1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fault_handler.h"
18
19 #include <setjmp.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22
23 #include "art_method-inl.h"
24 #include "base/stl_util.h"
25 #include "mirror/class.h"
26 #include "oat_quick_method_header.h"
27 #include "sigchain.h"
28 #include "thread-inl.h"
29 #include "verify_object-inl.h"
30
31 // Note on nested signal support
32 // -----------------------------
33 //
34 // Typically a signal handler should not need to deal with signals that occur within it.
35 // However, when a SIGSEGV occurs that is in generated code and is not one of the
36 // handled signals (implicit checks), we call a function to try to dump the stack
37 // to the log. This enhances the debugging experience but may have the side effect
38 // that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other
39 // memory region, the stack backtrace code may run into trouble and may either crash
40 // or fail with an abort (SIGABRT). In either case we don't want that (new) signal to
41 // mask the original signal and thus prevent useful debug output from being presented.
42 //
43 // In order to handle this situation, before we call the stack tracer we do the following:
44 //
45 // 1. shutdown the fault manager so that we are talking to the real signal management
46 // functions rather than those in sigchain.
47 // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
48 // thread running the signal handler.
49 // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
50 // 4. save the thread's state to the TLS of the current thread using 'setjmp'
51 //
52 // We then call the stack tracer and one of two things may happen:
53 // a. it completes successfully
54 // b. it crashes and a signal is raised.
55 //
56 // In the former case, we fall through and everything is fine. In the latter case
57 // our secondary signal handler gets called in a signal context. This results in
58 // a call to FaultManager::HandledNestedSignal(), an archirecture specific function
59 // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
60 // thread. This results in a return with a non-zero value from 'setjmp'. We detect this
61 // and write something to the log to tell the user that it happened.
62 //
63 // Regardless of how we got there, we reach the code after the stack tracer and we
64 // restore the signal states to their original values, reinstate the fault manager (thus
65 // reestablishing the signal chain) and continue.
66
67 // This is difficult to test with a runtime test. To invoke the nested signal code
68 // on any signal, uncomment the following line and run something that throws a
69 // NullPointerException.
70 // #define TEST_NESTED_SIGNAL
71
72 namespace art {
73 // Static fault manger object accessed by signal handler.
74 FaultManager fault_manager;
75
art_sigsegv_fault()76 extern "C" __attribute__((visibility("default"))) void art_sigsegv_fault() {
77 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
78 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
79 }
80
81 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)82 static void art_fault_handler(int sig, siginfo_t* info, void* context) {
83 fault_manager.HandleFault(sig, info, context);
84 }
85
86 // Signal handler for dealing with a nested signal.
art_nested_signal_handler(int sig,siginfo_t * info,void * context)87 static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
88 fault_manager.HandleNestedSignal(sig, info, context);
89 }
90
FaultManager()91 FaultManager::FaultManager() : initialized_(false) {
92 sigaction(SIGSEGV, nullptr, &oldaction_);
93 }
94
~FaultManager()95 FaultManager::~FaultManager() {
96 }
97
SetUpArtAction(struct sigaction * action)98 static void SetUpArtAction(struct sigaction* action) {
99 action->sa_sigaction = art_fault_handler;
100 sigemptyset(&action->sa_mask);
101 action->sa_flags = SA_SIGINFO | SA_ONSTACK;
102 #if !defined(__APPLE__) && !defined(__mips__)
103 action->sa_restorer = nullptr;
104 #endif
105 }
106
EnsureArtActionInFrontOfSignalChain()107 void FaultManager::EnsureArtActionInFrontOfSignalChain() {
108 if (initialized_) {
109 struct sigaction action;
110 SetUpArtAction(&action);
111 EnsureFrontOfChain(SIGSEGV, &action);
112 } else {
113 LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager";
114 }
115 }
116
Init()117 void FaultManager::Init() {
118 CHECK(!initialized_);
119 struct sigaction action;
120 SetUpArtAction(&action);
121
122 // Set our signal handler now.
123 int e = sigaction(SIGSEGV, &action, &oldaction_);
124 if (e != 0) {
125 VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
126 }
127 // Make sure our signal handler is called before any user handlers.
128 ClaimSignalChain(SIGSEGV, &oldaction_);
129 initialized_ = true;
130 }
131
Release()132 void FaultManager::Release() {
133 if (initialized_) {
134 UnclaimSignalChain(SIGSEGV);
135 initialized_ = false;
136 }
137 }
138
Shutdown()139 void FaultManager::Shutdown() {
140 if (initialized_) {
141 Release();
142
143 // Free all handlers.
144 STLDeleteElements(&generated_code_handlers_);
145 STLDeleteElements(&other_handlers_);
146 }
147 }
148
HandleFaultByOtherHandlers(int sig,siginfo_t * info,void * context)149 bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) {
150 if (other_handlers_.empty()) {
151 return false;
152 }
153
154 Thread* self = Thread::Current();
155
156 DCHECK(self != nullptr);
157 DCHECK(Runtime::Current() != nullptr);
158 DCHECK(Runtime::Current()->IsStarted());
159
160 // Now set up the nested signal handler.
161
162 // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully.
163 static const int handled_nested_signals[] = {SIGABRT};
164 constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals);
165
166 // Release the fault manager so that it will remove the signal chain for
167 // SIGSEGV and we call the real sigaction.
168 fault_manager.Release();
169
170 // The action for SIGSEGV should be the default handler now.
171
172 // Unblock the signals we allow so that they can be delivered in the signal handler.
173 sigset_t sigset;
174 sigemptyset(&sigset);
175 for (int signal : handled_nested_signals) {
176 sigaddset(&sigset, signal);
177 }
178 pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);
179
180 // If we get a signal in this code we want to invoke our nested signal
181 // handler.
182 struct sigaction action;
183 struct sigaction oldactions[num_handled_nested_signals];
184 action.sa_sigaction = art_nested_signal_handler;
185
186 // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler. This
187 // should be the default but we definitely don't want these happening in our
188 // nested signal handler.
189 sigemptyset(&action.sa_mask);
190 for (int signal : handled_nested_signals) {
191 sigaddset(&action.sa_mask, signal);
192 }
193
194 action.sa_flags = SA_SIGINFO | SA_ONSTACK;
195 #if !defined(__APPLE__) && !defined(__mips__)
196 action.sa_restorer = nullptr;
197 #endif
198
199 // Catch handled signals to invoke our nested handler.
200 bool success = true;
201 for (size_t i = 0; i < num_handled_nested_signals; ++i) {
202 success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0;
203 if (!success) {
204 PLOG(ERROR) << "Unable to set up nested signal handler";
205 break;
206 }
207 }
208
209 if (success) {
210 // Save the current state and call the handlers. If anything causes a signal
211 // our nested signal handler will be invoked and this will longjmp to the saved
212 // state.
213 if (setjmp(*self->GetNestedSignalState()) == 0) {
214 for (const auto& handler : other_handlers_) {
215 if (handler->Action(sig, info, context)) {
216 // Restore the signal handlers, reinit the fault manager and return. Signal was
217 // handled.
218 for (size_t i = 0; i < num_handled_nested_signals; ++i) {
219 success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
220 if (!success) {
221 PLOG(ERROR) << "Unable to restore signal handler";
222 }
223 }
224 fault_manager.Init();
225 return true;
226 }
227 }
228 } else {
229 LOG(ERROR) << "Nested signal detected - original signal being reported";
230 }
231
232 // Restore the signal handlers.
233 for (size_t i = 0; i < num_handled_nested_signals; ++i) {
234 success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
235 if (!success) {
236 PLOG(ERROR) << "Unable to restore signal handler";
237 }
238 }
239 }
240
241 // Now put the fault manager back in place.
242 fault_manager.Init();
243 return false;
244 }
245
HandleFault(int sig,siginfo_t * info,void * context)246 void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
247 // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
248 //
249 // If malloc calls abort, it will be holding its lock.
250 // If the handler tries to call malloc, it will deadlock.
251 VLOG(signals) << "Handling fault";
252 if (IsInGeneratedCode(info, context, true)) {
253 VLOG(signals) << "in generated code, looking for handler";
254 for (const auto& handler : generated_code_handlers_) {
255 VLOG(signals) << "invoking Action on handler " << handler;
256 if (handler->Action(sig, info, context)) {
257 #ifdef TEST_NESTED_SIGNAL
258 // In test mode we want to fall through to stack trace handler
259 // on every signal (in reality this will cause a crash on the first
260 // signal).
261 break;
262 #else
263 // We have handled a signal so it's time to return from the
264 // signal handler to the appropriate place.
265 return;
266 #endif
267 }
268 }
269
270 // We hit a signal we didn't handle. This might be something for which
271 // we can give more information about so call all registered handlers to see
272 // if it is.
273 if (HandleFaultByOtherHandlers(sig, info, context)) {
274 return;
275 }
276 }
277
278 // Set a breakpoint in this function to catch unhandled signals.
279 art_sigsegv_fault();
280
281 // Pass this on to the next handler in the chain, or the default if none.
282 InvokeUserSignalHandler(sig, info, context);
283 }
284
AddHandler(FaultHandler * handler,bool generated_code)285 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
286 DCHECK(initialized_);
287 if (generated_code) {
288 generated_code_handlers_.push_back(handler);
289 } else {
290 other_handlers_.push_back(handler);
291 }
292 }
293
RemoveHandler(FaultHandler * handler)294 void FaultManager::RemoveHandler(FaultHandler* handler) {
295 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
296 if (it != generated_code_handlers_.end()) {
297 generated_code_handlers_.erase(it);
298 return;
299 }
300 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
301 if (it2 != other_handlers_.end()) {
302 other_handlers_.erase(it);
303 return;
304 }
305 LOG(FATAL) << "Attempted to remove non existent handler " << handler;
306 }
307
308 // This function is called within the signal handler. It checks that
309 // the mutator_lock is held (shared). No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)310 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
311 // We can only be running Java code in the current thread if it
312 // is in Runnable state.
313 VLOG(signals) << "Checking for generated code";
314 Thread* thread = Thread::Current();
315 if (thread == nullptr) {
316 VLOG(signals) << "no current thread";
317 return false;
318 }
319
320 ThreadState state = thread->GetState();
321 if (state != kRunnable) {
322 VLOG(signals) << "not runnable";
323 return false;
324 }
325
326 // Current thread is runnable.
327 // Make sure it has the mutator lock.
328 if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
329 VLOG(signals) << "no lock";
330 return false;
331 }
332
333 ArtMethod* method_obj = nullptr;
334 uintptr_t return_pc = 0;
335 uintptr_t sp = 0;
336
337 // Get the architecture specific method address and return address. These
338 // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
339 GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
340
341 // If we don't have a potential method, we're outta here.
342 VLOG(signals) << "potential method: " << method_obj;
343 // TODO: Check linear alloc and image.
344 DCHECK_ALIGNED(ArtMethod::Size(sizeof(void*)), sizeof(void*))
345 << "ArtMethod is not pointer aligned";
346 if (method_obj == nullptr || !IsAligned<sizeof(void*)>(method_obj)) {
347 VLOG(signals) << "no method";
348 return false;
349 }
350
351 // Verify that the potential method is indeed a method.
352 // TODO: check the GC maps to make sure it's an object.
353 // Check that the class pointer inside the object is not null and is aligned.
354 // TODO: Method might be not a heap address, and GetClass could fault.
355 // No read barrier because method_obj may not be a real object.
356 mirror::Class* cls = method_obj->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
357 if (cls == nullptr) {
358 VLOG(signals) << "not a class";
359 return false;
360 }
361 if (!IsAligned<kObjectAlignment>(cls)) {
362 VLOG(signals) << "not aligned";
363 return false;
364 }
365
366
367 if (!VerifyClassClass(cls)) {
368 VLOG(signals) << "not a class class";
369 return false;
370 }
371
372 const OatQuickMethodHeader* method_header = method_obj->GetOatQuickMethodHeader(return_pc);
373
374 // We can be certain that this is a method now. Check if we have a GC map
375 // at the return PC address.
376 if (true || kIsDebugBuild) {
377 VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
378 uint32_t sought_offset = return_pc -
379 reinterpret_cast<uintptr_t>(method_header->GetEntryPoint());
380 VLOG(signals) << "pc offset: " << std::hex << sought_offset;
381 }
382 uint32_t dexpc = method_header->ToDexPc(method_obj, return_pc, false);
383 VLOG(signals) << "dexpc: " << dexpc;
384 return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
385 }
386
FaultHandler(FaultManager * manager)387 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
388 }
389
390 //
391 // Null pointer fault handler
392 //
NullPointerHandler(FaultManager * manager)393 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
394 manager_->AddHandler(this, true);
395 }
396
397 //
398 // Suspension fault handler
399 //
SuspensionHandler(FaultManager * manager)400 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
401 manager_->AddHandler(this, true);
402 }
403
404 //
405 // Stack overflow fault handler
406 //
StackOverflowHandler(FaultManager * manager)407 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
408 manager_->AddHandler(this, true);
409 }
410
411 //
412 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
413 //
JavaStackTraceHandler(FaultManager * manager)414 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
415 manager_->AddHandler(this, false);
416 }
417
Action(int sig ATTRIBUTE_UNUSED,siginfo_t * siginfo,void * context)418 bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) {
419 // Make sure that we are in the generated code, but we may not have a dex pc.
420 #ifdef TEST_NESTED_SIGNAL
421 bool in_generated_code = true;
422 #else
423 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
424 #endif
425 if (in_generated_code) {
426 LOG(ERROR) << "Dumping java stack trace for crash in generated code";
427 ArtMethod* method = nullptr;
428 uintptr_t return_pc = 0;
429 uintptr_t sp = 0;
430 Thread* self = Thread::Current();
431
432 manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
433 // Inside of generated code, sp[0] is the method, so sp is the frame.
434 self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
435 #ifdef TEST_NESTED_SIGNAL
436 // To test the nested signal handler we raise a signal here. This will cause the
437 // nested signal handler to be called and perform a longjmp back to the setjmp
438 // above.
439 abort();
440 #endif
441 self->DumpJavaStack(LOG(ERROR));
442 }
443
444 return false; // Return false since we want to propagate the fault to the main signal handler.
445 }
446
447 } // namespace art
448