• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 #ifndef __UBI_USER_H__
22 #define __UBI_USER_H__
23 
24 #include <linux/types.h>
25 
26 /*
27  * UBI device creation (the same as MTD device attachment)
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  *
30  * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
31  * control device. The caller has to properly fill and pass
32  * &struct ubi_attach_req object - UBI will attach the MTD device specified in
33  * the request and return the newly created UBI device number as the ioctl
34  * return value.
35  *
36  * UBI device deletion (the same as MTD device detachment)
37  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
38  *
39  * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
40  * control device.
41  *
42  * UBI volume creation
43  * ~~~~~~~~~~~~~~~~~~~
44  *
45  * UBI volumes are created via the %UBI_IOCMKVOL ioctl command of UBI character
46  * device. A &struct ubi_mkvol_req object has to be properly filled and a
47  * pointer to it has to be passed to the ioctl.
48  *
49  * UBI volume deletion
50  * ~~~~~~~~~~~~~~~~~~~
51  *
52  * To delete a volume, the %UBI_IOCRMVOL ioctl command of the UBI character
53  * device should be used. A pointer to the 32-bit volume ID hast to be passed
54  * to the ioctl.
55  *
56  * UBI volume re-size
57  * ~~~~~~~~~~~~~~~~~~
58  *
59  * To re-size a volume, the %UBI_IOCRSVOL ioctl command of the UBI character
60  * device should be used. A &struct ubi_rsvol_req object has to be properly
61  * filled and a pointer to it has to be passed to the ioctl.
62  *
63  * UBI volumes re-name
64  * ~~~~~~~~~~~~~~~~~~~
65  *
66  * To re-name several volumes atomically at one go, the %UBI_IOCRNVOL command
67  * of the UBI character device should be used. A &struct ubi_rnvol_req object
68  * has to be properly filled and a pointer to it has to be passed to the ioctl.
69  *
70  * UBI volume update
71  * ~~~~~~~~~~~~~~~~~
72  *
73  * Volume update should be done via the %UBI_IOCVOLUP ioctl command of the
74  * corresponding UBI volume character device. A pointer to a 64-bit update
75  * size should be passed to the ioctl. After this, UBI expects user to write
76  * this number of bytes to the volume character device. The update is finished
77  * when the claimed number of bytes is passed. So, the volume update sequence
78  * is something like:
79  *
80  * fd = open("/dev/my_volume");
81  * ioctl(fd, UBI_IOCVOLUP, &image_size);
82  * write(fd, buf, image_size);
83  * close(fd);
84  *
85  * Logical eraseblock erase
86  * ~~~~~~~~~~~~~~~~~~~~~~~~
87  *
88  * To erase a logical eraseblock, the %UBI_IOCEBER ioctl command of the
89  * corresponding UBI volume character device should be used. This command
90  * unmaps the requested logical eraseblock, makes sure the corresponding
91  * physical eraseblock is successfully erased, and returns.
92  *
93  * Atomic logical eraseblock change
94  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95  *
96  * Atomic logical eraseblock change operation is called using the %UBI_IOCEBCH
97  * ioctl command of the corresponding UBI volume character device. A pointer to
98  * a &struct ubi_leb_change_req object has to be passed to the ioctl. Then the
99  * user is expected to write the requested amount of bytes (similarly to what
100  * should be done in case of the "volume update" ioctl).
101  *
102  * Logical eraseblock map
103  * ~~~~~~~~~~~~~~~~~~~~~
104  *
105  * To map a logical eraseblock to a physical eraseblock, the %UBI_IOCEBMAP
106  * ioctl command should be used. A pointer to a &struct ubi_map_req object is
107  * expected to be passed. The ioctl maps the requested logical eraseblock to
108  * a physical eraseblock and returns.  Only non-mapped logical eraseblocks can
109  * be mapped. If the logical eraseblock specified in the request is already
110  * mapped to a physical eraseblock, the ioctl fails and returns error.
111  *
112  * Logical eraseblock unmap
113  * ~~~~~~~~~~~~~~~~~~~~~~~~
114  *
115  * To unmap a logical eraseblock to a physical eraseblock, the %UBI_IOCEBUNMAP
116  * ioctl command should be used. The ioctl unmaps the logical eraseblocks,
117  * schedules corresponding physical eraseblock for erasure, and returns. Unlike
118  * the "LEB erase" command, it does not wait for the physical eraseblock being
119  * erased. Note, the side effect of this is that if an unclean reboot happens
120  * after the unmap ioctl returns, you may find the LEB mapped again to the same
121  * physical eraseblock after the UBI is run again.
122  *
123  * Check if logical eraseblock is mapped
124  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
125  *
126  * To check if a logical eraseblock is mapped to a physical eraseblock, the
127  * %UBI_IOCEBISMAP ioctl command should be used. It returns %0 if the LEB is
128  * not mapped, and %1 if it is mapped.
129  *
130  * Set an UBI volume property
131  * ~~~~~~~~~~~~~~~~~~~~~~~~~
132  *
133  * To set an UBI volume property the %UBI_IOCSETPROP ioctl command should be
134  * used. A pointer to a &struct ubi_set_vol_prop_req object is expected to be
135  * passed. The object describes which property should be set, and to which value
136  * it should be set.
137  */
138 
139 /*
140  * When a new UBI volume or UBI device is created, users may either specify the
141  * volume/device number they want to create or to let UBI automatically assign
142  * the number using these constants.
143  */
144 #define UBI_VOL_NUM_AUTO (-1)
145 #define UBI_DEV_NUM_AUTO (-1)
146 
147 /* Maximum volume name length */
148 #define UBI_MAX_VOLUME_NAME 127
149 
150 /* ioctl commands of UBI character devices */
151 
152 #define UBI_IOC_MAGIC 'o'
153 
154 /* Create an UBI volume */
155 #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
156 /* Remove an UBI volume */
157 #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, __s32)
158 /* Re-size an UBI volume */
159 #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
160 /* Re-name volumes */
161 #define UBI_IOCRNVOL _IOW(UBI_IOC_MAGIC, 3, struct ubi_rnvol_req)
162 
163 /* ioctl commands of the UBI control character device */
164 
165 #define UBI_CTRL_IOC_MAGIC 'o'
166 
167 /* Attach an MTD device */
168 #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
169 /* Detach an MTD device */
170 #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, __s32)
171 
172 /* ioctl commands of UBI volume character devices */
173 
174 #define UBI_VOL_IOC_MAGIC 'O'
175 
176 /* Start UBI volume update */
177 #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, __s64)
178 /* LEB erasure command, used for debugging, disabled by default */
179 #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, __s32)
180 /* Atomic LEB change command */
181 #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, __s32)
182 /* Map LEB command */
183 #define UBI_IOCEBMAP _IOW(UBI_VOL_IOC_MAGIC, 3, struct ubi_map_req)
184 /* Unmap LEB command */
185 #define UBI_IOCEBUNMAP _IOW(UBI_VOL_IOC_MAGIC, 4, __s32)
186 /* Check if LEB is mapped command */
187 #define UBI_IOCEBISMAP _IOR(UBI_VOL_IOC_MAGIC, 5, __s32)
188 /* Set an UBI volume property */
189 #define UBI_IOCSETVOLPROP _IOW(UBI_VOL_IOC_MAGIC, 6, \
190 			       struct ubi_set_vol_prop_req)
191 
192 /* Maximum MTD device name length supported by UBI */
193 #define MAX_UBI_MTD_NAME_LEN 127
194 
195 /* Maximum amount of UBI volumes that can be re-named at one go */
196 #define UBI_MAX_RNVOL 32
197 
198 /*
199  * UBI volume type constants.
200  *
201  * @UBI_DYNAMIC_VOLUME: dynamic volume
202  * @UBI_STATIC_VOLUME:  static volume
203  */
204 enum {
205 	UBI_DYNAMIC_VOLUME = 3,
206 	UBI_STATIC_VOLUME  = 4,
207 };
208 
209 /*
210  * UBI set volume property ioctl constants.
211  *
212  * @UBI_VOL_PROP_DIRECT_WRITE: allow (any non-zero value) or disallow (value 0)
213  *                             user to directly write and erase individual
214  *                             eraseblocks on dynamic volumes
215  */
216 enum {
217 	UBI_VOL_PROP_DIRECT_WRITE = 1,
218 };
219 
220 /**
221  * struct ubi_attach_req - attach MTD device request.
222  * @ubi_num: UBI device number to create
223  * @mtd_num: MTD device number to attach
224  * @vid_hdr_offset: VID header offset (use defaults if %0)
225  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
226  * @padding: reserved for future, not used, has to be zeroed
227  *
228  * This data structure is used to specify MTD device UBI has to attach and the
229  * parameters it has to use. The number which should be assigned to the new UBI
230  * device is passed in @ubi_num. UBI may automatically assign the number if
231  * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
232  * @ubi_num.
233  *
234  * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
235  * offset of the VID header within physical eraseblocks. The default offset is
236  * the next min. I/O unit after the EC header. For example, it will be offset
237  * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
238  * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
239  *
240  * But in rare cases, if this optimizes things, the VID header may be placed to
241  * a different offset. For example, the boot-loader might do things faster if
242  * the VID header sits at the end of the first 2KiB NAND page with 4 sub-pages.
243  * As the boot-loader would not normally need to read EC headers (unless it
244  * needs UBI in RW mode), it might be faster to calculate ECC. This is weird
245  * example, but it real-life example. So, in this example, @vid_hdr_offer would
246  * be 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
247  * aligned, which is OK, as UBI is clever enough to realize this is 4th
248  * sub-page of the first page and add needed padding.
249  *
250  * The @max_beb_per1024 is the maximum amount of bad PEBs UBI expects on the
251  * UBI device per 1024 eraseblocks.  This value is often given in an other form
252  * in the NAND datasheet (min NVB i.e. minimal number of valid blocks). The
253  * maximum expected bad eraseblocks per 1024 is then:
254  *    1024 * (1 - MinNVB / MaxNVB)
255  * Which gives 20 for most NAND devices.  This limit is used in order to derive
256  * amount of eraseblock UBI reserves for handling new bad blocks. If the device
257  * has more bad eraseblocks than this limit, UBI does not reserve any physical
258  * eraseblocks for new bad eraseblocks, but attempts to use available
259  * eraseblocks (if any). The accepted range is 0-768. If 0 is given, the
260  * default kernel value of %CONFIG_MTD_UBI_BEB_LIMIT will be used.
261  */
262 struct ubi_attach_req {
263 	__s32 ubi_num;
264 	__s32 mtd_num;
265 	__s32 vid_hdr_offset;
266 	__s16 max_beb_per1024;
267 	__s8 padding[10];
268 };
269 
270 /**
271  * struct ubi_mkvol_req - volume description data structure used in
272  *                        volume creation requests.
273  * @vol_id: volume number
274  * @alignment: volume alignment
275  * @bytes: volume size in bytes
276  * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
277  * @padding1: reserved for future, not used, has to be zeroed
278  * @name_len: volume name length
279  * @padding2: reserved for future, not used, has to be zeroed
280  * @name: volume name
281  *
282  * This structure is used by user-space programs when creating new volumes. The
283  * @used_bytes field is only necessary when creating static volumes.
284  *
285  * The @alignment field specifies the required alignment of the volume logical
286  * eraseblock. This means, that the size of logical eraseblocks will be aligned
287  * to this number, i.e.,
288  *	(UBI device logical eraseblock size) mod (@alignment) = 0.
289  *
290  * To put it differently, the logical eraseblock of this volume may be slightly
291  * shortened in order to make it properly aligned. The alignment has to be
292  * multiple of the flash minimal input/output unit, or %1 to utilize the entire
293  * available space of logical eraseblocks.
294  *
295  * The @alignment field may be useful, for example, when one wants to maintain
296  * a block device on top of an UBI volume. In this case, it is desirable to fit
297  * an integer number of blocks in logical eraseblocks of this UBI volume. With
298  * alignment it is possible to update this volume using plane UBI volume image
299  * BLOBs, without caring about how to properly align them.
300  */
301 struct ubi_mkvol_req {
302 	__s32 vol_id;
303 	__s32 alignment;
304 	__s64 bytes;
305 	__s8 vol_type;
306 	__s8 padding1;
307 	__s16 name_len;
308 	__s8 padding2[4];
309 	char name[UBI_MAX_VOLUME_NAME + 1];
310 } ATTRIBUTE_PACKED;
311 
312 /**
313  * struct ubi_rsvol_req - a data structure used in volume re-size requests.
314  * @vol_id: ID of the volume to re-size
315  * @bytes: new size of the volume in bytes
316  *
317  * Re-sizing is possible for both dynamic and static volumes. But while dynamic
318  * volumes may be re-sized arbitrarily, static volumes cannot be made to be
319  * smaller than the number of bytes they bear. To arbitrarily shrink a static
320  * volume, it must be wiped out first (by means of volume update operation with
321  * zero number of bytes).
322  */
323 struct ubi_rsvol_req {
324 	__s64 bytes;
325 	__s32 vol_id;
326 } ATTRIBUTE_PACKED;
327 
328 /**
329  * struct ubi_rnvol_req - volumes re-name request.
330  * @count: count of volumes to re-name
331  * @padding1:  reserved for future, not used, has to be zeroed
332  * @vol_id: ID of the volume to re-name
333  * @name_len: name length
334  * @padding2:  reserved for future, not used, has to be zeroed
335  * @name: new volume name
336  *
337  * UBI allows to re-name up to %32 volumes at one go. The count of volumes to
338  * re-name is specified in the @count field. The ID of the volumes to re-name
339  * and the new names are specified in the @vol_id and @name fields.
340  *
341  * The UBI volume re-name operation is atomic, which means that should power cut
342  * happen, the volumes will have either old name or new name. So the possible
343  * use-cases of this command is atomic upgrade. Indeed, to upgrade, say, volumes
344  * A and B one may create temporary volumes %A1 and %B1 with the new contents,
345  * then atomically re-name A1->A and B1->B, in which case old %A and %B will
346  * be removed.
347  *
348  * If it is not desirable to remove old A and B, the re-name request has to
349  * contain 4 entries: A1->A, A->A1, B1->B, B->B1, in which case old A1 and B1
350  * become A and B, and old A and B will become A1 and B1.
351  *
352  * It is also OK to request: A1->A, A1->X, B1->B, B->Y, in which case old A1
353  * and B1 become A and B, and old A and B become X and Y.
354  *
355  * In other words, in case of re-naming into an existing volume name, the
356  * existing volume is removed, unless it is re-named as well at the same
357  * re-name request.
358  */
359 struct ubi_rnvol_req {
360 	__s32 count;
361 	__s8 padding1[12];
362 	struct {
363 		__s32 vol_id;
364 		__s16 name_len;
365 		__s8  padding2[2];
366 		char    name[UBI_MAX_VOLUME_NAME + 1];
367 	} ents[UBI_MAX_RNVOL];
368 } ATTRIBUTE_PACKED;
369 
370 /**
371  * struct ubi_leb_change_req - a data structure used in atomic LEB change
372  *                             requests.
373  * @lnum: logical eraseblock number to change
374  * @bytes: how many bytes will be written to the logical eraseblock
375  * @dtype: pass "3" for better compatibility with old kernels
376  * @padding: reserved for future, not used, has to be zeroed
377  *
378  * The @dtype field used to inform UBI about what kind of data will be written
379  * to the LEB: long term (value 1), short term (value 2), unknown (value 3).
380  * UBI tried to pick a PEB with lower erase counter for short term data and a
381  * PEB with higher erase counter for long term data. But this was not really
382  * used because users usually do not know this and could easily mislead UBI. We
383  * removed this feature in May 2012. UBI currently just ignores the @dtype
384  * field. But for better compatibility with older kernels it is recommended to
385  * set @dtype to 3 (unknown).
386  */
387 struct ubi_leb_change_req {
388 	__s32 lnum;
389 	__s32 bytes;
390 	__s8  dtype; /* obsolete, do not use! */
391 	__s8  padding[7];
392 } ATTRIBUTE_PACKED;
393 
394 /**
395  * struct ubi_map_req - a data structure used in map LEB requests.
396  * @dtype: pass "3" for better compatibility with old kernels
397  * @lnum: logical eraseblock number to unmap
398  * @padding: reserved for future, not used, has to be zeroed
399  */
400 struct ubi_map_req {
401 	__s32 lnum;
402 	__s8  dtype; /* obsolete, do not use! */
403 	__s8  padding[3];
404 } ATTRIBUTE_PACKED;
405 
406 
407 /**
408  * struct ubi_set_vol_prop_req - a data structure used to set an UBI volume
409  *                               property.
410  * @property: property to set (%UBI_VOL_PROP_DIRECT_WRITE)
411  * @padding: reserved for future, not used, has to be zeroed
412  * @value: value to set
413  */
414 struct ubi_set_vol_prop_req {
415 	__u8  property;
416 	__u8  padding[7];
417 	__u64 value;
418 }  ATTRIBUTE_PACKED;
419 
420 #endif /* __UBI_USER_H__ */
421