• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkMath.h"
9 #include "SkMatrix.h"
10 #include "SkMatrixUtils.h"
11 #include "SkRandom.h"
12 #include "Test.h"
13 
nearly_equal_scalar(SkScalar a,SkScalar b)14 static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
15     const SkScalar tolerance = SK_Scalar1 / 200000;
16     return SkScalarAbs(a - b) <= tolerance;
17 }
18 
nearly_equal(const SkMatrix & a,const SkMatrix & b)19 static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) {
20     for (int i = 0; i < 9; i++) {
21         if (!nearly_equal_scalar(a[i], b[i])) {
22             SkDebugf("not equal %g %g\n", (float)a[i], (float)b[i]);
23             return false;
24         }
25     }
26     return true;
27 }
28 
are_equal(skiatest::Reporter * reporter,const SkMatrix & a,const SkMatrix & b)29 static bool are_equal(skiatest::Reporter* reporter,
30                       const SkMatrix& a,
31                       const SkMatrix& b) {
32     bool equal = a == b;
33     bool cheapEqual = a.cheapEqualTo(b);
34     if (equal != cheapEqual) {
35         if (equal) {
36             bool foundZeroSignDiff = false;
37             for (int i = 0; i < 9; ++i) {
38                 float aVal = a.get(i);
39                 float bVal = b.get(i);
40                 int aValI = *SkTCast<int*>(&aVal);
41                 int bValI = *SkTCast<int*>(&bVal);
42                 if (0 == aVal && 0 == bVal && aValI != bValI) {
43                     foundZeroSignDiff = true;
44                 } else {
45                     REPORTER_ASSERT(reporter, aVal == bVal && aValI == aValI);
46                 }
47             }
48             REPORTER_ASSERT(reporter, foundZeroSignDiff);
49         } else {
50             bool foundNaN = false;
51             for (int i = 0; i < 9; ++i) {
52                 float aVal = a.get(i);
53                 float bVal = b.get(i);
54                 int aValI = *SkTCast<int*>(&aVal);
55                 int bValI = *SkTCast<int*>(&bVal);
56                 if (sk_float_isnan(aVal) && aValI == bValI) {
57                     foundNaN = true;
58                 } else {
59                     REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
60                 }
61             }
62             REPORTER_ASSERT(reporter, foundNaN);
63         }
64     }
65     return equal;
66 }
67 
is_identity(const SkMatrix & m)68 static bool is_identity(const SkMatrix& m) {
69     SkMatrix identity;
70     identity.reset();
71     return nearly_equal(m, identity);
72 }
73 
assert9(skiatest::Reporter * reporter,const SkMatrix & m,SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar e,SkScalar f,SkScalar g,SkScalar h,SkScalar i)74 static void assert9(skiatest::Reporter* reporter, const SkMatrix& m,
75                     SkScalar a, SkScalar b, SkScalar c,
76                     SkScalar d, SkScalar e, SkScalar f,
77                     SkScalar g, SkScalar h, SkScalar i) {
78     SkScalar buffer[9];
79     m.get9(buffer);
80     REPORTER_ASSERT(reporter, buffer[0] == a);
81     REPORTER_ASSERT(reporter, buffer[1] == b);
82     REPORTER_ASSERT(reporter, buffer[2] == c);
83     REPORTER_ASSERT(reporter, buffer[3] == d);
84     REPORTER_ASSERT(reporter, buffer[4] == e);
85     REPORTER_ASSERT(reporter, buffer[5] == f);
86     REPORTER_ASSERT(reporter, buffer[6] == g);
87     REPORTER_ASSERT(reporter, buffer[7] == h);
88     REPORTER_ASSERT(reporter, buffer[8] == i);
89 }
90 
test_set9(skiatest::Reporter * reporter)91 static void test_set9(skiatest::Reporter* reporter) {
92 
93     SkMatrix m;
94     m.reset();
95     assert9(reporter, m, 1, 0, 0, 0, 1, 0, 0, 0, 1);
96 
97     m.setScale(2, 3);
98     assert9(reporter, m, 2, 0, 0, 0, 3, 0, 0, 0, 1);
99 
100     m.postTranslate(4, 5);
101     assert9(reporter, m, 2, 0, 4, 0, 3, 5, 0, 0, 1);
102 
103     SkScalar buffer[9];
104     sk_bzero(buffer, sizeof(buffer));
105     buffer[SkMatrix::kMScaleX] = 1;
106     buffer[SkMatrix::kMScaleY] = 1;
107     buffer[SkMatrix::kMPersp2] = 1;
108     REPORTER_ASSERT(reporter, !m.isIdentity());
109     m.set9(buffer);
110     REPORTER_ASSERT(reporter, m.isIdentity());
111 }
112 
test_matrix_recttorect(skiatest::Reporter * reporter)113 static void test_matrix_recttorect(skiatest::Reporter* reporter) {
114     SkRect src, dst;
115     SkMatrix matrix;
116 
117     src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10);
118     dst = src;
119     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
120     REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType());
121     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
122 
123     dst.offset(SK_Scalar1, SK_Scalar1);
124     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
125     REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType());
126     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
127 
128     dst.fRight += SK_Scalar1;
129     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
130     REPORTER_ASSERT(reporter,
131                     (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType());
132     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
133 
134     dst = src;
135     dst.fRight = src.fRight * 2;
136     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
137     REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType());
138     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
139 }
140 
test_flatten(skiatest::Reporter * reporter,const SkMatrix & m)141 static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) {
142     // add 100 in case we have a bug, I don't want to kill my stack in the test
143     static const size_t kBufferSize = SkMatrix::kMaxFlattenSize + 100;
144     char buffer[kBufferSize];
145     size_t size1 = m.writeToMemory(NULL);
146     size_t size2 = m.writeToMemory(buffer);
147     REPORTER_ASSERT(reporter, size1 == size2);
148     REPORTER_ASSERT(reporter, size1 <= SkMatrix::kMaxFlattenSize);
149 
150     SkMatrix m2;
151     size_t size3 = m2.readFromMemory(buffer, kBufferSize);
152     REPORTER_ASSERT(reporter, size1 == size3);
153     REPORTER_ASSERT(reporter, are_equal(reporter, m, m2));
154 
155     char buffer2[kBufferSize];
156     size3 = m2.writeToMemory(buffer2);
157     REPORTER_ASSERT(reporter, size1 == size3);
158     REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
159 }
160 
test_matrix_min_max_scale(skiatest::Reporter * reporter)161 static void test_matrix_min_max_scale(skiatest::Reporter* reporter) {
162     SkScalar scales[2];
163     bool success;
164 
165     SkMatrix identity;
166     identity.reset();
167     REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale());
168     REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale());
169     success = identity.getMinMaxScales(scales);
170     REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
171 
172     SkMatrix scale;
173     scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4);
174     REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale());
175     REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale());
176     success = scale.getMinMaxScales(scales);
177     REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]);
178 
179     SkMatrix rot90Scale;
180     rot90Scale.setRotate(90 * SK_Scalar1);
181     rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
182     REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale());
183     REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale());
184     success = rot90Scale.getMinMaxScales(scales);
185     REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4  == scales[0] && SK_Scalar1 / 2 == scales[1]);
186 
187     SkMatrix rotate;
188     rotate.setRotate(128 * SK_Scalar1);
189     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero));
190     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero));
191     success = rotate.getMinMaxScales(scales);
192     REPORTER_ASSERT(reporter, success);
193     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero));
194     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero));
195 
196     SkMatrix translate;
197     translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1);
198     REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale());
199     REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale());
200     success = translate.getMinMaxScales(scales);
201     REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
202 
203     SkMatrix perspX;
204     perspX.reset();
205     perspX.setPerspX(SK_Scalar1 / 1000);
206     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale());
207     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale());
208     // Verify that getMinMaxScales() doesn't update the scales array on failure.
209     scales[0] = -5;
210     scales[1] = -5;
211     success = perspX.getMinMaxScales(scales);
212     REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);
213 
214     SkMatrix perspY;
215     perspY.reset();
216     perspY.setPerspY(-SK_Scalar1 / 500);
217     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale());
218     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale());
219     scales[0] = -5;
220     scales[1] = -5;
221     success = perspY.getMinMaxScales(scales);
222     REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);
223 
224     SkMatrix baseMats[] = {scale, rot90Scale, rotate,
225                            translate, perspX, perspY};
226     SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)];
227     for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) {
228         mats[i] = baseMats[i];
229         bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]);
230         REPORTER_ASSERT(reporter, invertable);
231     }
232     SkRandom rand;
233     for (int m = 0; m < 1000; ++m) {
234         SkMatrix mat;
235         mat.reset();
236         for (int i = 0; i < 4; ++i) {
237             int x = rand.nextU() % SK_ARRAY_COUNT(mats);
238             mat.postConcat(mats[x]);
239         }
240 
241         SkScalar minScale = mat.getMinScale();
242         SkScalar maxScale = mat.getMaxScale();
243         REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0));
244         REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective());
245 
246         SkScalar scales[2];
247         bool success = mat.getMinMaxScales(scales);
248         REPORTER_ASSERT(reporter, success == !mat.hasPerspective());
249         REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale));
250 
251         if (mat.hasPerspective()) {
252             m -= 1; // try another non-persp matrix
253             continue;
254         }
255 
256         // test a bunch of vectors. All should be scaled by between minScale and maxScale
257         // (modulo some error) and we should find a vector that is scaled by almost each.
258         static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100;
259         static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100;
260         SkScalar max = 0, min = SK_ScalarMax;
261         SkVector vectors[1000];
262         for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
263             vectors[i].fX = rand.nextSScalar1();
264             vectors[i].fY = rand.nextSScalar1();
265             if (!vectors[i].normalize()) {
266                 i -= 1;
267                 continue;
268             }
269         }
270         mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors));
271         for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
272             SkScalar d = vectors[i].length();
273             REPORTER_ASSERT(reporter, d / maxScale < gVectorScaleTol);
274             REPORTER_ASSERT(reporter, minScale / d < gVectorScaleTol);
275             if (max < d) {
276                 max = d;
277             }
278             if (min > d) {
279                 min = d;
280             }
281         }
282         REPORTER_ASSERT(reporter, max / maxScale >= gCloseScaleTol);
283         REPORTER_ASSERT(reporter, minScale / min >= gCloseScaleTol);
284     }
285 }
286 
test_matrix_preserve_shape(skiatest::Reporter * reporter)287 static void test_matrix_preserve_shape(skiatest::Reporter* reporter) {
288     SkMatrix mat;
289 
290     // identity
291     mat.setIdentity();
292     REPORTER_ASSERT(reporter, mat.isSimilarity());
293     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
294 
295     // translation only
296     mat.reset();
297     mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
298     REPORTER_ASSERT(reporter, mat.isSimilarity());
299     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
300 
301     // scale with same size
302     mat.reset();
303     mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
304     REPORTER_ASSERT(reporter, mat.isSimilarity());
305     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
306 
307     // scale with one negative
308     mat.reset();
309     mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
310     REPORTER_ASSERT(reporter, mat.isSimilarity());
311     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
312 
313     // scale with different size
314     mat.reset();
315     mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
316     REPORTER_ASSERT(reporter, !mat.isSimilarity());
317     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
318 
319     // scale with same size at a pivot point
320     mat.reset();
321     mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
322                  SkIntToScalar(2), SkIntToScalar(2));
323     REPORTER_ASSERT(reporter, mat.isSimilarity());
324     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
325 
326     // scale with different size at a pivot point
327     mat.reset();
328     mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
329                  SkIntToScalar(2), SkIntToScalar(2));
330     REPORTER_ASSERT(reporter, !mat.isSimilarity());
331     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
332 
333     // skew with same size
334     mat.reset();
335     mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
336     REPORTER_ASSERT(reporter, !mat.isSimilarity());
337     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
338 
339     // skew with different size
340     mat.reset();
341     mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
342     REPORTER_ASSERT(reporter, !mat.isSimilarity());
343     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
344 
345     // skew with same size at a pivot point
346     mat.reset();
347     mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
348                 SkIntToScalar(2), SkIntToScalar(2));
349     REPORTER_ASSERT(reporter, !mat.isSimilarity());
350     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
351 
352     // skew with different size at a pivot point
353     mat.reset();
354     mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
355                 SkIntToScalar(2), SkIntToScalar(2));
356     REPORTER_ASSERT(reporter, !mat.isSimilarity());
357     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
358 
359     // perspective x
360     mat.reset();
361     mat.setPerspX(SK_Scalar1 / 2);
362     REPORTER_ASSERT(reporter, !mat.isSimilarity());
363     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
364 
365     // perspective y
366     mat.reset();
367     mat.setPerspY(SK_Scalar1 / 2);
368     REPORTER_ASSERT(reporter, !mat.isSimilarity());
369     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
370 
371     // rotate
372     for (int angle = 0; angle < 360; ++angle) {
373         mat.reset();
374         mat.setRotate(SkIntToScalar(angle));
375         REPORTER_ASSERT(reporter, mat.isSimilarity());
376         REPORTER_ASSERT(reporter, mat.preservesRightAngles());
377     }
378 
379     // see if there are any accumulated precision issues
380     mat.reset();
381     for (int i = 1; i < 360; i++) {
382         mat.postRotate(SkIntToScalar(1));
383     }
384     REPORTER_ASSERT(reporter, mat.isSimilarity());
385     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
386 
387     // rotate + translate
388     mat.reset();
389     mat.setRotate(SkIntToScalar(30));
390     mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
391     REPORTER_ASSERT(reporter, mat.isSimilarity());
392     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
393 
394     // rotate + uniform scale
395     mat.reset();
396     mat.setRotate(SkIntToScalar(30));
397     mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
398     REPORTER_ASSERT(reporter, mat.isSimilarity());
399     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
400 
401     // rotate + non-uniform scale
402     mat.reset();
403     mat.setRotate(SkIntToScalar(30));
404     mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
405     REPORTER_ASSERT(reporter, !mat.isSimilarity());
406     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
407 
408     // non-uniform scale + rotate
409     mat.reset();
410     mat.setScale(SkIntToScalar(3), SkIntToScalar(2));
411     mat.postRotate(SkIntToScalar(30));
412     REPORTER_ASSERT(reporter, !mat.isSimilarity());
413     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
414 
415     // all zero
416     mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
417     REPORTER_ASSERT(reporter, !mat.isSimilarity());
418     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
419 
420     // all zero except perspective
421     mat.reset();
422     mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
423     REPORTER_ASSERT(reporter, !mat.isSimilarity());
424     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
425 
426     // scales zero, only skews (rotation)
427     mat.setAll(0, SK_Scalar1, 0,
428                -SK_Scalar1, 0, 0,
429                0, 0, SkMatrix::I()[8]);
430     REPORTER_ASSERT(reporter, mat.isSimilarity());
431     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
432 
433     // scales zero, only skews (reflection)
434     mat.setAll(0, SK_Scalar1, 0,
435                SK_Scalar1, 0, 0,
436                0, 0, SkMatrix::I()[8]);
437     REPORTER_ASSERT(reporter, mat.isSimilarity());
438     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
439 }
440 
441 // For test_matrix_decomposition, below.
scalar_nearly_equal_relative(SkScalar a,SkScalar b,SkScalar tolerance=SK_ScalarNearlyZero)442 static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
443                                          SkScalar tolerance = SK_ScalarNearlyZero) {
444     // from Bruce Dawson
445     // absolute check
446     SkScalar diff = SkScalarAbs(a - b);
447     if (diff < tolerance) {
448         return true;
449     }
450 
451     // relative check
452     a = SkScalarAbs(a);
453     b = SkScalarAbs(b);
454     SkScalar largest = (b > a) ? b : a;
455 
456     if (diff <= largest*tolerance) {
457         return true;
458     }
459 
460     return false;
461 }
462 
check_matrix_recomposition(const SkMatrix & mat,const SkPoint & rotation1,const SkPoint & scale,const SkPoint & rotation2)463 static bool check_matrix_recomposition(const SkMatrix& mat,
464                                        const SkPoint& rotation1,
465                                        const SkPoint& scale,
466                                        const SkPoint& rotation2) {
467     SkScalar c1 = rotation1.fX;
468     SkScalar s1 = rotation1.fY;
469     SkScalar scaleX = scale.fX;
470     SkScalar scaleY = scale.fY;
471     SkScalar c2 = rotation2.fX;
472     SkScalar s2 = rotation2.fY;
473 
474     // We do a relative check here because large scale factors cause problems with an absolute check
475     bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
476                                                scaleX*c1*c2 - scaleY*s1*s2) &&
477                   scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
478                                                -scaleX*s1*c2 - scaleY*c1*s2) &&
479                   scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
480                                                scaleX*c1*s2 + scaleY*s1*c2) &&
481                   scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
482                                                -scaleX*s1*s2 + scaleY*c1*c2);
483     return result;
484 }
485 
test_matrix_decomposition(skiatest::Reporter * reporter)486 static void test_matrix_decomposition(skiatest::Reporter* reporter) {
487     SkMatrix mat;
488     SkPoint rotation1, scale, rotation2;
489 
490     const float kRotation0 = 15.5f;
491     const float kRotation1 = -50.f;
492     const float kScale0 = 5000.f;
493     const float kScale1 = 0.001f;
494 
495     // identity
496     mat.reset();
497     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
498     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
499     // make sure it doesn't crash if we pass in NULLs
500     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
501 
502     // rotation only
503     mat.setRotate(kRotation0);
504     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
505     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
506 
507     // uniform scale only
508     mat.setScale(kScale0, kScale0);
509     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
510     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
511 
512     // anisotropic scale only
513     mat.setScale(kScale1, kScale0);
514     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
515     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
516 
517     // rotation then uniform scale
518     mat.setRotate(kRotation1);
519     mat.postScale(kScale0, kScale0);
520     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
521     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
522 
523     // uniform scale then rotation
524     mat.setScale(kScale0, kScale0);
525     mat.postRotate(kRotation1);
526     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
527     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
528 
529     // rotation then uniform scale+reflection
530     mat.setRotate(kRotation0);
531     mat.postScale(kScale1, -kScale1);
532     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
533     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
534 
535     // uniform scale+reflection, then rotate
536     mat.setScale(kScale0, -kScale0);
537     mat.postRotate(kRotation1);
538     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
539     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
540 
541     // rotation then anisotropic scale
542     mat.setRotate(kRotation1);
543     mat.postScale(kScale1, kScale0);
544     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
545     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
546 
547     // rotation then anisotropic scale
548     mat.setRotate(90);
549     mat.postScale(kScale1, kScale0);
550     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
551     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
552 
553     // anisotropic scale then rotation
554     mat.setScale(kScale1, kScale0);
555     mat.postRotate(kRotation0);
556     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
557     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
558 
559     // anisotropic scale then rotation
560     mat.setScale(kScale1, kScale0);
561     mat.postRotate(90);
562     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
563     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
564 
565     // rotation, uniform scale, then different rotation
566     mat.setRotate(kRotation1);
567     mat.postScale(kScale0, kScale0);
568     mat.postRotate(kRotation0);
569     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
570     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
571 
572     // rotation, anisotropic scale, then different rotation
573     mat.setRotate(kRotation0);
574     mat.postScale(kScale1, kScale0);
575     mat.postRotate(kRotation1);
576     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
577     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
578 
579     // rotation, anisotropic scale + reflection, then different rotation
580     mat.setRotate(kRotation0);
581     mat.postScale(-kScale1, kScale0);
582     mat.postRotate(kRotation1);
583     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
584     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
585 
586     // try some random matrices
587     SkRandom rand;
588     for (int m = 0; m < 1000; ++m) {
589         SkScalar rot0 = rand.nextRangeF(-180, 180);
590         SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
591         SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
592         SkScalar rot1 = rand.nextRangeF(-180, 180);
593         mat.setRotate(rot0);
594         mat.postScale(sx, sy);
595         mat.postRotate(rot1);
596 
597         if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
598             REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
599         } else {
600             // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
601             SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
602                                mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
603             REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
604         }
605     }
606 
607     // translation shouldn't affect this
608     mat.postTranslate(-1000.f, 1000.f);
609     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
610     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
611 
612     // perspective shouldn't affect this
613     mat[SkMatrix::kMPersp0] = 12.f;
614     mat[SkMatrix::kMPersp1] = 4.f;
615     mat[SkMatrix::kMPersp2] = 1872.f;
616     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
617     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
618 
619     // degenerate matrices
620     // mostly zero entries
621     mat.reset();
622     mat[SkMatrix::kMScaleX] = 0.f;
623     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
624     mat.reset();
625     mat[SkMatrix::kMScaleY] = 0.f;
626     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
627     mat.reset();
628     // linearly dependent entries
629     mat[SkMatrix::kMScaleX] = 1.f;
630     mat[SkMatrix::kMSkewX] = 2.f;
631     mat[SkMatrix::kMSkewY] = 4.f;
632     mat[SkMatrix::kMScaleY] = 8.f;
633     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
634 }
635 
636 // For test_matrix_homogeneous, below.
scalar_array_nearly_equal_relative(const SkScalar a[],const SkScalar b[],int count)637 static bool scalar_array_nearly_equal_relative(const SkScalar a[], const SkScalar b[], int count) {
638     for (int i = 0; i < count; ++i) {
639         if (!scalar_nearly_equal_relative(a[i], b[i])) {
640             return false;
641         }
642     }
643     return true;
644 }
645 
646 // For test_matrix_homogeneous, below.
647 // Maps a single triple in src using m and compares results to those in dst
naive_homogeneous_mapping(const SkMatrix & m,const SkScalar src[3],const SkScalar dst[3])648 static bool naive_homogeneous_mapping(const SkMatrix& m, const SkScalar src[3],
649                                       const SkScalar dst[3]) {
650     SkScalar res[3];
651     SkScalar ms[9] = {m[0], m[1], m[2],
652                       m[3], m[4], m[5],
653                       m[6], m[7], m[8]};
654     res[0] = src[0] * ms[0] + src[1] * ms[1] + src[2] * ms[2];
655     res[1] = src[0] * ms[3] + src[1] * ms[4] + src[2] * ms[5];
656     res[2] = src[0] * ms[6] + src[1] * ms[7] + src[2] * ms[8];
657     return scalar_array_nearly_equal_relative(res, dst, 3);
658 }
659 
test_matrix_homogeneous(skiatest::Reporter * reporter)660 static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
661     SkMatrix mat;
662 
663     const float kRotation0 = 15.5f;
664     const float kRotation1 = -50.f;
665     const float kScale0 = 5000.f;
666 
667     const int kTripleCount = 1000;
668     const int kMatrixCount = 1000;
669     SkRandom rand;
670 
671     SkScalar randTriples[3*kTripleCount];
672     for (int i = 0; i < 3*kTripleCount; ++i) {
673         randTriples[i] = rand.nextRangeF(-3000.f, 3000.f);
674     }
675 
676     SkMatrix mats[kMatrixCount];
677     for (int i = 0; i < kMatrixCount; ++i) {
678         for (int j = 0; j < 9; ++j) {
679             mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
680         }
681     }
682 
683     // identity
684     {
685     mat.reset();
686     SkScalar dst[3*kTripleCount];
687     mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
688     REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3));
689     }
690 
691     // zero matrix
692     {
693     mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
694     SkScalar dst[3*kTripleCount];
695     mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
696     SkScalar zeros[3] = {0.f, 0.f, 0.f};
697     for (int i = 0; i < kTripleCount; ++i) {
698         REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3));
699     }
700     }
701 
702     // zero point
703     {
704     SkScalar zeros[3] = {0.f, 0.f, 0.f};
705     for (int i = 0; i < kMatrixCount; ++i) {
706         SkScalar dst[3];
707         mats[i].mapHomogeneousPoints(dst, zeros, 1);
708         REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3));
709     }
710     }
711 
712     // doesn't crash with null dst, src, count == 0
713     {
714     mats[0].mapHomogeneousPoints(NULL, NULL, 0);
715     }
716 
717     // uniform scale of point
718     {
719     mat.setScale(kScale0, kScale0);
720     SkScalar dst[3];
721     SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
722     SkPoint pnt;
723     pnt.set(src[0], src[1]);
724     mat.mapHomogeneousPoints(dst, src, 1);
725     mat.mapPoints(&pnt, &pnt, 1);
726     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
727     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
728     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
729     }
730 
731     // rotation of point
732     {
733     mat.setRotate(kRotation0);
734     SkScalar dst[3];
735     SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
736     SkPoint pnt;
737     pnt.set(src[0], src[1]);
738     mat.mapHomogeneousPoints(dst, src, 1);
739     mat.mapPoints(&pnt, &pnt, 1);
740     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
741     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
742     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
743     }
744 
745     // rotation, scale, rotation of point
746     {
747     mat.setRotate(kRotation1);
748     mat.postScale(kScale0, kScale0);
749     mat.postRotate(kRotation0);
750     SkScalar dst[3];
751     SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
752     SkPoint pnt;
753     pnt.set(src[0], src[1]);
754     mat.mapHomogeneousPoints(dst, src, 1);
755     mat.mapPoints(&pnt, &pnt, 1);
756     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
757     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
758     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
759     }
760 
761     // compare with naive approach
762     {
763     for (int i = 0; i < kMatrixCount; ++i) {
764         for (int j = 0; j < kTripleCount; ++j) {
765             SkScalar dst[3];
766             mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1);
767             REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst));
768         }
769     }
770     }
771 
772 }
773 
check_decompScale(const SkMatrix & matrix)774 static bool check_decompScale(const SkMatrix& matrix) {
775     SkSize scale;
776     SkMatrix remaining;
777 
778     if (!matrix.decomposeScale(&scale, &remaining)) {
779         return false;
780     }
781     if (scale.width() <= 0 || scale.height() <= 0) {
782         return false;
783     }
784     remaining.preScale(scale.width(), scale.height());
785     return nearly_equal(matrix, remaining);
786 }
787 
test_decompScale(skiatest::Reporter * reporter)788 static void test_decompScale(skiatest::Reporter* reporter) {
789     SkMatrix m;
790 
791     m.reset();
792     REPORTER_ASSERT(reporter, check_decompScale(m));
793     m.setScale(2, 3);
794     REPORTER_ASSERT(reporter, check_decompScale(m));
795     m.setRotate(35, 0, 0);
796     REPORTER_ASSERT(reporter, check_decompScale(m));
797 
798     m.setScale(1, 0);
799     REPORTER_ASSERT(reporter, !check_decompScale(m));
800 }
801 
DEF_TEST(Matrix,reporter)802 DEF_TEST(Matrix, reporter) {
803     SkMatrix    mat, inverse, iden1, iden2;
804 
805     mat.reset();
806     mat.setTranslate(SK_Scalar1, SK_Scalar1);
807     REPORTER_ASSERT(reporter, mat.invert(&inverse));
808     iden1.setConcat(mat, inverse);
809     REPORTER_ASSERT(reporter, is_identity(iden1));
810 
811     mat.setScale(SkIntToScalar(2), SkIntToScalar(4));
812     REPORTER_ASSERT(reporter, mat.invert(&inverse));
813     iden1.setConcat(mat, inverse);
814     REPORTER_ASSERT(reporter, is_identity(iden1));
815     test_flatten(reporter, mat);
816 
817     mat.setScale(SK_Scalar1/2, SkIntToScalar(2));
818     REPORTER_ASSERT(reporter, mat.invert(&inverse));
819     iden1.setConcat(mat, inverse);
820     REPORTER_ASSERT(reporter, is_identity(iden1));
821     test_flatten(reporter, mat);
822 
823     mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0);
824     mat.postRotate(SkIntToScalar(25));
825     REPORTER_ASSERT(reporter, mat.invert(NULL));
826     REPORTER_ASSERT(reporter, mat.invert(&inverse));
827     iden1.setConcat(mat, inverse);
828     REPORTER_ASSERT(reporter, is_identity(iden1));
829     iden2.setConcat(inverse, mat);
830     REPORTER_ASSERT(reporter, is_identity(iden2));
831     test_flatten(reporter, mat);
832     test_flatten(reporter, iden2);
833 
834     mat.setScale(0, SK_Scalar1);
835     REPORTER_ASSERT(reporter, !mat.invert(NULL));
836     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
837     mat.setScale(SK_Scalar1, 0);
838     REPORTER_ASSERT(reporter, !mat.invert(NULL));
839     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
840 
841     // rectStaysRect test
842     {
843         static const struct {
844             SkScalar    m00, m01, m10, m11;
845             bool        mStaysRect;
846         }
847         gRectStaysRectSamples[] = {
848             {          0,          0,          0,           0, false },
849             {          0,          0,          0,  SK_Scalar1, false },
850             {          0,          0, SK_Scalar1,           0, false },
851             {          0,          0, SK_Scalar1,  SK_Scalar1, false },
852             {          0, SK_Scalar1,          0,           0, false },
853             {          0, SK_Scalar1,          0,  SK_Scalar1, false },
854             {          0, SK_Scalar1, SK_Scalar1,           0, true },
855             {          0, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false },
856             { SK_Scalar1,          0,          0,           0, false },
857             { SK_Scalar1,          0,          0,  SK_Scalar1, true },
858             { SK_Scalar1,          0, SK_Scalar1,           0, false },
859             { SK_Scalar1,          0, SK_Scalar1,  SK_Scalar1, false },
860             { SK_Scalar1, SK_Scalar1,          0,           0, false },
861             { SK_Scalar1, SK_Scalar1,          0,  SK_Scalar1, false },
862             { SK_Scalar1, SK_Scalar1, SK_Scalar1,           0, false },
863             { SK_Scalar1, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false }
864         };
865 
866         for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) {
867             SkMatrix    m;
868 
869             m.reset();
870             m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
871             m.set(SkMatrix::kMSkewX,  gRectStaysRectSamples[i].m01);
872             m.set(SkMatrix::kMSkewY,  gRectStaysRectSamples[i].m10);
873             m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
874             REPORTER_ASSERT(reporter,
875                     m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
876         }
877     }
878 
879     mat.reset();
880     mat.set(SkMatrix::kMScaleX, SkIntToScalar(1));
881     mat.set(SkMatrix::kMSkewX,  SkIntToScalar(2));
882     mat.set(SkMatrix::kMTransX, SkIntToScalar(3));
883     mat.set(SkMatrix::kMSkewY,  SkIntToScalar(4));
884     mat.set(SkMatrix::kMScaleY, SkIntToScalar(5));
885     mat.set(SkMatrix::kMTransY, SkIntToScalar(6));
886     SkScalar affine[6];
887     REPORTER_ASSERT(reporter, mat.asAffine(affine));
888 
889     #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e)
890     REPORTER_ASSERT(reporter, affineEqual(ScaleX));
891     REPORTER_ASSERT(reporter, affineEqual(SkewY));
892     REPORTER_ASSERT(reporter, affineEqual(SkewX));
893     REPORTER_ASSERT(reporter, affineEqual(ScaleY));
894     REPORTER_ASSERT(reporter, affineEqual(TransX));
895     REPORTER_ASSERT(reporter, affineEqual(TransY));
896     #undef affineEqual
897 
898     mat.set(SkMatrix::kMPersp1, SK_Scalar1 / 2);
899     REPORTER_ASSERT(reporter, !mat.asAffine(affine));
900 
901     SkMatrix mat2;
902     mat2.reset();
903     mat.reset();
904     SkScalar zero = 0;
905     mat.set(SkMatrix::kMSkewX, -zero);
906     REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2));
907 
908     mat2.reset();
909     mat.reset();
910     mat.set(SkMatrix::kMSkewX, SK_ScalarNaN);
911     mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN);
912     REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2));
913 
914     test_matrix_min_max_scale(reporter);
915     test_matrix_preserve_shape(reporter);
916     test_matrix_recttorect(reporter);
917     test_matrix_decomposition(reporter);
918     test_matrix_homogeneous(reporter);
919     test_set9(reporter);
920 
921     test_decompScale(reporter);
922 }
923 
DEF_TEST(Matrix_Concat,r)924 DEF_TEST(Matrix_Concat, r) {
925     SkMatrix a;
926     a.setTranslate(10, 20);
927 
928     SkMatrix b;
929     b.setScale(3, 5);
930 
931     SkMatrix expected;
932     expected.setConcat(a,b);
933 
934     REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b));
935 }
936