• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_MIPS64
8 
9 #include "src/codegen.h"
10 #include "src/macro-assembler.h"
11 #include "src/mips64/simulator-mips64.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 
17 #define __ masm.
18 
19 
20 #if defined(USE_SIMULATOR)
21 byte* fast_exp_mips_machine_code = NULL;
fast_exp_simulator(double x)22 double fast_exp_simulator(double x) {
23   return Simulator::current(Isolate::Current())->CallFP(
24       fast_exp_mips_machine_code, x, 0);
25 }
26 #endif
27 
28 
CreateExpFunction()29 UnaryMathFunction CreateExpFunction() {
30   if (!FLAG_fast_math) return &std::exp;
31   size_t actual_size;
32   byte* buffer =
33       static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
34   if (buffer == NULL) return &std::exp;
35   ExternalReference::InitializeMathExpData();
36 
37   MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
38 
39   {
40     DoubleRegister input = f12;
41     DoubleRegister result = f0;
42     DoubleRegister double_scratch1 = f4;
43     DoubleRegister double_scratch2 = f6;
44     Register temp1 = a4;
45     Register temp2 = a5;
46     Register temp3 = a6;
47 
48     if (!IsMipsSoftFloatABI) {
49       // Input value is in f12 anyway, nothing to do.
50     } else {
51       __ Move(input, a0, a1);
52     }
53     __ Push(temp3, temp2, temp1);
54     MathExpGenerator::EmitMathExp(
55         &masm, input, result, double_scratch1, double_scratch2,
56         temp1, temp2, temp3);
57     __ Pop(temp3, temp2, temp1);
58     if (!IsMipsSoftFloatABI) {
59       // Result is already in f0, nothing to do.
60     } else {
61       __ Move(v0, v1, result);
62     }
63     __ Ret();
64   }
65 
66   CodeDesc desc;
67   masm.GetCode(&desc);
68   DCHECK(!RelocInfo::RequiresRelocation(desc));
69 
70   CpuFeatures::FlushICache(buffer, actual_size);
71   base::OS::ProtectCode(buffer, actual_size);
72 
73 #if !defined(USE_SIMULATOR)
74   return FUNCTION_CAST<UnaryMathFunction>(buffer);
75 #else
76   fast_exp_mips_machine_code = buffer;
77   return &fast_exp_simulator;
78 #endif
79 }
80 
81 
82 #if defined(V8_HOST_ARCH_MIPS)
CreateMemCopyUint8Function(MemCopyUint8Function stub)83 MemCopyUint8Function CreateMemCopyUint8Function(MemCopyUint8Function stub) {
84 #if defined(USE_SIMULATOR)
85   return stub;
86 #else
87 
88   size_t actual_size;
89   byte* buffer =
90       static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true));
91   if (buffer == NULL) return stub;
92 
93   // This code assumes that cache lines are 32 bytes and if the cache line is
94   // larger it will not work correctly.
95   MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
96 
97   {
98     Label lastb, unaligned, aligned, chkw,
99           loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop,
100           leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw,
101           ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop;
102 
103     // The size of each prefetch.
104     uint32_t pref_chunk = 32;
105     // The maximum size of a prefetch, it must not be less then pref_chunk.
106     // If the real size of a prefetch is greater then max_pref_size and
107     // the kPrefHintPrepareForStore hint is used, the code will not work
108     // correctly.
109     uint32_t max_pref_size = 128;
110     DCHECK(pref_chunk < max_pref_size);
111 
112     // pref_limit is set based on the fact that we never use an offset
113     // greater then 5 on a store pref and that a single pref can
114     // never be larger then max_pref_size.
115     uint32_t pref_limit = (5 * pref_chunk) + max_pref_size;
116     int32_t pref_hint_load = kPrefHintLoadStreamed;
117     int32_t pref_hint_store = kPrefHintPrepareForStore;
118     uint32_t loadstore_chunk = 4;
119 
120     // The initial prefetches may fetch bytes that are before the buffer being
121     // copied. Start copies with an offset of 4 so avoid this situation when
122     // using kPrefHintPrepareForStore.
123     DCHECK(pref_hint_store != kPrefHintPrepareForStore ||
124            pref_chunk * 4 >= max_pref_size);
125     // If the size is less than 8, go to lastb. Regardless of size,
126     // copy dst pointer to v0 for the retuen value.
127     __ slti(a6, a2, 2 * loadstore_chunk);
128     __ bne(a6, zero_reg, &lastb);
129     __ mov(v0, a0);  // In delay slot.
130 
131     // If src and dst have different alignments, go to unaligned, if they
132     // have the same alignment (but are not actually aligned) do a partial
133     // load/store to make them aligned. If they are both already aligned
134     // we can start copying at aligned.
135     __ xor_(t8, a1, a0);
136     __ andi(t8, t8, loadstore_chunk - 1);  // t8 is a0/a1 word-displacement.
137     __ bne(t8, zero_reg, &unaligned);
138     __ subu(a3, zero_reg, a0);  // In delay slot.
139 
140     __ andi(a3, a3, loadstore_chunk - 1);  // Copy a3 bytes to align a0/a1.
141     __ beq(a3, zero_reg, &aligned);  // Already aligned.
142     __ subu(a2, a2, a3);  // In delay slot. a2 is the remining bytes count.
143 
144     __ lwr(t8, MemOperand(a1));
145     __ addu(a1, a1, a3);
146     __ swr(t8, MemOperand(a0));
147     __ addu(a0, a0, a3);
148 
149     // Now dst/src are both aligned to (word) aligned addresses. Set a2 to
150     // count how many bytes we have to copy after all the 64 byte chunks are
151     // copied and a3 to the dst pointer after all the 64 byte chunks have been
152     // copied. We will loop, incrementing a0 and a1 until a0 equals a3.
153     __ bind(&aligned);
154     __ andi(t8, a2, 0x3f);
155     __ beq(a2, t8, &chkw);  // Less than 64?
156     __ subu(a3, a2, t8);  // In delay slot.
157     __ addu(a3, a0, a3);  // Now a3 is the final dst after loop.
158 
159     // When in the loop we prefetch with kPrefHintPrepareForStore hint,
160     // in this case the a0+x should be past the "a4-32" address. This means:
161     // for x=128 the last "safe" a0 address is "a4-160". Alternatively, for
162     // x=64 the last "safe" a0 address is "a4-96". In the current version we
163     // will use "pref hint, 128(a0)", so "a4-160" is the limit.
164     if (pref_hint_store == kPrefHintPrepareForStore) {
165       __ addu(a4, a0, a2);  // a4 is the "past the end" address.
166       __ Subu(t9, a4, pref_limit);  // t9 is the "last safe pref" address.
167     }
168 
169     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
170     __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
171     __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
172     __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
173 
174     if (pref_hint_store != kPrefHintPrepareForStore) {
175       __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
176       __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
177       __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
178     }
179     __ bind(&loop16w);
180     __ lw(a4, MemOperand(a1));
181 
182     if (pref_hint_store == kPrefHintPrepareForStore) {
183       __ sltu(v1, t9, a0);  // If a0 > t9, don't use next prefetch.
184       __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg));
185     }
186     __ lw(a5, MemOperand(a1, 1, loadstore_chunk));  // Maybe in delay slot.
187 
188     __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
189     __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
190 
191     __ bind(&skip_pref);
192     __ lw(a6, MemOperand(a1, 2, loadstore_chunk));
193     __ lw(a7, MemOperand(a1, 3, loadstore_chunk));
194     __ lw(t0, MemOperand(a1, 4, loadstore_chunk));
195     __ lw(t1, MemOperand(a1, 5, loadstore_chunk));
196     __ lw(t2, MemOperand(a1, 6, loadstore_chunk));
197     __ lw(t3, MemOperand(a1, 7, loadstore_chunk));
198     __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
199 
200     __ sw(a4, MemOperand(a0));
201     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
202     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
203     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
204     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
205     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
206     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
207     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
208 
209     __ lw(a4, MemOperand(a1, 8, loadstore_chunk));
210     __ lw(a5, MemOperand(a1, 9, loadstore_chunk));
211     __ lw(a6, MemOperand(a1, 10, loadstore_chunk));
212     __ lw(a7, MemOperand(a1, 11, loadstore_chunk));
213     __ lw(t0, MemOperand(a1, 12, loadstore_chunk));
214     __ lw(t1, MemOperand(a1, 13, loadstore_chunk));
215     __ lw(t2, MemOperand(a1, 14, loadstore_chunk));
216     __ lw(t3, MemOperand(a1, 15, loadstore_chunk));
217     __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
218 
219     __ sw(a4, MemOperand(a0, 8, loadstore_chunk));
220     __ sw(a5, MemOperand(a0, 9, loadstore_chunk));
221     __ sw(a6, MemOperand(a0, 10, loadstore_chunk));
222     __ sw(a7, MemOperand(a0, 11, loadstore_chunk));
223     __ sw(t0, MemOperand(a0, 12, loadstore_chunk));
224     __ sw(t1, MemOperand(a0, 13, loadstore_chunk));
225     __ sw(t2, MemOperand(a0, 14, loadstore_chunk));
226     __ sw(t3, MemOperand(a0, 15, loadstore_chunk));
227     __ addiu(a0, a0, 16 * loadstore_chunk);
228     __ bne(a0, a3, &loop16w);
229     __ addiu(a1, a1, 16 * loadstore_chunk);  // In delay slot.
230     __ mov(a2, t8);
231 
232     // Here we have src and dest word-aligned but less than 64-bytes to go.
233     // Check for a 32 bytes chunk and copy if there is one. Otherwise jump
234     // down to chk1w to handle the tail end of the copy.
235     __ bind(&chkw);
236     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
237     __ andi(t8, a2, 0x1f);
238     __ beq(a2, t8, &chk1w);  // Less than 32?
239     __ nop();  // In delay slot.
240     __ lw(a4, MemOperand(a1));
241     __ lw(a5, MemOperand(a1, 1, loadstore_chunk));
242     __ lw(a6, MemOperand(a1, 2, loadstore_chunk));
243     __ lw(a7, MemOperand(a1, 3, loadstore_chunk));
244     __ lw(t0, MemOperand(a1, 4, loadstore_chunk));
245     __ lw(t1, MemOperand(a1, 5, loadstore_chunk));
246     __ lw(t2, MemOperand(a1, 6, loadstore_chunk));
247     __ lw(t3, MemOperand(a1, 7, loadstore_chunk));
248     __ addiu(a1, a1, 8 * loadstore_chunk);
249     __ sw(a4, MemOperand(a0));
250     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
251     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
252     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
253     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
254     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
255     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
256     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
257     __ addiu(a0, a0, 8 * loadstore_chunk);
258 
259     // Here we have less than 32 bytes to copy. Set up for a loop to copy
260     // one word at a time. Set a2 to count how many bytes we have to copy
261     // after all the word chunks are copied and a3 to the dst pointer after
262     // all the word chunks have been copied. We will loop, incrementing a0
263     // and a1 untill a0 equals a3.
264     __ bind(&chk1w);
265     __ andi(a2, t8, loadstore_chunk - 1);
266     __ beq(a2, t8, &lastb);
267     __ subu(a3, t8, a2);  // In delay slot.
268     __ addu(a3, a0, a3);
269 
270     __ bind(&wordCopy_loop);
271     __ lw(a7, MemOperand(a1));
272     __ addiu(a0, a0, loadstore_chunk);
273     __ addiu(a1, a1, loadstore_chunk);
274     __ bne(a0, a3, &wordCopy_loop);
275     __ sw(a7, MemOperand(a0, -1, loadstore_chunk));  // In delay slot.
276 
277     __ bind(&lastb);
278     __ Branch(&leave, le, a2, Operand(zero_reg));
279     __ addu(a3, a0, a2);
280 
281     __ bind(&lastbloop);
282     __ lb(v1, MemOperand(a1));
283     __ addiu(a0, a0, 1);
284     __ addiu(a1, a1, 1);
285     __ bne(a0, a3, &lastbloop);
286     __ sb(v1, MemOperand(a0, -1));  // In delay slot.
287 
288     __ bind(&leave);
289     __ jr(ra);
290     __ nop();
291 
292     // Unaligned case. Only the dst gets aligned so we need to do partial
293     // loads of the source followed by normal stores to the dst (once we
294     // have aligned the destination).
295     __ bind(&unaligned);
296     __ andi(a3, a3, loadstore_chunk - 1);  // Copy a3 bytes to align a0/a1.
297     __ beq(a3, zero_reg, &ua_chk16w);
298     __ subu(a2, a2, a3);  // In delay slot.
299 
300     __ lwr(v1, MemOperand(a1));
301     __ lwl(v1,
302            MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
303     __ addu(a1, a1, a3);
304     __ swr(v1, MemOperand(a0));
305     __ addu(a0, a0, a3);
306 
307     // Now the dst (but not the source) is aligned. Set a2 to count how many
308     // bytes we have to copy after all the 64 byte chunks are copied and a3 to
309     // the dst pointer after all the 64 byte chunks have been copied. We will
310     // loop, incrementing a0 and a1 until a0 equals a3.
311     __ bind(&ua_chk16w);
312     __ andi(t8, a2, 0x3f);
313     __ beq(a2, t8, &ua_chkw);
314     __ subu(a3, a2, t8);  // In delay slot.
315     __ addu(a3, a0, a3);
316 
317     if (pref_hint_store == kPrefHintPrepareForStore) {
318       __ addu(a4, a0, a2);
319       __ Subu(t9, a4, pref_limit);
320     }
321 
322     __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
323     __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
324     __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
325 
326     if (pref_hint_store != kPrefHintPrepareForStore) {
327       __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
328       __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
329       __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
330     }
331 
332     __ bind(&ua_loop16w);
333     __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
334     __ lwr(a4, MemOperand(a1));
335     __ lwr(a5, MemOperand(a1, 1, loadstore_chunk));
336     __ lwr(a6, MemOperand(a1, 2, loadstore_chunk));
337 
338     if (pref_hint_store == kPrefHintPrepareForStore) {
339       __ sltu(v1, t9, a0);
340       __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
341     }
342     __ lwr(a7, MemOperand(a1, 3, loadstore_chunk));  // Maybe in delay slot.
343 
344     __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
345     __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
346 
347     __ bind(&ua_skip_pref);
348     __ lwr(t0, MemOperand(a1, 4, loadstore_chunk));
349     __ lwr(t1, MemOperand(a1, 5, loadstore_chunk));
350     __ lwr(t2, MemOperand(a1, 6, loadstore_chunk));
351     __ lwr(t3, MemOperand(a1, 7, loadstore_chunk));
352     __ lwl(a4,
353            MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
354     __ lwl(a5,
355            MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
356     __ lwl(a6,
357            MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
358     __ lwl(a7,
359            MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
360     __ lwl(t0,
361            MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
362     __ lwl(t1,
363            MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
364     __ lwl(t2,
365            MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
366     __ lwl(t3,
367            MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
368     __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
369     __ sw(a4, MemOperand(a0));
370     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
371     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
372     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
373     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
374     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
375     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
376     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
377     __ lwr(a4, MemOperand(a1, 8, loadstore_chunk));
378     __ lwr(a5, MemOperand(a1, 9, loadstore_chunk));
379     __ lwr(a6, MemOperand(a1, 10, loadstore_chunk));
380     __ lwr(a7, MemOperand(a1, 11, loadstore_chunk));
381     __ lwr(t0, MemOperand(a1, 12, loadstore_chunk));
382     __ lwr(t1, MemOperand(a1, 13, loadstore_chunk));
383     __ lwr(t2, MemOperand(a1, 14, loadstore_chunk));
384     __ lwr(t3, MemOperand(a1, 15, loadstore_chunk));
385     __ lwl(a4,
386            MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
387     __ lwl(a5,
388            MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
389     __ lwl(a6,
390            MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
391     __ lwl(a7,
392            MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
393     __ lwl(t0,
394            MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
395     __ lwl(t1,
396            MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
397     __ lwl(t2,
398            MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
399     __ lwl(t3,
400            MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
401     __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
402     __ sw(a4, MemOperand(a0, 8, loadstore_chunk));
403     __ sw(a5, MemOperand(a0, 9, loadstore_chunk));
404     __ sw(a6, MemOperand(a0, 10, loadstore_chunk));
405     __ sw(a7, MemOperand(a0, 11, loadstore_chunk));
406     __ sw(t0, MemOperand(a0, 12, loadstore_chunk));
407     __ sw(t1, MemOperand(a0, 13, loadstore_chunk));
408     __ sw(t2, MemOperand(a0, 14, loadstore_chunk));
409     __ sw(t3, MemOperand(a0, 15, loadstore_chunk));
410     __ addiu(a0, a0, 16 * loadstore_chunk);
411     __ bne(a0, a3, &ua_loop16w);
412     __ addiu(a1, a1, 16 * loadstore_chunk);  // In delay slot.
413     __ mov(a2, t8);
414 
415     // Here less than 64-bytes. Check for
416     // a 32 byte chunk and copy if there is one. Otherwise jump down to
417     // ua_chk1w to handle the tail end of the copy.
418     __ bind(&ua_chkw);
419     __ Pref(pref_hint_load, MemOperand(a1));
420     __ andi(t8, a2, 0x1f);
421 
422     __ beq(a2, t8, &ua_chk1w);
423     __ nop();  // In delay slot.
424     __ lwr(a4, MemOperand(a1));
425     __ lwr(a5, MemOperand(a1, 1, loadstore_chunk));
426     __ lwr(a6, MemOperand(a1, 2, loadstore_chunk));
427     __ lwr(a7, MemOperand(a1, 3, loadstore_chunk));
428     __ lwr(t0, MemOperand(a1, 4, loadstore_chunk));
429     __ lwr(t1, MemOperand(a1, 5, loadstore_chunk));
430     __ lwr(t2, MemOperand(a1, 6, loadstore_chunk));
431     __ lwr(t3, MemOperand(a1, 7, loadstore_chunk));
432     __ lwl(a4,
433            MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
434     __ lwl(a5,
435            MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
436     __ lwl(a6,
437            MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
438     __ lwl(a7,
439            MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
440     __ lwl(t0,
441            MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
442     __ lwl(t1,
443            MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
444     __ lwl(t2,
445            MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
446     __ lwl(t3,
447            MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
448     __ addiu(a1, a1, 8 * loadstore_chunk);
449     __ sw(a4, MemOperand(a0));
450     __ sw(a5, MemOperand(a0, 1, loadstore_chunk));
451     __ sw(a6, MemOperand(a0, 2, loadstore_chunk));
452     __ sw(a7, MemOperand(a0, 3, loadstore_chunk));
453     __ sw(t0, MemOperand(a0, 4, loadstore_chunk));
454     __ sw(t1, MemOperand(a0, 5, loadstore_chunk));
455     __ sw(t2, MemOperand(a0, 6, loadstore_chunk));
456     __ sw(t3, MemOperand(a0, 7, loadstore_chunk));
457     __ addiu(a0, a0, 8 * loadstore_chunk);
458 
459     // Less than 32 bytes to copy. Set up for a loop to
460     // copy one word at a time.
461     __ bind(&ua_chk1w);
462     __ andi(a2, t8, loadstore_chunk - 1);
463     __ beq(a2, t8, &ua_smallCopy);
464     __ subu(a3, t8, a2);  // In delay slot.
465     __ addu(a3, a0, a3);
466 
467     __ bind(&ua_wordCopy_loop);
468     __ lwr(v1, MemOperand(a1));
469     __ lwl(v1,
470            MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
471     __ addiu(a0, a0, loadstore_chunk);
472     __ addiu(a1, a1, loadstore_chunk);
473     __ bne(a0, a3, &ua_wordCopy_loop);
474     __ sw(v1, MemOperand(a0, -1, loadstore_chunk));  // In delay slot.
475 
476     // Copy the last 8 bytes.
477     __ bind(&ua_smallCopy);
478     __ beq(a2, zero_reg, &leave);
479     __ addu(a3, a0, a2);  // In delay slot.
480 
481     __ bind(&ua_smallCopy_loop);
482     __ lb(v1, MemOperand(a1));
483     __ addiu(a0, a0, 1);
484     __ addiu(a1, a1, 1);
485     __ bne(a0, a3, &ua_smallCopy_loop);
486     __ sb(v1, MemOperand(a0, -1));  // In delay slot.
487 
488     __ jr(ra);
489     __ nop();
490   }
491   CodeDesc desc;
492   masm.GetCode(&desc);
493   DCHECK(!RelocInfo::RequiresRelocation(desc));
494 
495   CpuFeatures::FlushICache(buffer, actual_size);
496   base::OS::ProtectCode(buffer, actual_size);
497   return FUNCTION_CAST<MemCopyUint8Function>(buffer);
498 #endif
499 }
500 #endif
501 
CreateSqrtFunction()502 UnaryMathFunction CreateSqrtFunction() {
503 #if defined(USE_SIMULATOR)
504   return &std::sqrt;
505 #else
506   size_t actual_size;
507   byte* buffer =
508       static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
509   if (buffer == NULL) return &std::sqrt;
510 
511   MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
512 
513   __ MovFromFloatParameter(f12);
514   __ sqrt_d(f0, f12);
515   __ MovToFloatResult(f0);
516   __ Ret();
517 
518   CodeDesc desc;
519   masm.GetCode(&desc);
520   DCHECK(!RelocInfo::RequiresRelocation(desc));
521 
522   CpuFeatures::FlushICache(buffer, actual_size);
523   base::OS::ProtectCode(buffer, actual_size);
524   return FUNCTION_CAST<UnaryMathFunction>(buffer);
525 #endif
526 }
527 
528 #undef __
529 
530 
531 // -------------------------------------------------------------------------
532 // Platform-specific RuntimeCallHelper functions.
533 
BeforeCall(MacroAssembler * masm) const534 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
535   masm->EnterFrame(StackFrame::INTERNAL);
536   DCHECK(!masm->has_frame());
537   masm->set_has_frame(true);
538 }
539 
540 
AfterCall(MacroAssembler * masm) const541 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
542   masm->LeaveFrame(StackFrame::INTERNAL);
543   DCHECK(masm->has_frame());
544   masm->set_has_frame(false);
545 }
546 
547 
548 // -------------------------------------------------------------------------
549 // Code generators
550 
551 #define __ ACCESS_MASM(masm)
552 
GenerateMapChangeElementsTransition(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * allocation_memento_found)553 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
554     MacroAssembler* masm,
555     Register receiver,
556     Register key,
557     Register value,
558     Register target_map,
559     AllocationSiteMode mode,
560     Label* allocation_memento_found) {
561   Register scratch_elements = a4;
562   DCHECK(!AreAliased(receiver, key, value, target_map,
563                      scratch_elements));
564 
565   if (mode == TRACK_ALLOCATION_SITE) {
566     __ JumpIfJSArrayHasAllocationMemento(
567         receiver, scratch_elements, allocation_memento_found);
568   }
569 
570   // Set transitioned map.
571   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
572   __ RecordWriteField(receiver,
573                       HeapObject::kMapOffset,
574                       target_map,
575                       t1,
576                       kRAHasNotBeenSaved,
577                       kDontSaveFPRegs,
578                       EMIT_REMEMBERED_SET,
579                       OMIT_SMI_CHECK);
580 }
581 
582 
GenerateSmiToDouble(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)583 void ElementsTransitionGenerator::GenerateSmiToDouble(
584     MacroAssembler* masm,
585     Register receiver,
586     Register key,
587     Register value,
588     Register target_map,
589     AllocationSiteMode mode,
590     Label* fail) {
591   // Register ra contains the return address.
592   Label loop, entry, convert_hole, gc_required, only_change_map, done;
593   Register elements = a4;
594   Register length = a5;
595   Register array = a6;
596   Register array_end = array;
597 
598   // target_map parameter can be clobbered.
599   Register scratch1 = target_map;
600   Register scratch2 = t1;
601   Register scratch3 = a7;
602 
603   // Verify input registers don't conflict with locals.
604   DCHECK(!AreAliased(receiver, key, value, target_map,
605                      elements, length, array, scratch2));
606 
607   Register scratch = t2;
608   if (mode == TRACK_ALLOCATION_SITE) {
609     __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
610   }
611 
612   // Check for empty arrays, which only require a map transition and no changes
613   // to the backing store.
614   __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
615   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
616   __ Branch(&only_change_map, eq, at, Operand(elements));
617 
618   __ push(ra);
619   __ ld(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
620   // elements: source FixedArray
621   // length: number of elements (smi-tagged)
622 
623   // Allocate new FixedDoubleArray.
624   __ SmiScale(scratch, length, kDoubleSizeLog2);
625   __ Daddu(scratch, scratch, FixedDoubleArray::kHeaderSize);
626   __ Allocate(scratch, array, t3, scratch2, &gc_required, DOUBLE_ALIGNMENT);
627   // array: destination FixedDoubleArray, not tagged as heap object
628 
629   // Set destination FixedDoubleArray's length and map.
630   __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
631   __ sd(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
632   // Update receiver's map.
633   __ sd(scratch2, MemOperand(array, HeapObject::kMapOffset));
634 
635   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
636   __ RecordWriteField(receiver,
637                       HeapObject::kMapOffset,
638                       target_map,
639                       scratch2,
640                       kRAHasBeenSaved,
641                       kDontSaveFPRegs,
642                       OMIT_REMEMBERED_SET,
643                       OMIT_SMI_CHECK);
644   // Replace receiver's backing store with newly created FixedDoubleArray.
645   __ Daddu(scratch1, array, Operand(kHeapObjectTag));
646   __ sd(scratch1, FieldMemOperand(a2, JSObject::kElementsOffset));
647   __ RecordWriteField(receiver,
648                       JSObject::kElementsOffset,
649                       scratch1,
650                       scratch2,
651                       kRAHasBeenSaved,
652                       kDontSaveFPRegs,
653                       EMIT_REMEMBERED_SET,
654                       OMIT_SMI_CHECK);
655 
656 
657   // Prepare for conversion loop.
658   __ Daddu(scratch1, elements,
659       Operand(FixedArray::kHeaderSize - kHeapObjectTag));
660   __ Daddu(scratch3, array, Operand(FixedDoubleArray::kHeaderSize));
661   __ SmiScale(array_end, length, kDoubleSizeLog2);
662   __ Daddu(array_end, array_end, scratch3);
663 
664   // Repurpose registers no longer in use.
665   Register hole_lower = elements;
666   Register hole_upper = length;
667   __ li(hole_lower, Operand(kHoleNanLower32));
668   // scratch1: begin of source FixedArray element fields, not tagged
669   // hole_lower: kHoleNanLower32
670   // hole_upper: kHoleNanUpper32
671   // array_end: end of destination FixedDoubleArray, not tagged
672   // scratch3: begin of FixedDoubleArray element fields, not tagged
673   __ Branch(USE_DELAY_SLOT, &entry);
674   __ li(hole_upper, Operand(kHoleNanUpper32));  // In delay slot.
675 
676   __ bind(&only_change_map);
677   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
678   __ RecordWriteField(receiver,
679                       HeapObject::kMapOffset,
680                       target_map,
681                       scratch2,
682                       kRAHasBeenSaved,
683                       kDontSaveFPRegs,
684                       OMIT_REMEMBERED_SET,
685                       OMIT_SMI_CHECK);
686   __ Branch(&done);
687 
688   // Call into runtime if GC is required.
689   __ bind(&gc_required);
690   __ ld(ra, MemOperand(sp, 0));
691   __ Branch(USE_DELAY_SLOT, fail);
692   __ daddiu(sp, sp, kPointerSize);  // In delay slot.
693 
694   // Convert and copy elements.
695   __ bind(&loop);
696   __ ld(scratch2, MemOperand(scratch1));
697   __ Daddu(scratch1, scratch1, kIntSize);
698   // scratch2: current element
699   __ JumpIfNotSmi(scratch2, &convert_hole);
700   __ SmiUntag(scratch2);
701 
702   // Normal smi, convert to double and store.
703   __ mtc1(scratch2, f0);
704   __ cvt_d_w(f0, f0);
705   __ sdc1(f0, MemOperand(scratch3));
706   __ Branch(USE_DELAY_SLOT, &entry);
707   __ daddiu(scratch3, scratch3, kDoubleSize);  // In delay slot.
708 
709   // Hole found, store the-hole NaN.
710   __ bind(&convert_hole);
711   if (FLAG_debug_code) {
712     // Restore a "smi-untagged" heap object.
713     __ Or(scratch2, scratch2, Operand(1));
714     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
715     __ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(scratch2));
716   }
717   // mantissa
718   __ sw(hole_lower, MemOperand(scratch3));
719   // exponent
720   __ sw(hole_upper, MemOperand(scratch3, kIntSize));
721   __ Daddu(scratch3, scratch3, kDoubleSize);
722 
723   __ bind(&entry);
724   __ Branch(&loop, lt, scratch3, Operand(array_end));
725 
726   __ bind(&done);
727   __ pop(ra);
728 }
729 
730 
GenerateDoubleToObject(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)731 void ElementsTransitionGenerator::GenerateDoubleToObject(
732     MacroAssembler* masm,
733     Register receiver,
734     Register key,
735     Register value,
736     Register target_map,
737     AllocationSiteMode mode,
738     Label* fail) {
739   // Register ra contains the return address.
740   Label entry, loop, convert_hole, gc_required, only_change_map;
741   Register elements = a4;
742   Register array = a6;
743   Register length = a5;
744   Register scratch = t1;
745 
746   // Verify input registers don't conflict with locals.
747   DCHECK(!AreAliased(receiver, key, value, target_map,
748                      elements, array, length, scratch));
749   if (mode == TRACK_ALLOCATION_SITE) {
750     __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
751   }
752 
753   // Check for empty arrays, which only require a map transition and no changes
754   // to the backing store.
755   __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
756   __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
757   __ Branch(&only_change_map, eq, at, Operand(elements));
758 
759   __ MultiPush(
760       value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
761 
762   __ ld(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
763   // elements: source FixedArray
764   // length: number of elements (smi-tagged)
765 
766   // Allocate new FixedArray.
767   // Re-use value and target_map registers, as they have been saved on the
768   // stack.
769   Register array_size = value;
770   Register allocate_scratch = target_map;
771   __ SmiScale(array_size, length, kPointerSizeLog2);
772   __ Daddu(array_size, array_size, FixedDoubleArray::kHeaderSize);
773   __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
774               NO_ALLOCATION_FLAGS);
775   // array: destination FixedArray, not tagged as heap object
776   // Set destination FixedDoubleArray's length and map.
777   __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
778   __ sd(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
779   __ sd(scratch, MemOperand(array, HeapObject::kMapOffset));
780 
781   // Prepare for conversion loop.
782   Register src_elements = elements;
783   Register dst_elements = target_map;
784   Register dst_end = length;
785   Register heap_number_map = scratch;
786   __ Daddu(src_elements, src_elements,
787       Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag + 4));
788   __ Daddu(dst_elements, array, Operand(FixedArray::kHeaderSize));
789   __ Daddu(array, array, Operand(kHeapObjectTag));
790   __ SmiScale(dst_end, dst_end, kPointerSizeLog2);
791   __ Daddu(dst_end, dst_elements, dst_end);
792   __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
793   // Using offsetted addresses.
794   // dst_elements: begin of destination FixedArray element fields, not tagged
795   // src_elements: begin of source FixedDoubleArray element fields, not tagged,
796   //               points to the exponent
797   // dst_end: end of destination FixedArray, not tagged
798   // array: destination FixedArray
799   // heap_number_map: heap number map
800   __ Branch(&entry);
801 
802   // Call into runtime if GC is required.
803   __ bind(&gc_required);
804   __ MultiPop(
805       value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
806 
807   __ Branch(fail);
808 
809   __ bind(&loop);
810   Register upper_bits = key;
811   __ lw(upper_bits, MemOperand(src_elements));
812   __ Daddu(src_elements, src_elements, kDoubleSize);
813   // upper_bits: current element's upper 32 bit
814   // src_elements: address of next element's upper 32 bit
815   __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));
816 
817   // Non-hole double, copy value into a heap number.
818   Register heap_number = receiver;
819   Register scratch2 = value;
820   Register scratch3 = t2;
821   __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map,
822                         &gc_required);
823   // heap_number: new heap number
824   // Load mantissa of current element, src_elements
825   // point to exponent of next element.
826   __ lw(scratch2, MemOperand(heap_number, -12));
827   __ sw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
828   __ sw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
829   __ mov(scratch2, dst_elements);
830   __ sd(heap_number, MemOperand(dst_elements));
831   __ Daddu(dst_elements, dst_elements, kPointerSize);
832   __ RecordWrite(array,
833                  scratch2,
834                  heap_number,
835                  kRAHasBeenSaved,
836                  kDontSaveFPRegs,
837                  EMIT_REMEMBERED_SET,
838                  OMIT_SMI_CHECK);
839   __ Branch(&entry);
840 
841   // Replace the-hole NaN with the-hole pointer.
842   __ bind(&convert_hole);
843   __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
844   __ sd(scratch2, MemOperand(dst_elements));
845   __ Daddu(dst_elements, dst_elements, kPointerSize);
846 
847   __ bind(&entry);
848   __ Branch(&loop, lt, dst_elements, Operand(dst_end));
849 
850   __ MultiPop(receiver.bit() | target_map.bit() | value.bit() | key.bit());
851   // Replace receiver's backing store with newly created and filled FixedArray.
852   __ sd(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
853   __ RecordWriteField(receiver,
854                       JSObject::kElementsOffset,
855                       array,
856                       scratch,
857                       kRAHasBeenSaved,
858                       kDontSaveFPRegs,
859                       EMIT_REMEMBERED_SET,
860                       OMIT_SMI_CHECK);
861   __ pop(ra);
862 
863   __ bind(&only_change_map);
864   // Update receiver's map.
865   __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
866   __ RecordWriteField(receiver,
867                       HeapObject::kMapOffset,
868                       target_map,
869                       scratch,
870                       kRAHasNotBeenSaved,
871                       kDontSaveFPRegs,
872                       OMIT_REMEMBERED_SET,
873                       OMIT_SMI_CHECK);
874 }
875 
876 
Generate(MacroAssembler * masm,Register string,Register index,Register result,Label * call_runtime)877 void StringCharLoadGenerator::Generate(MacroAssembler* masm,
878                                        Register string,
879                                        Register index,
880                                        Register result,
881                                        Label* call_runtime) {
882   // Fetch the instance type of the receiver into result register.
883   __ ld(result, FieldMemOperand(string, HeapObject::kMapOffset));
884   __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
885 
886   // We need special handling for indirect strings.
887   Label check_sequential;
888   __ And(at, result, Operand(kIsIndirectStringMask));
889   __ Branch(&check_sequential, eq, at, Operand(zero_reg));
890 
891   // Dispatch on the indirect string shape: slice or cons.
892   Label cons_string;
893   __ And(at, result, Operand(kSlicedNotConsMask));
894   __ Branch(&cons_string, eq, at, Operand(zero_reg));
895 
896   // Handle slices.
897   Label indirect_string_loaded;
898   __ ld(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
899   __ ld(string, FieldMemOperand(string, SlicedString::kParentOffset));
900   __ dsra32(at, result, 0);
901   __ Daddu(index, index, at);
902   __ jmp(&indirect_string_loaded);
903 
904   // Handle cons strings.
905   // Check whether the right hand side is the empty string (i.e. if
906   // this is really a flat string in a cons string). If that is not
907   // the case we would rather go to the runtime system now to flatten
908   // the string.
909   __ bind(&cons_string);
910   __ ld(result, FieldMemOperand(string, ConsString::kSecondOffset));
911   __ LoadRoot(at, Heap::kempty_stringRootIndex);
912   __ Branch(call_runtime, ne, result, Operand(at));
913   // Get the first of the two strings and load its instance type.
914   __ ld(string, FieldMemOperand(string, ConsString::kFirstOffset));
915 
916   __ bind(&indirect_string_loaded);
917   __ ld(result, FieldMemOperand(string, HeapObject::kMapOffset));
918   __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
919 
920   // Distinguish sequential and external strings. Only these two string
921   // representations can reach here (slices and flat cons strings have been
922   // reduced to the underlying sequential or external string).
923   Label external_string, check_encoding;
924   __ bind(&check_sequential);
925   STATIC_ASSERT(kSeqStringTag == 0);
926   __ And(at, result, Operand(kStringRepresentationMask));
927   __ Branch(&external_string, ne, at, Operand(zero_reg));
928 
929   // Prepare sequential strings
930   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
931   __ Daddu(string,
932           string,
933           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
934   __ jmp(&check_encoding);
935 
936   // Handle external strings.
937   __ bind(&external_string);
938   if (FLAG_debug_code) {
939     // Assert that we do not have a cons or slice (indirect strings) here.
940     // Sequential strings have already been ruled out.
941     __ And(at, result, Operand(kIsIndirectStringMask));
942     __ Assert(eq, kExternalStringExpectedButNotFound,
943         at, Operand(zero_reg));
944   }
945   // Rule out short external strings.
946   STATIC_ASSERT(kShortExternalStringTag != 0);
947   __ And(at, result, Operand(kShortExternalStringMask));
948   __ Branch(call_runtime, ne, at, Operand(zero_reg));
949   __ ld(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
950 
951   Label one_byte, done;
952   __ bind(&check_encoding);
953   STATIC_ASSERT(kTwoByteStringTag == 0);
954   __ And(at, result, Operand(kStringEncodingMask));
955   __ Branch(&one_byte, ne, at, Operand(zero_reg));
956   // Two-byte string.
957   __ dsll(at, index, 1);
958   __ Daddu(at, string, at);
959   __ lhu(result, MemOperand(at));
960   __ jmp(&done);
961   __ bind(&one_byte);
962   // One_byte string.
963   __ Daddu(at, string, index);
964   __ lbu(result, MemOperand(at));
965   __ bind(&done);
966 }
967 
968 
ExpConstant(int index,Register base)969 static MemOperand ExpConstant(int index, Register base) {
970   return MemOperand(base, index * kDoubleSize);
971 }
972 
973 
EmitMathExp(MacroAssembler * masm,DoubleRegister input,DoubleRegister result,DoubleRegister double_scratch1,DoubleRegister double_scratch2,Register temp1,Register temp2,Register temp3)974 void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
975                                    DoubleRegister input,
976                                    DoubleRegister result,
977                                    DoubleRegister double_scratch1,
978                                    DoubleRegister double_scratch2,
979                                    Register temp1,
980                                    Register temp2,
981                                    Register temp3) {
982   DCHECK(!input.is(result));
983   DCHECK(!input.is(double_scratch1));
984   DCHECK(!input.is(double_scratch2));
985   DCHECK(!result.is(double_scratch1));
986   DCHECK(!result.is(double_scratch2));
987   DCHECK(!double_scratch1.is(double_scratch2));
988   DCHECK(!temp1.is(temp2));
989   DCHECK(!temp1.is(temp3));
990   DCHECK(!temp2.is(temp3));
991   DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
992   DCHECK(!masm->serializer_enabled());  // External references not serializable.
993 
994   Label zero, infinity, done;
995   __ li(temp3, Operand(ExternalReference::math_exp_constants(0)));
996 
997   __ ldc1(double_scratch1, ExpConstant(0, temp3));
998   __ BranchF(&zero, NULL, ge, double_scratch1, input);
999 
1000   __ ldc1(double_scratch2, ExpConstant(1, temp3));
1001   __ BranchF(&infinity, NULL, ge, input, double_scratch2);
1002 
1003   __ ldc1(double_scratch1, ExpConstant(3, temp3));
1004   __ ldc1(result, ExpConstant(4, temp3));
1005   __ mul_d(double_scratch1, double_scratch1, input);
1006   __ add_d(double_scratch1, double_scratch1, result);
1007   __ FmoveLow(temp2, double_scratch1);
1008   __ sub_d(double_scratch1, double_scratch1, result);
1009   __ ldc1(result, ExpConstant(6, temp3));
1010   __ ldc1(double_scratch2, ExpConstant(5, temp3));
1011   __ mul_d(double_scratch1, double_scratch1, double_scratch2);
1012   __ sub_d(double_scratch1, double_scratch1, input);
1013   __ sub_d(result, result, double_scratch1);
1014   __ mul_d(double_scratch2, double_scratch1, double_scratch1);
1015   __ mul_d(result, result, double_scratch2);
1016   __ ldc1(double_scratch2, ExpConstant(7, temp3));
1017   __ mul_d(result, result, double_scratch2);
1018   __ sub_d(result, result, double_scratch1);
1019   // Mov 1 in double_scratch2 as math_exp_constants_array[8] == 1.
1020   DCHECK(*reinterpret_cast<double*>
1021          (ExternalReference::math_exp_constants(8).address()) == 1);
1022   __ Move(double_scratch2, 1);
1023   __ add_d(result, result, double_scratch2);
1024   __ dsrl(temp1, temp2, 11);
1025   __ Ext(temp2, temp2, 0, 11);
1026   __ Daddu(temp1, temp1, Operand(0x3ff));
1027 
1028   // Must not call ExpConstant() after overwriting temp3!
1029   __ li(temp3, Operand(ExternalReference::math_exp_log_table()));
1030   __ dsll(at, temp2, 3);
1031   __ Daddu(temp3, temp3, Operand(at));
1032   __ lwu(temp2, MemOperand(temp3, 0));
1033   __ lwu(temp3, MemOperand(temp3, kIntSize));
1034   // The first word is loaded is the lower number register.
1035   if (temp2.code() < temp3.code()) {
1036     __ dsll(at, temp1, 20);
1037     __ Or(temp1, temp3, at);
1038     __ Move(double_scratch1, temp2, temp1);
1039   } else {
1040     __ dsll(at, temp1, 20);
1041     __ Or(temp1, temp2, at);
1042     __ Move(double_scratch1, temp3, temp1);
1043   }
1044   __ mul_d(result, result, double_scratch1);
1045   __ BranchShort(&done);
1046 
1047   __ bind(&zero);
1048   __ Move(result, kDoubleRegZero);
1049   __ BranchShort(&done);
1050 
1051   __ bind(&infinity);
1052   __ ldc1(result, ExpConstant(2, temp3));
1053 
1054   __ bind(&done);
1055 }
1056 
1057 #ifdef DEBUG
1058 // nop(CODE_AGE_MARKER_NOP)
1059 static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
1060 #endif
1061 
1062 
CodeAgingHelper()1063 CodeAgingHelper::CodeAgingHelper() {
1064   DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
1065   // Since patcher is a large object, allocate it dynamically when needed,
1066   // to avoid overloading the stack in stress conditions.
1067   // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
1068   // the process, before MIPS simulator ICache is setup.
1069   SmartPointer<CodePatcher> patcher(
1070       new CodePatcher(young_sequence_.start(),
1071                       young_sequence_.length() / Assembler::kInstrSize,
1072                       CodePatcher::DONT_FLUSH));
1073   PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
1074   patcher->masm()->Push(ra, fp, cp, a1);
1075   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1076   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1077   patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1078   patcher->masm()->Daddu(
1079       fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1080 }
1081 
1082 
1083 #ifdef DEBUG
IsOld(byte * candidate) const1084 bool CodeAgingHelper::IsOld(byte* candidate) const {
1085   return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
1086 }
1087 #endif
1088 
1089 
IsYoungSequence(Isolate * isolate,byte * sequence)1090 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
1091   bool result = isolate->code_aging_helper()->IsYoung(sequence);
1092   DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
1093   return result;
1094 }
1095 
1096 
GetCodeAgeAndParity(Isolate * isolate,byte * sequence,Age * age,MarkingParity * parity)1097 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
1098                                MarkingParity* parity) {
1099   if (IsYoungSequence(isolate, sequence)) {
1100     *age = kNoAgeCodeAge;
1101     *parity = NO_MARKING_PARITY;
1102   } else {
1103     Address target_address = Assembler::target_address_at(
1104         sequence + Assembler::kInstrSize);
1105     Code* stub = GetCodeFromTargetAddress(target_address);
1106     GetCodeAgeAndParity(stub, age, parity);
1107   }
1108 }
1109 
1110 
PatchPlatformCodeAge(Isolate * isolate,byte * sequence,Code::Age age,MarkingParity parity)1111 void Code::PatchPlatformCodeAge(Isolate* isolate,
1112                                 byte* sequence,
1113                                 Code::Age age,
1114                                 MarkingParity parity) {
1115   uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
1116   if (age == kNoAgeCodeAge) {
1117     isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
1118     CpuFeatures::FlushICache(sequence, young_length);
1119   } else {
1120     Code* stub = GetCodeAgeStub(isolate, age, parity);
1121     CodePatcher patcher(sequence, young_length / Assembler::kInstrSize);
1122     // Mark this code sequence for FindPlatformCodeAgeSequence().
1123     patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
1124     // Load the stub address to t9 and call it,
1125     // GetCodeAgeAndParity() extracts the stub address from this instruction.
1126     patcher.masm()->li(
1127         t9,
1128         Operand(reinterpret_cast<uint64_t>(stub->instruction_start())),
1129         ADDRESS_LOAD);
1130     patcher.masm()->nop();  // Prevent jalr to jal optimization.
1131     patcher.masm()->jalr(t9, a0);
1132     patcher.masm()->nop();  // Branch delay slot nop.
1133     patcher.masm()->nop();  // Pad the empty space.
1134   }
1135 }
1136 
1137 
1138 #undef __
1139 
1140 } }  // namespace v8::internal
1141 
1142 #endif  // V8_TARGET_ARCH_MIPS64
1143