• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_builder.h"
18 
19 #include "bytecode_utils.h"
20 #include "nodes.h"
21 #include "reference_type_propagation.h"
22 #include "ssa_phi_elimination.h"
23 
24 namespace art {
25 
FixNullConstantType()26 void SsaBuilder::FixNullConstantType() {
27   // The order doesn't matter here.
28   for (HReversePostOrderIterator itb(*graph_); !itb.Done(); itb.Advance()) {
29     for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) {
30       HInstruction* equality_instr = it.Current();
31       if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
32         continue;
33       }
34       HInstruction* left = equality_instr->InputAt(0);
35       HInstruction* right = equality_instr->InputAt(1);
36       HInstruction* int_operand = nullptr;
37 
38       if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) {
39         int_operand = right;
40       } else if ((right->GetType() == Primitive::kPrimNot)
41                  && (left->GetType() == Primitive::kPrimInt)) {
42         int_operand = left;
43       } else {
44         continue;
45       }
46 
47       // If we got here, we are comparing against a reference and the int constant
48       // should be replaced with a null constant.
49       // Both type propagation and redundant phi elimination ensure `int_operand`
50       // can only be the 0 constant.
51       DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName();
52       DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
53       equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0);
54     }
55   }
56 }
57 
EquivalentPhisCleanup()58 void SsaBuilder::EquivalentPhisCleanup() {
59   // The order doesn't matter here.
60   for (HReversePostOrderIterator itb(*graph_); !itb.Done(); itb.Advance()) {
61     for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) {
62       HPhi* phi = it.Current()->AsPhi();
63       HPhi* next = phi->GetNextEquivalentPhiWithSameType();
64       if (next != nullptr) {
65         // Make sure we do not replace a live phi with a dead phi. A live phi
66         // has been handled by the type propagation phase, unlike a dead phi.
67         if (next->IsLive()) {
68           phi->ReplaceWith(next);
69           phi->SetDead();
70         } else {
71           next->ReplaceWith(phi);
72         }
73         DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
74             << "More then one phi equivalent with type " << phi->GetType()
75             << " found for phi" << phi->GetId();
76       }
77     }
78   }
79 }
80 
FixEnvironmentPhis()81 void SsaBuilder::FixEnvironmentPhis() {
82   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
83     HBasicBlock* block = it.Current();
84     for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
85       HPhi* phi = it_phis.Current()->AsPhi();
86       // If the phi is not dead, or has no environment uses, there is nothing to do.
87       if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
88       HInstruction* next = phi->GetNext();
89       if (!phi->IsVRegEquivalentOf(next)) continue;
90       if (next->AsPhi()->IsDead()) {
91         // If the phi equivalent is dead, check if there is another one.
92         next = next->GetNext();
93         if (!phi->IsVRegEquivalentOf(next)) continue;
94         // There can be at most two phi equivalents.
95         DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
96         if (next->AsPhi()->IsDead()) continue;
97       }
98       // We found a live phi equivalent. Update the environment uses of `phi` with it.
99       phi->ReplaceWith(next);
100     }
101   }
102 }
103 
AddDependentInstructionsToWorklist(HInstruction * instruction,ArenaVector<HPhi * > * worklist)104 static void AddDependentInstructionsToWorklist(HInstruction* instruction,
105                                                ArenaVector<HPhi*>* worklist) {
106   // If `instruction` is a dead phi, type conflict was just identified. All its
107   // live phi users, and transitively users of those users, therefore need to be
108   // marked dead/conflicting too, so we add them to the worklist. Otherwise we
109   // add users whose type does not match and needs to be updated.
110   bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead();
111   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
112     HInstruction* user = use.GetUser();
113     if (user->IsPhi() && user->AsPhi()->IsLive()) {
114       if (add_all_live_phis || user->GetType() != instruction->GetType()) {
115         worklist->push_back(user->AsPhi());
116       }
117     }
118   }
119 }
120 
121 // Find a candidate primitive type for `phi` by merging the type of its inputs.
122 // Return false if conflict is identified.
TypePhiFromInputs(HPhi * phi)123 static bool TypePhiFromInputs(HPhi* phi) {
124   Primitive::Type common_type = phi->GetType();
125 
126   for (HInputIterator it(phi); !it.Done(); it.Advance()) {
127     HInstruction* input = it.Current();
128     if (input->IsPhi() && input->AsPhi()->IsDead()) {
129       // Phis are constructed live so if an input is a dead phi, it must have
130       // been made dead due to type conflict. Mark this phi conflicting too.
131       return false;
132     }
133 
134     Primitive::Type input_type = HPhi::ToPhiType(input->GetType());
135     if (common_type == input_type) {
136       // No change in type.
137     } else if (Primitive::Is64BitType(common_type) != Primitive::Is64BitType(input_type)) {
138       // Types are of different sizes, e.g. int vs. long. Must be a conflict.
139       return false;
140     } else if (Primitive::IsIntegralType(common_type)) {
141       // Previous inputs were integral, this one is not but is of the same size.
142       // This does not imply conflict since some bytecode instruction types are
143       // ambiguous. TypeInputsOfPhi will either type them or detect a conflict.
144       DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot);
145       common_type = input_type;
146     } else if (Primitive::IsIntegralType(input_type)) {
147       // Input is integral, common type is not. Same as in the previous case, if
148       // there is a conflict, it will be detected during TypeInputsOfPhi.
149       DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot);
150     } else {
151       // Combining float and reference types. Clearly a conflict.
152       DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) ||
153              (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat));
154       return false;
155     }
156   }
157 
158   // We have found a candidate type for the phi. Set it and return true. We may
159   // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi.
160   phi->SetType(common_type);
161   return true;
162 }
163 
164 // Replace inputs of `phi` to match its type. Return false if conflict is identified.
TypeInputsOfPhi(HPhi * phi,ArenaVector<HPhi * > * worklist)165 bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) {
166   Primitive::Type common_type = phi->GetType();
167   if (common_type == Primitive::kPrimVoid || Primitive::IsIntegralType(common_type)) {
168     // Phi either contains only other untyped phis (common_type == kPrimVoid),
169     // or `common_type` is integral and we do not need to retype ambiguous inputs
170     // because they are always constructed with the integral type candidate.
171     if (kIsDebugBuild) {
172       for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
173         HInstruction* input = phi->InputAt(i);
174         if (common_type == Primitive::kPrimVoid) {
175           DCHECK(input->IsPhi() && input->GetType() == Primitive::kPrimVoid);
176         } else {
177           DCHECK((input->IsPhi() && input->GetType() == Primitive::kPrimVoid) ||
178                  HPhi::ToPhiType(input->GetType()) == common_type);
179         }
180       }
181     }
182     // Inputs did not need to be replaced, hence no conflict. Report success.
183     return true;
184   } else {
185     DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type));
186     for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
187       HInstruction* input = phi->InputAt(i);
188       if (input->GetType() != common_type) {
189         // Input type does not match phi's type. Try to retype the input or
190         // generate a suitably typed equivalent.
191         HInstruction* equivalent = (common_type == Primitive::kPrimNot)
192             ? GetReferenceTypeEquivalent(input)
193             : GetFloatOrDoubleEquivalent(input, common_type);
194         if (equivalent == nullptr) {
195           // Input could not be typed. Report conflict.
196           return false;
197         }
198         // Make sure the input did not change its type and we do not need to
199         // update its users.
200         DCHECK_NE(input, equivalent);
201 
202         phi->ReplaceInput(equivalent, i);
203         if (equivalent->IsPhi()) {
204           worklist->push_back(equivalent->AsPhi());
205         }
206       }
207     }
208     // All inputs either matched the type of the phi or we successfully replaced
209     // them with a suitable equivalent. Report success.
210     return true;
211   }
212 }
213 
214 // Attempt to set the primitive type of `phi` to match its inputs. Return whether
215 // it was changed by the algorithm or not.
UpdatePrimitiveType(HPhi * phi,ArenaVector<HPhi * > * worklist)216 bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) {
217   DCHECK(phi->IsLive());
218   Primitive::Type original_type = phi->GetType();
219 
220   // Try to type the phi in two stages:
221   // (1) find a candidate type for the phi by merging types of all its inputs,
222   // (2) try to type the phi's inputs to that candidate type.
223   // Either of these stages may detect a type conflict and fail, in which case
224   // we immediately abort.
225   if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) {
226     // Conflict detected. Mark the phi dead and return true because it changed.
227     phi->SetDead();
228     return true;
229   }
230 
231   // Return true if the type of the phi has changed.
232   return phi->GetType() != original_type;
233 }
234 
RunPrimitiveTypePropagation()235 void SsaBuilder::RunPrimitiveTypePropagation() {
236   ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder));
237 
238   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
239     HBasicBlock* block = it.Current();
240     if (block->IsLoopHeader()) {
241       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
242         HPhi* phi = phi_it.Current()->AsPhi();
243         if (phi->IsLive()) {
244           worklist.push_back(phi);
245         }
246       }
247     } else {
248       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
249         // Eagerly compute the type of the phi, for quicker convergence. Note
250         // that we don't need to add users to the worklist because we are
251         // doing a reverse post-order visit, therefore either the phi users are
252         // non-loop phi and will be visited later in the visit, or are loop-phis,
253         // and they are already in the work list.
254         HPhi* phi = phi_it.Current()->AsPhi();
255         if (phi->IsLive()) {
256           UpdatePrimitiveType(phi, &worklist);
257         }
258       }
259     }
260   }
261 
262   ProcessPrimitiveTypePropagationWorklist(&worklist);
263   EquivalentPhisCleanup();
264 }
265 
ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi * > * worklist)266 void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) {
267   // Process worklist
268   while (!worklist->empty()) {
269     HPhi* phi = worklist->back();
270     worklist->pop_back();
271     // The phi could have been made dead as a result of conflicts while in the
272     // worklist. If it is now dead, there is no point in updating its type.
273     if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) {
274       AddDependentInstructionsToWorklist(phi, worklist);
275     }
276   }
277 }
278 
FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)279 static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
280   Primitive::Type type = aget->GetType();
281   DCHECK(Primitive::IsIntOrLongType(type));
282   HInstruction* next = aget->GetNext();
283   if (next != nullptr && next->IsArrayGet()) {
284     HArrayGet* next_aget = next->AsArrayGet();
285     if (next_aget->IsEquivalentOf(aget)) {
286       return next_aget;
287     }
288   }
289   return nullptr;
290 }
291 
CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)292 static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
293   Primitive::Type type = aget->GetType();
294   DCHECK(Primitive::IsIntOrLongType(type));
295   DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr);
296 
297   HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet(
298       aget->GetArray(),
299       aget->GetIndex(),
300       type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble,
301       aget->GetDexPc());
302   aget->GetBlock()->InsertInstructionAfter(equivalent, aget);
303   return equivalent;
304 }
305 
GetPrimitiveArrayComponentType(HInstruction * array)306 static Primitive::Type GetPrimitiveArrayComponentType(HInstruction* array)
307     SHARED_REQUIRES(Locks::mutator_lock_) {
308   ReferenceTypeInfo array_type = array->GetReferenceTypeInfo();
309   DCHECK(array_type.IsPrimitiveArrayClass());
310   return array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
311 }
312 
FixAmbiguousArrayOps()313 bool SsaBuilder::FixAmbiguousArrayOps() {
314   if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) {
315     return true;
316   }
317 
318   // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet
319   // uses (because they are untyped) and environment uses (if --debuggable).
320   // After resolving all ambiguous ArrayGets, we will re-run primitive type
321   // propagation on the Phis which need to be updated.
322   ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder));
323 
324   {
325     ScopedObjectAccess soa(Thread::Current());
326 
327     for (HArrayGet* aget_int : ambiguous_agets_) {
328       HInstruction* array = aget_int->GetArray();
329       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
330         // RTP did not type the input array. Bail.
331         return false;
332       }
333 
334       HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int);
335       Primitive::Type array_type = GetPrimitiveArrayComponentType(array);
336       DCHECK_EQ(Primitive::Is64BitType(aget_int->GetType()), Primitive::Is64BitType(array_type));
337 
338       if (Primitive::IsIntOrLongType(array_type)) {
339         if (aget_float != nullptr) {
340           // There is a float/double equivalent. We must replace it and re-run
341           // primitive type propagation on all dependent instructions.
342           aget_float->ReplaceWith(aget_int);
343           aget_float->GetBlock()->RemoveInstruction(aget_float);
344           AddDependentInstructionsToWorklist(aget_int, &worklist);
345         }
346       } else {
347         DCHECK(Primitive::IsFloatingPointType(array_type));
348         if (aget_float == nullptr) {
349           // This is a float/double ArrayGet but there were no typed uses which
350           // would create the typed equivalent. Create it now.
351           aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int);
352         }
353         // Replace the original int/long instruction. Note that it may have phi
354         // uses, environment uses, as well as real uses (from untyped ArraySets).
355         // We need to re-run primitive type propagation on its dependent instructions.
356         aget_int->ReplaceWith(aget_float);
357         aget_int->GetBlock()->RemoveInstruction(aget_int);
358         AddDependentInstructionsToWorklist(aget_float, &worklist);
359       }
360     }
361 
362     // Set a flag stating that types of ArrayGets have been resolved. Requesting
363     // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet
364     // will fail from now on.
365     agets_fixed_ = true;
366 
367     for (HArraySet* aset : ambiguous_asets_) {
368       HInstruction* array = aset->GetArray();
369       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
370         // RTP did not type the input array. Bail.
371         return false;
372       }
373 
374       HInstruction* value = aset->GetValue();
375       Primitive::Type value_type = value->GetType();
376       Primitive::Type array_type = GetPrimitiveArrayComponentType(array);
377       DCHECK_EQ(Primitive::Is64BitType(value_type), Primitive::Is64BitType(array_type));
378 
379       if (Primitive::IsFloatingPointType(array_type)) {
380         if (!Primitive::IsFloatingPointType(value_type)) {
381           DCHECK(Primitive::IsIntegralType(value_type));
382           // Array elements are floating-point but the value has not been replaced
383           // with its floating-point equivalent. The replacement must always
384           // succeed in code validated by the verifier.
385           HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type);
386           DCHECK(equivalent != nullptr);
387           aset->ReplaceInput(equivalent, /* input_index */ 2);
388           if (equivalent->IsPhi()) {
389             // Returned equivalent is a phi which may not have had its inputs
390             // replaced yet. We need to run primitive type propagation on it.
391             worklist.push_back(equivalent->AsPhi());
392           }
393         }
394       } else {
395         // Array elements are integral and the value assigned to it initially
396         // was integral too. Nothing to do.
397         DCHECK(Primitive::IsIntegralType(array_type));
398         DCHECK(Primitive::IsIntegralType(value_type));
399       }
400     }
401   }
402 
403   if (!worklist.empty()) {
404     ProcessPrimitiveTypePropagationWorklist(&worklist);
405     EquivalentPhisCleanup();
406   }
407 
408   return true;
409 }
410 
HasAliasInEnvironments(HInstruction * instruction)411 static bool HasAliasInEnvironments(HInstruction* instruction) {
412   HEnvironment* last_user = nullptr;
413   for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
414     DCHECK(use.GetUser() != nullptr);
415     // Note: The first comparison (== null) always fails.
416     if (use.GetUser() == last_user) {
417       return true;
418     }
419     last_user = use.GetUser();
420   }
421 
422   if (kIsDebugBuild) {
423     // Do a quadratic search to ensure same environment uses are next
424     // to each other.
425     const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
426     for (auto current = env_uses.begin(), end = env_uses.end(); current != end; ++current) {
427       auto next = current;
428       for (++next; next != end; ++next) {
429         DCHECK(next->GetUser() != current->GetUser());
430       }
431     }
432   }
433   return false;
434 }
435 
RemoveRedundantUninitializedStrings()436 void SsaBuilder::RemoveRedundantUninitializedStrings() {
437   if (graph_->IsDebuggable()) {
438     // Do not perform the optimization for consistency with the interpreter
439     // which always allocates an object for new-instance of String.
440     return;
441   }
442 
443   for (HNewInstance* new_instance : uninitialized_strings_) {
444     DCHECK(new_instance->IsInBlock());
445     DCHECK(new_instance->IsStringAlloc());
446 
447     // Replace NewInstance of String with NullConstant if not used prior to
448     // calling StringFactory. In case of deoptimization, the interpreter is
449     // expected to skip null check on the `this` argument of the StringFactory call.
450     if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) {
451       new_instance->ReplaceWith(graph_->GetNullConstant());
452       new_instance->GetBlock()->RemoveInstruction(new_instance);
453 
454       // Remove LoadClass if not needed any more.
455       HInstruction* input = new_instance->InputAt(0);
456       HLoadClass* load_class = nullptr;
457 
458       // If the class was not present in the dex cache at the point of building
459       // the graph, the builder inserted a HClinitCheck in between. Since the String
460       // class is always initialized at the point of running Java code, we can remove
461       // that check.
462       if (input->IsClinitCheck()) {
463         load_class = input->InputAt(0)->AsLoadClass();
464         input->ReplaceWith(load_class);
465         input->GetBlock()->RemoveInstruction(input);
466       } else {
467         load_class = input->AsLoadClass();
468         DCHECK(new_instance->IsStringAlloc());
469         DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible";
470       }
471       DCHECK(load_class != nullptr);
472       if (!load_class->HasUses()) {
473         // Even if the HLoadClass needs access check, we can remove it, as we know the
474         // String class does not need it.
475         load_class->GetBlock()->RemoveInstruction(load_class);
476       }
477     }
478   }
479 }
480 
BuildSsa()481 GraphAnalysisResult SsaBuilder::BuildSsa() {
482   DCHECK(!graph_->IsInSsaForm());
483 
484   // 1) Propagate types of phis. At this point, phis are typed void in the general
485   // case, or float/double/reference if we created an equivalent phi. So we need
486   // to propagate the types across phis to give them a correct type. If a type
487   // conflict is detected in this stage, the phi is marked dead.
488   RunPrimitiveTypePropagation();
489 
490   // 2) Now that the correct primitive types have been assigned, we can get rid
491   // of redundant phis. Note that we cannot do this phase before type propagation,
492   // otherwise we could get rid of phi equivalents, whose presence is a requirement
493   // for the type propagation phase. Note that this is to satisfy statement (a)
494   // of the SsaBuilder (see ssa_builder.h).
495   SsaRedundantPhiElimination(graph_).Run();
496 
497   // 3) Fix the type for null constants which are part of an equality comparison.
498   // We need to do this after redundant phi elimination, to ensure the only cases
499   // that we can see are reference comparison against 0. The redundant phi
500   // elimination ensures we do not see a phi taking two 0 constants in a HEqual
501   // or HNotEqual.
502   FixNullConstantType();
503 
504   // 4) Compute type of reference type instructions. The pass assumes that
505   // NullConstant has been fixed up.
506   ReferenceTypePropagation(graph_, dex_cache_, handles_, /* is_first_run */ true).Run();
507 
508   // 5) HInstructionBuilder duplicated ArrayGet instructions with ambiguous type
509   // (int/float or long/double) and marked ArraySets with ambiguous input type.
510   // Now that RTP computed the type of the array input, the ambiguity can be
511   // resolved and the correct equivalents kept.
512   if (!FixAmbiguousArrayOps()) {
513     return kAnalysisFailAmbiguousArrayOp;
514   }
515 
516   // 6) Mark dead phis. This will mark phis which are not used by instructions
517   // or other live phis. If compiling as debuggable code, phis will also be kept
518   // live if they have an environment use.
519   SsaDeadPhiElimination dead_phi_elimimation(graph_);
520   dead_phi_elimimation.MarkDeadPhis();
521 
522   // 7) Make sure environments use the right phi equivalent: a phi marked dead
523   // can have a phi equivalent that is not dead. In that case we have to replace
524   // it with the live equivalent because deoptimization and try/catch rely on
525   // environments containing values of all live vregs at that point. Note that
526   // there can be multiple phis for the same Dex register that are live
527   // (for example when merging constants), in which case it is okay for the
528   // environments to just reference one.
529   FixEnvironmentPhis();
530 
531   // 8) Now that the right phis are used for the environments, we can eliminate
532   // phis we do not need. Regardless of the debuggable status, this phase is
533   /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well
534   // as for the code generation, which does not deal with phis of conflicting
535   // input types.
536   dead_phi_elimimation.EliminateDeadPhis();
537 
538   // 9) HInstructionBuidler replaced uses of NewInstances of String with the
539   // results of their corresponding StringFactory calls. Unless the String
540   // objects are used before they are initialized, they can be replaced with
541   // NullConstant. Note that this optimization is valid only if unsimplified
542   // code does not use the uninitialized value because we assume execution can
543   // be deoptimized at any safepoint. We must therefore perform it before any
544   // other optimizations.
545   RemoveRedundantUninitializedStrings();
546 
547   graph_->SetInSsaForm();
548   return kAnalysisSuccess;
549 }
550 
551 /**
552  * Constants in the Dex format are not typed. So the builder types them as
553  * integers, but when doing the SSA form, we might realize the constant
554  * is used for floating point operations. We create a floating-point equivalent
555  * constant to make the operations correctly typed.
556  */
GetFloatEquivalent(HIntConstant * constant)557 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
558   // We place the floating point constant next to this constant.
559   HFloatConstant* result = constant->GetNext()->AsFloatConstant();
560   if (result == nullptr) {
561     float value = bit_cast<float, int32_t>(constant->GetValue());
562     result = new (graph_->GetArena()) HFloatConstant(value);
563     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
564     graph_->CacheFloatConstant(result);
565   } else {
566     // If there is already a constant with the expected type, we know it is
567     // the floating point equivalent of this constant.
568     DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
569   }
570   return result;
571 }
572 
573 /**
574  * Wide constants in the Dex format are not typed. So the builder types them as
575  * longs, but when doing the SSA form, we might realize the constant
576  * is used for floating point operations. We create a floating-point equivalent
577  * constant to make the operations correctly typed.
578  */
GetDoubleEquivalent(HLongConstant * constant)579 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
580   // We place the floating point constant next to this constant.
581   HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
582   if (result == nullptr) {
583     double value = bit_cast<double, int64_t>(constant->GetValue());
584     result = new (graph_->GetArena()) HDoubleConstant(value);
585     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
586     graph_->CacheDoubleConstant(result);
587   } else {
588     // If there is already a constant with the expected type, we know it is
589     // the floating point equivalent of this constant.
590     DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
591   }
592   return result;
593 }
594 
595 /**
596  * Because of Dex format, we might end up having the same phi being
597  * used for non floating point operations and floating point / reference operations.
598  * Because we want the graph to be correctly typed (and thereafter avoid moves between
599  * floating point registers and core registers), we need to create a copy of the
600  * phi with a floating point / reference type.
601  */
GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi * phi,Primitive::Type type)602 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
603   DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one.";
604 
605   // We place the floating point /reference phi next to this phi.
606   HInstruction* next = phi->GetNext();
607   if (next != nullptr
608       && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
609       && next->GetType() != type) {
610     // Move to the next phi to see if it is the one we are looking for.
611     next = next->GetNext();
612   }
613 
614   if (next == nullptr
615       || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
616       || (next->GetType() != type)) {
617     ArenaAllocator* allocator = graph_->GetArena();
618     HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type);
619     for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
620       // Copy the inputs. Note that the graph may not be correctly typed
621       // by doing this copy, but the type propagation phase will fix it.
622       new_phi->SetRawInputAt(i, phi->InputAt(i));
623     }
624     phi->GetBlock()->InsertPhiAfter(new_phi, phi);
625     DCHECK(new_phi->IsLive());
626     return new_phi;
627   } else {
628     // An existing equivalent was found. If it is dead, conflict was previously
629     // identified and we return nullptr instead.
630     HPhi* next_phi = next->AsPhi();
631     DCHECK_EQ(next_phi->GetType(), type);
632     return next_phi->IsLive() ? next_phi : nullptr;
633   }
634 }
635 
GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)636 HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
637   DCHECK(Primitive::IsIntegralType(aget->GetType()));
638 
639   if (!Primitive::IsIntOrLongType(aget->GetType())) {
640     // Cannot type boolean, char, byte, short to float/double.
641     return nullptr;
642   }
643 
644   DCHECK(ContainsElement(ambiguous_agets_, aget));
645   if (agets_fixed_) {
646     // This used to be an ambiguous ArrayGet but its type has been resolved to
647     // int/long. Requesting a float/double equivalent should lead to a conflict.
648     if (kIsDebugBuild) {
649       ScopedObjectAccess soa(Thread::Current());
650       DCHECK(Primitive::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray())));
651     }
652     return nullptr;
653   } else {
654     // This is an ambiguous ArrayGet which has not been resolved yet. Return an
655     // equivalent float/double instruction to use until it is resolved.
656     HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget);
657     return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent;
658   }
659 }
660 
GetFloatOrDoubleEquivalent(HInstruction * value,Primitive::Type type)661 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) {
662   if (value->IsArrayGet()) {
663     return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet());
664   } else if (value->IsLongConstant()) {
665     return GetDoubleEquivalent(value->AsLongConstant());
666   } else if (value->IsIntConstant()) {
667     return GetFloatEquivalent(value->AsIntConstant());
668   } else if (value->IsPhi()) {
669     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
670   } else {
671     return nullptr;
672   }
673 }
674 
GetReferenceTypeEquivalent(HInstruction * value)675 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
676   if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
677     return graph_->GetNullConstant();
678   } else if (value->IsPhi()) {
679     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot);
680   } else {
681     return nullptr;
682   }
683 }
684 
685 }  // namespace art
686