1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mem_map.h"
18
19 #include "base/memory_tool.h"
20 #include <backtrace/BacktraceMap.h>
21 #include <inttypes.h>
22 #include <stdlib.h>
23
24 #include <memory>
25 #include <sstream>
26
27 #include "base/stringprintf.h"
28
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wshadow"
31 #include "ScopedFd.h"
32 #pragma GCC diagnostic pop
33
34 #include "thread-inl.h"
35 #include "utils.h"
36
37 #include <cutils/ashmem.h>
38
39 #ifndef ANDROID_OS
40 #include <sys/resource.h>
41 #endif
42
43 #ifndef MAP_ANONYMOUS
44 #define MAP_ANONYMOUS MAP_ANON
45 #endif
46
47 namespace art {
48
operator <<(std::ostream & os,std::pair<BacktraceMap::const_iterator,BacktraceMap::const_iterator> iters)49 static std::ostream& operator<<(
50 std::ostream& os,
51 std::pair<BacktraceMap::const_iterator, BacktraceMap::const_iterator> iters) {
52 for (BacktraceMap::const_iterator it = iters.first; it != iters.second; ++it) {
53 os << StringPrintf("0x%08x-0x%08x %c%c%c %s\n",
54 static_cast<uint32_t>(it->start),
55 static_cast<uint32_t>(it->end),
56 (it->flags & PROT_READ) ? 'r' : '-',
57 (it->flags & PROT_WRITE) ? 'w' : '-',
58 (it->flags & PROT_EXEC) ? 'x' : '-', it->name.c_str());
59 }
60 return os;
61 }
62
operator <<(std::ostream & os,const MemMap::Maps & mem_maps)63 std::ostream& operator<<(std::ostream& os, const MemMap::Maps& mem_maps) {
64 os << "MemMap:" << std::endl;
65 for (auto it = mem_maps.begin(); it != mem_maps.end(); ++it) {
66 void* base = it->first;
67 MemMap* map = it->second;
68 CHECK_EQ(base, map->BaseBegin());
69 os << *map << std::endl;
70 }
71 return os;
72 }
73
74 MemMap::Maps* MemMap::maps_ = nullptr;
75
76 #if USE_ART_LOW_4G_ALLOCATOR
77 // Handling mem_map in 32b address range for 64b architectures that do not support MAP_32BIT.
78
79 // The regular start of memory allocations. The first 64KB is protected by SELinux.
80 static constexpr uintptr_t LOW_MEM_START = 64 * KB;
81
82 // Generate random starting position.
83 // To not interfere with image position, take the image's address and only place it below. Current
84 // formula (sketch):
85 //
86 // ART_BASE_ADDR = 0001XXXXXXXXXXXXXXX
87 // ----------------------------------------
88 // = 0000111111111111111
89 // & ~(kPageSize - 1) =~0000000000000001111
90 // ----------------------------------------
91 // mask = 0000111111111110000
92 // & random data = YYYYYYYYYYYYYYYYYYY
93 // -----------------------------------
94 // tmp = 0000YYYYYYYYYYY0000
95 // + LOW_MEM_START = 0000000000001000000
96 // --------------------------------------
97 // start
98 //
99 // arc4random as an entropy source is exposed in Bionic, but not in glibc. When we
100 // do not have Bionic, simply start with LOW_MEM_START.
101
102 // Function is standalone so it can be tested somewhat in mem_map_test.cc.
103 #ifdef __BIONIC__
CreateStartPos(uint64_t input)104 uintptr_t CreateStartPos(uint64_t input) {
105 CHECK_NE(0, ART_BASE_ADDRESS);
106
107 // Start with all bits below highest bit in ART_BASE_ADDRESS.
108 constexpr size_t leading_zeros = CLZ(static_cast<uint32_t>(ART_BASE_ADDRESS));
109 constexpr uintptr_t mask_ones = (1 << (31 - leading_zeros)) - 1;
110
111 // Lowest (usually 12) bits are not used, as aligned by page size.
112 constexpr uintptr_t mask = mask_ones & ~(kPageSize - 1);
113
114 // Mask input data.
115 return (input & mask) + LOW_MEM_START;
116 }
117 #endif
118
GenerateNextMemPos()119 static uintptr_t GenerateNextMemPos() {
120 #ifdef __BIONIC__
121 uint64_t random_data;
122 arc4random_buf(&random_data, sizeof(random_data));
123 return CreateStartPos(random_data);
124 #else
125 // No arc4random on host, see above.
126 return LOW_MEM_START;
127 #endif
128 }
129
130 // Initialize linear scan to random position.
131 uintptr_t MemMap::next_mem_pos_ = GenerateNextMemPos();
132 #endif
133
134 // Return true if the address range is contained in a single memory map by either reading
135 // the maps_ variable or the /proc/self/map entry.
ContainedWithinExistingMap(uint8_t * ptr,size_t size,std::string * error_msg)136 bool MemMap::ContainedWithinExistingMap(uint8_t* ptr, size_t size, std::string* error_msg) {
137 uintptr_t begin = reinterpret_cast<uintptr_t>(ptr);
138 uintptr_t end = begin + size;
139
140 // There is a suspicion that BacktraceMap::Create is occasionally missing maps. TODO: Investigate
141 // further.
142 {
143 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
144 for (auto& pair : *maps_) {
145 MemMap* const map = pair.second;
146 if (begin >= reinterpret_cast<uintptr_t>(map->Begin()) &&
147 end <= reinterpret_cast<uintptr_t>(map->End())) {
148 return true;
149 }
150 }
151 }
152
153 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true));
154 if (map == nullptr) {
155 if (error_msg != nullptr) {
156 *error_msg = StringPrintf("Failed to build process map");
157 }
158 return false;
159 }
160 for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) {
161 if ((begin >= it->start && begin < it->end) // start of new within old
162 && (end > it->start && end <= it->end)) { // end of new within old
163 return true;
164 }
165 }
166 if (error_msg != nullptr) {
167 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
168 *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " does not overlap "
169 "any existing map. See process maps in the log.", begin, end);
170 }
171 return false;
172 }
173
174 // Return true if the address range does not conflict with any /proc/self/maps entry.
CheckNonOverlapping(uintptr_t begin,uintptr_t end,std::string * error_msg)175 static bool CheckNonOverlapping(uintptr_t begin,
176 uintptr_t end,
177 std::string* error_msg) {
178 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid(), true));
179 if (map.get() == nullptr) {
180 *error_msg = StringPrintf("Failed to build process map");
181 return false;
182 }
183 for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) {
184 if ((begin >= it->start && begin < it->end) // start of new within old
185 || (end > it->start && end < it->end) // end of new within old
186 || (begin <= it->start && end > it->end)) { // start/end of new includes all of old
187 std::ostringstream map_info;
188 map_info << std::make_pair(it, map->end());
189 *error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " overlaps with "
190 "existing map 0x%08" PRIxPTR "-0x%08" PRIxPTR " (%s)\n%s",
191 begin, end,
192 static_cast<uintptr_t>(it->start), static_cast<uintptr_t>(it->end),
193 it->name.c_str(),
194 map_info.str().c_str());
195 return false;
196 }
197 }
198 return true;
199 }
200
201 // CheckMapRequest to validate a non-MAP_FAILED mmap result based on
202 // the expected value, calling munmap if validation fails, giving the
203 // reason in error_msg.
204 //
205 // If the expected_ptr is null, nothing is checked beyond the fact
206 // that the actual_ptr is not MAP_FAILED. However, if expected_ptr is
207 // non-null, we check that pointer is the actual_ptr == expected_ptr,
208 // and if not, report in error_msg what the conflict mapping was if
209 // found, or a generic error in other cases.
CheckMapRequest(uint8_t * expected_ptr,void * actual_ptr,size_t byte_count,std::string * error_msg)210 static bool CheckMapRequest(uint8_t* expected_ptr, void* actual_ptr, size_t byte_count,
211 std::string* error_msg) {
212 // Handled first by caller for more specific error messages.
213 CHECK(actual_ptr != MAP_FAILED);
214
215 if (expected_ptr == nullptr) {
216 return true;
217 }
218
219 uintptr_t actual = reinterpret_cast<uintptr_t>(actual_ptr);
220 uintptr_t expected = reinterpret_cast<uintptr_t>(expected_ptr);
221 uintptr_t limit = expected + byte_count;
222
223 if (expected_ptr == actual_ptr) {
224 return true;
225 }
226
227 // We asked for an address but didn't get what we wanted, all paths below here should fail.
228 int result = munmap(actual_ptr, byte_count);
229 if (result == -1) {
230 PLOG(WARNING) << StringPrintf("munmap(%p, %zd) failed", actual_ptr, byte_count);
231 }
232
233 if (error_msg != nullptr) {
234 // We call this here so that we can try and generate a full error
235 // message with the overlapping mapping. There's no guarantee that
236 // that there will be an overlap though, since
237 // - The kernel is not *required* to honor expected_ptr unless MAP_FIXED is
238 // true, even if there is no overlap
239 // - There might have been an overlap at the point of mmap, but the
240 // overlapping region has since been unmapped.
241 std::string error_detail;
242 CheckNonOverlapping(expected, limit, &error_detail);
243 std::ostringstream os;
244 os << StringPrintf("Failed to mmap at expected address, mapped at "
245 "0x%08" PRIxPTR " instead of 0x%08" PRIxPTR,
246 actual, expected);
247 if (!error_detail.empty()) {
248 os << " : " << error_detail;
249 }
250 *error_msg = os.str();
251 }
252 return false;
253 }
254
255 #if USE_ART_LOW_4G_ALLOCATOR
TryMemMapLow4GB(void * ptr,size_t page_aligned_byte_count,int prot,int flags,int fd,off_t offset)256 static inline void* TryMemMapLow4GB(void* ptr,
257 size_t page_aligned_byte_count,
258 int prot,
259 int flags,
260 int fd,
261 off_t offset) {
262 void* actual = mmap(ptr, page_aligned_byte_count, prot, flags, fd, offset);
263 if (actual != MAP_FAILED) {
264 // Since we didn't use MAP_FIXED the kernel may have mapped it somewhere not in the low
265 // 4GB. If this is the case, unmap and retry.
266 if (reinterpret_cast<uintptr_t>(actual) + page_aligned_byte_count >= 4 * GB) {
267 munmap(actual, page_aligned_byte_count);
268 actual = MAP_FAILED;
269 }
270 }
271 return actual;
272 }
273 #endif
274
MapAnonymous(const char * name,uint8_t * expected_ptr,size_t byte_count,int prot,bool low_4gb,bool reuse,std::string * error_msg,bool use_ashmem)275 MemMap* MemMap::MapAnonymous(const char* name,
276 uint8_t* expected_ptr,
277 size_t byte_count,
278 int prot,
279 bool low_4gb,
280 bool reuse,
281 std::string* error_msg,
282 bool use_ashmem) {
283 #ifndef __LP64__
284 UNUSED(low_4gb);
285 #endif
286 if (byte_count == 0) {
287 return new MemMap(name, nullptr, 0, nullptr, 0, prot, false);
288 }
289 size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
290
291 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
292 if (reuse) {
293 // reuse means it is okay that it overlaps an existing page mapping.
294 // Only use this if you actually made the page reservation yourself.
295 CHECK(expected_ptr != nullptr);
296
297 DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg)) << *error_msg;
298 flags |= MAP_FIXED;
299 }
300
301 ScopedFd fd(-1);
302
303 if (use_ashmem) {
304 if (!kIsTargetBuild) {
305 // When not on Android ashmem is faked using files in /tmp. Ensure that such files won't
306 // fail due to ulimit restrictions. If they will then use a regular mmap.
307 struct rlimit rlimit_fsize;
308 CHECK_EQ(getrlimit(RLIMIT_FSIZE, &rlimit_fsize), 0);
309 use_ashmem = (rlimit_fsize.rlim_cur == RLIM_INFINITY) ||
310 (page_aligned_byte_count < rlimit_fsize.rlim_cur);
311 }
312 }
313
314 if (use_ashmem) {
315 // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
316 // prefixed "dalvik-".
317 std::string debug_friendly_name("dalvik-");
318 debug_friendly_name += name;
319 fd.reset(ashmem_create_region(debug_friendly_name.c_str(), page_aligned_byte_count));
320 if (fd.get() == -1) {
321 *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s", name, strerror(errno));
322 return nullptr;
323 }
324 flags &= ~MAP_ANONYMOUS;
325 }
326
327 // We need to store and potentially set an error number for pretty printing of errors
328 int saved_errno = 0;
329
330 void* actual = MapInternal(expected_ptr,
331 page_aligned_byte_count,
332 prot,
333 flags,
334 fd.get(),
335 0,
336 low_4gb);
337 saved_errno = errno;
338
339 if (actual == MAP_FAILED) {
340 if (error_msg != nullptr) {
341 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
342
343 *error_msg = StringPrintf("Failed anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0): %s. "
344 "See process maps in the log.",
345 expected_ptr,
346 page_aligned_byte_count,
347 prot,
348 flags,
349 fd.get(),
350 strerror(saved_errno));
351 }
352 return nullptr;
353 }
354 std::ostringstream check_map_request_error_msg;
355 if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
356 return nullptr;
357 }
358 return new MemMap(name, reinterpret_cast<uint8_t*>(actual), byte_count, actual,
359 page_aligned_byte_count, prot, reuse);
360 }
361
MapDummy(const char * name,uint8_t * addr,size_t byte_count)362 MemMap* MemMap::MapDummy(const char* name, uint8_t* addr, size_t byte_count) {
363 if (byte_count == 0) {
364 return new MemMap(name, nullptr, 0, nullptr, 0, 0, false);
365 }
366 const size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
367 return new MemMap(name, addr, byte_count, addr, page_aligned_byte_count, 0, true /* reuse */);
368 }
369
MapFileAtAddress(uint8_t * expected_ptr,size_t byte_count,int prot,int flags,int fd,off_t start,bool low_4gb,bool reuse,const char * filename,std::string * error_msg)370 MemMap* MemMap::MapFileAtAddress(uint8_t* expected_ptr,
371 size_t byte_count,
372 int prot,
373 int flags,
374 int fd,
375 off_t start,
376 bool low_4gb,
377 bool reuse,
378 const char* filename,
379 std::string* error_msg) {
380 CHECK_NE(0, prot);
381 CHECK_NE(0, flags & (MAP_SHARED | MAP_PRIVATE));
382
383 // Note that we do not allow MAP_FIXED unless reuse == true, i.e we
384 // expect his mapping to be contained within an existing map.
385 if (reuse) {
386 // reuse means it is okay that it overlaps an existing page mapping.
387 // Only use this if you actually made the page reservation yourself.
388 CHECK(expected_ptr != nullptr);
389
390 DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg))
391 << ((error_msg != nullptr) ? *error_msg : std::string());
392 flags |= MAP_FIXED;
393 } else {
394 CHECK_EQ(0, flags & MAP_FIXED);
395 // Don't bother checking for an overlapping region here. We'll
396 // check this if required after the fact inside CheckMapRequest.
397 }
398
399 if (byte_count == 0) {
400 return new MemMap(filename, nullptr, 0, nullptr, 0, prot, false);
401 }
402 // Adjust 'offset' to be page-aligned as required by mmap.
403 int page_offset = start % kPageSize;
404 off_t page_aligned_offset = start - page_offset;
405 // Adjust 'byte_count' to be page-aligned as we will map this anyway.
406 size_t page_aligned_byte_count = RoundUp(byte_count + page_offset, kPageSize);
407 // The 'expected_ptr' is modified (if specified, ie non-null) to be page aligned to the file but
408 // not necessarily to virtual memory. mmap will page align 'expected' for us.
409 uint8_t* page_aligned_expected =
410 (expected_ptr == nullptr) ? nullptr : (expected_ptr - page_offset);
411
412 size_t redzone_size = 0;
413 if (RUNNING_ON_MEMORY_TOOL && kMemoryToolAddsRedzones && expected_ptr == nullptr) {
414 redzone_size = kPageSize;
415 page_aligned_byte_count += redzone_size;
416 }
417
418 uint8_t* actual = reinterpret_cast<uint8_t*>(MapInternal(page_aligned_expected,
419 page_aligned_byte_count,
420 prot,
421 flags,
422 fd,
423 page_aligned_offset,
424 low_4gb));
425 if (actual == MAP_FAILED) {
426 if (error_msg != nullptr) {
427 auto saved_errno = errno;
428
429 if (kIsDebugBuild || VLOG_IS_ON(oat)) {
430 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
431 }
432
433 *error_msg = StringPrintf("mmap(%p, %zd, 0x%x, 0x%x, %d, %" PRId64
434 ") of file '%s' failed: %s. See process maps in the log.",
435 page_aligned_expected, page_aligned_byte_count, prot, flags, fd,
436 static_cast<int64_t>(page_aligned_offset), filename,
437 strerror(saved_errno));
438 }
439 return nullptr;
440 }
441 std::ostringstream check_map_request_error_msg;
442 if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
443 return nullptr;
444 }
445 if (redzone_size != 0) {
446 const uint8_t *real_start = actual + page_offset;
447 const uint8_t *real_end = actual + page_offset + byte_count;
448 const uint8_t *mapping_end = actual + page_aligned_byte_count;
449
450 MEMORY_TOOL_MAKE_NOACCESS(actual, real_start - actual);
451 MEMORY_TOOL_MAKE_NOACCESS(real_end, mapping_end - real_end);
452 page_aligned_byte_count -= redzone_size;
453 }
454
455 return new MemMap(filename, actual + page_offset, byte_count, actual, page_aligned_byte_count,
456 prot, reuse, redzone_size);
457 }
458
~MemMap()459 MemMap::~MemMap() {
460 if (base_begin_ == nullptr && base_size_ == 0) {
461 return;
462 }
463
464 // Unlike Valgrind, AddressSanitizer requires that all manually poisoned memory is unpoisoned
465 // before it is returned to the system.
466 if (redzone_size_ != 0) {
467 MEMORY_TOOL_MAKE_UNDEFINED(
468 reinterpret_cast<char*>(base_begin_) + base_size_ - redzone_size_,
469 redzone_size_);
470 }
471
472 if (!reuse_) {
473 MEMORY_TOOL_MAKE_UNDEFINED(base_begin_, base_size_);
474 int result = munmap(base_begin_, base_size_);
475 if (result == -1) {
476 PLOG(FATAL) << "munmap failed";
477 }
478 }
479
480 // Remove it from maps_.
481 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
482 bool found = false;
483 DCHECK(maps_ != nullptr);
484 for (auto it = maps_->lower_bound(base_begin_), end = maps_->end();
485 it != end && it->first == base_begin_; ++it) {
486 if (it->second == this) {
487 found = true;
488 maps_->erase(it);
489 break;
490 }
491 }
492 CHECK(found) << "MemMap not found";
493 }
494
MemMap(const std::string & name,uint8_t * begin,size_t size,void * base_begin,size_t base_size,int prot,bool reuse,size_t redzone_size)495 MemMap::MemMap(const std::string& name, uint8_t* begin, size_t size, void* base_begin,
496 size_t base_size, int prot, bool reuse, size_t redzone_size)
497 : name_(name), begin_(begin), size_(size), base_begin_(base_begin), base_size_(base_size),
498 prot_(prot), reuse_(reuse), redzone_size_(redzone_size) {
499 if (size_ == 0) {
500 CHECK(begin_ == nullptr);
501 CHECK(base_begin_ == nullptr);
502 CHECK_EQ(base_size_, 0U);
503 } else {
504 CHECK(begin_ != nullptr);
505 CHECK(base_begin_ != nullptr);
506 CHECK_NE(base_size_, 0U);
507
508 // Add it to maps_.
509 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
510 DCHECK(maps_ != nullptr);
511 maps_->insert(std::make_pair(base_begin_, this));
512 }
513 }
514
RemapAtEnd(uint8_t * new_end,const char * tail_name,int tail_prot,std::string * error_msg,bool use_ashmem)515 MemMap* MemMap::RemapAtEnd(uint8_t* new_end, const char* tail_name, int tail_prot,
516 std::string* error_msg, bool use_ashmem) {
517 DCHECK_GE(new_end, Begin());
518 DCHECK_LE(new_end, End());
519 DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
520 DCHECK_ALIGNED(begin_, kPageSize);
521 DCHECK_ALIGNED(base_begin_, kPageSize);
522 DCHECK_ALIGNED(reinterpret_cast<uint8_t*>(base_begin_) + base_size_, kPageSize);
523 DCHECK_ALIGNED(new_end, kPageSize);
524 uint8_t* old_end = begin_ + size_;
525 uint8_t* old_base_end = reinterpret_cast<uint8_t*>(base_begin_) + base_size_;
526 uint8_t* new_base_end = new_end;
527 DCHECK_LE(new_base_end, old_base_end);
528 if (new_base_end == old_base_end) {
529 return new MemMap(tail_name, nullptr, 0, nullptr, 0, tail_prot, false);
530 }
531 size_ = new_end - reinterpret_cast<uint8_t*>(begin_);
532 base_size_ = new_base_end - reinterpret_cast<uint8_t*>(base_begin_);
533 DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
534 size_t tail_size = old_end - new_end;
535 uint8_t* tail_base_begin = new_base_end;
536 size_t tail_base_size = old_base_end - new_base_end;
537 DCHECK_EQ(tail_base_begin + tail_base_size, old_base_end);
538 DCHECK_ALIGNED(tail_base_size, kPageSize);
539
540 int int_fd = -1;
541 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
542 if (use_ashmem) {
543 // android_os_Debug.cpp read_mapinfo assumes all ashmem regions associated with the VM are
544 // prefixed "dalvik-".
545 std::string debug_friendly_name("dalvik-");
546 debug_friendly_name += tail_name;
547 int_fd = ashmem_create_region(debug_friendly_name.c_str(), tail_base_size);
548 flags = MAP_PRIVATE | MAP_FIXED;
549 if (int_fd == -1) {
550 *error_msg = StringPrintf("ashmem_create_region failed for '%s': %s",
551 tail_name, strerror(errno));
552 return nullptr;
553 }
554 }
555 ScopedFd fd(int_fd);
556
557 MEMORY_TOOL_MAKE_UNDEFINED(tail_base_begin, tail_base_size);
558 // Unmap/map the tail region.
559 int result = munmap(tail_base_begin, tail_base_size);
560 if (result == -1) {
561 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
562 *error_msg = StringPrintf("munmap(%p, %zd) failed for '%s'. See process maps in the log.",
563 tail_base_begin, tail_base_size, name_.c_str());
564 return nullptr;
565 }
566 // Don't cause memory allocation between the munmap and the mmap
567 // calls. Otherwise, libc (or something else) might take this memory
568 // region. Note this isn't perfect as there's no way to prevent
569 // other threads to try to take this memory region here.
570 uint8_t* actual = reinterpret_cast<uint8_t*>(mmap(tail_base_begin, tail_base_size, tail_prot,
571 flags, fd.get(), 0));
572 if (actual == MAP_FAILED) {
573 PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
574 *error_msg = StringPrintf("anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0) failed. See process "
575 "maps in the log.", tail_base_begin, tail_base_size, tail_prot, flags,
576 fd.get());
577 return nullptr;
578 }
579 return new MemMap(tail_name, actual, tail_size, actual, tail_base_size, tail_prot, false);
580 }
581
MadviseDontNeedAndZero()582 void MemMap::MadviseDontNeedAndZero() {
583 if (base_begin_ != nullptr || base_size_ != 0) {
584 if (!kMadviseZeroes) {
585 memset(base_begin_, 0, base_size_);
586 }
587 int result = madvise(base_begin_, base_size_, MADV_DONTNEED);
588 if (result == -1) {
589 PLOG(WARNING) << "madvise failed";
590 }
591 }
592 }
593
Sync()594 bool MemMap::Sync() {
595 bool result;
596 if (redzone_size_ != 0) {
597 // To avoid valgrind errors, temporarily lift the lower-end noaccess protection before passing
598 // it to msync() as it only accepts page-aligned base address, and exclude the higher-end
599 // noaccess protection from the msync range. b/27552451.
600 uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_);
601 MEMORY_TOOL_MAKE_DEFINED(base_begin, begin_ - base_begin);
602 result = msync(BaseBegin(), End() - base_begin, MS_SYNC) == 0;
603 MEMORY_TOOL_MAKE_NOACCESS(base_begin, begin_ - base_begin);
604 } else {
605 result = msync(BaseBegin(), BaseSize(), MS_SYNC) == 0;
606 }
607 return result;
608 }
609
Protect(int prot)610 bool MemMap::Protect(int prot) {
611 if (base_begin_ == nullptr && base_size_ == 0) {
612 prot_ = prot;
613 return true;
614 }
615
616 if (mprotect(base_begin_, base_size_, prot) == 0) {
617 prot_ = prot;
618 return true;
619 }
620
621 PLOG(ERROR) << "mprotect(" << reinterpret_cast<void*>(base_begin_) << ", " << base_size_ << ", "
622 << prot << ") failed";
623 return false;
624 }
625
CheckNoGaps(MemMap * begin_map,MemMap * end_map)626 bool MemMap::CheckNoGaps(MemMap* begin_map, MemMap* end_map) {
627 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
628 CHECK(begin_map != nullptr);
629 CHECK(end_map != nullptr);
630 CHECK(HasMemMap(begin_map));
631 CHECK(HasMemMap(end_map));
632 CHECK_LE(begin_map->BaseBegin(), end_map->BaseBegin());
633 MemMap* map = begin_map;
634 while (map->BaseBegin() != end_map->BaseBegin()) {
635 MemMap* next_map = GetLargestMemMapAt(map->BaseEnd());
636 if (next_map == nullptr) {
637 // Found a gap.
638 return false;
639 }
640 map = next_map;
641 }
642 return true;
643 }
644
DumpMaps(std::ostream & os,bool terse)645 void MemMap::DumpMaps(std::ostream& os, bool terse) {
646 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
647 DumpMapsLocked(os, terse);
648 }
649
DumpMapsLocked(std::ostream & os,bool terse)650 void MemMap::DumpMapsLocked(std::ostream& os, bool terse) {
651 const auto& mem_maps = *maps_;
652 if (!terse) {
653 os << mem_maps;
654 return;
655 }
656
657 // Terse output example:
658 // [MemMap: 0x409be000+0x20P~0x11dP+0x20P~0x61cP+0x20P prot=0x3 LinearAlloc]
659 // [MemMap: 0x451d6000+0x6bP(3) prot=0x3 large object space allocation]
660 // The details:
661 // "+0x20P" means 0x20 pages taken by a single mapping,
662 // "~0x11dP" means a gap of 0x11d pages,
663 // "+0x6bP(3)" means 3 mappings one after another, together taking 0x6b pages.
664 os << "MemMap:" << std::endl;
665 for (auto it = mem_maps.begin(), maps_end = mem_maps.end(); it != maps_end;) {
666 MemMap* map = it->second;
667 void* base = it->first;
668 CHECK_EQ(base, map->BaseBegin());
669 os << "[MemMap: " << base;
670 ++it;
671 // Merge consecutive maps with the same protect flags and name.
672 constexpr size_t kMaxGaps = 9;
673 size_t num_gaps = 0;
674 size_t num = 1u;
675 size_t size = map->BaseSize();
676 CHECK_ALIGNED(size, kPageSize);
677 void* end = map->BaseEnd();
678 while (it != maps_end &&
679 it->second->GetProtect() == map->GetProtect() &&
680 it->second->GetName() == map->GetName() &&
681 (it->second->BaseBegin() == end || num_gaps < kMaxGaps)) {
682 if (it->second->BaseBegin() != end) {
683 ++num_gaps;
684 os << "+0x" << std::hex << (size / kPageSize) << "P";
685 if (num != 1u) {
686 os << "(" << std::dec << num << ")";
687 }
688 size_t gap =
689 reinterpret_cast<uintptr_t>(it->second->BaseBegin()) - reinterpret_cast<uintptr_t>(end);
690 CHECK_ALIGNED(gap, kPageSize);
691 os << "~0x" << std::hex << (gap / kPageSize) << "P";
692 num = 0u;
693 size = 0u;
694 }
695 CHECK_ALIGNED(it->second->BaseSize(), kPageSize);
696 ++num;
697 size += it->second->BaseSize();
698 end = it->second->BaseEnd();
699 ++it;
700 }
701 os << "+0x" << std::hex << (size / kPageSize) << "P";
702 if (num != 1u) {
703 os << "(" << std::dec << num << ")";
704 }
705 os << " prot=0x" << std::hex << map->GetProtect() << " " << map->GetName() << "]" << std::endl;
706 }
707 }
708
HasMemMap(MemMap * map)709 bool MemMap::HasMemMap(MemMap* map) {
710 void* base_begin = map->BaseBegin();
711 for (auto it = maps_->lower_bound(base_begin), end = maps_->end();
712 it != end && it->first == base_begin; ++it) {
713 if (it->second == map) {
714 return true;
715 }
716 }
717 return false;
718 }
719
GetLargestMemMapAt(void * address)720 MemMap* MemMap::GetLargestMemMapAt(void* address) {
721 size_t largest_size = 0;
722 MemMap* largest_map = nullptr;
723 DCHECK(maps_ != nullptr);
724 for (auto it = maps_->lower_bound(address), end = maps_->end();
725 it != end && it->first == address; ++it) {
726 MemMap* map = it->second;
727 CHECK(map != nullptr);
728 if (largest_size < map->BaseSize()) {
729 largest_size = map->BaseSize();
730 largest_map = map;
731 }
732 }
733 return largest_map;
734 }
735
Init()736 void MemMap::Init() {
737 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
738 if (maps_ == nullptr) {
739 // dex2oat calls MemMap::Init twice since its needed before the runtime is created.
740 maps_ = new Maps;
741 }
742 }
743
Shutdown()744 void MemMap::Shutdown() {
745 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
746 delete maps_;
747 maps_ = nullptr;
748 }
749
SetSize(size_t new_size)750 void MemMap::SetSize(size_t new_size) {
751 if (new_size == base_size_) {
752 return;
753 }
754 CHECK_ALIGNED(new_size, kPageSize);
755 CHECK_EQ(base_size_, size_) << "Unsupported";
756 CHECK_LE(new_size, base_size_);
757 MEMORY_TOOL_MAKE_UNDEFINED(
758 reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) +
759 new_size),
760 base_size_ - new_size);
761 CHECK_EQ(munmap(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) + new_size),
762 base_size_ - new_size), 0) << new_size << " " << base_size_;
763 base_size_ = new_size;
764 size_ = new_size;
765 }
766
MapInternal(void * addr,size_t length,int prot,int flags,int fd,off_t offset,bool low_4gb)767 void* MemMap::MapInternal(void* addr,
768 size_t length,
769 int prot,
770 int flags,
771 int fd,
772 off_t offset,
773 bool low_4gb) {
774 #ifdef __LP64__
775 // When requesting low_4g memory and having an expectation, the requested range should fit into
776 // 4GB.
777 if (low_4gb && (
778 // Start out of bounds.
779 (reinterpret_cast<uintptr_t>(addr) >> 32) != 0 ||
780 // End out of bounds. For simplicity, this will fail for the last page of memory.
781 ((reinterpret_cast<uintptr_t>(addr) + length) >> 32) != 0)) {
782 LOG(ERROR) << "The requested address space (" << addr << ", "
783 << reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) + length)
784 << ") cannot fit in low_4gb";
785 return MAP_FAILED;
786 }
787 #else
788 UNUSED(low_4gb);
789 #endif
790 DCHECK_ALIGNED(length, kPageSize);
791 if (low_4gb) {
792 DCHECK_EQ(flags & MAP_FIXED, 0);
793 }
794 // TODO:
795 // A page allocator would be a useful abstraction here, as
796 // 1) It is doubtful that MAP_32BIT on x86_64 is doing the right job for us
797 void* actual = MAP_FAILED;
798 #if USE_ART_LOW_4G_ALLOCATOR
799 // MAP_32BIT only available on x86_64.
800 if (low_4gb && addr == nullptr) {
801 bool first_run = true;
802
803 MutexLock mu(Thread::Current(), *Locks::mem_maps_lock_);
804 for (uintptr_t ptr = next_mem_pos_; ptr < 4 * GB; ptr += kPageSize) {
805 // Use maps_ as an optimization to skip over large maps.
806 // Find the first map which is address > ptr.
807 auto it = maps_->upper_bound(reinterpret_cast<void*>(ptr));
808 if (it != maps_->begin()) {
809 auto before_it = it;
810 --before_it;
811 // Start at the end of the map before the upper bound.
812 ptr = std::max(ptr, reinterpret_cast<uintptr_t>(before_it->second->BaseEnd()));
813 CHECK_ALIGNED(ptr, kPageSize);
814 }
815 while (it != maps_->end()) {
816 // How much space do we have until the next map?
817 size_t delta = reinterpret_cast<uintptr_t>(it->first) - ptr;
818 // If the space may be sufficient, break out of the loop.
819 if (delta >= length) {
820 break;
821 }
822 // Otherwise, skip to the end of the map.
823 ptr = reinterpret_cast<uintptr_t>(it->second->BaseEnd());
824 CHECK_ALIGNED(ptr, kPageSize);
825 ++it;
826 }
827
828 // Try to see if we get lucky with this address since none of the ART maps overlap.
829 actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
830 if (actual != MAP_FAILED) {
831 next_mem_pos_ = reinterpret_cast<uintptr_t>(actual) + length;
832 return actual;
833 }
834
835 if (4U * GB - ptr < length) {
836 // Not enough memory until 4GB.
837 if (first_run) {
838 // Try another time from the bottom;
839 ptr = LOW_MEM_START - kPageSize;
840 first_run = false;
841 continue;
842 } else {
843 // Second try failed.
844 break;
845 }
846 }
847
848 uintptr_t tail_ptr;
849
850 // Check pages are free.
851 bool safe = true;
852 for (tail_ptr = ptr; tail_ptr < ptr + length; tail_ptr += kPageSize) {
853 if (msync(reinterpret_cast<void*>(tail_ptr), kPageSize, 0) == 0) {
854 safe = false;
855 break;
856 } else {
857 DCHECK_EQ(errno, ENOMEM);
858 }
859 }
860
861 next_mem_pos_ = tail_ptr; // update early, as we break out when we found and mapped a region
862
863 if (safe == true) {
864 actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
865 if (actual != MAP_FAILED) {
866 return actual;
867 }
868 } else {
869 // Skip over last page.
870 ptr = tail_ptr;
871 }
872 }
873
874 if (actual == MAP_FAILED) {
875 LOG(ERROR) << "Could not find contiguous low-memory space.";
876 errno = ENOMEM;
877 }
878 } else {
879 actual = mmap(addr, length, prot, flags, fd, offset);
880 }
881
882 #else
883 #if defined(__LP64__)
884 if (low_4gb && addr == nullptr) {
885 flags |= MAP_32BIT;
886 }
887 #endif
888 actual = mmap(addr, length, prot, flags, fd, offset);
889 #endif
890 return actual;
891 }
892
operator <<(std::ostream & os,const MemMap & mem_map)893 std::ostream& operator<<(std::ostream& os, const MemMap& mem_map) {
894 os << StringPrintf("[MemMap: %p-%p prot=0x%x %s]",
895 mem_map.BaseBegin(), mem_map.BaseEnd(), mem_map.GetProtect(),
896 mem_map.GetName().c_str());
897 return os;
898 }
899
TryReadable()900 void MemMap::TryReadable() {
901 if (base_begin_ == nullptr && base_size_ == 0) {
902 return;
903 }
904 CHECK_NE(prot_ & PROT_READ, 0);
905 volatile uint8_t* begin = reinterpret_cast<volatile uint8_t*>(base_begin_);
906 volatile uint8_t* end = begin + base_size_;
907 DCHECK(IsAligned<kPageSize>(begin));
908 DCHECK(IsAligned<kPageSize>(end));
909 // Read the first byte of each page. Use volatile to prevent the compiler from optimizing away the
910 // reads.
911 for (volatile uint8_t* ptr = begin; ptr < end; ptr += kPageSize) {
912 // This read could fault if protection wasn't set correctly.
913 uint8_t value = *ptr;
914 UNUSED(value);
915 }
916 }
917
918 } // namespace art
919