1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkColorPriv.h"
9 #include "SkEndian.h"
10 #include "SkFloatBits.h"
11 #include "SkFloatingPoint.h"
12 #include "SkHalf.h"
13 #include "SkMathPriv.h"
14 #include "SkPoint.h"
15 #include "SkRandom.h"
16 #include "Test.h"
17
test_clz(skiatest::Reporter * reporter)18 static void test_clz(skiatest::Reporter* reporter) {
19 REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
20 REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
21 REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
22 REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
23
24 SkRandom rand;
25 for (int i = 0; i < 1000; ++i) {
26 uint32_t mask = rand.nextU();
27 // need to get some zeros for testing, but in some obscure way so the
28 // compiler won't "see" that, and work-around calling the functions.
29 mask >>= (mask & 31);
30 int intri = SkCLZ(mask);
31 int porta = SkCLZ_portable(mask);
32 REPORTER_ASSERT(reporter, intri == porta);
33 }
34 }
35
36 ///////////////////////////////////////////////////////////////////////////////
37
sk_fsel(float pred,float result_ge,float result_lt)38 static float sk_fsel(float pred, float result_ge, float result_lt) {
39 return pred >= 0 ? result_ge : result_lt;
40 }
41
fast_floor(float x)42 static float fast_floor(float x) {
43 // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
44 float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
45 return (float)(x + big) - big;
46 }
47
std_floor(float x)48 static float std_floor(float x) {
49 return sk_float_floor(x);
50 }
51
test_floor_value(skiatest::Reporter * reporter,float value)52 static void test_floor_value(skiatest::Reporter* reporter, float value) {
53 float fast = fast_floor(value);
54 float std = std_floor(value);
55 REPORTER_ASSERT(reporter, std == fast);
56 // SkDebugf("value[%1.9f] std[%g] fast[%g] equal[%d]\n",
57 // value, std, fast, std == fast);
58 }
59
test_floor(skiatest::Reporter * reporter)60 static void test_floor(skiatest::Reporter* reporter) {
61 static const float gVals[] = {
62 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
63 };
64
65 for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
66 test_floor_value(reporter, gVals[i]);
67 // test_floor_value(reporter, -gVals[i]);
68 }
69 }
70
71 ///////////////////////////////////////////////////////////////////////////////
72
73 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
test_muldivround(skiatest::Reporter * reporter)74 static void test_muldivround(skiatest::Reporter* reporter) {
75 #if 0
76 // this "complete" test is too slow, so we test a random sampling of it
77
78 for (int a = 0; a <= 32767; ++a) {
79 for (int b = 0; b <= 32767; ++b) {
80 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
81 unsigned prod1 = SkMulDiv255Round(a, b);
82 SkASSERT(prod0 == prod1);
83 }
84 }
85 #endif
86
87 SkRandom rand;
88 for (int i = 0; i < 10000; ++i) {
89 unsigned a = rand.nextU() & 0x7FFF;
90 unsigned b = rand.nextU() & 0x7FFF;
91
92 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
93 unsigned prod1 = SkMulDiv255Round(a, b);
94
95 REPORTER_ASSERT(reporter, prod0 == prod1);
96 }
97 }
98
float_blend(int src,int dst,float unit)99 static float float_blend(int src, int dst, float unit) {
100 return dst + (src - dst) * unit;
101 }
102
blend31(int src,int dst,int a31)103 static int blend31(int src, int dst, int a31) {
104 return dst + ((src - dst) * a31 * 2114 >> 16);
105 // return dst + ((src - dst) * a31 * 33 >> 10);
106 }
107
blend31_slow(int src,int dst,int a31)108 static int blend31_slow(int src, int dst, int a31) {
109 int prod = src * a31 + (31 - a31) * dst + 16;
110 prod = (prod + (prod >> 5)) >> 5;
111 return prod;
112 }
113
blend31_round(int src,int dst,int a31)114 static int blend31_round(int src, int dst, int a31) {
115 int prod = (src - dst) * a31 + 16;
116 prod = (prod + (prod >> 5)) >> 5;
117 return dst + prod;
118 }
119
blend31_old(int src,int dst,int a31)120 static int blend31_old(int src, int dst, int a31) {
121 a31 += a31 >> 4;
122 return dst + ((src - dst) * a31 >> 5);
123 }
124
125 // suppress unused code warning
126 static int (*blend_functions[])(int, int, int) = {
127 blend31,
128 blend31_slow,
129 blend31_round,
130 blend31_old
131 };
132
test_blend31()133 static void test_blend31() {
134 int failed = 0;
135 int death = 0;
136 if (false) { // avoid bit rot, suppress warning
137 failed = (*blend_functions[0])(0,0,0);
138 }
139 for (int src = 0; src <= 255; src++) {
140 for (int dst = 0; dst <= 255; dst++) {
141 for (int a = 0; a <= 31; a++) {
142 // int r0 = blend31(src, dst, a);
143 // int r0 = blend31_round(src, dst, a);
144 // int r0 = blend31_old(src, dst, a);
145 int r0 = blend31_slow(src, dst, a);
146
147 float f = float_blend(src, dst, a / 31.f);
148 int r1 = (int)f;
149 int r2 = SkScalarRoundToInt(f);
150
151 if (r0 != r1 && r0 != r2) {
152 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
153 src, dst, a, r0, f);
154 failed += 1;
155 }
156 if (r0 > 255) {
157 death += 1;
158 SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
159 src, dst, a, r0, f);
160 }
161 }
162 }
163 }
164 SkDebugf("---- failed %d death %d\n", failed, death);
165 }
166
test_blend(skiatest::Reporter * reporter)167 static void test_blend(skiatest::Reporter* reporter) {
168 for (int src = 0; src <= 255; src++) {
169 for (int dst = 0; dst <= 255; dst++) {
170 for (int a = 0; a <= 255; a++) {
171 int r0 = SkAlphaBlend255(src, dst, a);
172 float f1 = float_blend(src, dst, a / 255.f);
173 int r1 = SkScalarRoundToInt(f1);
174
175 if (r0 != r1) {
176 float diff = sk_float_abs(f1 - r1);
177 diff = sk_float_abs(diff - 0.5f);
178 if (diff > (1 / 255.f)) {
179 #ifdef SK_DEBUG
180 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
181 src, dst, a, r0, f1);
182 #endif
183 REPORTER_ASSERT(reporter, false);
184 }
185 }
186 }
187 }
188 }
189 }
190
check_length(skiatest::Reporter * reporter,const SkPoint & p,SkScalar targetLen)191 static void check_length(skiatest::Reporter* reporter,
192 const SkPoint& p, SkScalar targetLen) {
193 float x = SkScalarToFloat(p.fX);
194 float y = SkScalarToFloat(p.fY);
195 float len = sk_float_sqrt(x*x + y*y);
196
197 len /= SkScalarToFloat(targetLen);
198
199 REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
200 }
201
nextFloat(SkRandom & rand)202 static float nextFloat(SkRandom& rand) {
203 SkFloatIntUnion data;
204 data.fSignBitInt = rand.nextU();
205 return data.fFloat;
206 }
207
208 /* returns true if a == b as resulting from (int)x. Since it is undefined
209 what to do if the float exceeds 2^32-1, we check for that explicitly.
210 */
equal_float_native_skia(float x,uint32_t ni,uint32_t si)211 static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
212 if (!(x == x)) { // NAN
213 return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32;
214 }
215 // for out of range, C is undefined, but skia always should return NaN32
216 if (x > SK_MaxS32) {
217 return ((int32_t)si) == SK_MaxS32;
218 }
219 if (x < -SK_MaxS32) {
220 return ((int32_t)si) == SK_MinS32;
221 }
222 return si == ni;
223 }
224
assert_float_equal(skiatest::Reporter * reporter,const char op[],float x,uint32_t ni,uint32_t si)225 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
226 float x, uint32_t ni, uint32_t si) {
227 if (!equal_float_native_skia(x, ni, si)) {
228 ERRORF(reporter, "%s float %g bits %x native %x skia %x\n",
229 op, x, SkFloat2Bits(x), ni, si);
230 }
231 }
232
test_float_cast(skiatest::Reporter * reporter,float x)233 static void test_float_cast(skiatest::Reporter* reporter, float x) {
234 int ix = (int)x;
235 int iix = SkFloatToIntCast(x);
236 assert_float_equal(reporter, "cast", x, ix, iix);
237 }
238
test_float_floor(skiatest::Reporter * reporter,float x)239 static void test_float_floor(skiatest::Reporter* reporter, float x) {
240 int ix = (int)floor(x);
241 int iix = SkFloatToIntFloor(x);
242 assert_float_equal(reporter, "floor", x, ix, iix);
243 }
244
test_float_round(skiatest::Reporter * reporter,float x)245 static void test_float_round(skiatest::Reporter* reporter, float x) {
246 double xx = x + 0.5; // need intermediate double to avoid temp loss
247 int ix = (int)floor(xx);
248 int iix = SkFloatToIntRound(x);
249 assert_float_equal(reporter, "round", x, ix, iix);
250 }
251
test_float_ceil(skiatest::Reporter * reporter,float x)252 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
253 int ix = (int)ceil(x);
254 int iix = SkFloatToIntCeil(x);
255 assert_float_equal(reporter, "ceil", x, ix, iix);
256 }
257
test_float_conversions(skiatest::Reporter * reporter,float x)258 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
259 test_float_cast(reporter, x);
260 test_float_floor(reporter, x);
261 test_float_round(reporter, x);
262 test_float_ceil(reporter, x);
263 }
264
test_int2float(skiatest::Reporter * reporter,int ival)265 static void test_int2float(skiatest::Reporter* reporter, int ival) {
266 float x0 = (float)ival;
267 float x1 = SkIntToFloatCast(ival);
268 REPORTER_ASSERT(reporter, x0 == x1);
269 }
270
unittest_fastfloat(skiatest::Reporter * reporter)271 static void unittest_fastfloat(skiatest::Reporter* reporter) {
272 SkRandom rand;
273 size_t i;
274
275 static const float gFloats[] = {
276 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
277 0.000000001f, 1000000000.f, // doesn't overflow
278 0.0000000001f, 10000000000.f // does overflow
279 };
280 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
281 test_float_conversions(reporter, gFloats[i]);
282 test_float_conversions(reporter, -gFloats[i]);
283 }
284
285 for (int outer = 0; outer < 100; outer++) {
286 rand.setSeed(outer);
287 for (i = 0; i < 100000; i++) {
288 float x = nextFloat(rand);
289 test_float_conversions(reporter, x);
290 }
291
292 test_int2float(reporter, 0);
293 test_int2float(reporter, 1);
294 test_int2float(reporter, -1);
295 for (i = 0; i < 100000; i++) {
296 // for now only test ints that are 24bits or less, since we don't
297 // round (down) large ints the same as IEEE...
298 int ival = rand.nextU() & 0xFFFFFF;
299 test_int2float(reporter, ival);
300 test_int2float(reporter, -ival);
301 }
302 }
303 }
304
make_zero()305 static float make_zero() {
306 return sk_float_sin(0);
307 }
308
unittest_isfinite(skiatest::Reporter * reporter)309 static void unittest_isfinite(skiatest::Reporter* reporter) {
310 float nan = sk_float_asin(2);
311 float inf = 1.0f / make_zero();
312 float big = 3.40282e+038f;
313
314 REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
315 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
316 REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
317 REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
318
319 REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
320 REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
321 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
322 REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
323
324 REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
325 REPORTER_ASSERT(reporter, SkScalarIsFinite(big));
326 REPORTER_ASSERT(reporter, SkScalarIsFinite(-big));
327 REPORTER_ASSERT(reporter, SkScalarIsFinite(0));
328 }
329
unittest_half(skiatest::Reporter * reporter)330 static void unittest_half(skiatest::Reporter* reporter) {
331 static const float gFloats[] = {
332 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
333 -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
334 };
335
336 for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
337 SkHalf h = SkFloatToHalf(gFloats[i]);
338 float f = SkHalfToFloat(h);
339 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
340 }
341
342 // check some special values
343 union FloatUnion {
344 uint32_t fU;
345 float fF;
346 };
347
348 static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
349 SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
350 float f = SkHalfToFloat(h);
351 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
352
353 static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
354 h = SkFloatToHalf(largestNegativeHalf.fF);
355 f = SkHalfToFloat(h);
356 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
357
358 static const FloatUnion smallestPositiveHalf = { 102 << 23 };
359 h = SkFloatToHalf(smallestPositiveHalf.fF);
360 f = SkHalfToFloat(h);
361 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
362
363 static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
364 h = SkFloatToHalf(overflowHalf.fF);
365 f = SkHalfToFloat(h);
366 REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
367
368 static const FloatUnion underflowHalf = { 101 << 23 };
369 h = SkFloatToHalf(underflowHalf.fF);
370 f = SkHalfToFloat(h);
371 REPORTER_ASSERT(reporter, f == 0.0f );
372
373 static const FloatUnion inf32 = { 255 << 23 };
374 h = SkFloatToHalf(inf32.fF);
375 f = SkHalfToFloat(h);
376 REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
377
378 static const FloatUnion nan32 = { 255 << 23 | 1 };
379 h = SkFloatToHalf(nan32.fF);
380 f = SkHalfToFloat(h);
381 REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
382
383 }
384
test_muldiv255(skiatest::Reporter * reporter)385 static void test_muldiv255(skiatest::Reporter* reporter) {
386 for (int a = 0; a <= 255; a++) {
387 for (int b = 0; b <= 255; b++) {
388 int ab = a * b;
389 float s = ab / 255.0f;
390 int round = (int)floorf(s + 0.5f);
391 int trunc = (int)floorf(s);
392
393 int iround = SkMulDiv255Round(a, b);
394 int itrunc = SkMulDiv255Trunc(a, b);
395
396 REPORTER_ASSERT(reporter, iround == round);
397 REPORTER_ASSERT(reporter, itrunc == trunc);
398
399 REPORTER_ASSERT(reporter, itrunc <= iround);
400 REPORTER_ASSERT(reporter, iround <= a);
401 REPORTER_ASSERT(reporter, iround <= b);
402 }
403 }
404 }
405
test_muldiv255ceiling(skiatest::Reporter * reporter)406 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
407 for (int c = 0; c <= 255; c++) {
408 for (int a = 0; a <= 255; a++) {
409 int product = (c * a + 255);
410 int expected_ceiling = (product + (product >> 8)) >> 8;
411 int webkit_ceiling = (c * a + 254) / 255;
412 REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
413 int skia_ceiling = SkMulDiv255Ceiling(c, a);
414 REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
415 }
416 }
417 }
418
test_copysign(skiatest::Reporter * reporter)419 static void test_copysign(skiatest::Reporter* reporter) {
420 static const int32_t gTriples[] = {
421 // x, y, expected result
422 0, 0, 0,
423 0, 1, 0,
424 0, -1, 0,
425 1, 0, 1,
426 1, 1, 1,
427 1, -1, -1,
428 -1, 0, 1,
429 -1, 1, 1,
430 -1, -1, -1,
431 };
432 for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
433 REPORTER_ASSERT(reporter,
434 SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
435 float x = (float)gTriples[i];
436 float y = (float)gTriples[i+1];
437 float expected = (float)gTriples[i+2];
438 REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
439 }
440
441 SkRandom rand;
442 for (int j = 0; j < 1000; j++) {
443 int ix = rand.nextS();
444 REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
445 REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
446 REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
447 REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
448
449 SkScalar sx = rand.nextSScalar1();
450 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
451 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
452 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
453 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
454 }
455 }
456
DEF_TEST(Math,reporter)457 DEF_TEST(Math, reporter) {
458 int i;
459 SkRandom rand;
460
461 // these should assert
462 #if 0
463 SkToS8(128);
464 SkToS8(-129);
465 SkToU8(256);
466 SkToU8(-5);
467
468 SkToS16(32768);
469 SkToS16(-32769);
470 SkToU16(65536);
471 SkToU16(-5);
472
473 if (sizeof(size_t) > 4) {
474 SkToS32(4*1024*1024);
475 SkToS32(-4*1024*1024);
476 SkToU32(5*1024*1024);
477 SkToU32(-5);
478 }
479 #endif
480
481 test_muldiv255(reporter);
482 test_muldiv255ceiling(reporter);
483 test_copysign(reporter);
484
485 {
486 SkScalar x = SK_ScalarNaN;
487 REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
488 }
489
490 for (i = 0; i < 1000; i++) {
491 int value = rand.nextS16();
492 int max = rand.nextU16();
493
494 int clamp = SkClampMax(value, max);
495 int clamp2 = value < 0 ? 0 : (value > max ? max : value);
496 REPORTER_ASSERT(reporter, clamp == clamp2);
497 }
498
499 for (i = 0; i < 10000; i++) {
500 SkPoint p;
501
502 // These random values are being treated as 32-bit-patterns, not as
503 // ints; calling SkIntToScalar() here produces crashes.
504 p.setLength((SkScalar) rand.nextS(),
505 (SkScalar) rand.nextS(),
506 SK_Scalar1);
507 check_length(reporter, p, SK_Scalar1);
508 p.setLength((SkScalar) (rand.nextS() >> 13),
509 (SkScalar) (rand.nextS() >> 13),
510 SK_Scalar1);
511 check_length(reporter, p, SK_Scalar1);
512 }
513
514 {
515 SkFixed result = SkFixedDiv(100, 100);
516 REPORTER_ASSERT(reporter, result == SK_Fixed1);
517 result = SkFixedDiv(1, SK_Fixed1);
518 REPORTER_ASSERT(reporter, result == 1);
519 }
520
521 unittest_fastfloat(reporter);
522 unittest_isfinite(reporter);
523 unittest_half(reporter);
524
525 for (i = 0; i < 10000; i++) {
526 SkFixed numer = rand.nextS();
527 SkFixed denom = rand.nextS();
528 SkFixed result = SkFixedDiv(numer, denom);
529 int64_t check = ((int64_t)numer << 16) / denom;
530
531 (void)SkCLZ(numer);
532 (void)SkCLZ(denom);
533
534 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
535 if (check > SK_MaxS32) {
536 check = SK_MaxS32;
537 } else if (check < -SK_MaxS32) {
538 check = SK_MinS32;
539 }
540 if (result != (int32_t)check) {
541 ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check);
542 }
543 REPORTER_ASSERT(reporter, result == (int32_t)check);
544 }
545
546 test_blend(reporter);
547
548 if (false) test_floor(reporter);
549
550 // disable for now
551 if (false) test_blend31(); // avoid bit rot, suppress warning
552
553 test_muldivround(reporter);
554 test_clz(reporter);
555 }
556
557 template <typename T> struct PairRec {
558 T fYin;
559 T fYang;
560 };
561
DEF_TEST(TestEndian,reporter)562 DEF_TEST(TestEndian, reporter) {
563 static const PairRec<uint16_t> g16[] = {
564 { 0x0, 0x0 },
565 { 0xFFFF, 0xFFFF },
566 { 0x1122, 0x2211 },
567 };
568 static const PairRec<uint32_t> g32[] = {
569 { 0x0, 0x0 },
570 { 0xFFFFFFFF, 0xFFFFFFFF },
571 { 0x11223344, 0x44332211 },
572 };
573 static const PairRec<uint64_t> g64[] = {
574 { 0x0, 0x0 },
575 { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL },
576 { 0x1122334455667788ULL, 0x8877665544332211ULL },
577 };
578
579 REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
580 REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
581 REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
582
583 for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
584 REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
585 }
586 for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
587 REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
588 }
589 for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
590 REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
591 }
592 }
593
594 template <typename T>
test_divmod(skiatest::Reporter * r)595 static void test_divmod(skiatest::Reporter* r) {
596 const struct {
597 T numer;
598 T denom;
599 } kEdgeCases[] = {
600 {(T)17, (T)17},
601 {(T)17, (T)4},
602 {(T)0, (T)17},
603 // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them.
604 {(T)-17, (T)-17},
605 {(T)-17, (T)4},
606 {(T)17, (T)-4},
607 {(T)-17, (T)-4},
608 };
609
610 for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
611 const T numer = kEdgeCases[i].numer;
612 const T denom = kEdgeCases[i].denom;
613 T div, mod;
614 SkTDivMod(numer, denom, &div, &mod);
615 REPORTER_ASSERT(r, numer/denom == div);
616 REPORTER_ASSERT(r, numer%denom == mod);
617 }
618
619 SkRandom rand;
620 for (size_t i = 0; i < 10000; i++) {
621 const T numer = (T)rand.nextS();
622 T denom = 0;
623 while (0 == denom) {
624 denom = (T)rand.nextS();
625 }
626 T div, mod;
627 SkTDivMod(numer, denom, &div, &mod);
628 REPORTER_ASSERT(r, numer/denom == div);
629 REPORTER_ASSERT(r, numer%denom == mod);
630 }
631 }
632
DEF_TEST(divmod_u8,r)633 DEF_TEST(divmod_u8, r) {
634 test_divmod<uint8_t>(r);
635 }
636
DEF_TEST(divmod_u16,r)637 DEF_TEST(divmod_u16, r) {
638 test_divmod<uint16_t>(r);
639 }
640
DEF_TEST(divmod_u32,r)641 DEF_TEST(divmod_u32, r) {
642 test_divmod<uint32_t>(r);
643 }
644
DEF_TEST(divmod_u64,r)645 DEF_TEST(divmod_u64, r) {
646 test_divmod<uint64_t>(r);
647 }
648
DEF_TEST(divmod_s8,r)649 DEF_TEST(divmod_s8, r) {
650 test_divmod<int8_t>(r);
651 }
652
DEF_TEST(divmod_s16,r)653 DEF_TEST(divmod_s16, r) {
654 test_divmod<int16_t>(r);
655 }
656
DEF_TEST(divmod_s32,r)657 DEF_TEST(divmod_s32, r) {
658 test_divmod<int32_t>(r);
659 }
660
DEF_TEST(divmod_s64,r)661 DEF_TEST(divmod_s64, r) {
662 test_divmod<int64_t>(r);
663 }
664