• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkColorPriv.h"
9 #include "SkEndian.h"
10 #include "SkFloatBits.h"
11 #include "SkFloatingPoint.h"
12 #include "SkHalf.h"
13 #include "SkMathPriv.h"
14 #include "SkPoint.h"
15 #include "SkRandom.h"
16 #include "Test.h"
17 
test_clz(skiatest::Reporter * reporter)18 static void test_clz(skiatest::Reporter* reporter) {
19     REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
20     REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
21     REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
22     REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
23 
24     SkRandom rand;
25     for (int i = 0; i < 1000; ++i) {
26         uint32_t mask = rand.nextU();
27         // need to get some zeros for testing, but in some obscure way so the
28         // compiler won't "see" that, and work-around calling the functions.
29         mask >>= (mask & 31);
30         int intri = SkCLZ(mask);
31         int porta = SkCLZ_portable(mask);
32         REPORTER_ASSERT(reporter, intri == porta);
33     }
34 }
35 
36 ///////////////////////////////////////////////////////////////////////////////
37 
sk_fsel(float pred,float result_ge,float result_lt)38 static float sk_fsel(float pred, float result_ge, float result_lt) {
39     return pred >= 0 ? result_ge : result_lt;
40 }
41 
fast_floor(float x)42 static float fast_floor(float x) {
43 //    float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
44     float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
45     return (float)(x + big) - big;
46 }
47 
std_floor(float x)48 static float std_floor(float x) {
49     return sk_float_floor(x);
50 }
51 
test_floor_value(skiatest::Reporter * reporter,float value)52 static void test_floor_value(skiatest::Reporter* reporter, float value) {
53     float fast = fast_floor(value);
54     float std = std_floor(value);
55     REPORTER_ASSERT(reporter, std == fast);
56 //    SkDebugf("value[%1.9f] std[%g] fast[%g] equal[%d]\n",
57 //             value, std, fast, std == fast);
58 }
59 
test_floor(skiatest::Reporter * reporter)60 static void test_floor(skiatest::Reporter* reporter) {
61     static const float gVals[] = {
62         0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
63     };
64 
65     for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
66         test_floor_value(reporter, gVals[i]);
67 //        test_floor_value(reporter, -gVals[i]);
68     }
69 }
70 
71 ///////////////////////////////////////////////////////////////////////////////
72 
73 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
test_muldivround(skiatest::Reporter * reporter)74 static void test_muldivround(skiatest::Reporter* reporter) {
75 #if 0
76     // this "complete" test is too slow, so we test a random sampling of it
77 
78     for (int a = 0; a <= 32767; ++a) {
79         for (int b = 0; b <= 32767; ++b) {
80             unsigned prod0 = SkMul16ShiftRound(a, b, 8);
81             unsigned prod1 = SkMulDiv255Round(a, b);
82             SkASSERT(prod0 == prod1);
83         }
84     }
85 #endif
86 
87     SkRandom rand;
88     for (int i = 0; i < 10000; ++i) {
89         unsigned a = rand.nextU() & 0x7FFF;
90         unsigned b = rand.nextU() & 0x7FFF;
91 
92         unsigned prod0 = SkMul16ShiftRound(a, b, 8);
93         unsigned prod1 = SkMulDiv255Round(a, b);
94 
95         REPORTER_ASSERT(reporter, prod0 == prod1);
96     }
97 }
98 
float_blend(int src,int dst,float unit)99 static float float_blend(int src, int dst, float unit) {
100     return dst + (src - dst) * unit;
101 }
102 
blend31(int src,int dst,int a31)103 static int blend31(int src, int dst, int a31) {
104     return dst + ((src - dst) * a31 * 2114 >> 16);
105     //    return dst + ((src - dst) * a31 * 33 >> 10);
106 }
107 
blend31_slow(int src,int dst,int a31)108 static int blend31_slow(int src, int dst, int a31) {
109     int prod = src * a31 + (31 - a31) * dst + 16;
110     prod = (prod + (prod >> 5)) >> 5;
111     return prod;
112 }
113 
blend31_round(int src,int dst,int a31)114 static int blend31_round(int src, int dst, int a31) {
115     int prod = (src - dst) * a31 + 16;
116     prod = (prod + (prod >> 5)) >> 5;
117     return dst + prod;
118 }
119 
blend31_old(int src,int dst,int a31)120 static int blend31_old(int src, int dst, int a31) {
121     a31 += a31 >> 4;
122     return dst + ((src - dst) * a31 >> 5);
123 }
124 
125 // suppress unused code warning
126 static int (*blend_functions[])(int, int, int) = {
127     blend31,
128     blend31_slow,
129     blend31_round,
130     blend31_old
131 };
132 
test_blend31()133 static void test_blend31() {
134     int failed = 0;
135     int death = 0;
136     if (false) { // avoid bit rot, suppress warning
137         failed = (*blend_functions[0])(0,0,0);
138     }
139     for (int src = 0; src <= 255; src++) {
140         for (int dst = 0; dst <= 255; dst++) {
141             for (int a = 0; a <= 31; a++) {
142 //                int r0 = blend31(src, dst, a);
143 //                int r0 = blend31_round(src, dst, a);
144 //                int r0 = blend31_old(src, dst, a);
145                 int r0 = blend31_slow(src, dst, a);
146 
147                 float f = float_blend(src, dst, a / 31.f);
148                 int r1 = (int)f;
149                 int r2 = SkScalarRoundToInt(f);
150 
151                 if (r0 != r1 && r0 != r2) {
152                     SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
153                                   src,   dst, a,        r0,      f);
154                     failed += 1;
155                 }
156                 if (r0 > 255) {
157                     death += 1;
158                     SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
159                                         src,   dst, a,        r0,      f);
160                 }
161             }
162         }
163     }
164     SkDebugf("---- failed %d death %d\n", failed, death);
165 }
166 
test_blend(skiatest::Reporter * reporter)167 static void test_blend(skiatest::Reporter* reporter) {
168     for (int src = 0; src <= 255; src++) {
169         for (int dst = 0; dst <= 255; dst++) {
170             for (int a = 0; a <= 255; a++) {
171                 int r0 = SkAlphaBlend255(src, dst, a);
172                 float f1 = float_blend(src, dst, a / 255.f);
173                 int r1 = SkScalarRoundToInt(f1);
174 
175                 if (r0 != r1) {
176                     float diff = sk_float_abs(f1 - r1);
177                     diff = sk_float_abs(diff - 0.5f);
178                     if (diff > (1 / 255.f)) {
179 #ifdef SK_DEBUG
180                         SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
181                                  src, dst, a, r0, f1);
182 #endif
183                         REPORTER_ASSERT(reporter, false);
184                     }
185                 }
186             }
187         }
188     }
189 }
190 
check_length(skiatest::Reporter * reporter,const SkPoint & p,SkScalar targetLen)191 static void check_length(skiatest::Reporter* reporter,
192                          const SkPoint& p, SkScalar targetLen) {
193     float x = SkScalarToFloat(p.fX);
194     float y = SkScalarToFloat(p.fY);
195     float len = sk_float_sqrt(x*x + y*y);
196 
197     len /= SkScalarToFloat(targetLen);
198 
199     REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
200 }
201 
nextFloat(SkRandom & rand)202 static float nextFloat(SkRandom& rand) {
203     SkFloatIntUnion data;
204     data.fSignBitInt = rand.nextU();
205     return data.fFloat;
206 }
207 
208 /*  returns true if a == b as resulting from (int)x. Since it is undefined
209  what to do if the float exceeds 2^32-1, we check for that explicitly.
210  */
equal_float_native_skia(float x,uint32_t ni,uint32_t si)211 static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
212     if (!(x == x)) {    // NAN
213         return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32;
214     }
215     // for out of range, C is undefined, but skia always should return NaN32
216     if (x > SK_MaxS32) {
217         return ((int32_t)si) == SK_MaxS32;
218     }
219     if (x < -SK_MaxS32) {
220         return ((int32_t)si) == SK_MinS32;
221     }
222     return si == ni;
223 }
224 
assert_float_equal(skiatest::Reporter * reporter,const char op[],float x,uint32_t ni,uint32_t si)225 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
226                                float x, uint32_t ni, uint32_t si) {
227     if (!equal_float_native_skia(x, ni, si)) {
228         ERRORF(reporter, "%s float %g bits %x native %x skia %x\n",
229                op, x, SkFloat2Bits(x), ni, si);
230     }
231 }
232 
test_float_cast(skiatest::Reporter * reporter,float x)233 static void test_float_cast(skiatest::Reporter* reporter, float x) {
234     int ix = (int)x;
235     int iix = SkFloatToIntCast(x);
236     assert_float_equal(reporter, "cast", x, ix, iix);
237 }
238 
test_float_floor(skiatest::Reporter * reporter,float x)239 static void test_float_floor(skiatest::Reporter* reporter, float x) {
240     int ix = (int)floor(x);
241     int iix = SkFloatToIntFloor(x);
242     assert_float_equal(reporter, "floor", x, ix, iix);
243 }
244 
test_float_round(skiatest::Reporter * reporter,float x)245 static void test_float_round(skiatest::Reporter* reporter, float x) {
246     double xx = x + 0.5;    // need intermediate double to avoid temp loss
247     int ix = (int)floor(xx);
248     int iix = SkFloatToIntRound(x);
249     assert_float_equal(reporter, "round", x, ix, iix);
250 }
251 
test_float_ceil(skiatest::Reporter * reporter,float x)252 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
253     int ix = (int)ceil(x);
254     int iix = SkFloatToIntCeil(x);
255     assert_float_equal(reporter, "ceil", x, ix, iix);
256 }
257 
test_float_conversions(skiatest::Reporter * reporter,float x)258 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
259     test_float_cast(reporter, x);
260     test_float_floor(reporter, x);
261     test_float_round(reporter, x);
262     test_float_ceil(reporter, x);
263 }
264 
test_int2float(skiatest::Reporter * reporter,int ival)265 static void test_int2float(skiatest::Reporter* reporter, int ival) {
266     float x0 = (float)ival;
267     float x1 = SkIntToFloatCast(ival);
268     REPORTER_ASSERT(reporter, x0 == x1);
269 }
270 
unittest_fastfloat(skiatest::Reporter * reporter)271 static void unittest_fastfloat(skiatest::Reporter* reporter) {
272     SkRandom rand;
273     size_t i;
274 
275     static const float gFloats[] = {
276         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
277         0.000000001f, 1000000000.f,     // doesn't overflow
278         0.0000000001f, 10000000000.f    // does overflow
279     };
280     for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
281         test_float_conversions(reporter, gFloats[i]);
282         test_float_conversions(reporter, -gFloats[i]);
283     }
284 
285     for (int outer = 0; outer < 100; outer++) {
286         rand.setSeed(outer);
287         for (i = 0; i < 100000; i++) {
288             float x = nextFloat(rand);
289             test_float_conversions(reporter, x);
290         }
291 
292         test_int2float(reporter, 0);
293         test_int2float(reporter, 1);
294         test_int2float(reporter, -1);
295         for (i = 0; i < 100000; i++) {
296             // for now only test ints that are 24bits or less, since we don't
297             // round (down) large ints the same as IEEE...
298             int ival = rand.nextU() & 0xFFFFFF;
299             test_int2float(reporter, ival);
300             test_int2float(reporter, -ival);
301         }
302     }
303 }
304 
make_zero()305 static float make_zero() {
306     return sk_float_sin(0);
307 }
308 
unittest_isfinite(skiatest::Reporter * reporter)309 static void unittest_isfinite(skiatest::Reporter* reporter) {
310     float nan = sk_float_asin(2);
311     float inf = 1.0f / make_zero();
312     float big = 3.40282e+038f;
313 
314     REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
315     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
316     REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
317     REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
318 
319     REPORTER_ASSERT(reporter,  SkScalarIsNaN(nan));
320     REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
321     REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
322     REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
323 
324     REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
325     REPORTER_ASSERT(reporter,  SkScalarIsFinite(big));
326     REPORTER_ASSERT(reporter,  SkScalarIsFinite(-big));
327     REPORTER_ASSERT(reporter,  SkScalarIsFinite(0));
328 }
329 
unittest_half(skiatest::Reporter * reporter)330 static void unittest_half(skiatest::Reporter* reporter) {
331     static const float gFloats[] = {
332         0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
333         -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
334     };
335 
336     for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
337         SkHalf h = SkFloatToHalf(gFloats[i]);
338         float f = SkHalfToFloat(h);
339         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
340     }
341 
342     // check some special values
343     union FloatUnion {
344         uint32_t fU;
345         float    fF;
346     };
347 
348     static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
349     SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
350     float f = SkHalfToFloat(h);
351     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
352 
353     static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
354     h = SkFloatToHalf(largestNegativeHalf.fF);
355     f = SkHalfToFloat(h);
356     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
357 
358     static const FloatUnion smallestPositiveHalf = { 102 << 23 };
359     h = SkFloatToHalf(smallestPositiveHalf.fF);
360     f = SkHalfToFloat(h);
361     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
362 
363     static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
364     h = SkFloatToHalf(overflowHalf.fF);
365     f = SkHalfToFloat(h);
366     REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
367 
368     static const FloatUnion underflowHalf = { 101 << 23 };
369     h = SkFloatToHalf(underflowHalf.fF);
370     f = SkHalfToFloat(h);
371     REPORTER_ASSERT(reporter, f == 0.0f );
372 
373     static const FloatUnion inf32 = { 255 << 23 };
374     h = SkFloatToHalf(inf32.fF);
375     f = SkHalfToFloat(h);
376     REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
377 
378     static const FloatUnion nan32 = { 255 << 23 | 1 };
379     h = SkFloatToHalf(nan32.fF);
380     f = SkHalfToFloat(h);
381     REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
382 
383 }
384 
test_muldiv255(skiatest::Reporter * reporter)385 static void test_muldiv255(skiatest::Reporter* reporter) {
386     for (int a = 0; a <= 255; a++) {
387         for (int b = 0; b <= 255; b++) {
388             int ab = a * b;
389             float s = ab / 255.0f;
390             int round = (int)floorf(s + 0.5f);
391             int trunc = (int)floorf(s);
392 
393             int iround = SkMulDiv255Round(a, b);
394             int itrunc = SkMulDiv255Trunc(a, b);
395 
396             REPORTER_ASSERT(reporter, iround == round);
397             REPORTER_ASSERT(reporter, itrunc == trunc);
398 
399             REPORTER_ASSERT(reporter, itrunc <= iround);
400             REPORTER_ASSERT(reporter, iround <= a);
401             REPORTER_ASSERT(reporter, iround <= b);
402         }
403     }
404 }
405 
test_muldiv255ceiling(skiatest::Reporter * reporter)406 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
407     for (int c = 0; c <= 255; c++) {
408         for (int a = 0; a <= 255; a++) {
409             int product = (c * a + 255);
410             int expected_ceiling = (product + (product >> 8)) >> 8;
411             int webkit_ceiling = (c * a + 254) / 255;
412             REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
413             int skia_ceiling = SkMulDiv255Ceiling(c, a);
414             REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
415         }
416     }
417 }
418 
test_copysign(skiatest::Reporter * reporter)419 static void test_copysign(skiatest::Reporter* reporter) {
420     static const int32_t gTriples[] = {
421         // x, y, expected result
422         0, 0, 0,
423         0, 1, 0,
424         0, -1, 0,
425         1, 0, 1,
426         1, 1, 1,
427         1, -1, -1,
428         -1, 0, 1,
429         -1, 1, 1,
430         -1, -1, -1,
431     };
432     for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
433         REPORTER_ASSERT(reporter,
434                         SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
435         float x = (float)gTriples[i];
436         float y = (float)gTriples[i+1];
437         float expected = (float)gTriples[i+2];
438         REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
439     }
440 
441     SkRandom rand;
442     for (int j = 0; j < 1000; j++) {
443         int ix = rand.nextS();
444         REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
445         REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
446         REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
447         REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
448 
449         SkScalar sx = rand.nextSScalar1();
450         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
451         REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
452         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
453         REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
454     }
455 }
456 
DEF_TEST(Math,reporter)457 DEF_TEST(Math, reporter) {
458     int         i;
459     SkRandom    rand;
460 
461     // these should assert
462 #if 0
463     SkToS8(128);
464     SkToS8(-129);
465     SkToU8(256);
466     SkToU8(-5);
467 
468     SkToS16(32768);
469     SkToS16(-32769);
470     SkToU16(65536);
471     SkToU16(-5);
472 
473     if (sizeof(size_t) > 4) {
474         SkToS32(4*1024*1024);
475         SkToS32(-4*1024*1024);
476         SkToU32(5*1024*1024);
477         SkToU32(-5);
478     }
479 #endif
480 
481     test_muldiv255(reporter);
482     test_muldiv255ceiling(reporter);
483     test_copysign(reporter);
484 
485     {
486         SkScalar x = SK_ScalarNaN;
487         REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
488     }
489 
490     for (i = 0; i < 1000; i++) {
491         int value = rand.nextS16();
492         int max = rand.nextU16();
493 
494         int clamp = SkClampMax(value, max);
495         int clamp2 = value < 0 ? 0 : (value > max ? max : value);
496         REPORTER_ASSERT(reporter, clamp == clamp2);
497     }
498 
499     for (i = 0; i < 10000; i++) {
500         SkPoint p;
501 
502         // These random values are being treated as 32-bit-patterns, not as
503         // ints; calling SkIntToScalar() here produces crashes.
504         p.setLength((SkScalar) rand.nextS(),
505                     (SkScalar) rand.nextS(),
506                     SK_Scalar1);
507         check_length(reporter, p, SK_Scalar1);
508         p.setLength((SkScalar) (rand.nextS() >> 13),
509                     (SkScalar) (rand.nextS() >> 13),
510                     SK_Scalar1);
511         check_length(reporter, p, SK_Scalar1);
512     }
513 
514     {
515         SkFixed result = SkFixedDiv(100, 100);
516         REPORTER_ASSERT(reporter, result == SK_Fixed1);
517         result = SkFixedDiv(1, SK_Fixed1);
518         REPORTER_ASSERT(reporter, result == 1);
519     }
520 
521     unittest_fastfloat(reporter);
522     unittest_isfinite(reporter);
523     unittest_half(reporter);
524 
525     for (i = 0; i < 10000; i++) {
526         SkFixed numer = rand.nextS();
527         SkFixed denom = rand.nextS();
528         SkFixed result = SkFixedDiv(numer, denom);
529         int64_t check = ((int64_t)numer << 16) / denom;
530 
531         (void)SkCLZ(numer);
532         (void)SkCLZ(denom);
533 
534         REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
535         if (check > SK_MaxS32) {
536             check = SK_MaxS32;
537         } else if (check < -SK_MaxS32) {
538             check = SK_MinS32;
539         }
540         if (result != (int32_t)check) {
541             ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check);
542         }
543         REPORTER_ASSERT(reporter, result == (int32_t)check);
544     }
545 
546     test_blend(reporter);
547 
548     if (false) test_floor(reporter);
549 
550     // disable for now
551     if (false) test_blend31();  // avoid bit rot, suppress warning
552 
553     test_muldivround(reporter);
554     test_clz(reporter);
555 }
556 
557 template <typename T> struct PairRec {
558     T   fYin;
559     T   fYang;
560 };
561 
DEF_TEST(TestEndian,reporter)562 DEF_TEST(TestEndian, reporter) {
563     static const PairRec<uint16_t> g16[] = {
564         { 0x0,      0x0     },
565         { 0xFFFF,   0xFFFF  },
566         { 0x1122,   0x2211  },
567     };
568     static const PairRec<uint32_t> g32[] = {
569         { 0x0,          0x0         },
570         { 0xFFFFFFFF,   0xFFFFFFFF  },
571         { 0x11223344,   0x44332211  },
572     };
573     static const PairRec<uint64_t> g64[] = {
574         { 0x0,      0x0                             },
575         { 0xFFFFFFFFFFFFFFFFULL,  0xFFFFFFFFFFFFFFFFULL  },
576         { 0x1122334455667788ULL,  0x8877665544332211ULL  },
577     };
578 
579     REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
580     REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
581     REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
582 
583     for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
584         REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
585     }
586     for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
587         REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
588     }
589     for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
590         REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
591     }
592 }
593 
594 template <typename T>
test_divmod(skiatest::Reporter * r)595 static void test_divmod(skiatest::Reporter* r) {
596     const struct {
597         T numer;
598         T denom;
599     } kEdgeCases[] = {
600         {(T)17, (T)17},
601         {(T)17, (T)4},
602         {(T)0,  (T)17},
603         // For unsigned T these negatives are just some large numbers.  Doesn't hurt to test them.
604         {(T)-17, (T)-17},
605         {(T)-17, (T)4},
606         {(T)17,  (T)-4},
607         {(T)-17, (T)-4},
608     };
609 
610     for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
611         const T numer = kEdgeCases[i].numer;
612         const T denom = kEdgeCases[i].denom;
613         T div, mod;
614         SkTDivMod(numer, denom, &div, &mod);
615         REPORTER_ASSERT(r, numer/denom == div);
616         REPORTER_ASSERT(r, numer%denom == mod);
617     }
618 
619     SkRandom rand;
620     for (size_t i = 0; i < 10000; i++) {
621         const T numer = (T)rand.nextS();
622         T denom = 0;
623         while (0 == denom) {
624             denom = (T)rand.nextS();
625         }
626         T div, mod;
627         SkTDivMod(numer, denom, &div, &mod);
628         REPORTER_ASSERT(r, numer/denom == div);
629         REPORTER_ASSERT(r, numer%denom == mod);
630     }
631 }
632 
DEF_TEST(divmod_u8,r)633 DEF_TEST(divmod_u8, r) {
634     test_divmod<uint8_t>(r);
635 }
636 
DEF_TEST(divmod_u16,r)637 DEF_TEST(divmod_u16, r) {
638     test_divmod<uint16_t>(r);
639 }
640 
DEF_TEST(divmod_u32,r)641 DEF_TEST(divmod_u32, r) {
642     test_divmod<uint32_t>(r);
643 }
644 
DEF_TEST(divmod_u64,r)645 DEF_TEST(divmod_u64, r) {
646     test_divmod<uint64_t>(r);
647 }
648 
DEF_TEST(divmod_s8,r)649 DEF_TEST(divmod_s8, r) {
650     test_divmod<int8_t>(r);
651 }
652 
DEF_TEST(divmod_s16,r)653 DEF_TEST(divmod_s16, r) {
654     test_divmod<int16_t>(r);
655 }
656 
DEF_TEST(divmod_s32,r)657 DEF_TEST(divmod_s32, r) {
658     test_divmod<int32_t>(r);
659 }
660 
DEF_TEST(divmod_s64,r)661 DEF_TEST(divmod_s64, r) {
662     test_divmod<int64_t>(r);
663 }
664