1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <sys/stat.h>
20 #include <lz4.h>
21 #include <lz4hc.h>
22
23 #include <memory>
24 #include <numeric>
25 #include <unordered_set>
26 #include <vector>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/logging.h"
31 #include "base/unix_file/fd_file.h"
32 #include "class_linker-inl.h"
33 #include "compiled_method.h"
34 #include "dex_file-inl.h"
35 #include "driver/compiler_driver.h"
36 #include "elf_file.h"
37 #include "elf_utils.h"
38 #include "elf_writer.h"
39 #include "gc/accounting/card_table-inl.h"
40 #include "gc/accounting/heap_bitmap.h"
41 #include "gc/accounting/space_bitmap-inl.h"
42 #include "gc/heap.h"
43 #include "gc/space/large_object_space.h"
44 #include "gc/space/space-inl.h"
45 #include "globals.h"
46 #include "image.h"
47 #include "intern_table.h"
48 #include "linear_alloc.h"
49 #include "lock_word.h"
50 #include "mirror/abstract_method.h"
51 #include "mirror/array-inl.h"
52 #include "mirror/class-inl.h"
53 #include "mirror/class_loader.h"
54 #include "mirror/dex_cache-inl.h"
55 #include "mirror/method.h"
56 #include "mirror/object-inl.h"
57 #include "mirror/object_array-inl.h"
58 #include "mirror/string-inl.h"
59 #include "oat.h"
60 #include "oat_file.h"
61 #include "oat_file_manager.h"
62 #include "runtime.h"
63 #include "scoped_thread_state_change.h"
64 #include "handle_scope-inl.h"
65 #include "utils/dex_cache_arrays_layout-inl.h"
66
67 using ::art::mirror::Class;
68 using ::art::mirror::DexCache;
69 using ::art::mirror::Object;
70 using ::art::mirror::ObjectArray;
71 using ::art::mirror::String;
72
73 namespace art {
74
75 // Separate objects into multiple bins to optimize dirty memory use.
76 static constexpr bool kBinObjects = true;
77
78 // Return true if an object is already in an image space.
IsInBootImage(const void * obj) const79 bool ImageWriter::IsInBootImage(const void* obj) const {
80 gc::Heap* const heap = Runtime::Current()->GetHeap();
81 if (!compile_app_image_) {
82 DCHECK(heap->GetBootImageSpaces().empty());
83 return false;
84 }
85 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
86 const uint8_t* image_begin = boot_image_space->Begin();
87 // Real image end including ArtMethods and ArtField sections.
88 const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
89 if (image_begin <= obj && obj < image_end) {
90 return true;
91 }
92 }
93 return false;
94 }
95
IsInBootOatFile(const void * ptr) const96 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
97 gc::Heap* const heap = Runtime::Current()->GetHeap();
98 if (!compile_app_image_) {
99 DCHECK(heap->GetBootImageSpaces().empty());
100 return false;
101 }
102 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
103 const ImageHeader& image_header = boot_image_space->GetImageHeader();
104 if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
105 return true;
106 }
107 }
108 return false;
109 }
110
CheckNoDexObjectsCallback(Object * obj,void * arg ATTRIBUTE_UNUSED)111 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
112 SHARED_REQUIRES(Locks::mutator_lock_) {
113 Class* klass = obj->GetClass();
114 CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
115 }
116
CheckNoDexObjects()117 static void CheckNoDexObjects() {
118 ScopedObjectAccess soa(Thread::Current());
119 Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
120 }
121
PrepareImageAddressSpace()122 bool ImageWriter::PrepareImageAddressSpace() {
123 target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
124 gc::Heap* const heap = Runtime::Current()->GetHeap();
125 {
126 ScopedObjectAccess soa(Thread::Current());
127 PruneNonImageClasses(); // Remove junk
128 if (!compile_app_image_) {
129 // Avoid for app image since this may increase RAM and image size.
130 ComputeLazyFieldsForImageClasses(); // Add useful information
131 }
132 }
133 heap->CollectGarbage(false); // Remove garbage.
134
135 // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
136 // dex files.
137 //
138 // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
139 // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
140 // true.
141 if (kIsDebugBuild) {
142 CheckNoDexObjects();
143 }
144
145 if (kIsDebugBuild) {
146 ScopedObjectAccess soa(Thread::Current());
147 CheckNonImageClassesRemoved();
148 }
149
150 {
151 ScopedObjectAccess soa(Thread::Current());
152 CalculateNewObjectOffsets();
153 }
154
155 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
156 // bin size sums being calculated.
157 if (!AllocMemory()) {
158 return false;
159 }
160
161 return true;
162 }
163
Write(int image_fd,const std::vector<const char * > & image_filenames,const std::vector<const char * > & oat_filenames)164 bool ImageWriter::Write(int image_fd,
165 const std::vector<const char*>& image_filenames,
166 const std::vector<const char*>& oat_filenames) {
167 // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
168 // oat_filenames.
169 CHECK(!image_filenames.empty());
170 if (image_fd != kInvalidFd) {
171 CHECK_EQ(image_filenames.size(), 1u);
172 }
173 CHECK(!oat_filenames.empty());
174 CHECK_EQ(image_filenames.size(), oat_filenames.size());
175
176 {
177 ScopedObjectAccess soa(Thread::Current());
178 for (size_t i = 0; i < oat_filenames.size(); ++i) {
179 CreateHeader(i);
180 CopyAndFixupNativeData(i);
181 }
182 }
183
184 {
185 // TODO: heap validation can't handle these fix up passes.
186 ScopedObjectAccess soa(Thread::Current());
187 Runtime::Current()->GetHeap()->DisableObjectValidation();
188 CopyAndFixupObjects();
189 }
190
191 for (size_t i = 0; i < image_filenames.size(); ++i) {
192 const char* image_filename = image_filenames[i];
193 ImageInfo& image_info = GetImageInfo(i);
194 std::unique_ptr<File> image_file;
195 if (image_fd != kInvalidFd) {
196 if (strlen(image_filename) == 0u) {
197 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
198 // Empty the file in case it already exists.
199 if (image_file != nullptr) {
200 TEMP_FAILURE_RETRY(image_file->SetLength(0));
201 TEMP_FAILURE_RETRY(image_file->Flush());
202 }
203 } else {
204 LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
205 }
206 } else {
207 image_file.reset(OS::CreateEmptyFile(image_filename));
208 }
209
210 if (image_file == nullptr) {
211 LOG(ERROR) << "Failed to open image file " << image_filename;
212 return false;
213 }
214
215 if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
216 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
217 image_file->Erase();
218 return EXIT_FAILURE;
219 }
220
221 std::unique_ptr<char[]> compressed_data;
222 // Image data size excludes the bitmap and the header.
223 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
224 const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
225 char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
226 size_t data_size;
227 const char* image_data_to_write;
228 const uint64_t compress_start_time = NanoTime();
229
230 CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
231 switch (image_storage_mode_) {
232 case ImageHeader::kStorageModeLZ4HC: // Fall-through.
233 case ImageHeader::kStorageModeLZ4: {
234 const size_t compressed_max_size = LZ4_compressBound(image_data_size);
235 compressed_data.reset(new char[compressed_max_size]);
236 data_size = LZ4_compress(
237 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
238 &compressed_data[0],
239 image_data_size);
240
241 break;
242 }
243 /*
244 * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
245 case ImageHeader::kStorageModeLZ4HC: {
246 // Bound is same as non HC.
247 const size_t compressed_max_size = LZ4_compressBound(image_data_size);
248 compressed_data.reset(new char[compressed_max_size]);
249 data_size = LZ4_compressHC(
250 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
251 &compressed_data[0],
252 image_data_size);
253 break;
254 }
255 */
256 case ImageHeader::kStorageModeUncompressed: {
257 data_size = image_data_size;
258 image_data_to_write = image_data;
259 break;
260 }
261 default: {
262 LOG(FATAL) << "Unsupported";
263 UNREACHABLE();
264 }
265 }
266
267 if (compressed_data != nullptr) {
268 image_data_to_write = &compressed_data[0];
269 VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
270 << PrettyDuration(NanoTime() - compress_start_time);
271 if (kIsDebugBuild) {
272 std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
273 const size_t decompressed_size = LZ4_decompress_safe(
274 reinterpret_cast<char*>(&compressed_data[0]),
275 reinterpret_cast<char*>(&temp[0]),
276 data_size,
277 image_data_size);
278 CHECK_EQ(decompressed_size, image_data_size);
279 CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
280 }
281 }
282
283 // Write out the image + fields + methods.
284 const bool is_compressed = compressed_data != nullptr;
285 if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
286 PLOG(ERROR) << "Failed to write image file data " << image_filename;
287 image_file->Erase();
288 return false;
289 }
290
291 // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
292 // convenience.
293 const ImageSection& bitmap_section = image_header->GetImageSection(
294 ImageHeader::kSectionImageBitmap);
295 // Align up since data size may be unaligned if the image is compressed.
296 size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
297 if (!is_compressed) {
298 CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
299 }
300 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
301 bitmap_section.Size(),
302 bitmap_position_in_file)) {
303 PLOG(ERROR) << "Failed to write image file " << image_filename;
304 image_file->Erase();
305 return false;
306 }
307
308 int err = image_file->Flush();
309 if (err < 0) {
310 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
311 image_file->Erase();
312 return false;
313 }
314
315 // Write header last in case the compiler gets killed in the middle of image writing.
316 // We do not want to have a corrupted image with a valid header.
317 // The header is uncompressed since it contains whether the image is compressed or not.
318 image_header->data_size_ = data_size;
319 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
320 sizeof(ImageHeader),
321 0)) {
322 PLOG(ERROR) << "Failed to write image file header " << image_filename;
323 image_file->Erase();
324 return false;
325 }
326
327 CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
328 static_cast<size_t>(image_file->GetLength()));
329 if (image_file->FlushCloseOrErase() != 0) {
330 PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
331 return false;
332 }
333 }
334 return true;
335 }
336
SetImageOffset(mirror::Object * object,size_t offset)337 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
338 DCHECK(object != nullptr);
339 DCHECK_NE(offset, 0U);
340
341 // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
342 object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
343 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
344 DCHECK(IsImageOffsetAssigned(object));
345 }
346
UpdateImageOffset(mirror::Object * obj,uintptr_t offset)347 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
348 DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
349 obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
350 DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
351 }
352
AssignImageOffset(mirror::Object * object,ImageWriter::BinSlot bin_slot)353 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
354 DCHECK(object != nullptr);
355 DCHECK_NE(image_objects_offset_begin_, 0u);
356
357 size_t oat_index = GetOatIndex(object);
358 ImageInfo& image_info = GetImageInfo(oat_index);
359 size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
360 size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
361 DCHECK_ALIGNED(new_offset, kObjectAlignment);
362
363 SetImageOffset(object, new_offset);
364 DCHECK_LT(new_offset, image_info.image_end_);
365 }
366
IsImageOffsetAssigned(mirror::Object * object) const367 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
368 // Will also return true if the bin slot was assigned since we are reusing the lock word.
369 DCHECK(object != nullptr);
370 return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
371 }
372
GetImageOffset(mirror::Object * object) const373 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
374 DCHECK(object != nullptr);
375 DCHECK(IsImageOffsetAssigned(object));
376 LockWord lock_word = object->GetLockWord(false);
377 size_t offset = lock_word.ForwardingAddress();
378 size_t oat_index = GetOatIndex(object);
379 const ImageInfo& image_info = GetImageInfo(oat_index);
380 DCHECK_LT(offset, image_info.image_end_);
381 return offset;
382 }
383
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)384 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
385 DCHECK(object != nullptr);
386 DCHECK(!IsImageOffsetAssigned(object));
387 DCHECK(!IsImageBinSlotAssigned(object));
388
389 // Before we stomp over the lock word, save the hash code for later.
390 Monitor::Deflate(Thread::Current(), object);;
391 LockWord lw(object->GetLockWord(false));
392 switch (lw.GetState()) {
393 case LockWord::kFatLocked: {
394 LOG(FATAL) << "Fat locked object " << object << " found during object copy";
395 break;
396 }
397 case LockWord::kThinLocked: {
398 LOG(FATAL) << "Thin locked object " << object << " found during object copy";
399 break;
400 }
401 case LockWord::kUnlocked:
402 // No hash, don't need to save it.
403 break;
404 case LockWord::kHashCode:
405 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
406 saved_hashcode_map_.emplace(object, lw.GetHashCode());
407 break;
408 default:
409 LOG(FATAL) << "Unreachable.";
410 UNREACHABLE();
411 }
412 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
413 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
414 DCHECK(IsImageBinSlotAssigned(object));
415 }
416
PrepareDexCacheArraySlots()417 void ImageWriter::PrepareDexCacheArraySlots() {
418 // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
419 // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
420 // when AssignImageBinSlot() assigns their indexes out or order.
421 for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
422 auto it = dex_file_oat_index_map_.find(dex_file);
423 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
424 ImageInfo& image_info = GetImageInfo(it->second);
425 image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
426 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
427 image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
428 }
429
430 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
431 Thread* const self = Thread::Current();
432 ReaderMutexLock mu(self, *class_linker->DexLock());
433 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
434 mirror::DexCache* dex_cache =
435 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
436 if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
437 continue;
438 }
439 const DexFile* dex_file = dex_cache->GetDexFile();
440 CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
441 << "Dex cache should have been pruned " << dex_file->GetLocation()
442 << "; possibly in class path";
443 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
444 DCHECK(layout.Valid());
445 size_t oat_index = GetOatIndexForDexCache(dex_cache);
446 ImageInfo& image_info = GetImageInfo(oat_index);
447 uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
448 DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
449 AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
450 start + layout.TypesOffset(),
451 dex_cache);
452 DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
453 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
454 start + layout.MethodsOffset(),
455 dex_cache);
456 DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
457 AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
458 start + layout.FieldsOffset(),
459 dex_cache);
460 DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
461 AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
462 }
463 }
464
AddDexCacheArrayRelocation(void * array,size_t offset,DexCache * dex_cache)465 void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
466 if (array != nullptr) {
467 DCHECK(!IsInBootImage(array));
468 size_t oat_index = GetOatIndexForDexCache(dex_cache);
469 native_object_relocations_.emplace(array,
470 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
471 }
472 }
473
AddMethodPointerArray(mirror::PointerArray * arr)474 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
475 DCHECK(arr != nullptr);
476 if (kIsDebugBuild) {
477 for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
478 ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
479 if (method != nullptr && !method->IsRuntimeMethod()) {
480 mirror::Class* klass = method->GetDeclaringClass();
481 CHECK(klass == nullptr || KeepClass(klass))
482 << PrettyClass(klass) << " should be a kept class";
483 }
484 }
485 }
486 // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
487 // ArtMethods.
488 pointer_arrays_.emplace(arr, kBinArtMethodClean);
489 }
490
AssignImageBinSlot(mirror::Object * object)491 void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
492 DCHECK(object != nullptr);
493 size_t object_size = object->SizeOf();
494
495 // The magic happens here. We segregate objects into different bins based
496 // on how likely they are to get dirty at runtime.
497 //
498 // Likely-to-dirty objects get packed together into the same bin so that
499 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
500 // maximized.
501 //
502 // This means more pages will stay either clean or shared dirty (with zygote) and
503 // the app will use less of its own (private) memory.
504 Bin bin = kBinRegular;
505 size_t current_offset = 0u;
506
507 if (kBinObjects) {
508 //
509 // Changing the bin of an object is purely a memory-use tuning.
510 // It has no change on runtime correctness.
511 //
512 // Memory analysis has determined that the following types of objects get dirtied
513 // the most:
514 //
515 // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
516 // a fixed layout which helps improve generated code (using PC-relative addressing),
517 // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
518 // Since these arrays are huge, most pages do not overlap other objects and it's not
519 // really important where they are for the clean/dirty separation. Due to their
520 // special PC-relative addressing, we arbitrarily keep them at the end.
521 // * Class'es which are verified [their clinit runs only at runtime]
522 // - classes in general [because their static fields get overwritten]
523 // - initialized classes with all-final statics are unlikely to be ever dirty,
524 // so bin them separately
525 // * Art Methods that are:
526 // - native [their native entry point is not looked up until runtime]
527 // - have declaring classes that aren't initialized
528 // [their interpreter/quick entry points are trampolines until the class
529 // becomes initialized]
530 //
531 // We also assume the following objects get dirtied either never or extremely rarely:
532 // * Strings (they are immutable)
533 // * Art methods that aren't native and have initialized declared classes
534 //
535 // We assume that "regular" bin objects are highly unlikely to become dirtied,
536 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
537 //
538 if (object->IsClass()) {
539 bin = kBinClassVerified;
540 mirror::Class* klass = object->AsClass();
541
542 // Add non-embedded vtable to the pointer array table if there is one.
543 auto* vtable = klass->GetVTable();
544 if (vtable != nullptr) {
545 AddMethodPointerArray(vtable);
546 }
547 auto* iftable = klass->GetIfTable();
548 if (iftable != nullptr) {
549 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
550 if (iftable->GetMethodArrayCount(i) > 0) {
551 AddMethodPointerArray(iftable->GetMethodArray(i));
552 }
553 }
554 }
555
556 if (klass->GetStatus() == Class::kStatusInitialized) {
557 bin = kBinClassInitialized;
558
559 // If the class's static fields are all final, put it into a separate bin
560 // since it's very likely it will stay clean.
561 uint32_t num_static_fields = klass->NumStaticFields();
562 if (num_static_fields == 0) {
563 bin = kBinClassInitializedFinalStatics;
564 } else {
565 // Maybe all the statics are final?
566 bool all_final = true;
567 for (uint32_t i = 0; i < num_static_fields; ++i) {
568 ArtField* field = klass->GetStaticField(i);
569 if (!field->IsFinal()) {
570 all_final = false;
571 break;
572 }
573 }
574
575 if (all_final) {
576 bin = kBinClassInitializedFinalStatics;
577 }
578 }
579 }
580 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
581 bin = kBinString; // Strings are almost always immutable (except for object header).
582 } else if (object->GetClass<kVerifyNone>() ==
583 Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
584 // Instance of java lang object, probably a lock object. This means it will be dirty when we
585 // synchronize on it.
586 bin = kBinMiscDirty;
587 } else if (object->IsDexCache()) {
588 // Dex file field becomes dirty when the image is loaded.
589 bin = kBinMiscDirty;
590 }
591 // else bin = kBinRegular
592 }
593
594 size_t oat_index = GetOatIndex(object);
595 ImageInfo& image_info = GetImageInfo(oat_index);
596
597 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
598 current_offset = image_info.bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned).
599 // Move the current bin size up to accommodate the object we just assigned a bin slot.
600 image_info.bin_slot_sizes_[bin] += offset_delta;
601
602 BinSlot new_bin_slot(bin, current_offset);
603 SetImageBinSlot(object, new_bin_slot);
604
605 ++image_info.bin_slot_count_[bin];
606
607 // Grow the image closer to the end by the object we just assigned.
608 image_info.image_end_ += offset_delta;
609 }
610
WillMethodBeDirty(ArtMethod * m) const611 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
612 if (m->IsNative()) {
613 return true;
614 }
615 mirror::Class* declaring_class = m->GetDeclaringClass();
616 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
617 return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
618 }
619
IsImageBinSlotAssigned(mirror::Object * object) const620 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
621 DCHECK(object != nullptr);
622
623 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
624 // If it's in some other state, then we haven't yet assigned an image bin slot.
625 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
626 return false;
627 } else if (kIsDebugBuild) {
628 LockWord lock_word = object->GetLockWord(false);
629 size_t offset = lock_word.ForwardingAddress();
630 BinSlot bin_slot(offset);
631 size_t oat_index = GetOatIndex(object);
632 const ImageInfo& image_info = GetImageInfo(oat_index);
633 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
634 << "bin slot offset should not exceed the size of that bin";
635 }
636 return true;
637 }
638
GetImageBinSlot(mirror::Object * object) const639 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
640 DCHECK(object != nullptr);
641 DCHECK(IsImageBinSlotAssigned(object));
642
643 LockWord lock_word = object->GetLockWord(false);
644 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
645 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
646
647 BinSlot bin_slot(static_cast<uint32_t>(offset));
648 size_t oat_index = GetOatIndex(object);
649 const ImageInfo& image_info = GetImageInfo(oat_index);
650 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
651
652 return bin_slot;
653 }
654
AllocMemory()655 bool ImageWriter::AllocMemory() {
656 for (ImageInfo& image_info : image_infos_) {
657 ImageSection unused_sections[ImageHeader::kSectionCount];
658 const size_t length = RoundUp(
659 image_info.CreateImageSections(unused_sections), kPageSize);
660
661 std::string error_msg;
662 image_info.image_.reset(MemMap::MapAnonymous("image writer image",
663 nullptr,
664 length,
665 PROT_READ | PROT_WRITE,
666 false,
667 false,
668 &error_msg));
669 if (UNLIKELY(image_info.image_.get() == nullptr)) {
670 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
671 return false;
672 }
673
674 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
675 CHECK_LE(image_info.image_end_, length);
676 image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
677 "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
678 if (image_info.image_bitmap_.get() == nullptr) {
679 LOG(ERROR) << "Failed to allocate memory for image bitmap";
680 return false;
681 }
682 }
683 return true;
684 }
685
686 class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
687 public:
operator ()(Class * c)688 bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
689 StackHandleScope<1> hs(Thread::Current());
690 mirror::Class::ComputeName(hs.NewHandle(c));
691 return true;
692 }
693 };
694
ComputeLazyFieldsForImageClasses()695 void ImageWriter::ComputeLazyFieldsForImageClasses() {
696 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
697 ComputeLazyFieldsForClassesVisitor visitor;
698 class_linker->VisitClassesWithoutClassesLock(&visitor);
699 }
700
IsBootClassLoaderClass(mirror::Class * klass)701 static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
702 return klass->GetClassLoader() == nullptr;
703 }
704
IsBootClassLoaderNonImageClass(mirror::Class * klass)705 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
706 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
707 }
708
PruneAppImageClass(mirror::Class * klass)709 bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
710 bool early_exit = false;
711 std::unordered_set<mirror::Class*> visited;
712 return PruneAppImageClassInternal(klass, &early_exit, &visited);
713 }
714
PruneAppImageClassInternal(mirror::Class * klass,bool * early_exit,std::unordered_set<mirror::Class * > * visited)715 bool ImageWriter::PruneAppImageClassInternal(
716 mirror::Class* klass,
717 bool* early_exit,
718 std::unordered_set<mirror::Class*>* visited) {
719 DCHECK(early_exit != nullptr);
720 DCHECK(visited != nullptr);
721 DCHECK(compile_app_image_);
722 if (klass == nullptr || IsInBootImage(klass)) {
723 return false;
724 }
725 auto found = prune_class_memo_.find(klass);
726 if (found != prune_class_memo_.end()) {
727 // Already computed, return the found value.
728 return found->second;
729 }
730 // Circular dependencies, return false but do not store the result in the memoization table.
731 if (visited->find(klass) != visited->end()) {
732 *early_exit = true;
733 return false;
734 }
735 visited->emplace(klass);
736 bool result = IsBootClassLoaderClass(klass);
737 std::string temp;
738 // Prune if not an image class, this handles any broken sets of image classes such as having a
739 // class in the set but not it's superclass.
740 result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
741 bool my_early_exit = false; // Only for ourselves, ignore caller.
742 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
743 // app image.
744 if (klass->GetStatus() == mirror::Class::kStatusError) {
745 result = true;
746 } else {
747 CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
748 }
749 if (!result) {
750 // Check interfaces since these wont be visited through VisitReferences.)
751 mirror::IfTable* if_table = klass->GetIfTable();
752 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
753 result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
754 &my_early_exit,
755 visited);
756 }
757 }
758 if (klass->IsObjectArrayClass()) {
759 result = result || PruneAppImageClassInternal(klass->GetComponentType(),
760 &my_early_exit,
761 visited);
762 }
763 // Check static fields and their classes.
764 size_t num_static_fields = klass->NumReferenceStaticFields();
765 if (num_static_fields != 0 && klass->IsResolved()) {
766 // Presumably GC can happen when we are cross compiling, it should not cause performance
767 // problems to do pointer size logic.
768 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
769 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
770 for (size_t i = 0u; i < num_static_fields; ++i) {
771 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
772 if (ref != nullptr) {
773 if (ref->IsClass()) {
774 result = result || PruneAppImageClassInternal(ref->AsClass(),
775 &my_early_exit,
776 visited);
777 } else {
778 result = result || PruneAppImageClassInternal(ref->GetClass(),
779 &my_early_exit,
780 visited);
781 }
782 }
783 field_offset = MemberOffset(field_offset.Uint32Value() +
784 sizeof(mirror::HeapReference<mirror::Object>));
785 }
786 }
787 result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
788 &my_early_exit,
789 visited);
790 // Erase the element we stored earlier since we are exiting the function.
791 auto it = visited->find(klass);
792 DCHECK(it != visited->end());
793 visited->erase(it);
794 // Only store result if it is true or none of the calls early exited due to circular
795 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
796 // a child call and we can remember the result.
797 if (result == true || !my_early_exit || visited->empty()) {
798 prune_class_memo_[klass] = result;
799 }
800 *early_exit |= my_early_exit;
801 return result;
802 }
803
KeepClass(Class * klass)804 bool ImageWriter::KeepClass(Class* klass) {
805 if (klass == nullptr) {
806 return false;
807 }
808 if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
809 // Already in boot image, return true.
810 return true;
811 }
812 std::string temp;
813 if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
814 return false;
815 }
816 if (compile_app_image_) {
817 // For app images, we need to prune boot loader classes that are not in the boot image since
818 // these may have already been loaded when the app image is loaded.
819 // Keep classes in the boot image space since we don't want to re-resolve these.
820 return !PruneAppImageClass(klass);
821 }
822 return true;
823 }
824
825 class NonImageClassesVisitor : public ClassVisitor {
826 public:
NonImageClassesVisitor(ImageWriter * image_writer)827 explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
828
operator ()(Class * klass)829 bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
830 if (!image_writer_->KeepClass(klass)) {
831 classes_to_prune_.insert(klass);
832 }
833 return true;
834 }
835
836 std::unordered_set<mirror::Class*> classes_to_prune_;
837 ImageWriter* const image_writer_;
838 };
839
PruneNonImageClasses()840 void ImageWriter::PruneNonImageClasses() {
841 Runtime* runtime = Runtime::Current();
842 ClassLinker* class_linker = runtime->GetClassLinker();
843 Thread* self = Thread::Current();
844
845 // Clear class table strong roots so that dex caches can get pruned. We require pruning the class
846 // path dex caches.
847 class_linker->ClearClassTableStrongRoots();
848
849 // Make a list of classes we would like to prune.
850 NonImageClassesVisitor visitor(this);
851 class_linker->VisitClasses(&visitor);
852
853 // Remove the undesired classes from the class roots.
854 VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
855 for (mirror::Class* klass : visitor.classes_to_prune_) {
856 std::string temp;
857 const char* name = klass->GetDescriptor(&temp);
858 VLOG(compiler) << "Pruning class " << name;
859 if (!compile_app_image_) {
860 DCHECK(IsBootClassLoaderClass(klass));
861 }
862 bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
863 DCHECK(result);
864 }
865
866 // Clear references to removed classes from the DexCaches.
867 ArtMethod* resolution_method = runtime->GetResolutionMethod();
868
869 ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
870 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); // For ClassInClassTable
871 ReaderMutexLock mu2(self, *class_linker->DexLock());
872 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
873 if (self->IsJWeakCleared(data.weak_root)) {
874 continue;
875 }
876 mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
877 for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
878 Class* klass = dex_cache->GetResolvedType(i);
879 if (klass != nullptr && !KeepClass(klass)) {
880 dex_cache->SetResolvedType(i, nullptr);
881 }
882 }
883 ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
884 for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
885 ArtMethod* method =
886 mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
887 DCHECK(method != nullptr) << "Expected resolution method instead of null method";
888 mirror::Class* declaring_class = method->GetDeclaringClass();
889 // Copied methods may be held live by a class which was not an image class but have a
890 // declaring class which is an image class. Set it to the resolution method to be safe and
891 // prevent dangling pointers.
892 if (method->IsCopied() || !KeepClass(declaring_class)) {
893 mirror::DexCache::SetElementPtrSize(resolved_methods,
894 i,
895 resolution_method,
896 target_ptr_size_);
897 } else {
898 // Check that the class is still in the classes table.
899 DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
900 << PrettyClass(declaring_class) << " not in class linker table";
901 }
902 }
903 ArtField** resolved_fields = dex_cache->GetResolvedFields();
904 for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
905 ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
906 if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
907 dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
908 }
909 }
910 // Clean the dex field. It might have been populated during the initialization phase, but
911 // contains data only valid during a real run.
912 dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
913 }
914
915 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
916 class_linker->DropFindArrayClassCache();
917
918 // Clear to save RAM.
919 prune_class_memo_.clear();
920 }
921
CheckNonImageClassesRemoved()922 void ImageWriter::CheckNonImageClassesRemoved() {
923 if (compiler_driver_.GetImageClasses() != nullptr) {
924 gc::Heap* heap = Runtime::Current()->GetHeap();
925 heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
926 }
927 }
928
CheckNonImageClassesRemovedCallback(Object * obj,void * arg)929 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
930 ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
931 if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
932 Class* klass = obj->AsClass();
933 if (!image_writer->KeepClass(klass)) {
934 image_writer->DumpImageClasses();
935 std::string temp;
936 CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
937 << " " << PrettyDescriptor(klass);
938 }
939 }
940 }
941
DumpImageClasses()942 void ImageWriter::DumpImageClasses() {
943 auto image_classes = compiler_driver_.GetImageClasses();
944 CHECK(image_classes != nullptr);
945 for (const std::string& image_class : *image_classes) {
946 LOG(INFO) << " " << image_class;
947 }
948 }
949
FindInternedString(mirror::String * string)950 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
951 Thread* const self = Thread::Current();
952 for (const ImageInfo& image_info : image_infos_) {
953 mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
954 DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
955 << string->ToModifiedUtf8();
956 if (found != nullptr) {
957 return found;
958 }
959 }
960 if (compile_app_image_) {
961 Runtime* const runtime = Runtime::Current();
962 mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
963 // If we found it in the runtime intern table it could either be in the boot image or interned
964 // during app image compilation. If it was in the boot image return that, otherwise return null
965 // since it belongs to another image space.
966 if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
967 return found;
968 }
969 DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
970 << string->ToModifiedUtf8();
971 }
972 return nullptr;
973 }
974
CalculateObjectBinSlots(Object * obj)975 void ImageWriter::CalculateObjectBinSlots(Object* obj) {
976 DCHECK(obj != nullptr);
977 // if it is a string, we want to intern it if its not interned.
978 if (obj->GetClass()->IsStringClass()) {
979 size_t oat_index = GetOatIndex(obj);
980 ImageInfo& image_info = GetImageInfo(oat_index);
981
982 // we must be an interned string that was forward referenced and already assigned
983 if (IsImageBinSlotAssigned(obj)) {
984 DCHECK_EQ(obj, FindInternedString(obj->AsString()));
985 return;
986 }
987 // Need to check if the string is already interned in another image info so that we don't have
988 // the intern tables of two different images contain the same string.
989 mirror::String* interned = FindInternedString(obj->AsString());
990 if (interned == nullptr) {
991 // Not in another image space, insert to our table.
992 interned = image_info.intern_table_->InternStrongImageString(obj->AsString());
993 }
994 if (obj != interned) {
995 if (!IsImageBinSlotAssigned(interned)) {
996 // interned obj is after us, allocate its location early
997 AssignImageBinSlot(interned);
998 }
999 // point those looking for this object to the interned version.
1000 SetImageBinSlot(obj, GetImageBinSlot(interned));
1001 return;
1002 }
1003 // else (obj == interned), nothing to do but fall through to the normal case
1004 }
1005
1006 AssignImageBinSlot(obj);
1007 }
1008
CreateImageRoots(size_t oat_index) const1009 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
1010 Runtime* runtime = Runtime::Current();
1011 ClassLinker* class_linker = runtime->GetClassLinker();
1012 Thread* self = Thread::Current();
1013 StackHandleScope<3> hs(self);
1014 Handle<Class> object_array_class(hs.NewHandle(
1015 class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
1016
1017 std::unordered_set<const DexFile*> image_dex_files;
1018 for (auto& pair : dex_file_oat_index_map_) {
1019 const DexFile* image_dex_file = pair.first;
1020 size_t image_oat_index = pair.second;
1021 if (oat_index == image_oat_index) {
1022 image_dex_files.insert(image_dex_file);
1023 }
1024 }
1025
1026 // build an Object[] of all the DexCaches used in the source_space_.
1027 // Since we can't hold the dex lock when allocating the dex_caches
1028 // ObjectArray, we lock the dex lock twice, first to get the number
1029 // of dex caches first and then lock it again to copy the dex
1030 // caches. We check that the number of dex caches does not change.
1031 size_t dex_cache_count = 0;
1032 {
1033 ReaderMutexLock mu(self, *class_linker->DexLock());
1034 // Count number of dex caches not in the boot image.
1035 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1036 mirror::DexCache* dex_cache =
1037 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1038 if (dex_cache == nullptr) {
1039 continue;
1040 }
1041 const DexFile* dex_file = dex_cache->GetDexFile();
1042 if (!IsInBootImage(dex_cache)) {
1043 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1044 }
1045 }
1046 }
1047 Handle<ObjectArray<Object>> dex_caches(
1048 hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1049 CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
1050 {
1051 ReaderMutexLock mu(self, *class_linker->DexLock());
1052 size_t non_image_dex_caches = 0;
1053 // Re-count number of non image dex caches.
1054 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1055 mirror::DexCache* dex_cache =
1056 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1057 if (dex_cache == nullptr) {
1058 continue;
1059 }
1060 const DexFile* dex_file = dex_cache->GetDexFile();
1061 if (!IsInBootImage(dex_cache)) {
1062 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1063 }
1064 }
1065 CHECK_EQ(dex_cache_count, non_image_dex_caches)
1066 << "The number of non-image dex caches changed.";
1067 size_t i = 0;
1068 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1069 mirror::DexCache* dex_cache =
1070 down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1071 if (dex_cache == nullptr) {
1072 continue;
1073 }
1074 const DexFile* dex_file = dex_cache->GetDexFile();
1075 if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
1076 dex_caches->Set<false>(i, dex_cache);
1077 ++i;
1078 }
1079 }
1080 }
1081
1082 // build an Object[] of the roots needed to restore the runtime
1083 auto image_roots(hs.NewHandle(
1084 ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
1085 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1086 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1087 for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
1088 CHECK(image_roots->Get(i) != nullptr);
1089 }
1090 return image_roots.Get();
1091 }
1092
1093 // Walk instance fields of the given Class. Separate function to allow recursion on the super
1094 // class.
WalkInstanceFields(mirror::Object * obj,mirror::Class * klass)1095 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
1096 // Visit fields of parent classes first.
1097 StackHandleScope<1> hs(Thread::Current());
1098 Handle<mirror::Class> h_class(hs.NewHandle(klass));
1099 mirror::Class* super = h_class->GetSuperClass();
1100 if (super != nullptr) {
1101 WalkInstanceFields(obj, super);
1102 }
1103 //
1104 size_t num_reference_fields = h_class->NumReferenceInstanceFields();
1105 MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
1106 for (size_t i = 0; i < num_reference_fields; ++i) {
1107 mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
1108 if (value != nullptr) {
1109 WalkFieldsInOrder(value);
1110 }
1111 field_offset = MemberOffset(field_offset.Uint32Value() +
1112 sizeof(mirror::HeapReference<mirror::Object>));
1113 }
1114 }
1115
1116 // For an unvisited object, visit it then all its children found via fields.
WalkFieldsInOrder(mirror::Object * obj)1117 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
1118 if (IsInBootImage(obj)) {
1119 // Object is in the image, don't need to fix it up.
1120 return;
1121 }
1122 // Use our own visitor routine (instead of GC visitor) to get better locality between
1123 // an object and its fields
1124 if (!IsImageBinSlotAssigned(obj)) {
1125 // Walk instance fields of all objects
1126 StackHandleScope<2> hs(Thread::Current());
1127 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1128 Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
1129 // visit the object itself.
1130 CalculateObjectBinSlots(h_obj.Get());
1131 WalkInstanceFields(h_obj.Get(), klass.Get());
1132 // Walk static fields of a Class.
1133 if (h_obj->IsClass()) {
1134 size_t num_reference_static_fields = klass->NumReferenceStaticFields();
1135 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
1136 for (size_t i = 0; i < num_reference_static_fields; ++i) {
1137 mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
1138 if (value != nullptr) {
1139 WalkFieldsInOrder(value);
1140 }
1141 field_offset = MemberOffset(field_offset.Uint32Value() +
1142 sizeof(mirror::HeapReference<mirror::Object>));
1143 }
1144 // Visit and assign offsets for fields and field arrays.
1145 auto* as_klass = h_obj->AsClass();
1146 mirror::DexCache* dex_cache = as_klass->GetDexCache();
1147 DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
1148 if (compile_app_image_) {
1149 // Extra sanity, no boot loader classes should be left!
1150 CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
1151 }
1152 LengthPrefixedArray<ArtField>* fields[] = {
1153 as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1154 };
1155 size_t oat_index = GetOatIndexForDexCache(dex_cache);
1156 ImageInfo& image_info = GetImageInfo(oat_index);
1157 {
1158 // Note: This table is only accessed from the image writer, so the lock is technically
1159 // unnecessary.
1160 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1161 // Insert in the class table for this iamge.
1162 image_info.class_table_->Insert(as_klass);
1163 }
1164 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1165 // Total array length including header.
1166 if (cur_fields != nullptr) {
1167 const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1168 // Forward the entire array at once.
1169 auto it = native_object_relocations_.find(cur_fields);
1170 CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1171 << " already forwarded";
1172 size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1173 DCHECK(!IsInBootImage(cur_fields));
1174 native_object_relocations_.emplace(
1175 cur_fields,
1176 NativeObjectRelocation {
1177 oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1178 });
1179 offset += header_size;
1180 // Forward individual fields so that we can quickly find where they belong.
1181 for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1182 // Need to forward arrays separate of fields.
1183 ArtField* field = &cur_fields->At(i);
1184 auto it2 = native_object_relocations_.find(field);
1185 CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1186 << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
1187 DCHECK(!IsInBootImage(field));
1188 native_object_relocations_.emplace(
1189 field,
1190 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1191 offset += sizeof(ArtField);
1192 }
1193 }
1194 }
1195 // Visit and assign offsets for methods.
1196 size_t num_methods = as_klass->NumMethods();
1197 if (num_methods != 0) {
1198 bool any_dirty = false;
1199 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1200 if (WillMethodBeDirty(&m)) {
1201 any_dirty = true;
1202 break;
1203 }
1204 }
1205 NativeObjectRelocationType type = any_dirty
1206 ? kNativeObjectRelocationTypeArtMethodDirty
1207 : kNativeObjectRelocationTypeArtMethodClean;
1208 Bin bin_type = BinTypeForNativeRelocationType(type);
1209 // Forward the entire array at once, but header first.
1210 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1211 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1212 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1213 method_size,
1214 method_alignment);
1215 LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1216 auto it = native_object_relocations_.find(array);
1217 CHECK(it == native_object_relocations_.end())
1218 << "Method array " << array << " already forwarded";
1219 size_t& offset = image_info.bin_slot_sizes_[bin_type];
1220 DCHECK(!IsInBootImage(array));
1221 native_object_relocations_.emplace(array,
1222 NativeObjectRelocation {
1223 oat_index,
1224 offset,
1225 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1226 : kNativeObjectRelocationTypeArtMethodArrayClean });
1227 offset += header_size;
1228 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1229 AssignMethodOffset(&m, type, oat_index);
1230 }
1231 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1232 }
1233 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1234 // live.
1235 if (as_klass->ShouldHaveEmbeddedImtAndVTable()) {
1236 for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
1237 ArtMethod* imt_method = as_klass->GetEmbeddedImTableEntry(i, target_ptr_size_);
1238 DCHECK(imt_method != nullptr);
1239 if (imt_method->IsRuntimeMethod() &&
1240 !IsInBootImage(imt_method) &&
1241 !NativeRelocationAssigned(imt_method)) {
1242 AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1243 }
1244 }
1245 }
1246 } else if (h_obj->IsObjectArray()) {
1247 // Walk elements of an object array.
1248 int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
1249 for (int32_t i = 0; i < length; i++) {
1250 mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
1251 mirror::Object* value = obj_array->Get(i);
1252 if (value != nullptr) {
1253 WalkFieldsInOrder(value);
1254 }
1255 }
1256 } else if (h_obj->IsClassLoader()) {
1257 // Register the class loader if it has a class table.
1258 // The fake boot class loader should not get registered and we should end up with only one
1259 // class loader.
1260 mirror::ClassLoader* class_loader = h_obj->AsClassLoader();
1261 if (class_loader->GetClassTable() != nullptr) {
1262 class_loaders_.insert(class_loader);
1263 }
1264 }
1265 }
1266 }
1267
NativeRelocationAssigned(void * ptr) const1268 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1269 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1270 }
1271
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1272 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1273 // No offset, or already assigned.
1274 if (table == nullptr || NativeRelocationAssigned(table)) {
1275 return;
1276 }
1277 CHECK(!IsInBootImage(table));
1278 // If the method is a conflict method we also want to assign the conflict table offset.
1279 ImageInfo& image_info = GetImageInfo(oat_index);
1280 const size_t size = table->ComputeSize(target_ptr_size_);
1281 native_object_relocations_.emplace(
1282 table,
1283 NativeObjectRelocation {
1284 oat_index,
1285 image_info.bin_slot_sizes_[kBinIMTConflictTable],
1286 kNativeObjectRelocationTypeIMTConflictTable});
1287 image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1288 }
1289
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1290 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1291 NativeObjectRelocationType type,
1292 size_t oat_index) {
1293 DCHECK(!IsInBootImage(method));
1294 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1295 << PrettyMethod(method);
1296 if (method->IsRuntimeMethod()) {
1297 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1298 }
1299 ImageInfo& image_info = GetImageInfo(oat_index);
1300 size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1301 native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1302 offset += ArtMethod::Size(target_ptr_size_);
1303 }
1304
WalkFieldsCallback(mirror::Object * obj,void * arg)1305 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
1306 ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1307 DCHECK(writer != nullptr);
1308 writer->WalkFieldsInOrder(obj);
1309 }
1310
UnbinObjectsIntoOffsetCallback(mirror::Object * obj,void * arg)1311 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
1312 ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1313 DCHECK(writer != nullptr);
1314 if (!writer->IsInBootImage(obj)) {
1315 writer->UnbinObjectsIntoOffset(obj);
1316 }
1317 }
1318
UnbinObjectsIntoOffset(mirror::Object * obj)1319 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1320 DCHECK(!IsInBootImage(obj));
1321 CHECK(obj != nullptr);
1322
1323 // We know the bin slot, and the total bin sizes for all objects by now,
1324 // so calculate the object's final image offset.
1325
1326 DCHECK(IsImageBinSlotAssigned(obj));
1327 BinSlot bin_slot = GetImageBinSlot(obj);
1328 // Change the lockword from a bin slot into an offset
1329 AssignImageOffset(obj, bin_slot);
1330 }
1331
CalculateNewObjectOffsets()1332 void ImageWriter::CalculateNewObjectOffsets() {
1333 Thread* const self = Thread::Current();
1334 StackHandleScopeCollection handles(self);
1335 std::vector<Handle<ObjectArray<Object>>> image_roots;
1336 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1337 image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1338 }
1339
1340 auto* runtime = Runtime::Current();
1341 auto* heap = runtime->GetHeap();
1342
1343 // Leave space for the header, but do not write it yet, we need to
1344 // know where image_roots is going to end up
1345 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
1346
1347 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1348 // Write the image runtime methods.
1349 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1350 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1351 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1352 image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
1353 image_methods_[ImageHeader::kRefsOnlySaveMethod] =
1354 runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
1355 image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
1356 runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
1357 // Visit image methods first to have the main runtime methods in the first image.
1358 for (auto* m : image_methods_) {
1359 CHECK(m != nullptr);
1360 CHECK(m->IsRuntimeMethod());
1361 DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1362 if (!IsInBootImage(m)) {
1363 AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1364 }
1365 }
1366
1367 // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
1368 heap->VisitObjects(WalkFieldsCallback, this);
1369
1370 // Calculate size of the dex cache arrays slot and prepare offsets.
1371 PrepareDexCacheArraySlots();
1372
1373 // Calculate the sizes of the intern tables and class tables.
1374 for (ImageInfo& image_info : image_infos_) {
1375 // Calculate how big the intern table will be after being serialized.
1376 InternTable* const intern_table = image_info.intern_table_.get();
1377 CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1378 image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1379 // Calculate the size of the class table.
1380 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1381 image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1382 }
1383
1384 // Calculate bin slot offsets.
1385 for (ImageInfo& image_info : image_infos_) {
1386 size_t bin_offset = image_objects_offset_begin_;
1387 for (size_t i = 0; i != kBinSize; ++i) {
1388 switch (i) {
1389 case kBinArtMethodClean:
1390 case kBinArtMethodDirty: {
1391 bin_offset = RoundUp(bin_offset, method_alignment);
1392 break;
1393 }
1394 case kBinIMTConflictTable: {
1395 bin_offset = RoundUp(bin_offset, target_ptr_size_);
1396 break;
1397 }
1398 default: {
1399 // Normal alignment.
1400 }
1401 }
1402 image_info.bin_slot_offsets_[i] = bin_offset;
1403 bin_offset += image_info.bin_slot_sizes_[i];
1404 }
1405 // NOTE: There may be additional padding between the bin slots and the intern table.
1406 DCHECK_EQ(image_info.image_end_,
1407 GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1408 }
1409
1410 // Calculate image offsets.
1411 size_t image_offset = 0;
1412 for (ImageInfo& image_info : image_infos_) {
1413 image_info.image_begin_ = global_image_begin_ + image_offset;
1414 image_info.image_offset_ = image_offset;
1415 ImageSection unused_sections[ImageHeader::kSectionCount];
1416 image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1417 // There should be no gaps until the next image.
1418 image_offset += image_info.image_size_;
1419 }
1420
1421 // Transform each object's bin slot into an offset which will be used to do the final copy.
1422 heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
1423
1424 // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
1425
1426 size_t i = 0;
1427 for (ImageInfo& image_info : image_infos_) {
1428 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1429 i++;
1430 }
1431
1432 // Update the native relocations by adding their bin sums.
1433 for (auto& pair : native_object_relocations_) {
1434 NativeObjectRelocation& relocation = pair.second;
1435 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1436 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1437 relocation.offset += image_info.bin_slot_offsets_[bin_type];
1438 }
1439
1440 // Note that image_info.image_end_ is left at end of used mirror object section.
1441 }
1442
CreateImageSections(ImageSection * out_sections) const1443 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1444 DCHECK(out_sections != nullptr);
1445
1446 // Do not round up any sections here that are represented by the bins since it will break
1447 // offsets.
1448
1449 // Objects section
1450 ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1451 *objects_section = ImageSection(0u, image_end_);
1452
1453 // Add field section.
1454 ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1455 *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1456 CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1457
1458 // Add method section.
1459 ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1460 *methods_section = ImageSection(
1461 bin_slot_offsets_[kBinArtMethodClean],
1462 bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1463
1464 // Conflict tables section.
1465 ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1466 *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1467 bin_slot_sizes_[kBinIMTConflictTable]);
1468
1469 // Runtime methods section.
1470 ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1471 *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1472 bin_slot_sizes_[kBinRuntimeMethod]);
1473
1474 // Add dex cache arrays section.
1475 ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1476 *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1477 bin_slot_sizes_[kBinDexCacheArray]);
1478
1479 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1480 size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1481 // Calculate the size of the interned strings.
1482 ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1483 *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1484 cur_pos = interned_strings_section->End();
1485 // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1486 cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1487 // Calculate the size of the class table section.
1488 ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1489 *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1490 cur_pos = class_table_section->End();
1491 // Image end goes right before the start of the image bitmap.
1492 return cur_pos;
1493 }
1494
CreateHeader(size_t oat_index)1495 void ImageWriter::CreateHeader(size_t oat_index) {
1496 ImageInfo& image_info = GetImageInfo(oat_index);
1497 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1498 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1499 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1500
1501 // Create the image sections.
1502 ImageSection sections[ImageHeader::kSectionCount];
1503 const size_t image_end = image_info.CreateImageSections(sections);
1504
1505 // Finally bitmap section.
1506 const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1507 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
1508 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1509 if (VLOG_IS_ON(compiler)) {
1510 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1511 size_t idx = 0;
1512 for (const ImageSection& section : sections) {
1513 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1514 ++idx;
1515 }
1516 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1517 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1518 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1519 << " Image offset=" << image_info.image_offset_ << std::dec;
1520 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1521 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1522 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1523 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1524 }
1525 // Store boot image info for app image so that we can relocate.
1526 uint32_t boot_image_begin = 0;
1527 uint32_t boot_image_end = 0;
1528 uint32_t boot_oat_begin = 0;
1529 uint32_t boot_oat_end = 0;
1530 gc::Heap* const heap = Runtime::Current()->GetHeap();
1531 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1532
1533 // Create the header, leave 0 for data size since we will fill this in as we are writing the
1534 // image.
1535 new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1536 image_end,
1537 sections,
1538 image_info.image_roots_address_,
1539 image_info.oat_checksum_,
1540 PointerToLowMemUInt32(oat_file_begin),
1541 PointerToLowMemUInt32(image_info.oat_data_begin_),
1542 PointerToLowMemUInt32(oat_data_end),
1543 PointerToLowMemUInt32(oat_file_end),
1544 boot_image_begin,
1545 boot_image_end - boot_image_begin,
1546 boot_oat_begin,
1547 boot_oat_end - boot_oat_begin,
1548 target_ptr_size_,
1549 compile_pic_,
1550 /*is_pic*/compile_app_image_,
1551 image_storage_mode_,
1552 /*data_size*/0u);
1553 }
1554
GetImageMethodAddress(ArtMethod * method)1555 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1556 auto it = native_object_relocations_.find(method);
1557 CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
1558 size_t oat_index = GetOatIndex(method->GetDexCache());
1559 ImageInfo& image_info = GetImageInfo(oat_index);
1560 CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1561 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1562 }
1563
1564 class FixupRootVisitor : public RootVisitor {
1565 public:
FixupRootVisitor(ImageWriter * image_writer)1566 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1567 }
1568
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1569 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1570 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1571 for (size_t i = 0; i < count; ++i) {
1572 *roots[i] = image_writer_->GetImageAddress(*roots[i]);
1573 }
1574 }
1575
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1576 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1577 const RootInfo& info ATTRIBUTE_UNUSED)
1578 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1579 for (size_t i = 0; i < count; ++i) {
1580 roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
1581 }
1582 }
1583
1584 private:
1585 ImageWriter* const image_writer_;
1586 };
1587
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)1588 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
1589 const size_t count = orig->NumEntries(target_ptr_size_);
1590 for (size_t i = 0; i < count; ++i) {
1591 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
1592 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
1593 copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
1594 copy->SetImplementationMethod(i,
1595 target_ptr_size_,
1596 NativeLocationInImage(implementation_method));
1597 }
1598 }
1599
CopyAndFixupNativeData(size_t oat_index)1600 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
1601 const ImageInfo& image_info = GetImageInfo(oat_index);
1602 // Copy ArtFields and methods to their locations and update the array for convenience.
1603 for (auto& pair : native_object_relocations_) {
1604 NativeObjectRelocation& relocation = pair.second;
1605 // Only work with fields and methods that are in the current oat file.
1606 if (relocation.oat_index != oat_index) {
1607 continue;
1608 }
1609 auto* dest = image_info.image_->Begin() + relocation.offset;
1610 DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
1611 DCHECK(!IsInBootImage(pair.first));
1612 switch (relocation.type) {
1613 case kNativeObjectRelocationTypeArtField: {
1614 memcpy(dest, pair.first, sizeof(ArtField));
1615 reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1616 GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1617 break;
1618 }
1619 case kNativeObjectRelocationTypeRuntimeMethod:
1620 case kNativeObjectRelocationTypeArtMethodClean:
1621 case kNativeObjectRelocationTypeArtMethodDirty: {
1622 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1623 reinterpret_cast<ArtMethod*>(dest),
1624 image_info);
1625 break;
1626 }
1627 // For arrays, copy just the header since the elements will get copied by their corresponding
1628 // relocations.
1629 case kNativeObjectRelocationTypeArtFieldArray: {
1630 memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
1631 break;
1632 }
1633 case kNativeObjectRelocationTypeArtMethodArrayClean:
1634 case kNativeObjectRelocationTypeArtMethodArrayDirty: {
1635 size_t size = ArtMethod::Size(target_ptr_size_);
1636 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
1637 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
1638 // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
1639 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
1640 break;
1641 }
1642 case kNativeObjectRelocationTypeDexCacheArray:
1643 // Nothing to copy here, everything is done in FixupDexCache().
1644 break;
1645 case kNativeObjectRelocationTypeIMTConflictTable: {
1646 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
1647 CopyAndFixupImtConflictTable(
1648 orig_table,
1649 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
1650 break;
1651 }
1652 }
1653 }
1654 // Fixup the image method roots.
1655 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
1656 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1657 ArtMethod* method = image_methods_[i];
1658 CHECK(method != nullptr);
1659 if (!IsInBootImage(method)) {
1660 method = NativeLocationInImage(method);
1661 }
1662 image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
1663 }
1664 FixupRootVisitor root_visitor(this);
1665
1666 // Write the intern table into the image.
1667 if (image_info.intern_table_bytes_ > 0) {
1668 const ImageSection& intern_table_section = image_header->GetImageSection(
1669 ImageHeader::kSectionInternedStrings);
1670 InternTable* const intern_table = image_info.intern_table_.get();
1671 uint8_t* const intern_table_memory_ptr =
1672 image_info.image_->Begin() + intern_table_section.Offset();
1673 const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
1674 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
1675 // Fixup the pointers in the newly written intern table to contain image addresses.
1676 InternTable temp_intern_table;
1677 // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1678 // the VisitRoots() will update the memory directly rather than the copies.
1679 // This also relies on visit roots not doing any verification which could fail after we update
1680 // the roots to be the image addresses.
1681 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
1682 CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
1683 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
1684 }
1685 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
1686 // class loaders. Writing multiple class tables into the image is currently unsupported.
1687 if (image_info.class_table_bytes_ > 0u) {
1688 const ImageSection& class_table_section = image_header->GetImageSection(
1689 ImageHeader::kSectionClassTable);
1690 uint8_t* const class_table_memory_ptr =
1691 image_info.image_->Begin() + class_table_section.Offset();
1692 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1693
1694 ClassTable* table = image_info.class_table_.get();
1695 CHECK(table != nullptr);
1696 const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
1697 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
1698 // Fixup the pointers in the newly written class table to contain image addresses. See
1699 // above comment for intern tables.
1700 ClassTable temp_class_table;
1701 temp_class_table.ReadFromMemory(class_table_memory_ptr);
1702 CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
1703 table->NumZygoteClasses());
1704 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
1705 RootInfo(kRootUnknown));
1706 temp_class_table.VisitRoots(buffered_visitor);
1707 }
1708 }
1709
CopyAndFixupObjects()1710 void ImageWriter::CopyAndFixupObjects() {
1711 gc::Heap* heap = Runtime::Current()->GetHeap();
1712 heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1713 // Fix up the object previously had hash codes.
1714 for (const auto& hash_pair : saved_hashcode_map_) {
1715 Object* obj = hash_pair.first;
1716 DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
1717 obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
1718 }
1719 saved_hashcode_map_.clear();
1720 }
1721
CopyAndFixupObjectsCallback(Object * obj,void * arg)1722 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1723 DCHECK(obj != nullptr);
1724 DCHECK(arg != nullptr);
1725 reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1726 }
1727
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,mirror::Class * klass,Bin array_type)1728 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1729 mirror::Class* klass, Bin array_type) {
1730 CHECK(klass->IsArrayClass());
1731 CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1732 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1733 const size_t num_elements = arr->GetLength();
1734 dst->SetClass(GetImageAddress(arr->GetClass()));
1735 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1736 for (size_t i = 0, count = num_elements; i < count; ++i) {
1737 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1738 if (elem != nullptr && !IsInBootImage(elem)) {
1739 auto it = native_object_relocations_.find(elem);
1740 if (UNLIKELY(it == native_object_relocations_.end())) {
1741 if (it->second.IsArtMethodRelocation()) {
1742 auto* method = reinterpret_cast<ArtMethod*>(elem);
1743 LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1744 << method << " idx=" << i << "/" << num_elements << " with declaring class "
1745 << PrettyClass(method->GetDeclaringClass());
1746 } else {
1747 CHECK_EQ(array_type, kBinArtField);
1748 auto* field = reinterpret_cast<ArtField*>(elem);
1749 LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1750 << field << " idx=" << i << "/" << num_elements << " with declaring class "
1751 << PrettyClass(field->GetDeclaringClass());
1752 }
1753 UNREACHABLE();
1754 } else {
1755 ImageInfo& image_info = GetImageInfo(it->second.oat_index);
1756 elem = image_info.image_begin_ + it->second.offset;
1757 }
1758 }
1759 dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1760 }
1761 }
1762
CopyAndFixupObject(Object * obj)1763 void ImageWriter::CopyAndFixupObject(Object* obj) {
1764 if (IsInBootImage(obj)) {
1765 return;
1766 }
1767 size_t offset = GetImageOffset(obj);
1768 size_t oat_index = GetOatIndex(obj);
1769 ImageInfo& image_info = GetImageInfo(oat_index);
1770 auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
1771 DCHECK_LT(offset, image_info.image_end_);
1772 const auto* src = reinterpret_cast<const uint8_t*>(obj);
1773
1774 image_info.image_bitmap_->Set(dst); // Mark the obj as live.
1775
1776 const size_t n = obj->SizeOf();
1777 DCHECK_LE(offset + n, image_info.image_->Size());
1778 memcpy(dst, src, n);
1779
1780 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1781 // word.
1782 const auto it = saved_hashcode_map_.find(obj);
1783 dst->SetLockWord(it != saved_hashcode_map_.end() ?
1784 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1785 FixupObject(obj, dst);
1786 }
1787
1788 // Rewrite all the references in the copied object to point to their image address equivalent
1789 class FixupVisitor {
1790 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)1791 FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1792 }
1793
1794 // Ignore class roots since we don't have a way to map them to the destination. These are handled
1795 // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1796 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1797 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1798 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1799
1800
operator ()(Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1801 void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1802 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1803 Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1804 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1805 // image.
1806 copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1807 offset,
1808 image_writer_->GetImageAddress(ref));
1809 }
1810
1811 // java.lang.ref.Reference visitor.
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref) const1812 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1813 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1814 copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1815 mirror::Reference::ReferentOffset(),
1816 image_writer_->GetImageAddress(ref->GetReferent()));
1817 }
1818
1819 protected:
1820 ImageWriter* const image_writer_;
1821 mirror::Object* const copy_;
1822 };
1823
1824 class FixupClassVisitor FINAL : public FixupVisitor {
1825 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)1826 FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1827 }
1828
operator ()(Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1829 void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1830 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1831 DCHECK(obj->IsClass());
1832 FixupVisitor::operator()(obj, offset, /*is_static*/false);
1833 }
1834
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref ATTRIBUTE_UNUSED) const1835 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1836 mirror::Reference* ref ATTRIBUTE_UNUSED) const
1837 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1838 LOG(FATAL) << "Reference not expected here.";
1839 }
1840 };
1841
NativeOffsetInImage(void * obj)1842 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
1843 DCHECK(obj != nullptr);
1844 DCHECK(!IsInBootImage(obj));
1845 auto it = native_object_relocations_.find(obj);
1846 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1847 << Runtime::Current()->GetHeap()->DumpSpaces();
1848 const NativeObjectRelocation& relocation = it->second;
1849 return relocation.offset;
1850 }
1851
1852 template <typename T>
NativeLocationInImage(T * obj)1853 T* ImageWriter::NativeLocationInImage(T* obj) {
1854 if (obj == nullptr || IsInBootImage(obj)) {
1855 return obj;
1856 } else {
1857 auto it = native_object_relocations_.find(obj);
1858 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1859 << Runtime::Current()->GetHeap()->DumpSpaces();
1860 const NativeObjectRelocation& relocation = it->second;
1861 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1862 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
1863 }
1864 }
1865
1866 template <typename T>
NativeCopyLocation(T * obj,mirror::DexCache * dex_cache)1867 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
1868 if (obj == nullptr || IsInBootImage(obj)) {
1869 return obj;
1870 } else {
1871 size_t oat_index = GetOatIndexForDexCache(dex_cache);
1872 ImageInfo& image_info = GetImageInfo(oat_index);
1873 return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
1874 }
1875 }
1876
1877 class NativeLocationVisitor {
1878 public:
NativeLocationVisitor(ImageWriter * image_writer)1879 explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1880
1881 template <typename T>
operator ()(T * ptr) const1882 T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1883 return image_writer_->NativeLocationInImage(ptr);
1884 }
1885
1886 private:
1887 ImageWriter* const image_writer_;
1888 };
1889
FixupClass(mirror::Class * orig,mirror::Class * copy)1890 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
1891 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
1892 FixupClassVisitor visitor(this, copy);
1893 static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
1894
1895 // Remove the clinitThreadId. This is required for image determinism.
1896 copy->SetClinitThreadId(static_cast<pid_t>(0));
1897 }
1898
FixupObject(Object * orig,Object * copy)1899 void ImageWriter::FixupObject(Object* orig, Object* copy) {
1900 DCHECK(orig != nullptr);
1901 DCHECK(copy != nullptr);
1902 if (kUseBakerOrBrooksReadBarrier) {
1903 orig->AssertReadBarrierPointer();
1904 if (kUseBrooksReadBarrier) {
1905 // Note the address 'copy' isn't the same as the image address of 'orig'.
1906 copy->SetReadBarrierPointer(GetImageAddress(orig));
1907 DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
1908 }
1909 }
1910 auto* klass = orig->GetClass();
1911 if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
1912 // Is this a native pointer array?
1913 auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
1914 if (it != pointer_arrays_.end()) {
1915 // Should only need to fixup every pointer array exactly once.
1916 FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
1917 pointer_arrays_.erase(it);
1918 return;
1919 }
1920 }
1921 if (orig->IsClass()) {
1922 FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
1923 } else {
1924 if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
1925 // Need to go update the ArtMethod.
1926 auto* dest = down_cast<mirror::AbstractMethod*>(copy);
1927 auto* src = down_cast<mirror::AbstractMethod*>(orig);
1928 ArtMethod* src_method = src->GetArtMethod();
1929 auto it = native_object_relocations_.find(src_method);
1930 CHECK(it != native_object_relocations_.end())
1931 << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
1932 dest->SetArtMethod(
1933 reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
1934 } else if (!klass->IsArrayClass()) {
1935 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1936 if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
1937 FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
1938 } else if (klass->IsClassLoaderClass()) {
1939 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
1940 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
1941 // ClassLoader.
1942 copy_loader->SetClassTable(nullptr);
1943 // Also set allocator to null to be safe. The allocator is created when we create the class
1944 // table. We also never expect to unload things in the image since they are held live as
1945 // roots.
1946 copy_loader->SetAllocator(nullptr);
1947 }
1948 }
1949 FixupVisitor visitor(this, copy);
1950 orig->VisitReferences(visitor, visitor);
1951 }
1952 }
1953
1954
1955 class ImageAddressVisitor {
1956 public:
ImageAddressVisitor(ImageWriter * image_writer)1957 explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
1958
1959 template <typename T>
operator ()(T * ptr) const1960 T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
1961 return image_writer_->GetImageAddress(ptr);
1962 }
1963
1964 private:
1965 ImageWriter* const image_writer_;
1966 };
1967
1968
FixupDexCache(mirror::DexCache * orig_dex_cache,mirror::DexCache * copy_dex_cache)1969 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
1970 mirror::DexCache* copy_dex_cache) {
1971 // Though the DexCache array fields are usually treated as native pointers, we set the full
1972 // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
1973 // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
1974 // static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
1975 GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
1976 if (orig_strings != nullptr) {
1977 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
1978 NativeLocationInImage(orig_strings),
1979 /*pointer size*/8u);
1980 orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
1981 ImageAddressVisitor(this));
1982 }
1983 GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
1984 if (orig_types != nullptr) {
1985 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
1986 NativeLocationInImage(orig_types),
1987 /*pointer size*/8u);
1988 orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
1989 ImageAddressVisitor(this));
1990 }
1991 ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
1992 if (orig_methods != nullptr) {
1993 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
1994 NativeLocationInImage(orig_methods),
1995 /*pointer size*/8u);
1996 ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
1997 for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
1998 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
1999 // NativeLocationInImage also handles runtime methods since these have relocation info.
2000 ArtMethod* copy = NativeLocationInImage(orig);
2001 mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
2002 }
2003 }
2004 ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
2005 if (orig_fields != nullptr) {
2006 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
2007 NativeLocationInImage(orig_fields),
2008 /*pointer size*/8u);
2009 ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
2010 for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
2011 ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
2012 ArtField* copy = NativeLocationInImage(orig);
2013 mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
2014 }
2015 }
2016
2017 // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2018 // compiler pointers in here will make the output non-deterministic.
2019 copy_dex_cache->SetDexFile(nullptr);
2020 }
2021
GetOatAddress(OatAddress type) const2022 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2023 DCHECK_LT(type, kOatAddressCount);
2024 // If we are compiling an app image, we need to use the stubs of the boot image.
2025 if (compile_app_image_) {
2026 // Use the current image pointers.
2027 const std::vector<gc::space::ImageSpace*>& image_spaces =
2028 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2029 DCHECK(!image_spaces.empty());
2030 const OatFile* oat_file = image_spaces[0]->GetOatFile();
2031 CHECK(oat_file != nullptr);
2032 const OatHeader& header = oat_file->GetOatHeader();
2033 switch (type) {
2034 // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2035 case kOatAddressQuickGenericJNITrampoline:
2036 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2037 case kOatAddressInterpreterToInterpreterBridge:
2038 return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2039 case kOatAddressInterpreterToCompiledCodeBridge:
2040 return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2041 case kOatAddressJNIDlsymLookup:
2042 return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2043 case kOatAddressQuickIMTConflictTrampoline:
2044 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2045 case kOatAddressQuickResolutionTrampoline:
2046 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2047 case kOatAddressQuickToInterpreterBridge:
2048 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2049 default:
2050 UNREACHABLE();
2051 }
2052 }
2053 const ImageInfo& primary_image_info = GetImageInfo(0);
2054 return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2055 }
2056
GetQuickCode(ArtMethod * method,const ImageInfo & image_info,bool * quick_is_interpreted)2057 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2058 const ImageInfo& image_info,
2059 bool* quick_is_interpreted) {
2060 DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
2061 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
2062 DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
2063 DCHECK(method->IsInvokable()) << PrettyMethod(method);
2064 DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
2065
2066 // Use original code if it exists. Otherwise, set the code pointer to the resolution
2067 // trampoline.
2068
2069 // Quick entrypoint:
2070 const void* quick_oat_entry_point =
2071 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2072 const uint8_t* quick_code;
2073
2074 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2075 DCHECK(method->IsCopied());
2076 // If the code is not in the oat file corresponding to this image (e.g. default methods)
2077 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2078 } else {
2079 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2080 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2081 }
2082
2083 *quick_is_interpreted = false;
2084 if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2085 method->GetDeclaringClass()->IsInitialized())) {
2086 // We have code for a non-static or initialized method, just use the code.
2087 } else if (quick_code == nullptr && method->IsNative() &&
2088 (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2089 // Non-static or initialized native method missing compiled code, use generic JNI version.
2090 quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2091 } else if (quick_code == nullptr && !method->IsNative()) {
2092 // We don't have code at all for a non-native method, use the interpreter.
2093 quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2094 *quick_is_interpreted = true;
2095 } else {
2096 CHECK(!method->GetDeclaringClass()->IsInitialized());
2097 // We have code for a static method, but need to go through the resolution stub for class
2098 // initialization.
2099 quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2100 }
2101 if (!IsInBootOatFile(quick_code)) {
2102 // DCHECK_GE(quick_code, oat_data_begin_);
2103 }
2104 return quick_code;
2105 }
2106
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,const ImageInfo & image_info)2107 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2108 ArtMethod* copy,
2109 const ImageInfo& image_info) {
2110 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2111
2112 copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
2113 ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
2114 copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2115 GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
2116 copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
2117
2118 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2119 // oat_begin_
2120
2121 // The resolution method has a special trampoline to call.
2122 Runtime* runtime = Runtime::Current();
2123 if (orig->IsRuntimeMethod()) {
2124 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2125 if (orig_table != nullptr) {
2126 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2127 copy->SetEntryPointFromQuickCompiledCodePtrSize(
2128 GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2129 copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2130 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2131 copy->SetEntryPointFromQuickCompiledCodePtrSize(
2132 GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2133 } else {
2134 bool found_one = false;
2135 for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
2136 auto idx = static_cast<Runtime::CalleeSaveType>(i);
2137 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2138 found_one = true;
2139 break;
2140 }
2141 }
2142 CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
2143 CHECK(copy->IsRuntimeMethod());
2144 }
2145 } else {
2146 // We assume all methods have code. If they don't currently then we set them to the use the
2147 // resolution trampoline. Abstract methods never have code and so we need to make sure their
2148 // use results in an AbstractMethodError. We use the interpreter to achieve this.
2149 if (UNLIKELY(!orig->IsInvokable())) {
2150 copy->SetEntryPointFromQuickCompiledCodePtrSize(
2151 GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2152 } else {
2153 bool quick_is_interpreted;
2154 const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2155 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2156
2157 // JNI entrypoint:
2158 if (orig->IsNative()) {
2159 // The native method's pointer is set to a stub to lookup via dlsym.
2160 // Note this is not the code_ pointer, that is handled above.
2161 copy->SetEntryPointFromJniPtrSize(
2162 GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2163 }
2164 }
2165 }
2166 }
2167
GetBinSizeSum(ImageWriter::ImageInfo & image_info,ImageWriter::Bin up_to) const2168 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2169 DCHECK_LE(up_to, kBinSize);
2170 return std::accumulate(&image_info.bin_slot_sizes_[0],
2171 &image_info.bin_slot_sizes_[up_to],
2172 /*init*/0);
2173 }
2174
BinSlot(uint32_t lockword)2175 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2176 // These values may need to get updated if more bins are added to the enum Bin
2177 static_assert(kBinBits == 3, "wrong number of bin bits");
2178 static_assert(kBinShift == 27, "wrong number of shift");
2179 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2180
2181 DCHECK_LT(GetBin(), kBinSize);
2182 DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2183 }
2184
BinSlot(Bin bin,uint32_t index)2185 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2186 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2187 DCHECK_EQ(index, GetIndex());
2188 }
2189
GetBin() const2190 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2191 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2192 }
2193
GetIndex() const2194 uint32_t ImageWriter::BinSlot::GetIndex() const {
2195 return lockword_ & ~kBinMask;
2196 }
2197
BinTypeForNativeRelocationType(NativeObjectRelocationType type)2198 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2199 switch (type) {
2200 case kNativeObjectRelocationTypeArtField:
2201 case kNativeObjectRelocationTypeArtFieldArray:
2202 return kBinArtField;
2203 case kNativeObjectRelocationTypeArtMethodClean:
2204 case kNativeObjectRelocationTypeArtMethodArrayClean:
2205 return kBinArtMethodClean;
2206 case kNativeObjectRelocationTypeArtMethodDirty:
2207 case kNativeObjectRelocationTypeArtMethodArrayDirty:
2208 return kBinArtMethodDirty;
2209 case kNativeObjectRelocationTypeDexCacheArray:
2210 return kBinDexCacheArray;
2211 case kNativeObjectRelocationTypeRuntimeMethod:
2212 return kBinRuntimeMethod;
2213 case kNativeObjectRelocationTypeIMTConflictTable:
2214 return kBinIMTConflictTable;
2215 }
2216 UNREACHABLE();
2217 }
2218
GetOatIndex(mirror::Object * obj) const2219 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2220 if (compile_app_image_) {
2221 return GetDefaultOatIndex();
2222 } else {
2223 mirror::DexCache* dex_cache =
2224 obj->IsDexCache() ? obj->AsDexCache()
2225 : obj->IsClass() ? obj->AsClass()->GetDexCache()
2226 : obj->GetClass()->GetDexCache();
2227 return GetOatIndexForDexCache(dex_cache);
2228 }
2229 }
2230
GetOatIndexForDexFile(const DexFile * dex_file) const2231 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2232 if (compile_app_image_) {
2233 return GetDefaultOatIndex();
2234 } else {
2235 auto it = dex_file_oat_index_map_.find(dex_file);
2236 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2237 return it->second;
2238 }
2239 }
2240
GetOatIndexForDexCache(mirror::DexCache * dex_cache) const2241 size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
2242 if (dex_cache == nullptr) {
2243 return GetDefaultOatIndex();
2244 } else {
2245 return GetOatIndexForDexFile(dex_cache->GetDexFile());
2246 }
2247 }
2248
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)2249 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2250 size_t oat_loaded_size,
2251 size_t oat_data_offset,
2252 size_t oat_data_size) {
2253 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2254 for (const ImageInfo& info : image_infos_) {
2255 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2256 }
2257 DCHECK(images_end != nullptr); // Image space must be ready.
2258
2259 ImageInfo& cur_image_info = GetImageInfo(oat_index);
2260 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2261 cur_image_info.oat_loaded_size_ = oat_loaded_size;
2262 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2263 cur_image_info.oat_size_ = oat_data_size;
2264
2265 if (compile_app_image_) {
2266 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2267 return;
2268 }
2269
2270 // Update the oat_offset of the next image info.
2271 if (oat_index + 1u != oat_filenames_.size()) {
2272 // There is a following one.
2273 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2274 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2275 }
2276 }
2277
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)2278 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2279 ImageInfo& cur_image_info = GetImageInfo(oat_index);
2280 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2281
2282 if (oat_index == GetDefaultOatIndex()) {
2283 // Primary oat file, read the trampolines.
2284 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2285 oat_header.GetInterpreterToInterpreterBridgeOffset();
2286 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2287 oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2288 cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2289 oat_header.GetJniDlsymLookupOffset();
2290 cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2291 oat_header.GetQuickGenericJniTrampolineOffset();
2292 cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2293 oat_header.GetQuickImtConflictTrampolineOffset();
2294 cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2295 oat_header.GetQuickResolutionTrampolineOffset();
2296 cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2297 oat_header.GetQuickToInterpreterBridgeOffset();
2298 }
2299 }
2300
ImageWriter(const CompilerDriver & compiler_driver,uintptr_t image_begin,bool compile_pic,bool compile_app_image,ImageHeader::StorageMode image_storage_mode,const std::vector<const char * > & oat_filenames,const std::unordered_map<const DexFile *,size_t> & dex_file_oat_index_map)2301 ImageWriter::ImageWriter(
2302 const CompilerDriver& compiler_driver,
2303 uintptr_t image_begin,
2304 bool compile_pic,
2305 bool compile_app_image,
2306 ImageHeader::StorageMode image_storage_mode,
2307 const std::vector<const char*>& oat_filenames,
2308 const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
2309 : compiler_driver_(compiler_driver),
2310 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2311 image_objects_offset_begin_(0),
2312 compile_pic_(compile_pic),
2313 compile_app_image_(compile_app_image),
2314 target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2315 image_infos_(oat_filenames.size()),
2316 dirty_methods_(0u),
2317 clean_methods_(0u),
2318 image_storage_mode_(image_storage_mode),
2319 oat_filenames_(oat_filenames),
2320 dex_file_oat_index_map_(dex_file_oat_index_map) {
2321 CHECK_NE(image_begin, 0U);
2322 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2323 CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2324 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2325 }
2326
ImageInfo()2327 ImageWriter::ImageInfo::ImageInfo()
2328 : intern_table_(new InternTable),
2329 class_table_(new ClassTable) {}
2330
2331 } // namespace art
2332