• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "OpenGLRenderer"
18 
19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20 #define CASTER_Z_CAP_RATIO 0.95f
21 
22 // When there is no umbra, then just fake the umbra using
23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
25 
26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27 // That is consider pretty fine tessllated polygon so far.
28 // This is just to prevent using too much some memory when edge slicing is not
29 // needed any more.
30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31 /**
32  * Extra vertices for the corner for smoother corner.
33  * Only for outer loop.
34  * Note that we use such extra memory to avoid an extra loop.
35  */
36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37 // Set to 1 if we don't want to have any.
38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39 
40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41 // therefore, the maximum number of extra vertices will be twice bigger.
42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43 
44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46 
47 // For performance, we use (1 - alpha) value for the shader input.
48 #define TRANSFORMED_PENUMBRA_ALPHA 1.0f
49 #define TRANSFORMED_UMBRA_ALPHA 0.0f
50 
51 #include <algorithm>
52 #include <math.h>
53 #include <stdlib.h>
54 #include <utils/Log.h>
55 
56 #include "ShadowTessellator.h"
57 #include "SpotShadow.h"
58 #include "Vertex.h"
59 #include "VertexBuffer.h"
60 #include "utils/MathUtils.h"
61 
62 // TODO: After we settle down the new algorithm, we can remove the old one and
63 // its utility functions.
64 // Right now, we still need to keep it for comparison purpose and future expansion.
65 namespace android {
66 namespace uirenderer {
67 
68 static const float EPSILON = 1e-7;
69 
70 /**
71  * For each polygon's vertex, the light center will project it to the receiver
72  * as one of the outline vertex.
73  * For each outline vertex, we need to store the position and normal.
74  * Normal here is defined against the edge by the current vertex and the next vertex.
75  */
76 struct OutlineData {
77     Vector2 position;
78     Vector2 normal;
79     float radius;
80 };
81 
82 /**
83  * For each vertex, we need to keep track of its angle, whether it is penumbra or
84  * umbra, and its corresponding vertex index.
85  */
86 struct SpotShadow::VertexAngleData {
87     // The angle to the vertex from the centroid.
88     float mAngle;
89     // True is the vertex comes from penumbra, otherwise it comes from umbra.
90     bool mIsPenumbra;
91     // The index of the vertex described by this data.
92     int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData93     void set(float angle, bool isPenumbra, int index) {
94         mAngle = angle;
95         mIsPenumbra = isPenumbra;
96         mVertexIndex = index;
97     }
98 };
99 
100 /**
101  * Calculate the angle between and x and a y coordinate.
102  * The atan2 range from -PI to PI.
103  */
angle(const Vector2 & point,const Vector2 & center)104 static float angle(const Vector2& point, const Vector2& center) {
105     return atan2(point.y - center.y, point.x - center.x);
106 }
107 
108 /**
109  * Calculate the intersection of a ray with the line segment defined by two points.
110  *
111  * Returns a negative value in error conditions.
112 
113  * @param rayOrigin The start of the ray
114  * @param dx The x vector of the ray
115  * @param dy The y vector of the ray
116  * @param p1 The first point defining the line segment
117  * @param p2 The second point defining the line segment
118  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
119  */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)120 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
121         const Vector2& p1, const Vector2& p2) {
122     // The math below is derived from solving this formula, basically the
123     // intersection point should stay on both the ray and the edge of (p1, p2).
124     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
125 
126     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
127     if (divisor == 0) return -1.0f; // error, invalid divisor
128 
129 #if DEBUG_SHADOW
130     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
131     if (interpVal < 0 || interpVal > 1) {
132         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
133     }
134 #endif
135 
136     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
137             rayOrigin.x * (p2.y - p1.y)) / divisor;
138 
139     return distance; // may be negative in error cases
140 }
141 
142 /**
143  * Sort points by their X coordinates
144  *
145  * @param points the points as a Vector2 array.
146  * @param pointsLength the number of vertices of the polygon.
147  */
xsort(Vector2 * points,int pointsLength)148 void SpotShadow::xsort(Vector2* points, int pointsLength) {
149     auto cmp = [](const Vector2& a, const Vector2& b) -> bool {
150         return a.x < b.x;
151     };
152     std::sort(points, points + pointsLength, cmp);
153 }
154 
155 /**
156  * compute the convex hull of a collection of Points
157  *
158  * @param points the points as a Vector2 array.
159  * @param pointsLength the number of vertices of the polygon.
160  * @param retPoly pre allocated array of floats to put the vertices
161  * @return the number of points in the polygon 0 if no intersection
162  */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)163 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
164     xsort(points, pointsLength);
165     int n = pointsLength;
166     Vector2 lUpper[n];
167     lUpper[0] = points[0];
168     lUpper[1] = points[1];
169 
170     int lUpperSize = 2;
171 
172     for (int i = 2; i < n; i++) {
173         lUpper[lUpperSize] = points[i];
174         lUpperSize++;
175 
176         while (lUpperSize > 2 && !ccw(
177                 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
178                 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
179                 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
180             // Remove the middle point of the three last
181             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
182             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
183             lUpperSize--;
184         }
185     }
186 
187     Vector2 lLower[n];
188     lLower[0] = points[n - 1];
189     lLower[1] = points[n - 2];
190 
191     int lLowerSize = 2;
192 
193     for (int i = n - 3; i >= 0; i--) {
194         lLower[lLowerSize] = points[i];
195         lLowerSize++;
196 
197         while (lLowerSize > 2 && !ccw(
198                 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
199                 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
200                 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
201             // Remove the middle point of the three last
202             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
203             lLowerSize--;
204         }
205     }
206 
207     // output points in CW ordering
208     const int total = lUpperSize + lLowerSize - 2;
209     int outIndex = total - 1;
210     for (int i = 0; i < lUpperSize; i++) {
211         retPoly[outIndex] = lUpper[i];
212         outIndex--;
213     }
214 
215     for (int i = 1; i < lLowerSize - 1; i++) {
216         retPoly[outIndex] = lLower[i];
217         outIndex--;
218     }
219     // TODO: Add test harness which verify that all the points are inside the hull.
220     return total;
221 }
222 
223 /**
224  * Test whether the 3 points form a counter clockwise turn.
225  *
226  * @return true if a right hand turn
227  */
ccw(float ax,float ay,float bx,float by,float cx,float cy)228 bool SpotShadow::ccw(float ax, float ay, float bx, float by,
229         float cx, float cy) {
230     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
231 }
232 
233 /**
234  * Sort points about a center point
235  *
236  * @param poly The in and out polyogon as a Vector2 array.
237  * @param polyLength The number of vertices of the polygon.
238  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
239  */
sort(Vector2 * poly,int polyLength,const Vector2 & center)240 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
241     quicksortCirc(poly, 0, polyLength - 1, center);
242 }
243 
244 /**
245  * Swap points pointed to by i and j
246  */
swap(Vector2 * points,int i,int j)247 void SpotShadow::swap(Vector2* points, int i, int j) {
248     Vector2 temp = points[i];
249     points[i] = points[j];
250     points[j] = temp;
251 }
252 
253 /**
254  * quick sort implementation about the center.
255  */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)256 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
257         const Vector2& center) {
258     int i = low, j = high;
259     int p = low + (high - low) / 2;
260     float pivot = angle(points[p], center);
261     while (i <= j) {
262         while (angle(points[i], center) > pivot) {
263             i++;
264         }
265         while (angle(points[j], center) < pivot) {
266             j--;
267         }
268 
269         if (i <= j) {
270             swap(points, i, j);
271             i++;
272             j--;
273         }
274     }
275     if (low < j) quicksortCirc(points, low, j, center);
276     if (i < high) quicksortCirc(points, i, high, center);
277 }
278 
279 /**
280  * Test whether a point is inside the polygon.
281  *
282  * @param testPoint the point to test
283  * @param poly the polygon
284  * @return true if the testPoint is inside the poly.
285  */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)286 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
287         const Vector2* poly, int len) {
288     bool c = false;
289     float testx = testPoint.x;
290     float testy = testPoint.y;
291     for (int i = 0, j = len - 1; i < len; j = i++) {
292         float startX = poly[j].x;
293         float startY = poly[j].y;
294         float endX = poly[i].x;
295         float endY = poly[i].y;
296 
297         if (((endY > testy) != (startY > testy))
298             && (testx < (startX - endX) * (testy - endY)
299              / (startY - endY) + endX)) {
300             c = !c;
301         }
302     }
303     return c;
304 }
305 
306 /**
307  * Make the polygon turn clockwise.
308  *
309  * @param polygon the polygon as a Vector2 array.
310  * @param len the number of points of the polygon
311  */
makeClockwise(Vector2 * polygon,int len)312 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
313     if (polygon == nullptr  || len == 0) {
314         return;
315     }
316     if (!ShadowTessellator::isClockwise(polygon, len)) {
317         reverse(polygon, len);
318     }
319 }
320 
321 /**
322  * Reverse the polygon
323  *
324  * @param polygon the polygon as a Vector2 array
325  * @param len the number of points of the polygon
326  */
reverse(Vector2 * polygon,int len)327 void SpotShadow::reverse(Vector2* polygon, int len) {
328     int n = len / 2;
329     for (int i = 0; i < n; i++) {
330         Vector2 tmp = polygon[i];
331         int k = len - 1 - i;
332         polygon[i] = polygon[k];
333         polygon[k] = tmp;
334     }
335 }
336 
337 /**
338  * Compute a horizontal circular polygon about point (x , y , height) of radius
339  * (size)
340  *
341  * @param points number of the points of the output polygon.
342  * @param lightCenter the center of the light.
343  * @param size the light size.
344  * @param ret result polygon.
345  */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)346 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
347         float size, Vector3* ret) {
348     // TODO: Caching all the sin / cos values and store them in a look up table.
349     for (int i = 0; i < points; i++) {
350         float angle = 2 * i * M_PI / points;
351         ret[i].x = cosf(angle) * size + lightCenter.x;
352         ret[i].y = sinf(angle) * size + lightCenter.y;
353         ret[i].z = lightCenter.z;
354     }
355 }
356 
357 /**
358  * From light center, project one vertex to the z=0 surface and get the outline.
359  *
360  * @param outline The result which is the outline position.
361  * @param lightCenter The center of light.
362  * @param polyVertex The input polygon's vertex.
363  *
364  * @return float The ratio of (polygon.z / light.z - polygon.z)
365  */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)366 float SpotShadow::projectCasterToOutline(Vector2& outline,
367         const Vector3& lightCenter, const Vector3& polyVertex) {
368     float lightToPolyZ = lightCenter.z - polyVertex.z;
369     float ratioZ = CASTER_Z_CAP_RATIO;
370     if (lightToPolyZ != 0) {
371         // If any caster's vertex is almost above the light, we just keep it as 95%
372         // of the height of the light.
373         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
374     }
375 
376     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
377     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
378     return ratioZ;
379 }
380 
381 /**
382  * Generate the shadow spot light of shape lightPoly and a object poly
383  *
384  * @param isCasterOpaque whether the caster is opaque
385  * @param lightCenter the center of the light
386  * @param lightSize the radius of the light
387  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
388  * @param polyLength number of vertexes of the occluding polygon
389  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
390  *                            empty strip if error.
391  */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)392 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
393         float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
394         VertexBuffer& shadowTriangleStrip) {
395     if (CC_UNLIKELY(lightCenter.z <= 0)) {
396         ALOGW("Relative Light Z is not positive. No spot shadow!");
397         return;
398     }
399     if (CC_UNLIKELY(polyLength < 3)) {
400 #if DEBUG_SHADOW
401         ALOGW("Invalid polygon length. No spot shadow!");
402 #endif
403         return;
404     }
405     OutlineData outlineData[polyLength];
406     Vector2 outlineCentroid;
407     // Calculate the projected outline for each polygon's vertices from the light center.
408     //
409     //                       O     Light
410     //                      /
411     //                    /
412     //                   .     Polygon vertex
413     //                 /
414     //               /
415     //              O     Outline vertices
416     //
417     // Ratio = (Poly - Outline) / (Light - Poly)
418     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
419     // Outline's radius / Light's radius = Ratio
420 
421     // Compute the last outline vertex to make sure we can get the normal and outline
422     // in one single loop.
423     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
424             poly[polyLength - 1]);
425 
426     // Take the outline's polygon, calculate the normal for each outline edge.
427     int currentNormalIndex = polyLength - 1;
428     int nextNormalIndex = 0;
429 
430     for (int i = 0; i < polyLength; i++) {
431         float ratioZ = projectCasterToOutline(outlineData[i].position,
432                 lightCenter, poly[i]);
433         outlineData[i].radius = ratioZ * lightSize;
434 
435         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
436                 outlineData[currentNormalIndex].position,
437                 outlineData[nextNormalIndex].position);
438         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
439         nextNormalIndex++;
440     }
441 
442     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
443 
444     int penumbraIndex = 0;
445     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
446     // Since the size can be dynamic here, we keep track of the size and update
447     // the real size at the end.
448     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
449     Vector2 penumbra[allocatedPenumbraLength];
450     int totalExtraCornerSliceNumber = 0;
451 
452     Vector2 umbra[polyLength];
453 
454     // When centroid is covered by all circles from outline, then we consider
455     // the umbra is invalid, and we will tune down the shadow strength.
456     bool hasValidUmbra = true;
457     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
458     float minRaitoVI = FLT_MAX;
459 
460     for (int i = 0; i < polyLength; i++) {
461         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
462         // There is no guarantee that the penumbra is still convex, but for
463         // each outline vertex, it will connect to all its corresponding penumbra vertices as
464         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
465         //
466         // Penumbra Vertices marked as Pi
467         // Outline Vertices marked as Vi
468         //                                            (P3)
469         //          (P2)                               |     ' (P4)
470         //   (P1)'   |                                 |   '
471         //         ' |                                 | '
472         // (P0)  ------------------------------------------------(P5)
473         //           | (V0)                            |(V1)
474         //           |                                 |
475         //           |                                 |
476         //           |                                 |
477         //           |                                 |
478         //           |                                 |
479         //           |                                 |
480         //           |                                 |
481         //           |                                 |
482         //       (V3)-----------------------------------(V2)
483         int preNormalIndex = (i + polyLength - 1) % polyLength;
484 
485         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
486         const Vector2& currentNormal = outlineData[i].normal;
487 
488         // Depending on how roundness we want for each corner, we can subdivide
489         // further here and/or introduce some heuristic to decide how much the
490         // subdivision should be.
491         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
492                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
493 
494         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
495         totalExtraCornerSliceNumber += currentExtraSliceNumber;
496 #if DEBUG_SHADOW
497         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
498         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
499         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
500 #endif
501         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
502             currentCornerSliceNumber = 1;
503         }
504         for (int k = 0; k <= currentCornerSliceNumber; k++) {
505             Vector2 avgNormal =
506                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
507                     currentCornerSliceNumber;
508             avgNormal.normalize();
509             penumbra[penumbraIndex++] = outlineData[i].position +
510                     avgNormal * outlineData[i].radius;
511         }
512 
513 
514         // Compute the umbra by the intersection from the outline's centroid!
515         //
516         //       (V) ------------------------------------
517         //           |          '                       |
518         //           |         '                        |
519         //           |       ' (I)                      |
520         //           |    '                             |
521         //           | '             (C)                |
522         //           |                                  |
523         //           |                                  |
524         //           |                                  |
525         //           |                                  |
526         //           ------------------------------------
527         //
528         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
529         // intersect with the outline vertex's circle at point (I).
530         // Now, ratioVI = VI / VC, ratioIC = IC / VC
531         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
532         //
533         // When all of the outline circles cover the the outline centroid, (like I is
534         // on the other side of C), there is no real umbra any more, so we just fake
535         // a small area around the centroid as the umbra, and tune down the spot
536         // shadow's umbra strength to simulate the effect the whole shadow will
537         // become lighter in this case.
538         // The ratio can be simulated by using the inverse of maximum of ratioVI for
539         // all (V).
540         float distOutline = (outlineData[i].position - outlineCentroid).length();
541         if (CC_UNLIKELY(distOutline == 0)) {
542             // If the outline has 0 area, then there is no spot shadow anyway.
543             ALOGW("Outline has 0 area, no spot shadow!");
544             return;
545         }
546 
547         float ratioVI = outlineData[i].radius / distOutline;
548         minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
549         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
550             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
551         }
552         // When we know we don't have valid umbra, don't bother to compute the
553         // values below. But we can't skip the loop yet since we want to know the
554         // maximum ratio.
555         float ratioIC = 1 - ratioVI;
556         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
557     }
558 
559     hasValidUmbra = (minRaitoVI <= 1.0);
560     float shadowStrengthScale = 1.0;
561     if (!hasValidUmbra) {
562 #if DEBUG_SHADOW
563         ALOGW("The object is too close to the light or too small, no real umbra!");
564 #endif
565         for (int i = 0; i < polyLength; i++) {
566             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
567                     outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
568         }
569         shadowStrengthScale = 1.0 / minRaitoVI;
570     }
571 
572     int penumbraLength = penumbraIndex;
573     int umbraLength = polyLength;
574 
575 #if DEBUG_SHADOW
576     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
577     dumpPolygon(poly, polyLength, "input poly");
578     dumpPolygon(penumbra, penumbraLength, "penumbra");
579     dumpPolygon(umbra, umbraLength, "umbra");
580     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
581 #endif
582 
583     // The penumbra and umbra needs to be in convex shape to keep consistency
584     // and quality.
585     // Since we are still shooting rays to penumbra, it needs to be convex.
586     // Umbra can be represented as a fan from the centroid, but visually umbra
587     // looks nicer when it is convex.
588     Vector2 finalUmbra[umbraLength];
589     Vector2 finalPenumbra[penumbraLength];
590     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
591     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
592 
593     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
594             finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
595             shadowTriangleStrip, outlineCentroid);
596 
597 }
598 
599 /**
600  * This is only for experimental purpose.
601  * After intersections are calculated, we could smooth the polygon if needed.
602  * So far, we don't think it is more appealing yet.
603  *
604  * @param level The level of smoothness.
605  * @param rays The total number of rays.
606  * @param rayDist (In and Out) The distance for each ray.
607  *
608  */
smoothPolygon(int level,int rays,float * rayDist)609 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
610     for (int k = 0; k < level; k++) {
611         for (int i = 0; i < rays; i++) {
612             float p1 = rayDist[(rays - 1 + i) % rays];
613             float p2 = rayDist[i];
614             float p3 = rayDist[(i + 1) % rays];
615             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
616         }
617     }
618 }
619 
620 // Index pair is meant for storing the tessellation information for the penumbra
621 // area. One index must come from exterior tangent of the circles, the other one
622 // must come from the interior tangent of the circles.
623 struct IndexPair {
624     int outerIndex;
625     int innerIndex;
626 };
627 
628 // For one penumbra vertex, find the cloest umbra vertex and return its index.
getClosestUmbraIndex(const Vector2 & pivot,const Vector2 * polygon,int polygonLength)629 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
630     float minLengthSquared = FLT_MAX;
631     int resultIndex = -1;
632     bool hasDecreased = false;
633     // Starting with some negative offset, assuming both umbra and penumbra are starting
634     // at the same angle, this can help to find the result faster.
635     // Normally, loop 3 times, we can find the closest point.
636     int offset = polygonLength - 2;
637     for (int i = 0; i < polygonLength; i++) {
638         int currentIndex = (i + offset) % polygonLength;
639         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
640         if (currentLengthSquared < minLengthSquared) {
641             if (minLengthSquared != FLT_MAX) {
642                 hasDecreased = true;
643             }
644             minLengthSquared = currentLengthSquared;
645             resultIndex = currentIndex;
646         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
647             // Early break b/c we have found the closet one and now the length
648             // is increasing again.
649             break;
650         }
651     }
652     if(resultIndex == -1) {
653         ALOGE("resultIndex is -1, the polygon must be invalid!");
654         resultIndex = 0;
655     }
656     return resultIndex;
657 }
658 
659 // Allow some epsilon here since the later ray intersection did allow for some small
660 // floating point error, when the intersection point is slightly outside the segment.
sameDirections(bool isPositiveCross,float a,float b)661 inline bool sameDirections(bool isPositiveCross, float a, float b) {
662     if (isPositiveCross) {
663         return a >= -EPSILON && b >= -EPSILON;
664     } else {
665         return a <= EPSILON && b <= EPSILON;
666     }
667 }
668 
669 // Find the right polygon edge to shoot the ray at.
findPolyIndex(bool isPositiveCross,int startPolyIndex,const Vector2 & umbraDir,const Vector2 * polyToCentroid,int polyLength)670 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
671         const Vector2* polyToCentroid, int polyLength) {
672     // Make sure we loop with a bound.
673     for (int i = 0; i < polyLength; i++) {
674         int currentIndex = (i + startPolyIndex) % polyLength;
675         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
676         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
677 
678         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
679         float umbraCrossNext = umbraDir.cross(nextToCentroid);
680         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
681 #if DEBUG_SHADOW
682             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
683 #endif
684             return currentIndex;
685         }
686     }
687     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
688     return -1;
689 }
690 
691 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
692 // if needed.
genNewPenumbraAndPairWithUmbra(const Vector2 * penumbra,int penumbraLength,const Vector2 * umbra,int umbraLength,Vector2 * newPenumbra,int & newPenumbraIndex,IndexPair * verticesPair,int & verticesPairIndex)693 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
694         const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
695         IndexPair* verticesPair, int& verticesPairIndex) {
696     // In order to keep everything in just one loop, we need to pre-compute the
697     // closest umbra vertex for the last penumbra vertex.
698     int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
699             umbra, umbraLength);
700     for (int i = 0; i < penumbraLength; i++) {
701         const Vector2& currentPenumbraVertex = penumbra[i];
702         // For current penumbra vertex, starting from previousClosestUmbraIndex,
703         // then check the next one until the distance increase.
704         // The last one before the increase is the umbra vertex we need to pair with.
705         float currentLengthSquared =
706                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
707         int currentClosestUmbraIndex = previousClosestUmbraIndex;
708         int indexDelta = 0;
709         for (int j = 1; j < umbraLength; j++) {
710             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
711             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
712             if (newLengthSquared > currentLengthSquared) {
713                 // currentClosestUmbraIndex is the umbra vertex's index which has
714                 // currently found smallest distance, so we can simply break here.
715                 break;
716             } else {
717                 currentLengthSquared = newLengthSquared;
718                 indexDelta++;
719                 currentClosestUmbraIndex = newUmbraIndex;
720             }
721         }
722 
723         if (indexDelta > 1) {
724             // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
725             //
726             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
727             // In the case like below P1 paired with U1 and P2 paired with  U5.
728             // U2 to U4 are unpaired umbra vertices.
729             //
730             // P1                                        P2
731             // |                                          |
732             // U1     U2                   U3     U4     U5
733             //
734             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
735             // to pair with U2 to U4.
736             //
737             // P1     P1.1                P1.2   P1.3    P2
738             // |       |                   |      |      |
739             // U1     U2                   U3     U4     U5
740             //
741             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
742             // vertex's location.
743             int newPenumbraNumber = indexDelta - 1;
744 
745             float accumulatedDeltaLength[newPenumbraNumber];
746             float totalDeltaLength = 0;
747 
748             // To save time, cache the previous umbra vertex info outside the loop
749             // and update each loop.
750             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
751             Vector2 skippedUmbra;
752             // Use umbra data to precompute the length b/t unpaired umbra vertices,
753             // and its ratio against the total length.
754             for (int k = 0; k < indexDelta; k++) {
755                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
756                 skippedUmbra = umbra[skippedUmbraIndex];
757                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
758 
759                 totalDeltaLength += currentDeltaLength;
760                 accumulatedDeltaLength[k] = totalDeltaLength;
761 
762                 previousClosestUmbra = skippedUmbra;
763             }
764 
765             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
766             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
767             // and pair them togehter.
768             for (int k = 0; k < newPenumbraNumber; k++) {
769                 float weightForCurrentPenumbra = 1.0f;
770                 if (totalDeltaLength != 0.0f) {
771                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
772                 }
773                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
774 
775                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
776                     previousPenumbra * weightForPreviousPenumbra;
777 
778                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
779                 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
780                 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
781                 verticesPairIndex++;
782                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
783             }
784         }
785         verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
786         verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
787         verticesPairIndex++;
788         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
789 
790         previousClosestUmbraIndex = currentClosestUmbraIndex;
791     }
792 }
793 
794 // Precompute all the polygon's vector, return true if the reference cross product is positive.
genPolyToCentroid(const Vector2 * poly2d,int polyLength,const Vector2 & centroid,Vector2 * polyToCentroid)795 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
796         const Vector2& centroid, Vector2* polyToCentroid) {
797     for (int j = 0; j < polyLength; j++) {
798         polyToCentroid[j] = poly2d[j] - centroid;
799         // Normalize these vectors such that we can use epsilon comparison after
800         // computing their cross products with another normalized vector.
801         polyToCentroid[j].normalize();
802     }
803     float refCrossProduct = 0;
804     for (int j = 0; j < polyLength; j++) {
805         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
806         if (refCrossProduct != 0) {
807             break;
808         }
809     }
810 
811     return refCrossProduct > 0;
812 }
813 
814 // For one umbra vertex, shoot an ray from centroid to it.
815 // If the ray hit the polygon first, then return the intersection point as the
816 // closer vertex.
getCloserVertex(const Vector2 & umbraVertex,const Vector2 & centroid,const Vector2 * poly2d,int polyLength,const Vector2 * polyToCentroid,bool isPositiveCross,int & previousPolyIndex)817 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
818         const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
819         bool isPositiveCross, int& previousPolyIndex) {
820     Vector2 umbraToCentroid = umbraVertex - centroid;
821     float distanceToUmbra = umbraToCentroid.length();
822     umbraToCentroid = umbraToCentroid / distanceToUmbra;
823 
824     // previousPolyIndex is updated for each item such that we can minimize the
825     // looping inside findPolyIndex();
826     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
827             umbraToCentroid, polyToCentroid, polyLength);
828 
829     float dx = umbraToCentroid.x;
830     float dy = umbraToCentroid.y;
831     float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
832             poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
833     if (distanceToIntersectPoly < 0) {
834         distanceToIntersectPoly = 0;
835     }
836 
837     // Pick the closer one as the occluded area vertex.
838     Vector2 closerVertex;
839     if (distanceToIntersectPoly < distanceToUmbra) {
840         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
841         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
842     } else {
843         closerVertex = umbraVertex;
844     }
845 
846     return closerVertex;
847 }
848 
849 /**
850  * Generate a triangle strip given two convex polygon
851 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)852 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
853         Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
854         const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
855         const Vector2& centroid) {
856     bool hasOccludedUmbraArea = false;
857     Vector2 poly2d[polyLength];
858 
859     if (isCasterOpaque) {
860         for (int i = 0; i < polyLength; i++) {
861             poly2d[i].x = poly[i].x;
862             poly2d[i].y = poly[i].y;
863         }
864         // Make sure the centroid is inside the umbra, otherwise, fall back to the
865         // approach as if there is no occluded umbra area.
866         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
867             hasOccludedUmbraArea = true;
868         }
869     }
870 
871     // For each penumbra vertex, find its corresponding closest umbra vertex index.
872     //
873     // Penumbra Vertices marked as Pi
874     // Umbra Vertices marked as Ui
875     //                                            (P3)
876     //          (P2)                               |     ' (P4)
877     //   (P1)'   |                                 |   '
878     //         ' |                                 | '
879     // (P0)  ------------------------------------------------(P5)
880     //           | (U0)                            |(U1)
881     //           |                                 |
882     //           |                                 |(U2)     (P5.1)
883     //           |                                 |
884     //           |                                 |
885     //           |                                 |
886     //           |                                 |
887     //           |                                 |
888     //           |                                 |
889     //       (U4)-----------------------------------(U3)      (P6)
890     //
891     // At least, like P0, P1, P2, they will find the matching umbra as U0.
892     // If we jump over some umbra vertex without matching penumbra vertex, then
893     // we will generate some new penumbra vertex by interpolation. Like P6 is
894     // matching U3, but U2 is not matched with any penumbra vertex.
895     // So interpolate P5.1 out and match U2.
896     // In this way, every umbra vertex will have a matching penumbra vertex.
897     //
898     // The total pair number can be as high as umbraLength + penumbraLength.
899     const int maxNewPenumbraLength = umbraLength + penumbraLength;
900     IndexPair verticesPair[maxNewPenumbraLength];
901     int verticesPairIndex = 0;
902 
903     // Cache all the existing penumbra vertices and newly interpolated vertices into a
904     // a new array.
905     Vector2 newPenumbra[maxNewPenumbraLength];
906     int newPenumbraIndex = 0;
907 
908     // For each penumbra vertex, find its closet umbra vertex by comparing the
909     // neighbor umbra vertices.
910     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
911             newPenumbraIndex, verticesPair, verticesPairIndex);
912     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
913     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
914 #if DEBUG_SHADOW
915     for (int i = 0; i < umbraLength; i++) {
916         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
917     }
918     for (int i = 0; i < newPenumbraIndex; i++) {
919         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
920     }
921     for (int i = 0; i < verticesPairIndex; i++) {
922         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
923     }
924 #endif
925 
926     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
927     // one has umbraLength, the last one has at most umbraLength.
928     //
929     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
930     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
931     // And 2 more for jumping between penumbra to umbra.
932     const int newPenumbraLength = newPenumbraIndex;
933     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
934     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
935     AlphaVertex* shadowVertices =
936             shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
937     uint16_t* indexBuffer =
938             shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
939     int vertexBufferIndex = 0;
940     int indexBufferIndex = 0;
941 
942     // Fill the IB and VB for the penumbra area.
943     for (int i = 0; i < newPenumbraLength; i++) {
944         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
945                 newPenumbra[i].y, TRANSFORMED_PENUMBRA_ALPHA);
946     }
947     for (int i = 0; i < umbraLength; i++) {
948         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
949                 TRANSFORMED_UMBRA_ALPHA);
950     }
951 
952     for (int i = 0; i < verticesPairIndex; i++) {
953         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
954         // All umbra index need to be offseted by newPenumbraSize.
955         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
956     }
957     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
958     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
959 
960     // Now fill the IB and VB for the umbra area.
961     // First duplicated the index from previous strip and the first one for the
962     // degenerated triangles.
963     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
964     indexBufferIndex++;
965     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
966     // Save the first VB index for umbra area in order to close the loop.
967     int savedStartIndex = vertexBufferIndex;
968 
969     if (hasOccludedUmbraArea) {
970         // Precompute all the polygon's vector, and the reference cross product,
971         // in order to find the right polygon edge for the ray to intersect.
972         Vector2 polyToCentroid[polyLength];
973         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
974 
975         // Because both the umbra and polygon are going in the same direction,
976         // we can save the previous polygon index to make sure we have less polygon
977         // vertex to compute for each ray.
978         int previousPolyIndex = 0;
979         for (int i = 0; i < umbraLength; i++) {
980             // Shoot a ray from centroid to each umbra vertices and pick the one with
981             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
982             Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
983                     polyToCentroid, isPositiveCross, previousPolyIndex);
984 
985             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
986             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
987             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
988             AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
989                     closerVertex.x, closerVertex.y, TRANSFORMED_UMBRA_ALPHA);
990         }
991     } else {
992         // If there is no occluded umbra at all, then draw the triangle fan
993         // starting from the centroid to all umbra vertices.
994         int lastCentroidIndex = vertexBufferIndex;
995         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
996                 centroid.y, TRANSFORMED_UMBRA_ALPHA);
997         for (int i = 0; i < umbraLength; i++) {
998             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
999             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1000         }
1001     }
1002     // Closing the umbra area triangle's loop here.
1003     indexBuffer[indexBufferIndex++] = newPenumbraLength;
1004     indexBuffer[indexBufferIndex++] = savedStartIndex;
1005 
1006     // At the end, update the real index and vertex buffer size.
1007     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1008     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1009     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1010     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1011 
1012     shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
1013     shadowTriangleStrip.computeBounds<AlphaVertex>();
1014 }
1015 
1016 #if DEBUG_SHADOW
1017 
1018 #define TEST_POINT_NUMBER 128
1019 /**
1020  * Calculate the bounds for generating random test points.
1021  */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)1022 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1023         Vector2& upperBound) {
1024     if (inVector.x < lowerBound.x) {
1025         lowerBound.x = inVector.x;
1026     }
1027 
1028     if (inVector.y < lowerBound.y) {
1029         lowerBound.y = inVector.y;
1030     }
1031 
1032     if (inVector.x > upperBound.x) {
1033         upperBound.x = inVector.x;
1034     }
1035 
1036     if (inVector.y > upperBound.y) {
1037         upperBound.y = inVector.y;
1038     }
1039 }
1040 
1041 /**
1042  * For debug purpose, when things go wrong, dump the whole polygon data.
1043  */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1044 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1045     for (int i = 0; i < polyLength; i++) {
1046         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1047     }
1048 }
1049 
1050 /**
1051  * For debug purpose, when things go wrong, dump the whole polygon data.
1052  */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1053 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1054     for (int i = 0; i < polyLength; i++) {
1055         ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
1056     }
1057 }
1058 
1059 /**
1060  * Test whether the polygon is convex.
1061  */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1062 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1063         const char* name) {
1064     bool isConvex = true;
1065     for (int i = 0; i < polygonLength; i++) {
1066         Vector2 start = polygon[i];
1067         Vector2 middle = polygon[(i + 1) % polygonLength];
1068         Vector2 end = polygon[(i + 2) % polygonLength];
1069 
1070         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1071                 (float(middle.y) - start.y) * (float(end.x) - start.x);
1072         bool isCCWOrCoLinear = (delta >= EPSILON);
1073 
1074         if (isCCWOrCoLinear) {
1075             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1076                     "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1077                     name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1078             isConvex = false;
1079             break;
1080         }
1081     }
1082     return isConvex;
1083 }
1084 
1085 /**
1086  * Test whether or not the polygon (intersection) is within the 2 input polygons.
1087  * Using Marte Carlo method, we generate a random point, and if it is inside the
1088  * intersection, then it must be inside both source polygons.
1089  */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1090 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1091         const Vector2* poly2, int poly2Length,
1092         const Vector2* intersection, int intersectionLength) {
1093     // Find the min and max of x and y.
1094     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1095     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1096     for (int i = 0; i < poly1Length; i++) {
1097         updateBound(poly1[i], lowerBound, upperBound);
1098     }
1099     for (int i = 0; i < poly2Length; i++) {
1100         updateBound(poly2[i], lowerBound, upperBound);
1101     }
1102 
1103     bool dumpPoly = false;
1104     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1105         // Generate a random point between minX, minY and maxX, maxY.
1106         float randomX = rand() / float(RAND_MAX);
1107         float randomY = rand() / float(RAND_MAX);
1108 
1109         Vector2 testPoint;
1110         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1111         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1112 
1113         // If the random point is in both poly 1 and 2, then it must be intersection.
1114         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1115             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1116                 dumpPoly = true;
1117                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1118                         " not in the poly1",
1119                         testPoint.x, testPoint.y);
1120             }
1121 
1122             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1123                 dumpPoly = true;
1124                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1125                         " not in the poly2",
1126                         testPoint.x, testPoint.y);
1127             }
1128         }
1129     }
1130 
1131     if (dumpPoly) {
1132         dumpPolygon(intersection, intersectionLength, "intersection");
1133         for (int i = 1; i < intersectionLength; i++) {
1134             Vector2 delta = intersection[i] - intersection[i - 1];
1135             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1136         }
1137 
1138         dumpPolygon(poly1, poly1Length, "poly 1");
1139         dumpPolygon(poly2, poly2Length, "poly 2");
1140     }
1141 }
1142 #endif
1143 
1144 }; // namespace uirenderer
1145 }; // namespace android
1146