1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ssa_builder.h"
18
19 #include "bytecode_utils.h"
20 #include "nodes.h"
21 #include "reference_type_propagation.h"
22 #include "ssa_phi_elimination.h"
23
24 namespace art {
25
FixNullConstantType()26 void SsaBuilder::FixNullConstantType() {
27 // The order doesn't matter here.
28 for (HReversePostOrderIterator itb(*graph_); !itb.Done(); itb.Advance()) {
29 for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) {
30 HInstruction* equality_instr = it.Current();
31 if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
32 continue;
33 }
34 HInstruction* left = equality_instr->InputAt(0);
35 HInstruction* right = equality_instr->InputAt(1);
36 HInstruction* int_operand = nullptr;
37
38 if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) {
39 int_operand = right;
40 } else if ((right->GetType() == Primitive::kPrimNot)
41 && (left->GetType() == Primitive::kPrimInt)) {
42 int_operand = left;
43 } else {
44 continue;
45 }
46
47 // If we got here, we are comparing against a reference and the int constant
48 // should be replaced with a null constant.
49 // Both type propagation and redundant phi elimination ensure `int_operand`
50 // can only be the 0 constant.
51 DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName();
52 DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
53 equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0);
54 }
55 }
56 }
57
EquivalentPhisCleanup()58 void SsaBuilder::EquivalentPhisCleanup() {
59 // The order doesn't matter here.
60 for (HReversePostOrderIterator itb(*graph_); !itb.Done(); itb.Advance()) {
61 for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) {
62 HPhi* phi = it.Current()->AsPhi();
63 HPhi* next = phi->GetNextEquivalentPhiWithSameType();
64 if (next != nullptr) {
65 // Make sure we do not replace a live phi with a dead phi. A live phi
66 // has been handled by the type propagation phase, unlike a dead phi.
67 if (next->IsLive()) {
68 phi->ReplaceWith(next);
69 phi->SetDead();
70 } else {
71 next->ReplaceWith(phi);
72 }
73 DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
74 << "More then one phi equivalent with type " << phi->GetType()
75 << " found for phi" << phi->GetId();
76 }
77 }
78 }
79 }
80
FixEnvironmentPhis()81 void SsaBuilder::FixEnvironmentPhis() {
82 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
83 HBasicBlock* block = it.Current();
84 for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
85 HPhi* phi = it_phis.Current()->AsPhi();
86 // If the phi is not dead, or has no environment uses, there is nothing to do.
87 if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
88 HInstruction* next = phi->GetNext();
89 if (!phi->IsVRegEquivalentOf(next)) continue;
90 if (next->AsPhi()->IsDead()) {
91 // If the phi equivalent is dead, check if there is another one.
92 next = next->GetNext();
93 if (!phi->IsVRegEquivalentOf(next)) continue;
94 // There can be at most two phi equivalents.
95 DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
96 if (next->AsPhi()->IsDead()) continue;
97 }
98 // We found a live phi equivalent. Update the environment uses of `phi` with it.
99 phi->ReplaceWith(next);
100 }
101 }
102 }
103
AddDependentInstructionsToWorklist(HInstruction * instruction,ArenaVector<HPhi * > * worklist)104 static void AddDependentInstructionsToWorklist(HInstruction* instruction,
105 ArenaVector<HPhi*>* worklist) {
106 // If `instruction` is a dead phi, type conflict was just identified. All its
107 // live phi users, and transitively users of those users, therefore need to be
108 // marked dead/conflicting too, so we add them to the worklist. Otherwise we
109 // add users whose type does not match and needs to be updated.
110 bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead();
111 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
112 HInstruction* user = use.GetUser();
113 if (user->IsPhi() && user->AsPhi()->IsLive()) {
114 if (add_all_live_phis || user->GetType() != instruction->GetType()) {
115 worklist->push_back(user->AsPhi());
116 }
117 }
118 }
119 }
120
121 // Find a candidate primitive type for `phi` by merging the type of its inputs.
122 // Return false if conflict is identified.
TypePhiFromInputs(HPhi * phi)123 static bool TypePhiFromInputs(HPhi* phi) {
124 Primitive::Type common_type = phi->GetType();
125
126 for (HInputIterator it(phi); !it.Done(); it.Advance()) {
127 HInstruction* input = it.Current();
128 if (input->IsPhi() && input->AsPhi()->IsDead()) {
129 // Phis are constructed live so if an input is a dead phi, it must have
130 // been made dead due to type conflict. Mark this phi conflicting too.
131 return false;
132 }
133
134 Primitive::Type input_type = HPhi::ToPhiType(input->GetType());
135 if (common_type == input_type) {
136 // No change in type.
137 } else if (Primitive::Is64BitType(common_type) != Primitive::Is64BitType(input_type)) {
138 // Types are of different sizes, e.g. int vs. long. Must be a conflict.
139 return false;
140 } else if (Primitive::IsIntegralType(common_type)) {
141 // Previous inputs were integral, this one is not but is of the same size.
142 // This does not imply conflict since some bytecode instruction types are
143 // ambiguous. TypeInputsOfPhi will either type them or detect a conflict.
144 DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot);
145 common_type = input_type;
146 } else if (Primitive::IsIntegralType(input_type)) {
147 // Input is integral, common type is not. Same as in the previous case, if
148 // there is a conflict, it will be detected during TypeInputsOfPhi.
149 DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot);
150 } else {
151 // Combining float and reference types. Clearly a conflict.
152 DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) ||
153 (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat));
154 return false;
155 }
156 }
157
158 // We have found a candidate type for the phi. Set it and return true. We may
159 // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi.
160 phi->SetType(common_type);
161 return true;
162 }
163
164 // Replace inputs of `phi` to match its type. Return false if conflict is identified.
TypeInputsOfPhi(HPhi * phi,ArenaVector<HPhi * > * worklist)165 bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) {
166 Primitive::Type common_type = phi->GetType();
167 if (common_type == Primitive::kPrimVoid || Primitive::IsIntegralType(common_type)) {
168 // Phi either contains only other untyped phis (common_type == kPrimVoid),
169 // or `common_type` is integral and we do not need to retype ambiguous inputs
170 // because they are always constructed with the integral type candidate.
171 if (kIsDebugBuild) {
172 for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
173 HInstruction* input = phi->InputAt(i);
174 if (common_type == Primitive::kPrimVoid) {
175 DCHECK(input->IsPhi() && input->GetType() == Primitive::kPrimVoid);
176 } else {
177 DCHECK((input->IsPhi() && input->GetType() == Primitive::kPrimVoid) ||
178 HPhi::ToPhiType(input->GetType()) == common_type);
179 }
180 }
181 }
182 // Inputs did not need to be replaced, hence no conflict. Report success.
183 return true;
184 } else {
185 DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type));
186 for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
187 HInstruction* input = phi->InputAt(i);
188 if (input->GetType() != common_type) {
189 // Input type does not match phi's type. Try to retype the input or
190 // generate a suitably typed equivalent.
191 HInstruction* equivalent = (common_type == Primitive::kPrimNot)
192 ? GetReferenceTypeEquivalent(input)
193 : GetFloatOrDoubleEquivalent(input, common_type);
194 if (equivalent == nullptr) {
195 // Input could not be typed. Report conflict.
196 return false;
197 }
198 // Make sure the input did not change its type and we do not need to
199 // update its users.
200 DCHECK_NE(input, equivalent);
201
202 phi->ReplaceInput(equivalent, i);
203 if (equivalent->IsPhi()) {
204 worklist->push_back(equivalent->AsPhi());
205 }
206 }
207 }
208 // All inputs either matched the type of the phi or we successfully replaced
209 // them with a suitable equivalent. Report success.
210 return true;
211 }
212 }
213
214 // Attempt to set the primitive type of `phi` to match its inputs. Return whether
215 // it was changed by the algorithm or not.
UpdatePrimitiveType(HPhi * phi,ArenaVector<HPhi * > * worklist)216 bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) {
217 DCHECK(phi->IsLive());
218 Primitive::Type original_type = phi->GetType();
219
220 // Try to type the phi in two stages:
221 // (1) find a candidate type for the phi by merging types of all its inputs,
222 // (2) try to type the phi's inputs to that candidate type.
223 // Either of these stages may detect a type conflict and fail, in which case
224 // we immediately abort.
225 if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) {
226 // Conflict detected. Mark the phi dead and return true because it changed.
227 phi->SetDead();
228 return true;
229 }
230
231 // Return true if the type of the phi has changed.
232 return phi->GetType() != original_type;
233 }
234
RunPrimitiveTypePropagation()235 void SsaBuilder::RunPrimitiveTypePropagation() {
236 ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder));
237
238 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
239 HBasicBlock* block = it.Current();
240 if (block->IsLoopHeader()) {
241 for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
242 HPhi* phi = phi_it.Current()->AsPhi();
243 if (phi->IsLive()) {
244 worklist.push_back(phi);
245 }
246 }
247 } else {
248 for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
249 // Eagerly compute the type of the phi, for quicker convergence. Note
250 // that we don't need to add users to the worklist because we are
251 // doing a reverse post-order visit, therefore either the phi users are
252 // non-loop phi and will be visited later in the visit, or are loop-phis,
253 // and they are already in the work list.
254 HPhi* phi = phi_it.Current()->AsPhi();
255 if (phi->IsLive()) {
256 UpdatePrimitiveType(phi, &worklist);
257 }
258 }
259 }
260 }
261
262 ProcessPrimitiveTypePropagationWorklist(&worklist);
263 EquivalentPhisCleanup();
264 }
265
ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi * > * worklist)266 void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) {
267 // Process worklist
268 while (!worklist->empty()) {
269 HPhi* phi = worklist->back();
270 worklist->pop_back();
271 // The phi could have been made dead as a result of conflicts while in the
272 // worklist. If it is now dead, there is no point in updating its type.
273 if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) {
274 AddDependentInstructionsToWorklist(phi, worklist);
275 }
276 }
277 }
278
FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)279 static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
280 Primitive::Type type = aget->GetType();
281 DCHECK(Primitive::IsIntOrLongType(type));
282 HInstruction* next = aget->GetNext();
283 if (next != nullptr && next->IsArrayGet()) {
284 HArrayGet* next_aget = next->AsArrayGet();
285 if (next_aget->IsEquivalentOf(aget)) {
286 return next_aget;
287 }
288 }
289 return nullptr;
290 }
291
CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)292 static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
293 Primitive::Type type = aget->GetType();
294 DCHECK(Primitive::IsIntOrLongType(type));
295 DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr);
296
297 HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet(
298 aget->GetArray(),
299 aget->GetIndex(),
300 type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble,
301 aget->GetDexPc());
302 aget->GetBlock()->InsertInstructionAfter(equivalent, aget);
303 return equivalent;
304 }
305
GetPrimitiveArrayComponentType(HInstruction * array)306 static Primitive::Type GetPrimitiveArrayComponentType(HInstruction* array)
307 SHARED_REQUIRES(Locks::mutator_lock_) {
308 ReferenceTypeInfo array_type = array->GetReferenceTypeInfo();
309 DCHECK(array_type.IsPrimitiveArrayClass());
310 return array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
311 }
312
FixAmbiguousArrayOps()313 bool SsaBuilder::FixAmbiguousArrayOps() {
314 if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) {
315 return true;
316 }
317
318 // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet
319 // uses (because they are untyped) and environment uses (if --debuggable).
320 // After resolving all ambiguous ArrayGets, we will re-run primitive type
321 // propagation on the Phis which need to be updated.
322 ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder));
323
324 {
325 ScopedObjectAccess soa(Thread::Current());
326
327 for (HArrayGet* aget_int : ambiguous_agets_) {
328 HInstruction* array = aget_int->GetArray();
329 if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
330 // RTP did not type the input array. Bail.
331 return false;
332 }
333
334 HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int);
335 Primitive::Type array_type = GetPrimitiveArrayComponentType(array);
336 DCHECK_EQ(Primitive::Is64BitType(aget_int->GetType()), Primitive::Is64BitType(array_type));
337
338 if (Primitive::IsIntOrLongType(array_type)) {
339 if (aget_float != nullptr) {
340 // There is a float/double equivalent. We must replace it and re-run
341 // primitive type propagation on all dependent instructions.
342 aget_float->ReplaceWith(aget_int);
343 aget_float->GetBlock()->RemoveInstruction(aget_float);
344 AddDependentInstructionsToWorklist(aget_int, &worklist);
345 }
346 } else {
347 DCHECK(Primitive::IsFloatingPointType(array_type));
348 if (aget_float == nullptr) {
349 // This is a float/double ArrayGet but there were no typed uses which
350 // would create the typed equivalent. Create it now.
351 aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int);
352 }
353 // Replace the original int/long instruction. Note that it may have phi
354 // uses, environment uses, as well as real uses (from untyped ArraySets).
355 // We need to re-run primitive type propagation on its dependent instructions.
356 aget_int->ReplaceWith(aget_float);
357 aget_int->GetBlock()->RemoveInstruction(aget_int);
358 AddDependentInstructionsToWorklist(aget_float, &worklist);
359 }
360 }
361
362 // Set a flag stating that types of ArrayGets have been resolved. Requesting
363 // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet
364 // will fail from now on.
365 agets_fixed_ = true;
366
367 for (HArraySet* aset : ambiguous_asets_) {
368 HInstruction* array = aset->GetArray();
369 if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
370 // RTP did not type the input array. Bail.
371 return false;
372 }
373
374 HInstruction* value = aset->GetValue();
375 Primitive::Type value_type = value->GetType();
376 Primitive::Type array_type = GetPrimitiveArrayComponentType(array);
377 DCHECK_EQ(Primitive::Is64BitType(value_type), Primitive::Is64BitType(array_type));
378
379 if (Primitive::IsFloatingPointType(array_type)) {
380 if (!Primitive::IsFloatingPointType(value_type)) {
381 DCHECK(Primitive::IsIntegralType(value_type));
382 // Array elements are floating-point but the value has not been replaced
383 // with its floating-point equivalent. The replacement must always
384 // succeed in code validated by the verifier.
385 HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type);
386 DCHECK(equivalent != nullptr);
387 aset->ReplaceInput(equivalent, /* input_index */ 2);
388 if (equivalent->IsPhi()) {
389 // Returned equivalent is a phi which may not have had its inputs
390 // replaced yet. We need to run primitive type propagation on it.
391 worklist.push_back(equivalent->AsPhi());
392 }
393 }
394 } else {
395 // Array elements are integral and the value assigned to it initially
396 // was integral too. Nothing to do.
397 DCHECK(Primitive::IsIntegralType(array_type));
398 DCHECK(Primitive::IsIntegralType(value_type));
399 }
400 }
401 }
402
403 if (!worklist.empty()) {
404 ProcessPrimitiveTypePropagationWorklist(&worklist);
405 EquivalentPhisCleanup();
406 }
407
408 return true;
409 }
410
HasAliasInEnvironments(HInstruction * instruction)411 static bool HasAliasInEnvironments(HInstruction* instruction) {
412 HEnvironment* last_user = nullptr;
413 for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
414 DCHECK(use.GetUser() != nullptr);
415 // Note: The first comparison (== null) always fails.
416 if (use.GetUser() == last_user) {
417 return true;
418 }
419 last_user = use.GetUser();
420 }
421
422 if (kIsDebugBuild) {
423 // Do a quadratic search to ensure same environment uses are next
424 // to each other.
425 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
426 for (auto current = env_uses.begin(), end = env_uses.end(); current != end; ++current) {
427 auto next = current;
428 for (++next; next != end; ++next) {
429 DCHECK(next->GetUser() != current->GetUser());
430 }
431 }
432 }
433 return false;
434 }
435
RemoveRedundantUninitializedStrings()436 void SsaBuilder::RemoveRedundantUninitializedStrings() {
437 if (graph_->IsDebuggable()) {
438 // Do not perform the optimization for consistency with the interpreter
439 // which always allocates an object for new-instance of String.
440 return;
441 }
442
443 for (HNewInstance* new_instance : uninitialized_strings_) {
444 DCHECK(new_instance->IsInBlock());
445 DCHECK(new_instance->IsStringAlloc());
446
447 // Replace NewInstance of String with NullConstant if not used prior to
448 // calling StringFactory. In case of deoptimization, the interpreter is
449 // expected to skip null check on the `this` argument of the StringFactory call.
450 if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) {
451 new_instance->ReplaceWith(graph_->GetNullConstant());
452 new_instance->GetBlock()->RemoveInstruction(new_instance);
453
454 // Remove LoadClass if not needed any more.
455 HInstruction* input = new_instance->InputAt(0);
456 HLoadClass* load_class = nullptr;
457
458 // If the class was not present in the dex cache at the point of building
459 // the graph, the builder inserted a HClinitCheck in between. Since the String
460 // class is always initialized at the point of running Java code, we can remove
461 // that check.
462 if (input->IsClinitCheck()) {
463 load_class = input->InputAt(0)->AsLoadClass();
464 input->ReplaceWith(load_class);
465 input->GetBlock()->RemoveInstruction(input);
466 } else {
467 load_class = input->AsLoadClass();
468 DCHECK(new_instance->IsStringAlloc());
469 DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible";
470 }
471 DCHECK(load_class != nullptr);
472 if (!load_class->HasUses()) {
473 // Even if the HLoadClass needs access check, we can remove it, as we know the
474 // String class does not need it.
475 load_class->GetBlock()->RemoveInstruction(load_class);
476 }
477 }
478 }
479 }
480
BuildSsa()481 GraphAnalysisResult SsaBuilder::BuildSsa() {
482 DCHECK(!graph_->IsInSsaForm());
483
484 // 1) Propagate types of phis. At this point, phis are typed void in the general
485 // case, or float/double/reference if we created an equivalent phi. So we need
486 // to propagate the types across phis to give them a correct type. If a type
487 // conflict is detected in this stage, the phi is marked dead.
488 RunPrimitiveTypePropagation();
489
490 // 2) Now that the correct primitive types have been assigned, we can get rid
491 // of redundant phis. Note that we cannot do this phase before type propagation,
492 // otherwise we could get rid of phi equivalents, whose presence is a requirement
493 // for the type propagation phase. Note that this is to satisfy statement (a)
494 // of the SsaBuilder (see ssa_builder.h).
495 SsaRedundantPhiElimination(graph_).Run();
496
497 // 3) Fix the type for null constants which are part of an equality comparison.
498 // We need to do this after redundant phi elimination, to ensure the only cases
499 // that we can see are reference comparison against 0. The redundant phi
500 // elimination ensures we do not see a phi taking two 0 constants in a HEqual
501 // or HNotEqual.
502 FixNullConstantType();
503
504 // 4) Compute type of reference type instructions. The pass assumes that
505 // NullConstant has been fixed up.
506 ReferenceTypePropagation(graph_, dex_cache_, handles_, /* is_first_run */ true).Run();
507
508 // 5) HInstructionBuilder duplicated ArrayGet instructions with ambiguous type
509 // (int/float or long/double) and marked ArraySets with ambiguous input type.
510 // Now that RTP computed the type of the array input, the ambiguity can be
511 // resolved and the correct equivalents kept.
512 if (!FixAmbiguousArrayOps()) {
513 return kAnalysisFailAmbiguousArrayOp;
514 }
515
516 // 6) Mark dead phis. This will mark phis which are not used by instructions
517 // or other live phis. If compiling as debuggable code, phis will also be kept
518 // live if they have an environment use.
519 SsaDeadPhiElimination dead_phi_elimimation(graph_);
520 dead_phi_elimimation.MarkDeadPhis();
521
522 // 7) Make sure environments use the right phi equivalent: a phi marked dead
523 // can have a phi equivalent that is not dead. In that case we have to replace
524 // it with the live equivalent because deoptimization and try/catch rely on
525 // environments containing values of all live vregs at that point. Note that
526 // there can be multiple phis for the same Dex register that are live
527 // (for example when merging constants), in which case it is okay for the
528 // environments to just reference one.
529 FixEnvironmentPhis();
530
531 // 8) Now that the right phis are used for the environments, we can eliminate
532 // phis we do not need. Regardless of the debuggable status, this phase is
533 /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well
534 // as for the code generation, which does not deal with phis of conflicting
535 // input types.
536 dead_phi_elimimation.EliminateDeadPhis();
537
538 // 9) HInstructionBuidler replaced uses of NewInstances of String with the
539 // results of their corresponding StringFactory calls. Unless the String
540 // objects are used before they are initialized, they can be replaced with
541 // NullConstant. Note that this optimization is valid only if unsimplified
542 // code does not use the uninitialized value because we assume execution can
543 // be deoptimized at any safepoint. We must therefore perform it before any
544 // other optimizations.
545 RemoveRedundantUninitializedStrings();
546
547 graph_->SetInSsaForm();
548 return kAnalysisSuccess;
549 }
550
551 /**
552 * Constants in the Dex format are not typed. So the builder types them as
553 * integers, but when doing the SSA form, we might realize the constant
554 * is used for floating point operations. We create a floating-point equivalent
555 * constant to make the operations correctly typed.
556 */
GetFloatEquivalent(HIntConstant * constant)557 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
558 // We place the floating point constant next to this constant.
559 HFloatConstant* result = constant->GetNext()->AsFloatConstant();
560 if (result == nullptr) {
561 float value = bit_cast<float, int32_t>(constant->GetValue());
562 result = new (graph_->GetArena()) HFloatConstant(value);
563 constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
564 graph_->CacheFloatConstant(result);
565 } else {
566 // If there is already a constant with the expected type, we know it is
567 // the floating point equivalent of this constant.
568 DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
569 }
570 return result;
571 }
572
573 /**
574 * Wide constants in the Dex format are not typed. So the builder types them as
575 * longs, but when doing the SSA form, we might realize the constant
576 * is used for floating point operations. We create a floating-point equivalent
577 * constant to make the operations correctly typed.
578 */
GetDoubleEquivalent(HLongConstant * constant)579 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
580 // We place the floating point constant next to this constant.
581 HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
582 if (result == nullptr) {
583 double value = bit_cast<double, int64_t>(constant->GetValue());
584 result = new (graph_->GetArena()) HDoubleConstant(value);
585 constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
586 graph_->CacheDoubleConstant(result);
587 } else {
588 // If there is already a constant with the expected type, we know it is
589 // the floating point equivalent of this constant.
590 DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
591 }
592 return result;
593 }
594
595 /**
596 * Because of Dex format, we might end up having the same phi being
597 * used for non floating point operations and floating point / reference operations.
598 * Because we want the graph to be correctly typed (and thereafter avoid moves between
599 * floating point registers and core registers), we need to create a copy of the
600 * phi with a floating point / reference type.
601 */
GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi * phi,Primitive::Type type)602 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
603 DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one.";
604
605 // We place the floating point /reference phi next to this phi.
606 HInstruction* next = phi->GetNext();
607 if (next != nullptr
608 && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
609 && next->GetType() != type) {
610 // Move to the next phi to see if it is the one we are looking for.
611 next = next->GetNext();
612 }
613
614 if (next == nullptr
615 || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
616 || (next->GetType() != type)) {
617 ArenaAllocator* allocator = graph_->GetArena();
618 HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type);
619 for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
620 // Copy the inputs. Note that the graph may not be correctly typed
621 // by doing this copy, but the type propagation phase will fix it.
622 new_phi->SetRawInputAt(i, phi->InputAt(i));
623 }
624 phi->GetBlock()->InsertPhiAfter(new_phi, phi);
625 DCHECK(new_phi->IsLive());
626 return new_phi;
627 } else {
628 // An existing equivalent was found. If it is dead, conflict was previously
629 // identified and we return nullptr instead.
630 HPhi* next_phi = next->AsPhi();
631 DCHECK_EQ(next_phi->GetType(), type);
632 return next_phi->IsLive() ? next_phi : nullptr;
633 }
634 }
635
GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)636 HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
637 DCHECK(Primitive::IsIntegralType(aget->GetType()));
638
639 if (!Primitive::IsIntOrLongType(aget->GetType())) {
640 // Cannot type boolean, char, byte, short to float/double.
641 return nullptr;
642 }
643
644 DCHECK(ContainsElement(ambiguous_agets_, aget));
645 if (agets_fixed_) {
646 // This used to be an ambiguous ArrayGet but its type has been resolved to
647 // int/long. Requesting a float/double equivalent should lead to a conflict.
648 if (kIsDebugBuild) {
649 ScopedObjectAccess soa(Thread::Current());
650 DCHECK(Primitive::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray())));
651 }
652 return nullptr;
653 } else {
654 // This is an ambiguous ArrayGet which has not been resolved yet. Return an
655 // equivalent float/double instruction to use until it is resolved.
656 HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget);
657 return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent;
658 }
659 }
660
GetFloatOrDoubleEquivalent(HInstruction * value,Primitive::Type type)661 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) {
662 if (value->IsArrayGet()) {
663 return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet());
664 } else if (value->IsLongConstant()) {
665 return GetDoubleEquivalent(value->AsLongConstant());
666 } else if (value->IsIntConstant()) {
667 return GetFloatEquivalent(value->AsIntConstant());
668 } else if (value->IsPhi()) {
669 return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
670 } else {
671 return nullptr;
672 }
673 }
674
GetReferenceTypeEquivalent(HInstruction * value)675 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
676 if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
677 return graph_->GetNullConstant();
678 } else if (value->IsPhi()) {
679 return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot);
680 } else {
681 return nullptr;
682 }
683 }
684
685 } // namespace art
686