1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "bounds_check_elimination.h"
18
19 #include <limits>
20
21 #include "base/arena_containers.h"
22 #include "induction_var_range.h"
23 #include "side_effects_analysis.h"
24 #include "nodes.h"
25
26 namespace art {
27
28 class MonotonicValueRange;
29
30 /**
31 * A value bound is represented as a pair of value and constant,
32 * e.g. array.length - 1.
33 */
34 class ValueBound : public ValueObject {
35 public:
ValueBound(HInstruction * instruction,int32_t constant)36 ValueBound(HInstruction* instruction, int32_t constant) {
37 if (instruction != nullptr && instruction->IsIntConstant()) {
38 // Normalize ValueBound with constant instruction.
39 int32_t instr_const = instruction->AsIntConstant()->GetValue();
40 if (!WouldAddOverflowOrUnderflow(instr_const, constant)) {
41 instruction_ = nullptr;
42 constant_ = instr_const + constant;
43 return;
44 }
45 }
46 instruction_ = instruction;
47 constant_ = constant;
48 }
49
50 // Return whether (left + right) overflows or underflows.
WouldAddOverflowOrUnderflow(int32_t left,int32_t right)51 static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) {
52 if (right == 0) {
53 return false;
54 }
55 if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) {
56 // No overflow.
57 return false;
58 }
59 if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) {
60 // No underflow.
61 return false;
62 }
63 return true;
64 }
65
66 // Return true if instruction can be expressed as "left_instruction + right_constant".
IsAddOrSubAConstant(HInstruction * instruction,HInstruction ** left_instruction,int32_t * right_constant)67 static bool IsAddOrSubAConstant(HInstruction* instruction,
68 /* out */ HInstruction** left_instruction,
69 /* out */ int32_t* right_constant) {
70 HInstruction* left_so_far = nullptr;
71 int32_t right_so_far = 0;
72 while (instruction->IsAdd() || instruction->IsSub()) {
73 HBinaryOperation* bin_op = instruction->AsBinaryOperation();
74 HInstruction* left = bin_op->GetLeft();
75 HInstruction* right = bin_op->GetRight();
76 if (right->IsIntConstant()) {
77 int32_t v = right->AsIntConstant()->GetValue();
78 int32_t c = instruction->IsAdd() ? v : -v;
79 if (!WouldAddOverflowOrUnderflow(right_so_far, c)) {
80 instruction = left;
81 left_so_far = left;
82 right_so_far += c;
83 continue;
84 }
85 }
86 break;
87 }
88 // Return result: either false and "null+0" or true and "instr+constant".
89 *left_instruction = left_so_far;
90 *right_constant = right_so_far;
91 return left_so_far != nullptr;
92 }
93
94 // Expresses any instruction as a value bound.
AsValueBound(HInstruction * instruction)95 static ValueBound AsValueBound(HInstruction* instruction) {
96 if (instruction->IsIntConstant()) {
97 return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
98 }
99 HInstruction *left;
100 int32_t right;
101 if (IsAddOrSubAConstant(instruction, &left, &right)) {
102 return ValueBound(left, right);
103 }
104 return ValueBound(instruction, 0);
105 }
106
107 // Try to detect useful value bound format from an instruction, e.g.
108 // a constant or array length related value.
DetectValueBoundFromValue(HInstruction * instruction,bool * found)109 static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) {
110 DCHECK(instruction != nullptr);
111 if (instruction->IsIntConstant()) {
112 *found = true;
113 return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
114 }
115
116 if (instruction->IsArrayLength()) {
117 *found = true;
118 return ValueBound(instruction, 0);
119 }
120 // Try to detect (array.length + c) format.
121 HInstruction *left;
122 int32_t right;
123 if (IsAddOrSubAConstant(instruction, &left, &right)) {
124 if (left->IsArrayLength()) {
125 *found = true;
126 return ValueBound(left, right);
127 }
128 }
129
130 // No useful bound detected.
131 *found = false;
132 return ValueBound::Max();
133 }
134
GetInstruction() const135 HInstruction* GetInstruction() const { return instruction_; }
GetConstant() const136 int32_t GetConstant() const { return constant_; }
137
IsRelatedToArrayLength() const138 bool IsRelatedToArrayLength() const {
139 // Some bounds are created with HNewArray* as the instruction instead
140 // of HArrayLength*. They are treated the same.
141 return (instruction_ != nullptr) &&
142 (instruction_->IsArrayLength() || instruction_->IsNewArray());
143 }
144
IsConstant() const145 bool IsConstant() const {
146 return instruction_ == nullptr;
147 }
148
Min()149 static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); }
Max()150 static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); }
151
Equals(ValueBound bound) const152 bool Equals(ValueBound bound) const {
153 return instruction_ == bound.instruction_ && constant_ == bound.constant_;
154 }
155
156 /*
157 * Hunt "under the hood" of array lengths (leading to array references),
158 * null checks (also leading to array references), and new arrays
159 * (leading to the actual length). This makes it more likely related
160 * instructions become actually comparable.
161 */
HuntForDeclaration(HInstruction * instruction)162 static HInstruction* HuntForDeclaration(HInstruction* instruction) {
163 while (instruction->IsArrayLength() ||
164 instruction->IsNullCheck() ||
165 instruction->IsNewArray()) {
166 instruction = instruction->InputAt(0);
167 }
168 return instruction;
169 }
170
Equal(HInstruction * instruction1,HInstruction * instruction2)171 static bool Equal(HInstruction* instruction1, HInstruction* instruction2) {
172 if (instruction1 == instruction2) {
173 return true;
174 }
175 if (instruction1 == nullptr || instruction2 == nullptr) {
176 return false;
177 }
178 instruction1 = HuntForDeclaration(instruction1);
179 instruction2 = HuntForDeclaration(instruction2);
180 return instruction1 == instruction2;
181 }
182
183 // Returns if it's certain this->bound >= `bound`.
GreaterThanOrEqualTo(ValueBound bound) const184 bool GreaterThanOrEqualTo(ValueBound bound) const {
185 if (Equal(instruction_, bound.instruction_)) {
186 return constant_ >= bound.constant_;
187 }
188 // Not comparable. Just return false.
189 return false;
190 }
191
192 // Returns if it's certain this->bound <= `bound`.
LessThanOrEqualTo(ValueBound bound) const193 bool LessThanOrEqualTo(ValueBound bound) const {
194 if (Equal(instruction_, bound.instruction_)) {
195 return constant_ <= bound.constant_;
196 }
197 // Not comparable. Just return false.
198 return false;
199 }
200
201 // Returns if it's certain this->bound > `bound`.
GreaterThan(ValueBound bound) const202 bool GreaterThan(ValueBound bound) const {
203 if (Equal(instruction_, bound.instruction_)) {
204 return constant_ > bound.constant_;
205 }
206 // Not comparable. Just return false.
207 return false;
208 }
209
210 // Returns if it's certain this->bound < `bound`.
LessThan(ValueBound bound) const211 bool LessThan(ValueBound bound) const {
212 if (Equal(instruction_, bound.instruction_)) {
213 return constant_ < bound.constant_;
214 }
215 // Not comparable. Just return false.
216 return false;
217 }
218
219 // Try to narrow lower bound. Returns the greatest of the two if possible.
220 // Pick one if they are not comparable.
NarrowLowerBound(ValueBound bound1,ValueBound bound2)221 static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
222 if (bound1.GreaterThanOrEqualTo(bound2)) {
223 return bound1;
224 }
225 if (bound2.GreaterThanOrEqualTo(bound1)) {
226 return bound2;
227 }
228
229 // Not comparable. Just pick one. We may lose some info, but that's ok.
230 // Favor constant as lower bound.
231 return bound1.IsConstant() ? bound1 : bound2;
232 }
233
234 // Try to narrow upper bound. Returns the lowest of the two if possible.
235 // Pick one if they are not comparable.
NarrowUpperBound(ValueBound bound1,ValueBound bound2)236 static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
237 if (bound1.LessThanOrEqualTo(bound2)) {
238 return bound1;
239 }
240 if (bound2.LessThanOrEqualTo(bound1)) {
241 return bound2;
242 }
243
244 // Not comparable. Just pick one. We may lose some info, but that's ok.
245 // Favor array length as upper bound.
246 return bound1.IsRelatedToArrayLength() ? bound1 : bound2;
247 }
248
249 // Add a constant to a ValueBound.
250 // `overflow` or `underflow` will return whether the resulting bound may
251 // overflow or underflow an int.
Add(int32_t c,bool * overflow,bool * underflow) const252 ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const {
253 *overflow = *underflow = false;
254 if (c == 0) {
255 return *this;
256 }
257
258 int32_t new_constant;
259 if (c > 0) {
260 if (constant_ > (std::numeric_limits<int32_t>::max() - c)) {
261 *overflow = true;
262 return Max();
263 }
264
265 new_constant = constant_ + c;
266 // (array.length + non-positive-constant) won't overflow an int.
267 if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) {
268 return ValueBound(instruction_, new_constant);
269 }
270 // Be conservative.
271 *overflow = true;
272 return Max();
273 } else {
274 if (constant_ < (std::numeric_limits<int32_t>::min() - c)) {
275 *underflow = true;
276 return Min();
277 }
278
279 new_constant = constant_ + c;
280 // Regardless of the value new_constant, (array.length+new_constant) will
281 // never underflow since array.length is no less than 0.
282 if (IsConstant() || IsRelatedToArrayLength()) {
283 return ValueBound(instruction_, new_constant);
284 }
285 // Be conservative.
286 *underflow = true;
287 return Min();
288 }
289 }
290
291 private:
292 HInstruction* instruction_;
293 int32_t constant_;
294 };
295
296 /**
297 * Represent a range of lower bound and upper bound, both being inclusive.
298 * Currently a ValueRange may be generated as a result of the following:
299 * comparisons related to array bounds, array bounds check, add/sub on top
300 * of an existing value range, NewArray or a loop phi corresponding to an
301 * incrementing/decrementing array index (MonotonicValueRange).
302 */
303 class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> {
304 public:
ValueRange(ArenaAllocator * allocator,ValueBound lower,ValueBound upper)305 ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper)
306 : allocator_(allocator), lower_(lower), upper_(upper) {}
307
~ValueRange()308 virtual ~ValueRange() {}
309
AsMonotonicValueRange()310 virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; }
IsMonotonicValueRange()311 bool IsMonotonicValueRange() {
312 return AsMonotonicValueRange() != nullptr;
313 }
314
GetAllocator() const315 ArenaAllocator* GetAllocator() const { return allocator_; }
GetLower() const316 ValueBound GetLower() const { return lower_; }
GetUpper() const317 ValueBound GetUpper() const { return upper_; }
318
IsConstantValueRange()319 bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); }
320
321 // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const322 virtual bool FitsIn(ValueRange* other_range) const {
323 if (other_range == nullptr) {
324 return true;
325 }
326 DCHECK(!other_range->IsMonotonicValueRange());
327 return lower_.GreaterThanOrEqualTo(other_range->lower_) &&
328 upper_.LessThanOrEqualTo(other_range->upper_);
329 }
330
331 // Returns the intersection of this and range.
332 // If it's not possible to do intersection because some
333 // bounds are not comparable, it's ok to pick either bound.
Narrow(ValueRange * range)334 virtual ValueRange* Narrow(ValueRange* range) {
335 if (range == nullptr) {
336 return this;
337 }
338
339 if (range->IsMonotonicValueRange()) {
340 return this;
341 }
342
343 return new (allocator_) ValueRange(
344 allocator_,
345 ValueBound::NarrowLowerBound(lower_, range->lower_),
346 ValueBound::NarrowUpperBound(upper_, range->upper_));
347 }
348
349 // Shift a range by a constant.
Add(int32_t constant) const350 ValueRange* Add(int32_t constant) const {
351 bool overflow, underflow;
352 ValueBound lower = lower_.Add(constant, &overflow, &underflow);
353 if (underflow) {
354 // Lower bound underflow will wrap around to positive values
355 // and invalidate the upper bound.
356 return nullptr;
357 }
358 ValueBound upper = upper_.Add(constant, &overflow, &underflow);
359 if (overflow) {
360 // Upper bound overflow will wrap around to negative values
361 // and invalidate the lower bound.
362 return nullptr;
363 }
364 return new (allocator_) ValueRange(allocator_, lower, upper);
365 }
366
367 private:
368 ArenaAllocator* const allocator_;
369 const ValueBound lower_; // inclusive
370 const ValueBound upper_; // inclusive
371
372 DISALLOW_COPY_AND_ASSIGN(ValueRange);
373 };
374
375 /**
376 * A monotonically incrementing/decrementing value range, e.g.
377 * the variable i in "for (int i=0; i<array.length; i++)".
378 * Special care needs to be taken to account for overflow/underflow
379 * of such value ranges.
380 */
381 class MonotonicValueRange : public ValueRange {
382 public:
MonotonicValueRange(ArenaAllocator * allocator,HPhi * induction_variable,HInstruction * initial,int32_t increment,ValueBound bound)383 MonotonicValueRange(ArenaAllocator* allocator,
384 HPhi* induction_variable,
385 HInstruction* initial,
386 int32_t increment,
387 ValueBound bound)
388 // To be conservative, give it full range [Min(), Max()] in case it's
389 // used as a regular value range, due to possible overflow/underflow.
390 : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()),
391 induction_variable_(induction_variable),
392 initial_(initial),
393 increment_(increment),
394 bound_(bound) {}
395
~MonotonicValueRange()396 virtual ~MonotonicValueRange() {}
397
GetIncrement() const398 int32_t GetIncrement() const { return increment_; }
GetBound() const399 ValueBound GetBound() const { return bound_; }
GetLoopHeader() const400 HBasicBlock* GetLoopHeader() const {
401 DCHECK(induction_variable_->GetBlock()->IsLoopHeader());
402 return induction_variable_->GetBlock();
403 }
404
AsMonotonicValueRange()405 MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; }
406
407 // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const408 bool FitsIn(ValueRange* other_range) const OVERRIDE {
409 if (other_range == nullptr) {
410 return true;
411 }
412 DCHECK(!other_range->IsMonotonicValueRange());
413 return false;
414 }
415
416 // Try to narrow this MonotonicValueRange given another range.
417 // Ideally it will return a normal ValueRange. But due to
418 // possible overflow/underflow, that may not be possible.
Narrow(ValueRange * range)419 ValueRange* Narrow(ValueRange* range) OVERRIDE {
420 if (range == nullptr) {
421 return this;
422 }
423 DCHECK(!range->IsMonotonicValueRange());
424
425 if (increment_ > 0) {
426 // Monotonically increasing.
427 ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower());
428 if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) {
429 // Lower bound isn't useful. Leave it to deoptimization.
430 return this;
431 }
432
433 // We currently conservatively assume max array length is Max().
434 // If we can make assumptions about the max array length, e.g. due to the max heap size,
435 // divided by the element size (such as 4 bytes for each integer array), we can
436 // lower this number and rule out some possible overflows.
437 int32_t max_array_len = std::numeric_limits<int32_t>::max();
438
439 // max possible integer value of range's upper value.
440 int32_t upper = std::numeric_limits<int32_t>::max();
441 // Try to lower upper.
442 ValueBound upper_bound = range->GetUpper();
443 if (upper_bound.IsConstant()) {
444 upper = upper_bound.GetConstant();
445 } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) {
446 // Normal case. e.g. <= array.length - 1.
447 upper = max_array_len + upper_bound.GetConstant();
448 }
449
450 // If we can prove for the last number in sequence of initial_,
451 // initial_ + increment_, initial_ + 2 x increment_, ...
452 // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
453 // then this MonoticValueRange is narrowed to a normal value range.
454
455 // Be conservative first, assume last number in the sequence hits upper.
456 int32_t last_num_in_sequence = upper;
457 if (initial_->IsIntConstant()) {
458 int32_t initial_constant = initial_->AsIntConstant()->GetValue();
459 if (upper <= initial_constant) {
460 last_num_in_sequence = upper;
461 } else {
462 // Cast to int64_t for the substraction part to avoid int32_t overflow.
463 last_num_in_sequence = initial_constant +
464 ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
465 }
466 }
467 if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) {
468 // No overflow. The sequence will be stopped by the upper bound test as expected.
469 return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
470 }
471
472 // There might be overflow. Give up narrowing.
473 return this;
474 } else {
475 DCHECK_NE(increment_, 0);
476 // Monotonically decreasing.
477 ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper());
478 if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) &&
479 !upper.IsRelatedToArrayLength()) {
480 // Upper bound isn't useful. Leave it to deoptimization.
481 return this;
482 }
483
484 // Need to take care of underflow. Try to prove underflow won't happen
485 // for common cases.
486 if (range->GetLower().IsConstant()) {
487 int32_t constant = range->GetLower().GetConstant();
488 if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) {
489 return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
490 }
491 }
492
493 // For non-constant lower bound, just assume might be underflow. Give up narrowing.
494 return this;
495 }
496 }
497
498 private:
499 HPhi* const induction_variable_; // Induction variable for this monotonic value range.
500 HInstruction* const initial_; // Initial value.
501 const int32_t increment_; // Increment for each loop iteration.
502 const ValueBound bound_; // Additional value bound info for initial_.
503
504 DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
505 };
506
507 class BCEVisitor : public HGraphVisitor {
508 public:
509 // The least number of bounds checks that should be eliminated by triggering
510 // the deoptimization technique.
511 static constexpr size_t kThresholdForAddingDeoptimize = 2;
512
513 // Very large lengths are considered an anomaly. This is a threshold beyond which we don't
514 // bother to apply the deoptimization technique since it's likely, or sometimes certain,
515 // an AIOOBE will be thrown.
516 static constexpr uint32_t kMaxLengthForAddingDeoptimize =
517 std::numeric_limits<int32_t>::max() - 1024 * 1024;
518
519 // Added blocks for loop body entry test.
IsAddedBlock(HBasicBlock * block) const520 bool IsAddedBlock(HBasicBlock* block) const {
521 return block->GetBlockId() >= initial_block_size_;
522 }
523
BCEVisitor(HGraph * graph,const SideEffectsAnalysis & side_effects,HInductionVarAnalysis * induction_analysis)524 BCEVisitor(HGraph* graph,
525 const SideEffectsAnalysis& side_effects,
526 HInductionVarAnalysis* induction_analysis)
527 : HGraphVisitor(graph),
528 maps_(graph->GetBlocks().size(),
529 ArenaSafeMap<int, ValueRange*>(
530 std::less<int>(),
531 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
532 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
533 first_index_bounds_check_map_(
534 std::less<int>(),
535 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
536 dynamic_bce_standby_(
537 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
538 record_dynamic_bce_standby_(true),
539 early_exit_loop_(
540 std::less<uint32_t>(),
541 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
542 taken_test_loop_(
543 std::less<uint32_t>(),
544 graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
545 finite_loop_(graph->GetArena()->Adapter(kArenaAllocBoundsCheckElimination)),
546 has_dom_based_dynamic_bce_(false),
547 initial_block_size_(graph->GetBlocks().size()),
548 side_effects_(side_effects),
549 induction_range_(induction_analysis) {}
550
VisitBasicBlock(HBasicBlock * block)551 void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
552 DCHECK(!IsAddedBlock(block));
553 first_index_bounds_check_map_.clear();
554 HGraphVisitor::VisitBasicBlock(block);
555 // We should never deoptimize from an osr method, otherwise we might wrongly optimize
556 // code dominated by the deoptimization.
557 if (!GetGraph()->IsCompilingOsr()) {
558 AddComparesWithDeoptimization(block);
559 }
560 }
561
Finish()562 void Finish() {
563 // Retry dynamic bce candidates on standby that are still in the graph.
564 record_dynamic_bce_standby_ = false;
565 for (HBoundsCheck* bounds_check : dynamic_bce_standby_) {
566 if (bounds_check->IsInBlock()) {
567 TryDynamicBCE(bounds_check);
568 }
569 }
570
571 // Preserve SSA structure which may have been broken by adding one or more
572 // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()).
573 InsertPhiNodes();
574
575 // Clear the loop data structures.
576 early_exit_loop_.clear();
577 taken_test_loop_.clear();
578 finite_loop_.clear();
579 dynamic_bce_standby_.clear();
580 }
581
582 private:
583 // Return the map of proven value ranges at the beginning of a basic block.
GetValueRangeMap(HBasicBlock * basic_block)584 ArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
585 if (IsAddedBlock(basic_block)) {
586 // Added blocks don't keep value ranges.
587 return nullptr;
588 }
589 return &maps_[basic_block->GetBlockId()];
590 }
591
592 // Traverse up the dominator tree to look for value range info.
LookupValueRange(HInstruction * instruction,HBasicBlock * basic_block)593 ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
594 while (basic_block != nullptr) {
595 ArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
596 if (map != nullptr) {
597 if (map->find(instruction->GetId()) != map->end()) {
598 return map->Get(instruction->GetId());
599 }
600 } else {
601 DCHECK(IsAddedBlock(basic_block));
602 }
603 basic_block = basic_block->GetDominator();
604 }
605 // Didn't find any.
606 return nullptr;
607 }
608
609 // Helper method to assign a new range to an instruction in given basic block.
AssignRange(HBasicBlock * basic_block,HInstruction * instruction,ValueRange * range)610 void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) {
611 GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range);
612 }
613
614 // Narrow the value range of `instruction` at the end of `basic_block` with `range`,
615 // and push the narrowed value range to `successor`.
ApplyRangeFromComparison(HInstruction * instruction,HBasicBlock * basic_block,HBasicBlock * successor,ValueRange * range)616 void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
617 HBasicBlock* successor, ValueRange* range) {
618 ValueRange* existing_range = LookupValueRange(instruction, basic_block);
619 if (existing_range == nullptr) {
620 if (range != nullptr) {
621 AssignRange(successor, instruction, range);
622 }
623 return;
624 }
625 if (existing_range->IsMonotonicValueRange()) {
626 DCHECK(instruction->IsLoopHeaderPhi());
627 // Make sure the comparison is in the loop header so each increment is
628 // checked with a comparison.
629 if (instruction->GetBlock() != basic_block) {
630 return;
631 }
632 }
633 AssignRange(successor, instruction, existing_range->Narrow(range));
634 }
635
636 // Special case that we may simultaneously narrow two MonotonicValueRange's to
637 // regular value ranges.
HandleIfBetweenTwoMonotonicValueRanges(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond,MonotonicValueRange * left_range,MonotonicValueRange * right_range)638 void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction,
639 HInstruction* left,
640 HInstruction* right,
641 IfCondition cond,
642 MonotonicValueRange* left_range,
643 MonotonicValueRange* right_range) {
644 DCHECK(left->IsLoopHeaderPhi());
645 DCHECK(right->IsLoopHeaderPhi());
646 if (instruction->GetBlock() != left->GetBlock()) {
647 // Comparison needs to be in loop header to make sure it's done after each
648 // increment/decrement.
649 return;
650 }
651
652 // Handle common cases which also don't have overflow/underflow concerns.
653 if (left_range->GetIncrement() == 1 &&
654 left_range->GetBound().IsConstant() &&
655 right_range->GetIncrement() == -1 &&
656 right_range->GetBound().IsRelatedToArrayLength() &&
657 right_range->GetBound().GetConstant() < 0) {
658 HBasicBlock* successor = nullptr;
659 int32_t left_compensation = 0;
660 int32_t right_compensation = 0;
661 if (cond == kCondLT) {
662 left_compensation = -1;
663 right_compensation = 1;
664 successor = instruction->IfTrueSuccessor();
665 } else if (cond == kCondLE) {
666 successor = instruction->IfTrueSuccessor();
667 } else if (cond == kCondGT) {
668 successor = instruction->IfFalseSuccessor();
669 } else if (cond == kCondGE) {
670 left_compensation = -1;
671 right_compensation = 1;
672 successor = instruction->IfFalseSuccessor();
673 } else {
674 // We don't handle '=='/'!=' test in case left and right can cross and
675 // miss each other.
676 return;
677 }
678
679 if (successor != nullptr) {
680 bool overflow;
681 bool underflow;
682 ValueRange* new_left_range = new (GetGraph()->GetArena()) ValueRange(
683 GetGraph()->GetArena(),
684 left_range->GetBound(),
685 right_range->GetBound().Add(left_compensation, &overflow, &underflow));
686 if (!overflow && !underflow) {
687 ApplyRangeFromComparison(left, instruction->GetBlock(), successor,
688 new_left_range);
689 }
690
691 ValueRange* new_right_range = new (GetGraph()->GetArena()) ValueRange(
692 GetGraph()->GetArena(),
693 left_range->GetBound().Add(right_compensation, &overflow, &underflow),
694 right_range->GetBound());
695 if (!overflow && !underflow) {
696 ApplyRangeFromComparison(right, instruction->GetBlock(), successor,
697 new_right_range);
698 }
699 }
700 }
701 }
702
703 // Handle "if (left cmp_cond right)".
HandleIf(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond)704 void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
705 HBasicBlock* block = instruction->GetBlock();
706
707 HBasicBlock* true_successor = instruction->IfTrueSuccessor();
708 // There should be no critical edge at this point.
709 DCHECK_EQ(true_successor->GetPredecessors().size(), 1u);
710
711 HBasicBlock* false_successor = instruction->IfFalseSuccessor();
712 // There should be no critical edge at this point.
713 DCHECK_EQ(false_successor->GetPredecessors().size(), 1u);
714
715 ValueRange* left_range = LookupValueRange(left, block);
716 MonotonicValueRange* left_monotonic_range = nullptr;
717 if (left_range != nullptr) {
718 left_monotonic_range = left_range->AsMonotonicValueRange();
719 if (left_monotonic_range != nullptr) {
720 HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader();
721 if (instruction->GetBlock() != loop_head) {
722 // For monotonic value range, don't handle `instruction`
723 // if it's not defined in the loop header.
724 return;
725 }
726 }
727 }
728
729 bool found;
730 ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found);
731 // Each comparison can establish a lower bound and an upper bound
732 // for the left hand side.
733 ValueBound lower = bound;
734 ValueBound upper = bound;
735 if (!found) {
736 // No constant or array.length+c format bound found.
737 // For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
738 ValueRange* right_range = LookupValueRange(right, block);
739 if (right_range != nullptr) {
740 if (right_range->IsMonotonicValueRange()) {
741 if (left_range != nullptr && left_range->IsMonotonicValueRange()) {
742 HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond,
743 left_range->AsMonotonicValueRange(),
744 right_range->AsMonotonicValueRange());
745 return;
746 }
747 }
748 lower = right_range->GetLower();
749 upper = right_range->GetUpper();
750 } else {
751 lower = ValueBound::Min();
752 upper = ValueBound::Max();
753 }
754 }
755
756 bool overflow, underflow;
757 if (cond == kCondLT || cond == kCondLE) {
758 if (!upper.Equals(ValueBound::Max())) {
759 int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive
760 ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
761 if (overflow || underflow) {
762 return;
763 }
764 ValueRange* new_range = new (GetGraph()->GetArena())
765 ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
766 ApplyRangeFromComparison(left, block, true_successor, new_range);
767 }
768
769 // array.length as a lower bound isn't considered useful.
770 if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
771 int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive
772 ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
773 if (overflow || underflow) {
774 return;
775 }
776 ValueRange* new_range = new (GetGraph()->GetArena())
777 ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
778 ApplyRangeFromComparison(left, block, false_successor, new_range);
779 }
780 } else if (cond == kCondGT || cond == kCondGE) {
781 // array.length as a lower bound isn't considered useful.
782 if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
783 int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive
784 ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
785 if (overflow || underflow) {
786 return;
787 }
788 ValueRange* new_range = new (GetGraph()->GetArena())
789 ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max());
790 ApplyRangeFromComparison(left, block, true_successor, new_range);
791 }
792
793 if (!upper.Equals(ValueBound::Max())) {
794 int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive
795 ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
796 if (overflow || underflow) {
797 return;
798 }
799 ValueRange* new_range = new (GetGraph()->GetArena())
800 ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper);
801 ApplyRangeFromComparison(left, block, false_successor, new_range);
802 }
803 }
804 }
805
VisitBoundsCheck(HBoundsCheck * bounds_check)806 void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE {
807 HBasicBlock* block = bounds_check->GetBlock();
808 HInstruction* index = bounds_check->InputAt(0);
809 HInstruction* array_length = bounds_check->InputAt(1);
810 DCHECK(array_length->IsIntConstant() ||
811 array_length->IsArrayLength() ||
812 array_length->IsPhi());
813 bool try_dynamic_bce = true;
814
815 // Analyze index range.
816 if (!index->IsIntConstant()) {
817 // Non-constant index.
818 ValueBound lower = ValueBound(nullptr, 0); // constant 0
819 ValueBound upper = ValueBound(array_length, -1); // array_length - 1
820 ValueRange array_range(GetGraph()->GetArena(), lower, upper);
821 // Try index range obtained by dominator-based analysis.
822 ValueRange* index_range = LookupValueRange(index, block);
823 if (index_range != nullptr && index_range->FitsIn(&array_range)) {
824 ReplaceInstruction(bounds_check, index);
825 return;
826 }
827 // Try index range obtained by induction variable analysis.
828 // Disables dynamic bce if OOB is certain.
829 if (InductionRangeFitsIn(&array_range, bounds_check, index, &try_dynamic_bce)) {
830 ReplaceInstruction(bounds_check, index);
831 return;
832 }
833 } else {
834 // Constant index.
835 int32_t constant = index->AsIntConstant()->GetValue();
836 if (constant < 0) {
837 // Will always throw exception.
838 return;
839 } else if (array_length->IsIntConstant()) {
840 if (constant < array_length->AsIntConstant()->GetValue()) {
841 ReplaceInstruction(bounds_check, index);
842 }
843 return;
844 }
845 // Analyze array length range.
846 DCHECK(array_length->IsArrayLength());
847 ValueRange* existing_range = LookupValueRange(array_length, block);
848 if (existing_range != nullptr) {
849 ValueBound lower = existing_range->GetLower();
850 DCHECK(lower.IsConstant());
851 if (constant < lower.GetConstant()) {
852 ReplaceInstruction(bounds_check, index);
853 return;
854 } else {
855 // Existing range isn't strong enough to eliminate the bounds check.
856 // Fall through to update the array_length range with info from this
857 // bounds check.
858 }
859 }
860 // Once we have an array access like 'array[5] = 1', we record array.length >= 6.
861 // We currently don't do it for non-constant index since a valid array[i] can't prove
862 // a valid array[i-1] yet due to the lower bound side.
863 if (constant == std::numeric_limits<int32_t>::max()) {
864 // Max() as an index will definitely throw AIOOBE.
865 return;
866 } else {
867 ValueBound lower = ValueBound(nullptr, constant + 1);
868 ValueBound upper = ValueBound::Max();
869 ValueRange* range = new (GetGraph()->GetArena())
870 ValueRange(GetGraph()->GetArena(), lower, upper);
871 AssignRange(block, array_length, range);
872 }
873 }
874
875 // If static analysis fails, and OOB is not certain, try dynamic elimination.
876 if (try_dynamic_bce) {
877 // Try loop-based dynamic elimination.
878 if (TryDynamicBCE(bounds_check)) {
879 return;
880 }
881 // Prepare dominator-based dynamic elimination.
882 if (first_index_bounds_check_map_.find(array_length->GetId()) ==
883 first_index_bounds_check_map_.end()) {
884 // Remember the first bounds check against each array_length. That bounds check
885 // instruction has an associated HEnvironment where we may add an HDeoptimize
886 // to eliminate subsequent bounds checks against the same array_length.
887 first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check);
888 }
889 }
890 }
891
HasSameInputAtBackEdges(HPhi * phi)892 static bool HasSameInputAtBackEdges(HPhi* phi) {
893 DCHECK(phi->IsLoopHeaderPhi());
894 // Start with input 1. Input 0 is from the incoming block.
895 HInstruction* input1 = phi->InputAt(1);
896 DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
897 *phi->GetBlock()->GetPredecessors()[1]));
898 for (size_t i = 2, e = phi->InputCount(); i < e; ++i) {
899 DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
900 *phi->GetBlock()->GetPredecessors()[i]));
901 if (input1 != phi->InputAt(i)) {
902 return false;
903 }
904 }
905 return true;
906 }
907
VisitPhi(HPhi * phi)908 void VisitPhi(HPhi* phi) OVERRIDE {
909 if (phi->IsLoopHeaderPhi()
910 && (phi->GetType() == Primitive::kPrimInt)
911 && HasSameInputAtBackEdges(phi)) {
912 HInstruction* instruction = phi->InputAt(1);
913 HInstruction *left;
914 int32_t increment;
915 if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) {
916 if (left == phi) {
917 HInstruction* initial_value = phi->InputAt(0);
918 ValueRange* range = nullptr;
919 if (increment == 0) {
920 // Add constant 0. It's really a fixed value.
921 range = new (GetGraph()->GetArena()) ValueRange(
922 GetGraph()->GetArena(),
923 ValueBound(initial_value, 0),
924 ValueBound(initial_value, 0));
925 } else {
926 // Monotonically increasing/decreasing.
927 bool found;
928 ValueBound bound = ValueBound::DetectValueBoundFromValue(
929 initial_value, &found);
930 if (!found) {
931 // No constant or array.length+c bound found.
932 // For i=j, we can still use j's upper bound as i's upper bound.
933 // Same for lower.
934 ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock());
935 if (initial_range != nullptr) {
936 bound = increment > 0 ? initial_range->GetLower() :
937 initial_range->GetUpper();
938 } else {
939 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max();
940 }
941 }
942 range = new (GetGraph()->GetArena()) MonotonicValueRange(
943 GetGraph()->GetArena(),
944 phi,
945 initial_value,
946 increment,
947 bound);
948 }
949 AssignRange(phi->GetBlock(), phi, range);
950 }
951 }
952 }
953 }
954
VisitIf(HIf * instruction)955 void VisitIf(HIf* instruction) OVERRIDE {
956 if (instruction->InputAt(0)->IsCondition()) {
957 HCondition* cond = instruction->InputAt(0)->AsCondition();
958 IfCondition cmp = cond->GetCondition();
959 if (cmp == kCondGT || cmp == kCondGE ||
960 cmp == kCondLT || cmp == kCondLE) {
961 HInstruction* left = cond->GetLeft();
962 HInstruction* right = cond->GetRight();
963 HandleIf(instruction, left, right, cmp);
964 }
965 }
966 }
967
VisitAdd(HAdd * add)968 void VisitAdd(HAdd* add) OVERRIDE {
969 HInstruction* right = add->GetRight();
970 if (right->IsIntConstant()) {
971 ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
972 if (left_range == nullptr) {
973 return;
974 }
975 ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
976 if (range != nullptr) {
977 AssignRange(add->GetBlock(), add, range);
978 }
979 }
980 }
981
VisitSub(HSub * sub)982 void VisitSub(HSub* sub) OVERRIDE {
983 HInstruction* left = sub->GetLeft();
984 HInstruction* right = sub->GetRight();
985 if (right->IsIntConstant()) {
986 ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
987 if (left_range == nullptr) {
988 return;
989 }
990 ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
991 if (range != nullptr) {
992 AssignRange(sub->GetBlock(), sub, range);
993 return;
994 }
995 }
996
997 // Here we are interested in the typical triangular case of nested loops,
998 // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
999 // is the index for outer loop. In this case, we know j is bounded by array.length-1.
1000
1001 // Try to handle (array.length - i) or (array.length + c - i) format.
1002 HInstruction* left_of_left; // left input of left.
1003 int32_t right_const = 0;
1004 if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) {
1005 left = left_of_left;
1006 }
1007 // The value of left input of the sub equals (left + right_const).
1008
1009 if (left->IsArrayLength()) {
1010 HInstruction* array_length = left->AsArrayLength();
1011 ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
1012 if (right_range != nullptr) {
1013 ValueBound lower = right_range->GetLower();
1014 ValueBound upper = right_range->GetUpper();
1015 if (lower.IsConstant() && upper.IsRelatedToArrayLength()) {
1016 HInstruction* upper_inst = upper.GetInstruction();
1017 // Make sure it's the same array.
1018 if (ValueBound::Equal(array_length, upper_inst)) {
1019 int32_t c0 = right_const;
1020 int32_t c1 = lower.GetConstant();
1021 int32_t c2 = upper.GetConstant();
1022 // (array.length + c0 - v) where v is in [c1, array.length + c2]
1023 // gets [c0 - c2, array.length + c0 - c1] as its value range.
1024 if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) &&
1025 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) {
1026 if ((c0 - c1) <= 0) {
1027 // array.length + (c0 - c1) won't overflow/underflow.
1028 ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
1029 GetGraph()->GetArena(),
1030 ValueBound(nullptr, right_const - upper.GetConstant()),
1031 ValueBound(array_length, right_const - lower.GetConstant()));
1032 AssignRange(sub->GetBlock(), sub, range);
1033 }
1034 }
1035 }
1036 }
1037 }
1038 }
1039 }
1040
FindAndHandlePartialArrayLength(HBinaryOperation * instruction)1041 void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) {
1042 DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr());
1043 HInstruction* right = instruction->GetRight();
1044 int32_t right_const;
1045 if (right->IsIntConstant()) {
1046 right_const = right->AsIntConstant()->GetValue();
1047 // Detect division by two or more.
1048 if ((instruction->IsDiv() && right_const <= 1) ||
1049 (instruction->IsShr() && right_const < 1) ||
1050 (instruction->IsUShr() && right_const < 1)) {
1051 return;
1052 }
1053 } else {
1054 return;
1055 }
1056
1057 // Try to handle array.length/2 or (array.length-1)/2 format.
1058 HInstruction* left = instruction->GetLeft();
1059 HInstruction* left_of_left; // left input of left.
1060 int32_t c = 0;
1061 if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) {
1062 left = left_of_left;
1063 }
1064 // The value of left input of instruction equals (left + c).
1065
1066 // (array_length + 1) or smaller divided by two or more
1067 // always generate a value in [Min(), array_length].
1068 // This is true even if array_length is Max().
1069 if (left->IsArrayLength() && c <= 1) {
1070 if (instruction->IsUShr() && c < 0) {
1071 // Make sure for unsigned shift, left side is not negative.
1072 // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger
1073 // than array_length.
1074 return;
1075 }
1076 ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
1077 GetGraph()->GetArena(),
1078 ValueBound(nullptr, std::numeric_limits<int32_t>::min()),
1079 ValueBound(left, 0));
1080 AssignRange(instruction->GetBlock(), instruction, range);
1081 }
1082 }
1083
VisitDiv(HDiv * div)1084 void VisitDiv(HDiv* div) OVERRIDE {
1085 FindAndHandlePartialArrayLength(div);
1086 }
1087
VisitShr(HShr * shr)1088 void VisitShr(HShr* shr) OVERRIDE {
1089 FindAndHandlePartialArrayLength(shr);
1090 }
1091
VisitUShr(HUShr * ushr)1092 void VisitUShr(HUShr* ushr) OVERRIDE {
1093 FindAndHandlePartialArrayLength(ushr);
1094 }
1095
VisitAnd(HAnd * instruction)1096 void VisitAnd(HAnd* instruction) OVERRIDE {
1097 if (instruction->GetRight()->IsIntConstant()) {
1098 int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue();
1099 if (constant > 0) {
1100 // constant serves as a mask so any number masked with it
1101 // gets a [0, constant] value range.
1102 ValueRange* range = new (GetGraph()->GetArena()) ValueRange(
1103 GetGraph()->GetArena(),
1104 ValueBound(nullptr, 0),
1105 ValueBound(nullptr, constant));
1106 AssignRange(instruction->GetBlock(), instruction, range);
1107 }
1108 }
1109 }
1110
VisitNewArray(HNewArray * new_array)1111 void VisitNewArray(HNewArray* new_array) OVERRIDE {
1112 HInstruction* len = new_array->InputAt(0);
1113 if (!len->IsIntConstant()) {
1114 HInstruction *left;
1115 int32_t right_const;
1116 if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) {
1117 // (left + right_const) is used as size to new the array.
1118 // We record "-right_const <= left <= new_array - right_const";
1119 ValueBound lower = ValueBound(nullptr, -right_const);
1120 // We use new_array for the bound instead of new_array.length,
1121 // which isn't available as an instruction yet. new_array will
1122 // be treated the same as new_array.length when it's used in a ValueBound.
1123 ValueBound upper = ValueBound(new_array, -right_const);
1124 ValueRange* range = new (GetGraph()->GetArena())
1125 ValueRange(GetGraph()->GetArena(), lower, upper);
1126 ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock());
1127 if (existing_range != nullptr) {
1128 range = existing_range->Narrow(range);
1129 }
1130 AssignRange(new_array->GetBlock(), left, range);
1131 }
1132 }
1133 }
1134
1135 /**
1136 * After null/bounds checks are eliminated, some invariant array references
1137 * may be exposed underneath which can be hoisted out of the loop to the
1138 * preheader or, in combination with dynamic bce, the deoptimization block.
1139 *
1140 * for (int i = 0; i < n; i++) {
1141 * <-------+
1142 * for (int j = 0; j < n; j++) |
1143 * a[i][j] = 0; --a[i]--+
1144 * }
1145 *
1146 * Note: this optimization is no longer applied after dominator-based dynamic deoptimization
1147 * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be
1148 * unsafe to hoist array references across their deoptimization instruction inside a loop.
1149 */
VisitArrayGet(HArrayGet * array_get)1150 void VisitArrayGet(HArrayGet* array_get) OVERRIDE {
1151 if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) {
1152 HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation();
1153 if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) &&
1154 loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) {
1155 SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader());
1156 if (!array_get->GetSideEffects().MayDependOn(loop_effects)) {
1157 // We can hoist ArrayGet only if its execution is guaranteed on every iteration.
1158 // In other words only if array_get_bb dominates all back branches.
1159 if (loop->DominatesAllBackEdges(array_get->GetBlock())) {
1160 HoistToPreHeaderOrDeoptBlock(loop, array_get);
1161 }
1162 }
1163 }
1164 }
1165 }
1166
1167 // Perform dominator-based dynamic elimination on suitable set of bounds checks.
AddCompareWithDeoptimization(HBasicBlock * block,HInstruction * array_length,HInstruction * base,int32_t min_c,int32_t max_c)1168 void AddCompareWithDeoptimization(HBasicBlock* block,
1169 HInstruction* array_length,
1170 HInstruction* base,
1171 int32_t min_c, int32_t max_c) {
1172 HBoundsCheck* bounds_check =
1173 first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck();
1174 // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c],
1175 // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1
1176 // and base+3, since we made the assumption any in between value may occur too.
1177 static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(),
1178 "Incorrect max length may be subject to arithmetic wrap-around");
1179 HInstruction* upper = GetGraph()->GetIntConstant(max_c);
1180 if (base == nullptr) {
1181 DCHECK_GE(min_c, 0);
1182 } else {
1183 HInstruction* lower = new (GetGraph()->GetArena())
1184 HAdd(Primitive::kPrimInt, base, GetGraph()->GetIntConstant(min_c));
1185 upper = new (GetGraph()->GetArena()) HAdd(Primitive::kPrimInt, base, upper);
1186 block->InsertInstructionBefore(lower, bounds_check);
1187 block->InsertInstructionBefore(upper, bounds_check);
1188 InsertDeoptInBlock(bounds_check, new (GetGraph()->GetArena()) HAbove(lower, upper));
1189 }
1190 InsertDeoptInBlock(bounds_check, new (GetGraph()->GetArena()) HAboveOrEqual(upper, array_length));
1191 // Flag that this kind of deoptimization has occurred.
1192 has_dom_based_dynamic_bce_ = true;
1193 }
1194
1195 // Attempt dominator-based dynamic elimination on remaining candidates.
AddComparesWithDeoptimization(HBasicBlock * block)1196 void AddComparesWithDeoptimization(HBasicBlock* block) {
1197 for (const auto& entry : first_index_bounds_check_map_) {
1198 HBoundsCheck* bounds_check = entry.second;
1199 HInstruction* index = bounds_check->InputAt(0);
1200 HInstruction* array_length = bounds_check->InputAt(1);
1201 if (!array_length->IsArrayLength()) {
1202 continue; // disregard phis and constants
1203 }
1204 // Collect all bounds checks that are still there and that are related as "a[base + constant]"
1205 // for a base instruction (possibly absent) and various constants. Note that no attempt
1206 // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and
1207 // a[base+2] are considered as one set).
1208 // TODO: would such a partitioning be worthwhile?
1209 ValueBound value = ValueBound::AsValueBound(index);
1210 HInstruction* base = value.GetInstruction();
1211 int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1212 int32_t max_c = value.GetConstant();
1213 ArenaVector<HBoundsCheck*> candidates(
1214 GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination));
1215 ArenaVector<HBoundsCheck*> standby(
1216 GetGraph()->GetArena()->Adapter(kArenaAllocBoundsCheckElimination));
1217 for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1218 // Another bounds check in same or dominated block?
1219 HInstruction* user = use.GetUser();
1220 HBasicBlock* other_block = user->GetBlock();
1221 if (user->IsBoundsCheck() && block->Dominates(other_block)) {
1222 HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1223 HInstruction* other_index = other_bounds_check->InputAt(0);
1224 HInstruction* other_array_length = other_bounds_check->InputAt(1);
1225 ValueBound other_value = ValueBound::AsValueBound(other_index);
1226 if (array_length == other_array_length && base == other_value.GetInstruction()) {
1227 // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset.
1228 if (array_length == other_index) {
1229 candidates.clear();
1230 standby.clear();
1231 break;
1232 }
1233 // Since a subsequent dominated block could be under a conditional, only accept
1234 // the other bounds check if it is in same block or both blocks dominate the exit.
1235 // TODO: we could improve this by testing proper post-dominance, or even if this
1236 // constant is seen along *all* conditional paths that follow.
1237 HBasicBlock* exit = GetGraph()->GetExitBlock();
1238 if (block == user->GetBlock() ||
1239 (block->Dominates(exit) && other_block->Dominates(exit))) {
1240 int32_t other_c = other_value.GetConstant();
1241 min_c = std::min(min_c, other_c);
1242 max_c = std::max(max_c, other_c);
1243 candidates.push_back(other_bounds_check);
1244 } else {
1245 // Add this candidate later only if it falls into the range.
1246 standby.push_back(other_bounds_check);
1247 }
1248 }
1249 }
1250 }
1251 // Add standby candidates that fall in selected range.
1252 for (HBoundsCheck* other_bounds_check : standby) {
1253 HInstruction* other_index = other_bounds_check->InputAt(0);
1254 int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1255 if (min_c <= other_c && other_c <= max_c) {
1256 candidates.push_back(other_bounds_check);
1257 }
1258 }
1259 // Perform dominator-based deoptimization if it seems profitable. Note that we reject cases
1260 // where the distance min_c:max_c range gets close to the maximum possible array length,
1261 // since those cases are likely to always deopt (such situations do not necessarily go
1262 // OOB, though, since the programmer could rely on wrap-around from max to min).
1263 size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1); // extra test?
1264 uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1265 if (candidates.size() >= threshold &&
1266 (base != nullptr || min_c >= 0) && // reject certain OOB
1267 distance <= kMaxLengthForAddingDeoptimize) { // reject likely/certain deopt
1268 AddCompareWithDeoptimization(block, array_length, base, min_c, max_c);
1269 for (HInstruction* other_bounds_check : candidates) {
1270 // Only replace if still in the graph. This avoids visiting the same
1271 // bounds check twice if it occurred multiple times in the use list.
1272 if (other_bounds_check->IsInBlock()) {
1273 ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0));
1274 }
1275 }
1276 }
1277 }
1278 }
1279
1280 /**
1281 * Returns true if static range analysis based on induction variables can determine the bounds
1282 * check on the given array range is always satisfied with the computed index range. The output
1283 * parameter try_dynamic_bce is set to false if OOB is certain.
1284 */
InductionRangeFitsIn(ValueRange * array_range,HInstruction * context,HInstruction * index,bool * try_dynamic_bce)1285 bool InductionRangeFitsIn(ValueRange* array_range,
1286 HInstruction* context,
1287 HInstruction* index,
1288 bool* try_dynamic_bce) {
1289 InductionVarRange::Value v1;
1290 InductionVarRange::Value v2;
1291 bool needs_finite_test = false;
1292 if (induction_range_.GetInductionRange(context, index, &v1, &v2, &needs_finite_test)) {
1293 do {
1294 if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) &&
1295 v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) {
1296 DCHECK(v1.a_constant == 1 || v1.instruction == nullptr);
1297 DCHECK(v2.a_constant == 1 || v2.instruction == nullptr);
1298 ValueRange index_range(GetGraph()->GetArena(),
1299 ValueBound(v1.instruction, v1.b_constant),
1300 ValueBound(v2.instruction, v2.b_constant));
1301 // If analysis reveals a certain OOB, disable dynamic BCE.
1302 if (index_range.GetLower().LessThan(array_range->GetLower()) ||
1303 index_range.GetUpper().GreaterThan(array_range->GetUpper())) {
1304 *try_dynamic_bce = false;
1305 return false;
1306 }
1307 // Use analysis for static bce only if loop is finite.
1308 if (!needs_finite_test && index_range.FitsIn(array_range)) {
1309 return true;
1310 }
1311 }
1312 } while (induction_range_.RefineOuter(&v1, &v2));
1313 }
1314 return false;
1315 }
1316
1317 /**
1318 * When the compiler fails to remove a bounds check statically, we try to remove the bounds
1319 * check dynamically by adding runtime tests that trigger a deoptimization in case bounds
1320 * will go out of range (we want to be rather certain of that given the slowdown of
1321 * deoptimization). If no deoptimization occurs, the loop is executed with all corresponding
1322 * bounds checks and related null checks removed.
1323 */
TryDynamicBCE(HBoundsCheck * instruction)1324 bool TryDynamicBCE(HBoundsCheck* instruction) {
1325 HLoopInformation* loop = instruction->GetBlock()->GetLoopInformation();
1326 HInstruction* index = instruction->InputAt(0);
1327 HInstruction* length = instruction->InputAt(1);
1328 // If dynamic bounds check elimination seems profitable and is possible, then proceed.
1329 bool needs_finite_test = false;
1330 bool needs_taken_test = false;
1331 if (DynamicBCESeemsProfitable(loop, instruction->GetBlock()) &&
1332 induction_range_.CanGenerateCode(
1333 instruction, index, &needs_finite_test, &needs_taken_test) &&
1334 CanHandleInfiniteLoop(loop, instruction, index, needs_finite_test) &&
1335 CanHandleLength(loop, length, needs_taken_test)) { // do this test last (may code gen)
1336 HInstruction* lower = nullptr;
1337 HInstruction* upper = nullptr;
1338 // Generate the following unsigned comparisons
1339 // if (lower > upper) deoptimize;
1340 // if (upper >= length) deoptimize;
1341 // or, for a non-induction index, just the unsigned comparison on its 'upper' value
1342 // if (upper >= length) deoptimize;
1343 // as runtime test. By restricting dynamic bce to unit strides (with a maximum of 32-bit
1344 // iterations) and by not combining access (e.g. a[i], a[i-3], a[i+5] etc.), these tests
1345 // correctly guard against any possible OOB (including arithmetic wrap-around cases).
1346 TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
1347 HBasicBlock* block = GetPreHeader(loop, instruction);
1348 induction_range_.GenerateRangeCode(instruction, index, GetGraph(), block, &lower, &upper);
1349 if (lower != nullptr) {
1350 InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAbove(lower, upper));
1351 }
1352 InsertDeoptInLoop(loop, block, new (GetGraph()->GetArena()) HAboveOrEqual(upper, length));
1353 ReplaceInstruction(instruction, index);
1354 return true;
1355 }
1356 return false;
1357 }
1358
1359 /**
1360 * Returns true if heuristics indicate that dynamic bce may be profitable.
1361 */
DynamicBCESeemsProfitable(HLoopInformation * loop,HBasicBlock * block)1362 bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) {
1363 if (loop != nullptr) {
1364 // The loop preheader of an irreducible loop does not dominate all the blocks in
1365 // the loop. We would need to find the common dominator of all blocks in the loop.
1366 if (loop->IsIrreducible()) {
1367 return false;
1368 }
1369 // We should never deoptimize from an osr method, otherwise we might wrongly optimize
1370 // code dominated by the deoptimization.
1371 if (GetGraph()->IsCompilingOsr()) {
1372 return false;
1373 }
1374 // A try boundary preheader is hard to handle.
1375 // TODO: remove this restriction.
1376 if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) {
1377 return false;
1378 }
1379 // Does loop have early-exits? If so, the full range may not be covered by the loop
1380 // at runtime and testing the range may apply deoptimization unnecessarily.
1381 if (IsEarlyExitLoop(loop)) {
1382 return false;
1383 }
1384 // Does the current basic block dominate all back edges? If not,
1385 // don't apply dynamic bce to something that may not be executed.
1386 return loop->DominatesAllBackEdges(block);
1387 }
1388 return false;
1389 }
1390
1391 /**
1392 * Returns true if the loop has early exits, which implies it may not cover
1393 * the full range computed by range analysis based on induction variables.
1394 */
IsEarlyExitLoop(HLoopInformation * loop)1395 bool IsEarlyExitLoop(HLoopInformation* loop) {
1396 const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1397 // If loop has been analyzed earlier for early-exit, don't repeat the analysis.
1398 auto it = early_exit_loop_.find(loop_id);
1399 if (it != early_exit_loop_.end()) {
1400 return it->second;
1401 }
1402 // First time early-exit analysis for this loop. Since analysis requires scanning
1403 // the full loop-body, results of the analysis is stored for subsequent queries.
1404 HBlocksInLoopReversePostOrderIterator it_loop(*loop);
1405 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
1406 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
1407 if (!loop->Contains(*successor)) {
1408 early_exit_loop_.Put(loop_id, true);
1409 return true;
1410 }
1411 }
1412 }
1413 early_exit_loop_.Put(loop_id, false);
1414 return false;
1415 }
1416
1417 /**
1418 * Returns true if the array length is already loop invariant, or can be made so
1419 * by handling the null check under the hood of the array length operation.
1420 */
CanHandleLength(HLoopInformation * loop,HInstruction * length,bool needs_taken_test)1421 bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) {
1422 if (loop->IsDefinedOutOfTheLoop(length)) {
1423 return true;
1424 } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) {
1425 if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) {
1426 HoistToPreHeaderOrDeoptBlock(loop, length);
1427 return true;
1428 }
1429 }
1430 return false;
1431 }
1432
1433 /**
1434 * Returns true if the null check is already loop invariant, or can be made so
1435 * by generating a deoptimization test.
1436 */
CanHandleNullCheck(HLoopInformation * loop,HInstruction * check,bool needs_taken_test)1437 bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) {
1438 if (loop->IsDefinedOutOfTheLoop(check)) {
1439 return true;
1440 } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) {
1441 HInstruction* array = check->InputAt(0);
1442 if (loop->IsDefinedOutOfTheLoop(array)) {
1443 // Generate: if (array == null) deoptimize;
1444 TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
1445 HBasicBlock* block = GetPreHeader(loop, check);
1446 HInstruction* cond =
1447 new (GetGraph()->GetArena()) HEqual(array, GetGraph()->GetNullConstant());
1448 InsertDeoptInLoop(loop, block, cond);
1449 ReplaceInstruction(check, array);
1450 return true;
1451 }
1452 }
1453 return false;
1454 }
1455
1456 /**
1457 * Returns true if compiler can apply dynamic bce to loops that may be infinite
1458 * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate
1459 * the range analysis evaluation code by "overshooting" the computed range.
1460 * Since deoptimization would be a bad choice, and there is no other version
1461 * of the loop to use, dynamic bce in such cases is only allowed if other tests
1462 * ensure the loop is finite.
1463 */
CanHandleInfiniteLoop(HLoopInformation * loop,HBoundsCheck * check,HInstruction * index,bool needs_infinite_test)1464 bool CanHandleInfiniteLoop(
1465 HLoopInformation* loop, HBoundsCheck* check, HInstruction* index, bool needs_infinite_test) {
1466 if (needs_infinite_test) {
1467 // If we already forced the loop to be finite, allow directly.
1468 const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1469 if (finite_loop_.find(loop_id) != finite_loop_.end()) {
1470 return true;
1471 }
1472 // Otherwise, allow dynamic bce if the index (which is necessarily an induction at
1473 // this point) is the direct loop index (viz. a[i]), since then the runtime tests
1474 // ensure upper bound cannot cause an infinite loop.
1475 HInstruction* control = loop->GetHeader()->GetLastInstruction();
1476 if (control->IsIf()) {
1477 HInstruction* if_expr = control->AsIf()->InputAt(0);
1478 if (if_expr->IsCondition()) {
1479 HCondition* condition = if_expr->AsCondition();
1480 if (index == condition->InputAt(0) ||
1481 index == condition->InputAt(1)) {
1482 finite_loop_.insert(loop_id);
1483 return true;
1484 }
1485 }
1486 }
1487 // If bounds check made it this far, it is worthwhile to check later if
1488 // the loop was forced finite by another candidate.
1489 if (record_dynamic_bce_standby_) {
1490 dynamic_bce_standby_.push_back(check);
1491 }
1492 return false;
1493 }
1494 return true;
1495 }
1496
1497 /**
1498 * Returns appropriate preheader for the loop, depending on whether the
1499 * instruction appears in the loop header or proper loop-body.
1500 */
GetPreHeader(HLoopInformation * loop,HInstruction * instruction)1501 HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) {
1502 // Use preheader unless there is an earlier generated deoptimization block since
1503 // hoisted expressions may depend on and/or used by the deoptimization tests.
1504 HBasicBlock* header = loop->GetHeader();
1505 const uint32_t loop_id = header->GetBlockId();
1506 auto it = taken_test_loop_.find(loop_id);
1507 if (it != taken_test_loop_.end()) {
1508 HBasicBlock* block = it->second;
1509 // If always taken, keep it that way by returning the original preheader,
1510 // which can be found by following the predecessor of the true-block twice.
1511 if (instruction->GetBlock() == header) {
1512 return block->GetSinglePredecessor()->GetSinglePredecessor();
1513 }
1514 return block;
1515 }
1516 return loop->GetPreHeader();
1517 }
1518
1519 /** Inserts a deoptimization test in a loop preheader. */
InsertDeoptInLoop(HLoopInformation * loop,HBasicBlock * block,HInstruction * condition)1520 void InsertDeoptInLoop(HLoopInformation* loop, HBasicBlock* block, HInstruction* condition) {
1521 HInstruction* suspend = loop->GetSuspendCheck();
1522 block->InsertInstructionBefore(condition, block->GetLastInstruction());
1523 HDeoptimize* deoptimize =
1524 new (GetGraph()->GetArena()) HDeoptimize(condition, suspend->GetDexPc());
1525 block->InsertInstructionBefore(deoptimize, block->GetLastInstruction());
1526 if (suspend->HasEnvironment()) {
1527 deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
1528 suspend->GetEnvironment(), loop->GetHeader());
1529 }
1530 }
1531
1532 /** Inserts a deoptimization test right before a bounds check. */
InsertDeoptInBlock(HBoundsCheck * bounds_check,HInstruction * condition)1533 void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) {
1534 HBasicBlock* block = bounds_check->GetBlock();
1535 block->InsertInstructionBefore(condition, bounds_check);
1536 HDeoptimize* deoptimize =
1537 new (GetGraph()->GetArena()) HDeoptimize(condition, bounds_check->GetDexPc());
1538 block->InsertInstructionBefore(deoptimize, bounds_check);
1539 deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment());
1540 }
1541
1542 /** Hoists instruction out of the loop to preheader or deoptimization block. */
HoistToPreHeaderOrDeoptBlock(HLoopInformation * loop,HInstruction * instruction)1543 void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) {
1544 HBasicBlock* block = GetPreHeader(loop, instruction);
1545 DCHECK(!instruction->HasEnvironment());
1546 instruction->MoveBefore(block->GetLastInstruction());
1547 }
1548
1549 /**
1550 * Adds a new taken-test structure to a loop if needed and not already done.
1551 * The taken-test protects range analysis evaluation code to avoid any
1552 * deoptimization caused by incorrect trip-count evaluation in non-taken loops.
1553 *
1554 * old_preheader
1555 * |
1556 * if_block <- taken-test protects deoptimization block
1557 * / \
1558 * true_block false_block <- deoptimizations/invariants are placed in true_block
1559 * \ /
1560 * new_preheader <- may require phi nodes to preserve SSA structure
1561 * |
1562 * header
1563 *
1564 * For example, this loop:
1565 *
1566 * for (int i = lower; i < upper; i++) {
1567 * array[i] = 0;
1568 * }
1569 *
1570 * will be transformed to:
1571 *
1572 * if (lower < upper) {
1573 * if (array == null) deoptimize;
1574 * array_length = array.length;
1575 * if (lower > upper) deoptimize; // unsigned
1576 * if (upper >= array_length) deoptimize; // unsigned
1577 * } else {
1578 * array_length = 0;
1579 * }
1580 * for (int i = lower; i < upper; i++) {
1581 * // Loop without null check and bounds check, and any array.length replaced with array_length.
1582 * array[i] = 0;
1583 * }
1584 */
TransformLoopForDeoptimizationIfNeeded(HLoopInformation * loop,bool needs_taken_test)1585 void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) {
1586 // Not needed (can use preheader) or already done (can reuse)?
1587 const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1588 if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) {
1589 return;
1590 }
1591
1592 // Generate top test structure.
1593 HBasicBlock* header = loop->GetHeader();
1594 GetGraph()->TransformLoopHeaderForBCE(header);
1595 HBasicBlock* new_preheader = loop->GetPreHeader();
1596 HBasicBlock* if_block = new_preheader->GetDominator();
1597 HBasicBlock* true_block = if_block->GetSuccessors()[0]; // True successor.
1598 HBasicBlock* false_block = if_block->GetSuccessors()[1]; // False successor.
1599
1600 // Goto instructions.
1601 true_block->AddInstruction(new (GetGraph()->GetArena()) HGoto());
1602 false_block->AddInstruction(new (GetGraph()->GetArena()) HGoto());
1603 new_preheader->AddInstruction(new (GetGraph()->GetArena()) HGoto());
1604
1605 // Insert the taken-test to see if the loop body is entered. If the
1606 // loop isn't entered at all, it jumps around the deoptimization block.
1607 if_block->AddInstruction(new (GetGraph()->GetArena()) HGoto()); // placeholder
1608 HInstruction* condition = nullptr;
1609 induction_range_.GenerateTakenTest(header->GetLastInstruction(),
1610 GetGraph(),
1611 if_block,
1612 &condition);
1613 DCHECK(condition != nullptr);
1614 if_block->RemoveInstruction(if_block->GetLastInstruction());
1615 if_block->AddInstruction(new (GetGraph()->GetArena()) HIf(condition));
1616
1617 taken_test_loop_.Put(loop_id, true_block);
1618 }
1619
1620 /**
1621 * Inserts phi nodes that preserve SSA structure in generated top test structures.
1622 * All uses of instructions in the deoptimization block that reach the loop need
1623 * a phi node in the new loop preheader to fix the dominance relation.
1624 *
1625 * Example:
1626 * if_block
1627 * / \
1628 * x_0 = .. false_block
1629 * \ /
1630 * x_1 = phi(x_0, null) <- synthetic phi
1631 * |
1632 * new_preheader
1633 */
InsertPhiNodes()1634 void InsertPhiNodes() {
1635 // Scan all new deoptimization blocks.
1636 for (auto it1 = taken_test_loop_.begin(); it1 != taken_test_loop_.end(); ++it1) {
1637 HBasicBlock* true_block = it1->second;
1638 HBasicBlock* new_preheader = true_block->GetSingleSuccessor();
1639 // Scan all instructions in a new deoptimization block.
1640 for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) {
1641 HInstruction* instruction = it.Current();
1642 Primitive::Type type = instruction->GetType();
1643 HPhi* phi = nullptr;
1644 // Scan all uses of an instruction and replace each later use with a phi node.
1645 const HUseList<HInstruction*>& uses = instruction->GetUses();
1646 for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) {
1647 HInstruction* user = it2->GetUser();
1648 size_t index = it2->GetIndex();
1649 // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput().
1650 ++it2;
1651 if (user->GetBlock() != true_block) {
1652 if (phi == nullptr) {
1653 phi = NewPhi(new_preheader, instruction, type);
1654 }
1655 user->ReplaceInput(phi, index); // Removes the use node from the list.
1656 }
1657 }
1658 // Scan all environment uses of an instruction and replace each later use with a phi node.
1659 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
1660 for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) {
1661 HEnvironment* user = it2->GetUser();
1662 size_t index = it2->GetIndex();
1663 // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput().
1664 ++it2;
1665 if (user->GetHolder()->GetBlock() != true_block) {
1666 if (phi == nullptr) {
1667 phi = NewPhi(new_preheader, instruction, type);
1668 }
1669 user->RemoveAsUserOfInput(index);
1670 user->SetRawEnvAt(index, phi);
1671 phi->AddEnvUseAt(user, index);
1672 }
1673 }
1674 }
1675 }
1676 }
1677
1678 /**
1679 * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation.
1680 * These are synthetic phi nodes without a virtual register.
1681 */
NewPhi(HBasicBlock * new_preheader,HInstruction * instruction,Primitive::Type type)1682 HPhi* NewPhi(HBasicBlock* new_preheader,
1683 HInstruction* instruction,
1684 Primitive::Type type) {
1685 HGraph* graph = GetGraph();
1686 HInstruction* zero;
1687 switch (type) {
1688 case Primitive::kPrimNot: zero = graph->GetNullConstant(); break;
1689 case Primitive::kPrimFloat: zero = graph->GetFloatConstant(0); break;
1690 case Primitive::kPrimDouble: zero = graph->GetDoubleConstant(0); break;
1691 default: zero = graph->GetConstant(type, 0); break;
1692 }
1693 HPhi* phi = new (graph->GetArena())
1694 HPhi(graph->GetArena(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type));
1695 phi->SetRawInputAt(0, instruction);
1696 phi->SetRawInputAt(1, zero);
1697 if (type == Primitive::kPrimNot) {
1698 phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo());
1699 }
1700 new_preheader->AddPhi(phi);
1701 return phi;
1702 }
1703
1704 /** Helper method to replace an instruction with another instruction. */
ReplaceInstruction(HInstruction * instruction,HInstruction * replacement)1705 static void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
1706 instruction->ReplaceWith(replacement);
1707 instruction->GetBlock()->RemoveInstruction(instruction);
1708 }
1709
1710 // A set of maps, one per basic block, from instruction to range.
1711 ArenaVector<ArenaSafeMap<int, ValueRange*>> maps_;
1712
1713 // Map an HArrayLength instruction's id to the first HBoundsCheck instruction
1714 // in a block that checks an index against that HArrayLength.
1715 ArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_;
1716
1717 // Stand by list for dynamic bce.
1718 ArenaVector<HBoundsCheck*> dynamic_bce_standby_;
1719 bool record_dynamic_bce_standby_;
1720
1721 // Early-exit loop bookkeeping.
1722 ArenaSafeMap<uint32_t, bool> early_exit_loop_;
1723
1724 // Taken-test loop bookkeeping.
1725 ArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_;
1726
1727 // Finite loop bookkeeping.
1728 ArenaSet<uint32_t> finite_loop_;
1729
1730 // Flag that denotes whether dominator-based dynamic elimination has occurred.
1731 bool has_dom_based_dynamic_bce_;
1732
1733 // Initial number of blocks.
1734 uint32_t initial_block_size_;
1735
1736 // Side effects.
1737 const SideEffectsAnalysis& side_effects_;
1738
1739 // Range analysis based on induction variables.
1740 InductionVarRange induction_range_;
1741
1742 DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
1743 };
1744
Run()1745 void BoundsCheckElimination::Run() {
1746 if (!graph_->HasBoundsChecks()) {
1747 return;
1748 }
1749
1750 // Reverse post order guarantees a node's dominators are visited first.
1751 // We want to visit in the dominator-based order since if a value is known to
1752 // be bounded by a range at one instruction, it must be true that all uses of
1753 // that value dominated by that instruction fits in that range. Range of that
1754 // value can be narrowed further down in the dominator tree.
1755 BCEVisitor visitor(graph_, side_effects_, induction_analysis_);
1756 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
1757 HBasicBlock* current = it.Current();
1758 if (visitor.IsAddedBlock(current)) {
1759 // Skip added blocks. Their effects are already taken care of.
1760 continue;
1761 }
1762 visitor.VisitBasicBlock(current);
1763 // Skip forward to the current block in case new basic blocks were inserted
1764 // (which always appear earlier in reverse post order) to avoid visiting the
1765 // same basic block twice.
1766 for ( ; !it.Done() && it.Current() != current; it.Advance()) {
1767 }
1768 }
1769
1770 // Perform cleanup.
1771 visitor.Finish();
1772 }
1773
1774 } // namespace art
1775