1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <cmath>
6
7 #include "include/v8stdint.h"
8 #include "src/base/logging.h"
9 #include "src/utils.h"
10
11 #include "src/bignum-dtoa.h"
12
13 #include "src/bignum.h"
14 #include "src/double.h"
15
16 namespace v8 {
17 namespace internal {
18
NormalizedExponent(uint64_t significand,int exponent)19 static int NormalizedExponent(uint64_t significand, int exponent) {
20 DCHECK(significand != 0);
21 while ((significand & Double::kHiddenBit) == 0) {
22 significand = significand << 1;
23 exponent = exponent - 1;
24 }
25 return exponent;
26 }
27
28
29 // Forward declarations:
30 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
31 static int EstimatePower(int exponent);
32 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
33 // and denominator.
34 static void InitialScaledStartValues(double v,
35 int estimated_power,
36 bool need_boundary_deltas,
37 Bignum* numerator,
38 Bignum* denominator,
39 Bignum* delta_minus,
40 Bignum* delta_plus);
41 // Multiplies numerator/denominator so that its values lies in the range 1-10.
42 // Returns decimal_point s.t.
43 // v = numerator'/denominator' * 10^(decimal_point-1)
44 // where numerator' and denominator' are the values of numerator and
45 // denominator after the call to this function.
46 static void FixupMultiply10(int estimated_power, bool is_even,
47 int* decimal_point,
48 Bignum* numerator, Bignum* denominator,
49 Bignum* delta_minus, Bignum* delta_plus);
50 // Generates digits from the left to the right and stops when the generated
51 // digits yield the shortest decimal representation of v.
52 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
53 Bignum* delta_minus, Bignum* delta_plus,
54 bool is_even,
55 Vector<char> buffer, int* length);
56 // Generates 'requested_digits' after the decimal point.
57 static void BignumToFixed(int requested_digits, int* decimal_point,
58 Bignum* numerator, Bignum* denominator,
59 Vector<char>(buffer), int* length);
60 // Generates 'count' digits of numerator/denominator.
61 // Once 'count' digits have been produced rounds the result depending on the
62 // remainder (remainders of exactly .5 round upwards). Might update the
63 // decimal_point when rounding up (for example for 0.9999).
64 static void GenerateCountedDigits(int count, int* decimal_point,
65 Bignum* numerator, Bignum* denominator,
66 Vector<char>(buffer), int* length);
67
68
BignumDtoa(double v,BignumDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)69 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
70 Vector<char> buffer, int* length, int* decimal_point) {
71 DCHECK(v > 0);
72 DCHECK(!Double(v).IsSpecial());
73 uint64_t significand = Double(v).Significand();
74 bool is_even = (significand & 1) == 0;
75 int exponent = Double(v).Exponent();
76 int normalized_exponent = NormalizedExponent(significand, exponent);
77 // estimated_power might be too low by 1.
78 int estimated_power = EstimatePower(normalized_exponent);
79
80 // Shortcut for Fixed.
81 // The requested digits correspond to the digits after the point. If the
82 // number is much too small, then there is no need in trying to get any
83 // digits.
84 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
85 buffer[0] = '\0';
86 *length = 0;
87 // Set decimal-point to -requested_digits. This is what Gay does.
88 // Note that it should not have any effect anyways since the string is
89 // empty.
90 *decimal_point = -requested_digits;
91 return;
92 }
93
94 Bignum numerator;
95 Bignum denominator;
96 Bignum delta_minus;
97 Bignum delta_plus;
98 // Make sure the bignum can grow large enough. The smallest double equals
99 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
100 // The maximum double is 1.7976931348623157e308 which needs fewer than
101 // 308*4 binary digits.
102 DCHECK(Bignum::kMaxSignificantBits >= 324*4);
103 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
104 InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
105 &numerator, &denominator,
106 &delta_minus, &delta_plus);
107 // We now have v = (numerator / denominator) * 10^estimated_power.
108 FixupMultiply10(estimated_power, is_even, decimal_point,
109 &numerator, &denominator,
110 &delta_minus, &delta_plus);
111 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
112 // 1 <= (numerator + delta_plus) / denominator < 10
113 switch (mode) {
114 case BIGNUM_DTOA_SHORTEST:
115 GenerateShortestDigits(&numerator, &denominator,
116 &delta_minus, &delta_plus,
117 is_even, buffer, length);
118 break;
119 case BIGNUM_DTOA_FIXED:
120 BignumToFixed(requested_digits, decimal_point,
121 &numerator, &denominator,
122 buffer, length);
123 break;
124 case BIGNUM_DTOA_PRECISION:
125 GenerateCountedDigits(requested_digits, decimal_point,
126 &numerator, &denominator,
127 buffer, length);
128 break;
129 default:
130 UNREACHABLE();
131 }
132 buffer[*length] = '\0';
133 }
134
135
136 // The procedure starts generating digits from the left to the right and stops
137 // when the generated digits yield the shortest decimal representation of v. A
138 // decimal representation of v is a number lying closer to v than to any other
139 // double, so it converts to v when read.
140 //
141 // This is true if d, the decimal representation, is between m- and m+, the
142 // upper and lower boundaries. d must be strictly between them if !is_even.
143 // m- := (numerator - delta_minus) / denominator
144 // m+ := (numerator + delta_plus) / denominator
145 //
146 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
147 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
148 // will be produced. This should be the standard precondition.
GenerateShortestDigits(Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus,bool is_even,Vector<char> buffer,int * length)149 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
150 Bignum* delta_minus, Bignum* delta_plus,
151 bool is_even,
152 Vector<char> buffer, int* length) {
153 // Small optimization: if delta_minus and delta_plus are the same just reuse
154 // one of the two bignums.
155 if (Bignum::Equal(*delta_minus, *delta_plus)) {
156 delta_plus = delta_minus;
157 }
158 *length = 0;
159 while (true) {
160 uint16_t digit;
161 digit = numerator->DivideModuloIntBignum(*denominator);
162 DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive.
163 // digit = numerator / denominator (integer division).
164 // numerator = numerator % denominator.
165 buffer[(*length)++] = digit + '0';
166
167 // Can we stop already?
168 // If the remainder of the division is less than the distance to the lower
169 // boundary we can stop. In this case we simply round down (discarding the
170 // remainder).
171 // Similarly we test if we can round up (using the upper boundary).
172 bool in_delta_room_minus;
173 bool in_delta_room_plus;
174 if (is_even) {
175 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
176 } else {
177 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
178 }
179 if (is_even) {
180 in_delta_room_plus =
181 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
182 } else {
183 in_delta_room_plus =
184 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
185 }
186 if (!in_delta_room_minus && !in_delta_room_plus) {
187 // Prepare for next iteration.
188 numerator->Times10();
189 delta_minus->Times10();
190 // We optimized delta_plus to be equal to delta_minus (if they share the
191 // same value). So don't multiply delta_plus if they point to the same
192 // object.
193 if (delta_minus != delta_plus) {
194 delta_plus->Times10();
195 }
196 } else if (in_delta_room_minus && in_delta_room_plus) {
197 // Let's see if 2*numerator < denominator.
198 // If yes, then the next digit would be < 5 and we can round down.
199 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
200 if (compare < 0) {
201 // Remaining digits are less than .5. -> Round down (== do nothing).
202 } else if (compare > 0) {
203 // Remaining digits are more than .5 of denominator. -> Round up.
204 // Note that the last digit could not be a '9' as otherwise the whole
205 // loop would have stopped earlier.
206 // We still have an assert here in case the preconditions were not
207 // satisfied.
208 DCHECK(buffer[(*length) - 1] != '9');
209 buffer[(*length) - 1]++;
210 } else {
211 // Halfway case.
212 // TODO(floitsch): need a way to solve half-way cases.
213 // For now let's round towards even (since this is what Gay seems to
214 // do).
215
216 if ((buffer[(*length) - 1] - '0') % 2 == 0) {
217 // Round down => Do nothing.
218 } else {
219 DCHECK(buffer[(*length) - 1] != '9');
220 buffer[(*length) - 1]++;
221 }
222 }
223 return;
224 } else if (in_delta_room_minus) {
225 // Round down (== do nothing).
226 return;
227 } else { // in_delta_room_plus
228 // Round up.
229 // Note again that the last digit could not be '9' since this would have
230 // stopped the loop earlier.
231 // We still have an DCHECK here, in case the preconditions were not
232 // satisfied.
233 DCHECK(buffer[(*length) -1] != '9');
234 buffer[(*length) - 1]++;
235 return;
236 }
237 }
238 }
239
240
241 // Let v = numerator / denominator < 10.
242 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
243 // from left to right. Once 'count' digits have been produced we decide wether
244 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
245 // as 9.999999 propagate a carry all the way, and change the
246 // exponent (decimal_point), when rounding upwards.
GenerateCountedDigits(int count,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)247 static void GenerateCountedDigits(int count, int* decimal_point,
248 Bignum* numerator, Bignum* denominator,
249 Vector<char>(buffer), int* length) {
250 DCHECK(count >= 0);
251 for (int i = 0; i < count - 1; ++i) {
252 uint16_t digit;
253 digit = numerator->DivideModuloIntBignum(*denominator);
254 DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive.
255 // digit = numerator / denominator (integer division).
256 // numerator = numerator % denominator.
257 buffer[i] = digit + '0';
258 // Prepare for next iteration.
259 numerator->Times10();
260 }
261 // Generate the last digit.
262 uint16_t digit;
263 digit = numerator->DivideModuloIntBignum(*denominator);
264 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
265 digit++;
266 }
267 buffer[count - 1] = digit + '0';
268 // Correct bad digits (in case we had a sequence of '9's). Propagate the
269 // carry until we hat a non-'9' or til we reach the first digit.
270 for (int i = count - 1; i > 0; --i) {
271 if (buffer[i] != '0' + 10) break;
272 buffer[i] = '0';
273 buffer[i - 1]++;
274 }
275 if (buffer[0] == '0' + 10) {
276 // Propagate a carry past the top place.
277 buffer[0] = '1';
278 (*decimal_point)++;
279 }
280 *length = count;
281 }
282
283
284 // Generates 'requested_digits' after the decimal point. It might omit
285 // trailing '0's. If the input number is too small then no digits at all are
286 // generated (ex.: 2 fixed digits for 0.00001).
287 //
288 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
BignumToFixed(int requested_digits,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)289 static void BignumToFixed(int requested_digits, int* decimal_point,
290 Bignum* numerator, Bignum* denominator,
291 Vector<char>(buffer), int* length) {
292 // Note that we have to look at more than just the requested_digits, since
293 // a number could be rounded up. Example: v=0.5 with requested_digits=0.
294 // Even though the power of v equals 0 we can't just stop here.
295 if (-(*decimal_point) > requested_digits) {
296 // The number is definitively too small.
297 // Ex: 0.001 with requested_digits == 1.
298 // Set decimal-point to -requested_digits. This is what Gay does.
299 // Note that it should not have any effect anyways since the string is
300 // empty.
301 *decimal_point = -requested_digits;
302 *length = 0;
303 return;
304 } else if (-(*decimal_point) == requested_digits) {
305 // We only need to verify if the number rounds down or up.
306 // Ex: 0.04 and 0.06 with requested_digits == 1.
307 DCHECK(*decimal_point == -requested_digits);
308 // Initially the fraction lies in range (1, 10]. Multiply the denominator
309 // by 10 so that we can compare more easily.
310 denominator->Times10();
311 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
312 // If the fraction is >= 0.5 then we have to include the rounded
313 // digit.
314 buffer[0] = '1';
315 *length = 1;
316 (*decimal_point)++;
317 } else {
318 // Note that we caught most of similar cases earlier.
319 *length = 0;
320 }
321 return;
322 } else {
323 // The requested digits correspond to the digits after the point.
324 // The variable 'needed_digits' includes the digits before the point.
325 int needed_digits = (*decimal_point) + requested_digits;
326 GenerateCountedDigits(needed_digits, decimal_point,
327 numerator, denominator,
328 buffer, length);
329 }
330 }
331
332
333 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
334 // v = f * 2^exponent and 2^52 <= f < 2^53.
335 // v is hence a normalized double with the given exponent. The output is an
336 // approximation for the exponent of the decimal approimation .digits * 10^k.
337 //
338 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
339 // Note: this property holds for v's upper boundary m+ too.
340 // 10^k <= m+ < 10^k+1.
341 // (see explanation below).
342 //
343 // Examples:
344 // EstimatePower(0) => 16
345 // EstimatePower(-52) => 0
346 //
347 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
EstimatePower(int exponent)348 static int EstimatePower(int exponent) {
349 // This function estimates log10 of v where v = f*2^e (with e == exponent).
350 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
351 // Note that f is bounded by its container size. Let p = 53 (the double's
352 // significand size). Then 2^(p-1) <= f < 2^p.
353 //
354 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
355 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
356 // The computed number undershoots by less than 0.631 (when we compute log3
357 // and not log10).
358 //
359 // Optimization: since we only need an approximated result this computation
360 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
361 // not really measurable, though.
362 //
363 // Since we want to avoid overshooting we decrement by 1e10 so that
364 // floating-point imprecisions don't affect us.
365 //
366 // Explanation for v's boundary m+: the computation takes advantage of
367 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
368 // (even for denormals where the delta can be much more important).
369
370 const double k1Log10 = 0.30102999566398114; // 1/lg(10)
371
372 // For doubles len(f) == 53 (don't forget the hidden bit).
373 const int kSignificandSize = 53;
374 double estimate =
375 std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
376 return static_cast<int>(estimate);
377 }
378
379
380 // See comments for InitialScaledStartValues.
InitialScaledStartValuesPositiveExponent(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)381 static void InitialScaledStartValuesPositiveExponent(
382 double v, int estimated_power, bool need_boundary_deltas,
383 Bignum* numerator, Bignum* denominator,
384 Bignum* delta_minus, Bignum* delta_plus) {
385 // A positive exponent implies a positive power.
386 DCHECK(estimated_power >= 0);
387 // Since the estimated_power is positive we simply multiply the denominator
388 // by 10^estimated_power.
389
390 // numerator = v.
391 numerator->AssignUInt64(Double(v).Significand());
392 numerator->ShiftLeft(Double(v).Exponent());
393 // denominator = 10^estimated_power.
394 denominator->AssignPowerUInt16(10, estimated_power);
395
396 if (need_boundary_deltas) {
397 // Introduce a common denominator so that the deltas to the boundaries are
398 // integers.
399 denominator->ShiftLeft(1);
400 numerator->ShiftLeft(1);
401 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
402 // denominator (of 2) delta_plus equals 2^e.
403 delta_plus->AssignUInt16(1);
404 delta_plus->ShiftLeft(Double(v).Exponent());
405 // Same for delta_minus (with adjustments below if f == 2^p-1).
406 delta_minus->AssignUInt16(1);
407 delta_minus->ShiftLeft(Double(v).Exponent());
408
409 // If the significand (without the hidden bit) is 0, then the lower
410 // boundary is closer than just half a ulp (unit in the last place).
411 // There is only one exception: if the next lower number is a denormal then
412 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
413 // have to test it in the other function where exponent < 0).
414 uint64_t v_bits = Double(v).AsUint64();
415 if ((v_bits & Double::kSignificandMask) == 0) {
416 // The lower boundary is closer at half the distance of "normal" numbers.
417 // Increase the common denominator and adapt all but the delta_minus.
418 denominator->ShiftLeft(1); // *2
419 numerator->ShiftLeft(1); // *2
420 delta_plus->ShiftLeft(1); // *2
421 }
422 }
423 }
424
425
426 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentPositivePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)427 static void InitialScaledStartValuesNegativeExponentPositivePower(
428 double v, int estimated_power, bool need_boundary_deltas,
429 Bignum* numerator, Bignum* denominator,
430 Bignum* delta_minus, Bignum* delta_plus) {
431 uint64_t significand = Double(v).Significand();
432 int exponent = Double(v).Exponent();
433 // v = f * 2^e with e < 0, and with estimated_power >= 0.
434 // This means that e is close to 0 (have a look at how estimated_power is
435 // computed).
436
437 // numerator = significand
438 // since v = significand * 2^exponent this is equivalent to
439 // numerator = v * / 2^-exponent
440 numerator->AssignUInt64(significand);
441 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
442 denominator->AssignPowerUInt16(10, estimated_power);
443 denominator->ShiftLeft(-exponent);
444
445 if (need_boundary_deltas) {
446 // Introduce a common denominator so that the deltas to the boundaries are
447 // integers.
448 denominator->ShiftLeft(1);
449 numerator->ShiftLeft(1);
450 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
451 // denominator (of 2) delta_plus equals 2^e.
452 // Given that the denominator already includes v's exponent the distance
453 // to the boundaries is simply 1.
454 delta_plus->AssignUInt16(1);
455 // Same for delta_minus (with adjustments below if f == 2^p-1).
456 delta_minus->AssignUInt16(1);
457
458 // If the significand (without the hidden bit) is 0, then the lower
459 // boundary is closer than just one ulp (unit in the last place).
460 // There is only one exception: if the next lower number is a denormal
461 // then the distance is 1 ulp. Since the exponent is close to zero
462 // (otherwise estimated_power would have been negative) this cannot happen
463 // here either.
464 uint64_t v_bits = Double(v).AsUint64();
465 if ((v_bits & Double::kSignificandMask) == 0) {
466 // The lower boundary is closer at half the distance of "normal" numbers.
467 // Increase the denominator and adapt all but the delta_minus.
468 denominator->ShiftLeft(1); // *2
469 numerator->ShiftLeft(1); // *2
470 delta_plus->ShiftLeft(1); // *2
471 }
472 }
473 }
474
475
476 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentNegativePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)477 static void InitialScaledStartValuesNegativeExponentNegativePower(
478 double v, int estimated_power, bool need_boundary_deltas,
479 Bignum* numerator, Bignum* denominator,
480 Bignum* delta_minus, Bignum* delta_plus) {
481 const uint64_t kMinimalNormalizedExponent =
482 V8_2PART_UINT64_C(0x00100000, 00000000);
483 uint64_t significand = Double(v).Significand();
484 int exponent = Double(v).Exponent();
485 // Instead of multiplying the denominator with 10^estimated_power we
486 // multiply all values (numerator and deltas) by 10^-estimated_power.
487
488 // Use numerator as temporary container for power_ten.
489 Bignum* power_ten = numerator;
490 power_ten->AssignPowerUInt16(10, -estimated_power);
491
492 if (need_boundary_deltas) {
493 // Since power_ten == numerator we must make a copy of 10^estimated_power
494 // before we complete the computation of the numerator.
495 // delta_plus = delta_minus = 10^estimated_power
496 delta_plus->AssignBignum(*power_ten);
497 delta_minus->AssignBignum(*power_ten);
498 }
499
500 // numerator = significand * 2 * 10^-estimated_power
501 // since v = significand * 2^exponent this is equivalent to
502 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
503 // Remember: numerator has been abused as power_ten. So no need to assign it
504 // to itself.
505 DCHECK(numerator == power_ten);
506 numerator->MultiplyByUInt64(significand);
507
508 // denominator = 2 * 2^-exponent with exponent < 0.
509 denominator->AssignUInt16(1);
510 denominator->ShiftLeft(-exponent);
511
512 if (need_boundary_deltas) {
513 // Introduce a common denominator so that the deltas to the boundaries are
514 // integers.
515 numerator->ShiftLeft(1);
516 denominator->ShiftLeft(1);
517 // With this shift the boundaries have their correct value, since
518 // delta_plus = 10^-estimated_power, and
519 // delta_minus = 10^-estimated_power.
520 // These assignments have been done earlier.
521
522 // The special case where the lower boundary is twice as close.
523 // This time we have to look out for the exception too.
524 uint64_t v_bits = Double(v).AsUint64();
525 if ((v_bits & Double::kSignificandMask) == 0 &&
526 // The only exception where a significand == 0 has its boundaries at
527 // "normal" distances:
528 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
529 numerator->ShiftLeft(1); // *2
530 denominator->ShiftLeft(1); // *2
531 delta_plus->ShiftLeft(1); // *2
532 }
533 }
534 }
535
536
537 // Let v = significand * 2^exponent.
538 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
539 // and denominator. The functions GenerateShortestDigits and
540 // GenerateCountedDigits will then convert this ratio to its decimal
541 // representation d, with the required accuracy.
542 // Then d * 10^estimated_power is the representation of v.
543 // (Note: the fraction and the estimated_power might get adjusted before
544 // generating the decimal representation.)
545 //
546 // The initial start values consist of:
547 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
548 // - a scaled (common) denominator.
549 // optionally (used by GenerateShortestDigits to decide if it has the shortest
550 // decimal converting back to v):
551 // - v - m-: the distance to the lower boundary.
552 // - m+ - v: the distance to the upper boundary.
553 //
554 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
555 //
556 // Let ep == estimated_power, then the returned values will satisfy:
557 // v / 10^ep = numerator / denominator.
558 // v's boundarys m- and m+:
559 // m- / 10^ep == v / 10^ep - delta_minus / denominator
560 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
561 // Or in other words:
562 // m- == v - delta_minus * 10^ep / denominator;
563 // m+ == v + delta_plus * 10^ep / denominator;
564 //
565 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
566 // or 10^k <= v < 10^(k+1)
567 // we then have 0.1 <= numerator/denominator < 1
568 // or 1 <= numerator/denominator < 10
569 //
570 // It is then easy to kickstart the digit-generation routine.
571 //
572 // The boundary-deltas are only filled if need_boundary_deltas is set.
InitialScaledStartValues(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)573 static void InitialScaledStartValues(double v,
574 int estimated_power,
575 bool need_boundary_deltas,
576 Bignum* numerator,
577 Bignum* denominator,
578 Bignum* delta_minus,
579 Bignum* delta_plus) {
580 if (Double(v).Exponent() >= 0) {
581 InitialScaledStartValuesPositiveExponent(
582 v, estimated_power, need_boundary_deltas,
583 numerator, denominator, delta_minus, delta_plus);
584 } else if (estimated_power >= 0) {
585 InitialScaledStartValuesNegativeExponentPositivePower(
586 v, estimated_power, need_boundary_deltas,
587 numerator, denominator, delta_minus, delta_plus);
588 } else {
589 InitialScaledStartValuesNegativeExponentNegativePower(
590 v, estimated_power, need_boundary_deltas,
591 numerator, denominator, delta_minus, delta_plus);
592 }
593 }
594
595
596 // This routine multiplies numerator/denominator so that its values lies in the
597 // range 1-10. That is after a call to this function we have:
598 // 1 <= (numerator + delta_plus) /denominator < 10.
599 // Let numerator the input before modification and numerator' the argument
600 // after modification, then the output-parameter decimal_point is such that
601 // numerator / denominator * 10^estimated_power ==
602 // numerator' / denominator' * 10^(decimal_point - 1)
603 // In some cases estimated_power was too low, and this is already the case. We
604 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
605 // estimated_power) but do not touch the numerator or denominator.
606 // Otherwise the routine multiplies the numerator and the deltas by 10.
FixupMultiply10(int estimated_power,bool is_even,int * decimal_point,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)607 static void FixupMultiply10(int estimated_power, bool is_even,
608 int* decimal_point,
609 Bignum* numerator, Bignum* denominator,
610 Bignum* delta_minus, Bignum* delta_plus) {
611 bool in_range;
612 if (is_even) {
613 // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
614 // are rounded to the closest floating-point number with even significand.
615 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
616 } else {
617 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
618 }
619 if (in_range) {
620 // Since numerator + delta_plus >= denominator we already have
621 // 1 <= numerator/denominator < 10. Simply update the estimated_power.
622 *decimal_point = estimated_power + 1;
623 } else {
624 *decimal_point = estimated_power;
625 numerator->Times10();
626 if (Bignum::Equal(*delta_minus, *delta_plus)) {
627 delta_minus->Times10();
628 delta_plus->AssignBignum(*delta_minus);
629 } else {
630 delta_minus->Times10();
631 delta_plus->Times10();
632 }
633 }
634 }
635
636 } } // namespace v8::internal
637