge->fWinding;
801         erase_edge_if_zero_winding(other, activeEdges);
802         set_bottom(edge, other->fTop, activeEdges, c);
803     } else {
804         edge->fWinding += other->fWinding;
805         erase_edge_if_zero_winding(edge, activeEdges);
806         set_bottom(other, edge->fTop, activeEdges, c);
807     }
808 }
809 
merge_edges_below(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)810 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
811     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
812         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
813             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
814             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
815         other->fWinding += edge->fWinding;
816         erase_edge_if_zero_winding(other, activeEdges);
817         edge->fWinding = 0;
818         erase_edge_if_zero_winding(edge, activeEdges);
819     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
820         edge->fWinding += other->fWinding;
821         erase_edge_if_zero_winding(edge, activeEdges);
822         set_top(other, edge->fBottom, activeEdges, c);
823     } else {
824         other->fWinding += edge->fWinding;
825         erase_edge_if_zero_winding(other, activeEdges);
826         set_top(edge, other->fBottom, activeEdges, c);
827     }
828 }
829 
merge_collinear_edges(Edge * edge,EdgeList * activeEdges,Comparator & c)830 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
831     if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
832                                  !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
833         merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
834     } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
835                                         !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
836         merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
837     }
838     if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
839                                  !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
840         merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
841     } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
842                                         !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
843         merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
844     }
845 }
846 
847 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
848 
cleanup_active_edges(Edge * edge,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)849 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
850     Vertex* top = edge->fTop;
851     Vertex* bottom = edge->fBottom;
852     if (edge->fLeft) {
853         Vertex* leftTop = edge->fLeft->fTop;
854         Vertex* leftBottom = edge->fLeft->fBottom;
855         if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
856             split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
857         } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
858             split_edge(edge, leftTop, activeEdges, c, alloc);
859         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
860                    !edge->fLeft->isLeftOf(bottom)) {
861             split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
862         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
863             split_edge(edge, leftBottom, activeEdges, c, alloc);
864         }
865     }
866     if (edge->fRight) {
867         Vertex* rightTop = edge->fRight->fTop;
868         Vertex* rightBottom = edge->fRight->fBottom;
869         if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
870             split_edge(edge->fRight, top, activeEdges, c, alloc);
871         } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
872             split_edge(edge, rightTop, activeEdges, c, alloc);
873         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
874                    !edge->fRight->isRightOf(bottom)) {
875             split_edge(edge->fRight, bottom, activeEdges, c, alloc);
876         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
877                    !edge->isLeftOf(rightBottom)) {
878             split_edge(edge, rightBottom, activeEdges, c, alloc);
879         }
880     }
881 }
882 
split_edge(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)883 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
884     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
885         edge->fTop->fID, edge->fBottom->fID,
886         v->fID, v->fPoint.fX, v->fPoint.fY);
887     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
888         set_top(edge, v, activeEdges, c);
889     } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
890         set_bottom(edge, v, activeEdges, c);
891     } else {
892         Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
893         insert_edge_below(newEdge, v, c);
894         insert_edge_above(newEdge, edge->fBottom, c);
895         set_bottom(edge, v, activeEdges, c);
896         cleanup_active_edges(edge, activeEdges, c, alloc);
897         fix_active_state(newEdge, activeEdges, c);
898         merge_collinear_edges(newEdge, activeEdges, c);
899     }
900 }
901 
merge_vertices(Vertex * src,Vertex * dst,Vertex ** head,Comparator & c,SkChunkAlloc & alloc)902 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
903     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
904         src->fID, dst->fID);
905     for (Edge* edge = src->fFirstEdgeAbove; edge;) {
906         Edge* next = edge->fNextEdgeAbove;
907         set_bottom(edge, dst, NULL, c);
908         edge = next;
909     }
910     for (Edge* edge = src->fFirstEdgeBelow; edge;) {
911         Edge* next = edge->fNextEdgeBelow;
912         set_top(edge, dst, NULL, c);
913         edge = next;
914     }
915     remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
916 }
917 
check_for_intersection(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)918 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
919                                SkChunkAlloc& alloc) {
920     SkPoint p;
921     if (!edge || !other) {
922         return NULL;
923     }
924     if (edge->intersect(*other, &p)) {
925         Vertex* v;
926         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
927         if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
928             split_edge(other, edge->fTop, activeEdges, c, alloc);
929             v = edge->fTop;
930         } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
931             split_edge(other, edge->fBottom, activeEdges, c, alloc);
932             v = edge->fBottom;
933         } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
934             split_edge(edge, other->fTop, activeEdges, c, alloc);
935             v = other->fTop;
936         } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
937             split_edge(edge, other->fBottom, activeEdges, c, alloc);
938             v = other->fBottom;
939         } else {
940             Vertex* nextV = edge->fTop;
941             while (c.sweep_lt(p, nextV->fPoint)) {
942                 nextV = nextV->fPrev;
943             }
944             while (c.sweep_lt(nextV->fPoint, p)) {
945                 nextV = nextV->fNext;
946             }
947             Vertex* prevV = nextV->fPrev;
948             if (coincident(prevV->fPoint, p)) {
949                 v = prevV;
950             } else if (coincident(nextV->fPoint, p)) {
951                 v = nextV;
952             } else {
953                 v = ALLOC_NEW(Vertex, (p), alloc);
954                 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
955                     prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
956                     nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
957 #if LOGGING_ENABLED
958                 v->fID = (nextV->fID + prevV->fID) * 0.5f;
959 #endif
960                 v->fPrev = prevV;
961                 v->fNext = nextV;
962                 prevV->fNext = v;
963                 nextV->fPrev = v;
964             }
965             split_edge(edge, v, activeEdges, c, alloc);
966             split_edge(other, v, activeEdges, c, alloc);
967         }
968         return v;
969     }
970     return NULL;
971 }
972 
sanitize_contours(Vertex ** contours,int contourCnt)973 void sanitize_contours(Vertex** contours, int contourCnt) {
974     for (int i = 0; i < contourCnt; ++i) {
975         SkASSERT(contours[i]);
976         for (Vertex* v = contours[i];;) {
977             if (coincident(v->fPrev->fPoint, v->fPoint)) {
978                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
979                 if (v->fPrev == v) {
980                     contours[i] = NULL;
981                     break;
982                 }
983                 v->fPrev->fNext = v->fNext;
984                 v->fNext->fPrev = v->fPrev;
985                 if (contours[i] == v) {
986                     contours[i] = v->fNext;
987                 }
988                 v = v->fPrev;
989             } else {
990                 v = v->fNext;
991                 if (v == contours[i]) break;
992             }
993         }
994     }
995 }
996 
merge_coincident_vertices(Vertex ** vertices,Comparator & c,SkChunkAlloc & alloc)997 void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
998     for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
999         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1000             v->fPoint = v->fPrev->fPoint;
1001         }
1002         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1003             merge_vertices(v->fPrev, v, vertices, c, alloc);
1004         }
1005     }
1006 }
1007 
1008 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1009 
build_edges(Vertex ** contours,int contourCnt,Comparator & c,SkChunkAlloc & alloc)1010 Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1011     Vertex* vertices = NULL;
1012     Vertex* prev = NULL;
1013     for (int i = 0; i < contourCnt; ++i) {
1014         for (Vertex* v = contours[i]; v != NULL;) {
1015             Vertex* vNext = v->fNext;
1016             Edge* edge = new_edge(v->fPrev, v, alloc, c);
1017             if (edge->fWinding > 0) {
1018                 insert_edge_below(edge, v->fPrev, c);
1019                 insert_edge_above(edge, v, c);
1020             } else {
1021                 insert_edge_below(edge, v, c);
1022                 insert_edge_above(edge, v->fPrev, c);
1023             }
1024             merge_collinear_edges(edge, NULL, c);
1025             if (prev) {
1026                 prev->fNext = v;
1027                 v->fPrev = prev;
1028             } else {
1029                 vertices = v;
1030             }
1031             prev = v;
1032             v = vNext;
1033             if (v == contours[i]) break;
1034         }
1035     }
1036     if (prev) {
1037         prev->fNext = vertices->fPrev = NULL;
1038     }
1039     return vertices;
1040 }
1041 
1042 // Stage 3: sort the vertices by increasing sweep direction.
1043 
1044 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
1045 
front_back_split(Vertex * v,Vertex ** pFront,Vertex ** pBack)1046 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1047     Vertex* fast;
1048     Vertex* slow;
1049     if (!v || !v->fNext) {
1050         *pFront = v;
1051         *pBack = NULL;
1052     } else {
1053         slow = v;
1054         fast = v->fNext;
1055 
1056         while (fast != NULL) {
1057             fast = fast->fNext;
1058             if (fast != NULL) {
1059                 slow = slow->fNext;
1060                 fast = fast->fNext;
1061             }
1062         }
1063 
1064         *pFront = v;
1065         *pBack = slow->fNext;
1066         slow->fNext->fPrev = NULL;
1067         slow->fNext = NULL;
1068     }
1069 }
1070 
merge_sort(Vertex ** head,Comparator & c)1071 void merge_sort(Vertex** head, Comparator& c) {
1072     if (!*head || !(*head)->fNext) {
1073         return;
1074     }
1075 
1076     Vertex* a;
1077     Vertex* b;
1078     front_back_split(*head, &a, &b);
1079 
1080     merge_sort(&a, c);
1081     merge_sort(&b, c);
1082 
1083     *head = sorted_merge(a, b, c);
1084 }
1085 
append_vertex(Vertex * v,Vertex ** head,Vertex ** tail)1086 inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
1087     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, NULL, head, tail);
1088 }
1089 
append_vertex_list(Vertex * v,Vertex ** head,Vertex ** tail)1090 inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
1091     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
1092 }
1093 
sorted_merge(Vertex * a,Vertex * b,Comparator & c)1094 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
1095     Vertex* head = NULL;
1096     Vertex* tail = NULL;
1097 
1098     while (a && b) {
1099         if (c.sweep_lt(a->fPoint, b->fPoint)) {
1100             Vertex* next = a->fNext;
1101             append_vertex(a, &head, &tail);
1102             a = next;
1103         } else {
1104             Vertex* next = b->fNext;
1105             append_vertex(b, &head, &tail);
1106             b = next;
1107         }
1108     }
1109     if (a) {
1110         append_vertex_list(a, &head, &tail);
1111     }
1112     if (b) {
1113         append_vertex_list(b, &head, &tail);
1114     }
1115     return head;
1116 }
1117 
1118 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1119 
simplify(Vertex * vertices,Comparator & c,SkChunkAlloc & alloc)1120 void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
1121     LOG("simplifying complex polygons\n");
1122     EdgeList activeEdges;
1123     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1124         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1125             continue;
1126         }
1127 #if LOGGING_ENABLED
1128         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1129 #endif
1130         Edge* leftEnclosingEdge = NULL;
1131         Edge* rightEnclosingEdge = NULL;
1132         bool restartChecks;
1133         do {
1134             restartChecks = false;
1135             find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1136             if (v->fFirstEdgeBelow) {
1137                 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
1138                     if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1139                         restartChecks = true;
1140                         break;
1141                     }
1142                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1143                         restartChecks = true;
1144                         break;
1145                     }
1146                 }
1147             } else {
1148                 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1149                                                         &activeEdges, c, alloc)) {
1150                     if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1151                         v = pv;
1152                     }
1153                     restartChecks = true;
1154                 }
1155 
1156             }
1157         } while (restartChecks);
1158         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1159             remove_edge(e, &activeEdges);
1160         }
1161         Edge* leftEdge = leftEnclosingEdge;
1162         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1163             insert_edge(e, leftEdge, &activeEdges);
1164             leftEdge = e;
1165         }
1166         v->fProcessed = true;
1167     }
1168 }
1169 
1170 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1171 
tessellate(Vertex * vertices,SkChunkAlloc & alloc)1172 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1173     LOG("tessellating simple polygons\n");
1174     EdgeList activeEdges;
1175     Poly* polys = NULL;
1176     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1177         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1178             continue;
1179         }
1180 #if LOGGING_ENABLED
1181         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1182 #endif
1183         Edge* leftEnclosingEdge = NULL;
1184         Edge* rightEnclosingEdge = NULL;
1185         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1186         Poly* leftPoly = NULL;
1187         Poly* rightPoly = NULL;
1188         if (v->fFirstEdgeAbove) {
1189             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1190             rightPoly = v->fLastEdgeAbove->fRightPoly;
1191         } else {
1192             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
1193             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
1194         }
1195 #if LOGGING_ENABLED
1196         LOG("edges above:\n");
1197         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1198             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1199                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1200         }
1201         LOG("edges below:\n");
1202         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1203             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1204                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1205         }
1206 #endif
1207         if (v->fFirstEdgeAbove) {
1208             if (leftPoly) {
1209                 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1210             }
1211             if (rightPoly) {
1212                 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1213             }
1214             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1215                 Edge* leftEdge = e;
1216                 Edge* rightEdge = e->fNextEdgeAbove;
1217                 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1218                 remove_edge(leftEdge, &activeEdges);
1219                 if (leftEdge->fRightPoly) {
1220                     leftEdge->fRightPoly->end(v, alloc);
1221                 }
1222                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1223                     rightEdge->fLeftPoly->end(v, alloc);
1224                 }
1225             }
1226             remove_edge(v->fLastEdgeAbove, &activeEdges);
1227             if (!v->fFirstEdgeBelow) {
1228                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1229                     SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
1230                     rightPoly->fPartner = leftPoly;
1231                     leftPoly->fPartner = rightPoly;
1232                 }
1233             }
1234         }
1235         if (v->fFirstEdgeBelow) {
1236             if (!v->fFirstEdgeAbove) {
1237                 if (leftPoly && leftPoly == rightPoly) {
1238                     // Split the poly.
1239                     if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1240                         leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1241                                             alloc);
1242                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1243                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1244                         leftEnclosingEdge->fRightPoly = leftPoly;
1245                     } else {
1246                         rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1247                                              alloc);
1248                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1249                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1250                         rightEnclosingEdge->fLeftPoly = rightPoly;
1251                     }
1252                 } else {
1253                     if (leftPoly) {
1254                         leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1255                     }
1256                     if (rightPoly) {
1257                         rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1258                     }
1259                 }
1260             }
1261             Edge* leftEdge = v->fFirstEdgeBelow;
1262             leftEdge->fLeftPoly = leftPoly;
1263             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1264             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1265                  rightEdge = rightEdge->fNextEdgeBelow) {
1266                 insert_edge(rightEdge, leftEdge, &activeEdges);
1267                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1268                 winding += leftEdge->fWinding;
1269                 if (winding != 0) {
1270                     Poly* poly = new_poly(&polys, v, winding, alloc);
1271                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1272                 }
1273                 leftEdge = rightEdge;
1274             }
1275             v->fLastEdgeBelow->fRightPoly = rightPoly;
1276         }
1277 #if LOGGING_ENABLED
1278         LOG("\nactive edges:\n");
1279         for (Edge* e = activeEdges.fHead; e != NULL; e = e->fRight) {
1280             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1281                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1282         }
1283 #endif
1284     }
1285     return polys;
1286 }
1287 
1288 // This is a driver function which calls stages 2-5 in turn.
1289 
contours_to_polys(Vertex ** contours,int contourCnt,Comparator & c,SkChunkAlloc & alloc)1290 Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1291 #if LOGGING_ENABLED
1292     for (int i = 0; i < contourCnt; ++i) {
1293         Vertex* v = contours[i];
1294         SkASSERT(v);
1295         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1296         for (v = v->fNext; v != contours[i]; v = v->fNext) {
1297             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1298         }
1299     }
1300 #endif
1301     sanitize_contours(contours, contourCnt);
1302     Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
1303     if (!vertices) {
1304         return NULL;
1305     }
1306 
1307     // Sort vertices in Y (secondarily in X).
1308     merge_sort(&vertices, c);
1309     merge_coincident_vertices(&vertices, c, alloc);
1310 #if LOGGING_ENABLED
1311     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
1312         static float gID = 0.0f;
1313         v->fID = gID++;
1314     }
1315 #endif
1316     simplify(vertices, c, alloc);
1317     return tessellate(vertices, alloc);
1318 }
1319 
1320 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1321 
polys_to_triangles(Poly * polys,SkPath::FillType fillType,SkPoint * data)1322 SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
1323     SkPoint* d = data;
1324     for (Poly* poly = polys; poly; poly = poly->fNext) {
1325         if (apply_fill_type(fillType, poly->fWinding)) {
1326             d = poly->emit(d);
1327         }
1328     }
1329     return d;
1330 }
1331 
1332 };
1333 
GrTessellatingPathRenderer()1334 GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
1335 }
1336 
onGetStencilSupport(const GrDrawTarget *,const GrPipelineBuilder *,const SkPath &,const GrStrokeInfo &) const1337 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
1338                                                             const GrDrawTarget*,
1339                                                             const GrPipelineBuilder*,
1340                                                             const SkPath&,
1341                                                             const GrStrokeInfo&) const {
1342     return GrPathRenderer::kNoSupport_StencilSupport;
1343 }
1344 
canDrawPath(const GrDrawTarget * target,const GrPipelineBuilder * pipelineBuilder,const SkMatrix & viewMatrix,const SkPath & path,const GrStrokeInfo & stroke,bool antiAlias) const1345 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
1346                                              const GrPipelineBuilder* pipelineBuilder,
1347                                              const SkMatrix& viewMatrix,
1348                                              const SkPath& path,
1349                                              const GrStrokeInfo& stroke,
1350                                              bool antiAlias) const {
1351     // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
1352     // and concave paths, but we'll leave the convex ones to simpler algorithms.
1353     return stroke.isFillStyle() && !antiAlias && !path.isConvex();
1354 }
1355 
1356 class TessellatingPathBatch : public GrBatch {
1357 public:
1358 
Create(const GrColor & color,const SkPath & path,const SkMatrix & viewMatrix,SkRect clipBounds)1359     static GrBatch* Create(const GrColor& color,
1360                            const SkPath& path,
1361                            const SkMatrix& viewMatrix,
1362                            SkRect clipBounds) {
1363         return SkNEW_ARGS(TessellatingPathBatch, (color, path, viewMatrix, clipBounds));
1364     }
1365 
name() const1366     const char* name() const override { return "TessellatingPathBatch"; }
1367 
getInvariantOutputColor(GrInitInvariantOutput * out) const1368     void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
1369         out->setKnownFourComponents(fColor);
1370     }
1371 
getInvariantOutputCoverage(GrInitInvariantOutput * out) const1372     void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
1373         out->setUnknownSingleComponent();
1374     }
1375 
initBatchTracker(const GrPipelineInfo & init)1376     void initBatchTracker(const GrPipelineInfo& init) override {
1377         // Handle any color overrides
1378         if (init.fColorIgnored) {
1379             fColor = GrColor_ILLEGAL;
1380         } else if (GrColor_ILLEGAL != init.fOverrideColor) {
1381             fColor = init.fOverrideColor;
1382         }
1383         fPipelineInfo = init;
1384     }
1385 
generateGeometry(GrBatchTarget * batchTarget,const GrPipeline * pipeline)1386     void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
1387         SkRect pathBounds = fPath.getBounds();
1388         Comparator c;
1389         if (pathBounds.width() > pathBounds.height()) {
1390             c.sweep_lt = sweep_lt_horiz;
1391             c.sweep_gt = sweep_gt_horiz;
1392         } else {
1393             c.sweep_lt = sweep_lt_vert;
1394             c.sweep_gt = sweep_gt_vert;
1395         }
1396         SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
1397         SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
1398         int contourCnt;
1399         int maxPts = GrPathUtils::worstCasePointCount(fPath, &contourCnt, tol);
1400         if (maxPts <= 0) {
1401             return;
1402         }
1403         if (maxPts > ((int)SK_MaxU16 + 1)) {
1404             SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1405             return;
1406         }
1407         SkPath::FillType fillType = fPath.getFillType();
1408         if (SkPath::IsInverseFillType(fillType)) {
1409             contourCnt++;
1410         }
1411 
1412         LOG("got %d pts, %d contours\n", maxPts, contourCnt);
1413         uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
1414         SkAutoTUnref<const GrGeometryProcessor> gp(
1415             GrDefaultGeoProcFactory::Create(flags, fColor, fViewMatrix, SkMatrix::I()));
1416         batchTarget->initDraw(gp, pipeline);
1417         gp->initBatchTracker(batchTarget->currentBatchTracker(), fPipelineInfo);
1418 
1419         SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
1420 
1421         // For the initial size of the chunk allocator, estimate based on the point count:
1422         // one vertex per point for the initial passes, plus two for the vertices in the
1423         // resulting Polys, since the same point may end up in two Polys.  Assume minimal
1424         // connectivity of one Edge per Vertex (will grow for intersections).
1425         SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
1426         path_to_contours(fPath, tol, fClipBounds, contours.get(), alloc);
1427         Poly* polys;
1428         polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
1429         int count = 0;
1430         for (Poly* poly = polys; poly; poly = poly->fNext) {
1431             if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1432                 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
1433             }
1434         }
1435         if (0 == count) {
1436             return;
1437         }
1438 
1439         size_t stride = gp->getVertexStride();
1440         SkASSERT(stride == sizeof(SkPoint));
1441         const GrVertexBuffer* vertexBuffer;
1442         int firstVertex;
1443         SkPoint* verts = static_cast<SkPoint*>(
1444             batchTarget->makeVertSpace(stride, count, &vertexBuffer, &firstVertex));
1445         if (!verts) {
1446             SkDebugf("Could not allocate vertices\n");
1447             return;
1448         }
1449 
1450         LOG("emitting %d verts\n", count);
1451         SkPoint* end = polys_to_triangles(polys, fillType, verts);
1452         int actualCount = static_cast<int>(end - verts);
1453         LOG("actual count: %d\n", actualCount);
1454         SkASSERT(actualCount <= count);
1455 
1456         GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
1457                                                   : kTriangles_GrPrimitiveType;
1458         GrVertices vertices;
1459         vertices.init(primitiveType, vertexBuffer, firstVertex, actualCount);
1460         batchTarget->draw(vertices);
1461 
1462         batchTarget->putBackVertices((size_t)(count - actualCount), stride);
1463         return;
1464     }
1465 
onCombineIfPossible(GrBatch *)1466     bool onCombineIfPossible(GrBatch*) override {
1467         return false;
1468     }
1469 
1470 private:
TessellatingPathBatch(const GrColor & color,const SkPath & path,const SkMatrix & viewMatrix,const SkRect & clipBounds)1471     TessellatingPathBatch(const GrColor& color,
1472                           const SkPath& path,
1473                           const SkMatrix& viewMatrix,
1474                           const SkRect& clipBounds)
1475       : fColor(color)
1476       , fPath(path)
1477       , fViewMatrix(viewMatrix)
1478       , fClipBounds(clipBounds) {
1479         this->initClassID<TessellatingPathBatch>();
1480 
1481         fBounds = path.getBounds();
1482         viewMatrix.mapRect(&fBounds);
1483     }
1484 
1485     GrColor        fColor;
1486     SkPath         fPath;
1487     SkMatrix       fViewMatrix;
1488     SkRect         fClipBounds; // in source space
1489     GrPipelineInfo fPipelineInfo;
1490 };
1491 
onDrawPath(GrDrawTarget * target,GrPipelineBuilder * pipelineBuilder,GrColor color,const SkMatrix & viewM,const SkPath & path,const GrStrokeInfo &,bool antiAlias)1492 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
1493                                             GrPipelineBuilder* pipelineBuilder,
1494                                             GrColor color,
1495                                             const SkMatrix& viewM,
1496                                             const SkPath& path,
1497                                             const GrStrokeInfo&,
1498                                             bool antiAlias) {
1499     SkASSERT(!antiAlias);
1500     const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
1501     if (NULL == rt) {
1502         return false;
1503     }
1504 
1505     SkIRect clipBoundsI;
1506     pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
1507     SkRect clipBounds = SkRect::Make(clipBoundsI);
1508     SkMatrix vmi;
1509     if (!viewM.invert(&vmi)) {
1510         return false;
1511     }
1512     vmi.mapRect(&clipBounds);
1513     SkAutoTUnref<GrBatch> batch(TessellatingPathBatch::Create(color, path, viewM, clipBounds));
1514     target->drawBatch(pipelineBuilder, batch);
1515 
1516     return true;
1517 }
1518 
1519 ///////////////////////////////////////////////////////////////////////////////////////////////////
1520 
1521 #ifdef GR_TEST_UTILS
1522 
BATCH_TEST_DEFINE(TesselatingPathBatch)1523 BATCH_TEST_DEFINE(TesselatingPathBatch) {
1524     GrColor color = GrRandomColor(random);
1525     SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
1526     SkPath path = GrTest::TestPath(random);
1527     SkRect clipBounds = GrTest::TestRect(random);
1528     SkMatrix vmi;
1529     bool result = viewMatrix.invert(&vmi);
1530     if (!result) {
1531         SkFAIL("Cannot invert matrix\n");
1532     }
1533     vmi.mapRect(&clipBounds);
1534     return TessellatingPathBatch::Create(color, path, viewMatrix, clipBounds);
1535 }
1536 
1537 #endif
1538