1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "utils.h"
18
19 #include <inttypes.h>
20 #include <pthread.h>
21 #include <sys/stat.h>
22 #include <sys/syscall.h>
23 #include <sys/types.h>
24 #include <sys/wait.h>
25 #include <unistd.h>
26 #include <memory>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/stl_util.h"
31 #include "base/unix_file/fd_file.h"
32 #include "dex_file-inl.h"
33 #include "dex_instruction.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/class_loader.h"
36 #include "mirror/object-inl.h"
37 #include "mirror/object_array-inl.h"
38 #include "mirror/string.h"
39 #include "oat_quick_method_header.h"
40 #include "os.h"
41 #include "scoped_thread_state_change.h"
42 #include "utf-inl.h"
43
44 #if defined(__APPLE__)
45 #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED
46 #include <sys/syscall.h>
47 #endif
48
49 // For DumpNativeStack.
50 #include <backtrace/Backtrace.h>
51 #include <backtrace/BacktraceMap.h>
52
53 #if defined(__linux__)
54 #include <linux/unistd.h>
55 #endif
56
57 namespace art {
58
59 #if defined(__linux__)
60 static constexpr bool kUseAddr2line = !kIsTargetBuild;
61 #endif
62
GetTid()63 pid_t GetTid() {
64 #if defined(__APPLE__)
65 uint64_t owner;
66 CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6
67 return owner;
68 #elif defined(__BIONIC__)
69 return gettid();
70 #else
71 return syscall(__NR_gettid);
72 #endif
73 }
74
GetThreadName(pid_t tid)75 std::string GetThreadName(pid_t tid) {
76 std::string result;
77 if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
78 result.resize(result.size() - 1); // Lose the trailing '\n'.
79 } else {
80 result = "<unknown>";
81 }
82 return result;
83 }
84
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)85 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) {
86 #if defined(__APPLE__)
87 *stack_size = pthread_get_stacksize_np(thread);
88 void* stack_addr = pthread_get_stackaddr_np(thread);
89
90 // Check whether stack_addr is the base or end of the stack.
91 // (On Mac OS 10.7, it's the end.)
92 int stack_variable;
93 if (stack_addr > &stack_variable) {
94 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
95 } else {
96 *stack_base = stack_addr;
97 }
98
99 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
100 pthread_attr_t attributes;
101 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
102 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
103 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
104 #else
105 pthread_attr_t attributes;
106 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
107 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
108 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
109 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
110
111 #if defined(__GLIBC__)
112 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
113 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
114 // will be broken because we'll die long before we get close to 2GB.
115 bool is_main_thread = (::art::GetTid() == getpid());
116 if (is_main_thread) {
117 rlimit stack_limit;
118 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
119 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
120 }
121 if (stack_limit.rlim_cur == RLIM_INFINITY) {
122 size_t old_stack_size = *stack_size;
123
124 // Use the kernel default limit as our size, and adjust the base to match.
125 *stack_size = 8 * MB;
126 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
127
128 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
129 << " to " << PrettySize(*stack_size)
130 << " with base " << *stack_base;
131 }
132 }
133 #endif
134
135 #endif
136 }
137
ReadFileToString(const std::string & file_name,std::string * result)138 bool ReadFileToString(const std::string& file_name, std::string* result) {
139 File file;
140 if (!file.Open(file_name, O_RDONLY)) {
141 return false;
142 }
143
144 std::vector<char> buf(8 * KB);
145 while (true) {
146 int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[0], buf.size()));
147 if (n == -1) {
148 return false;
149 }
150 if (n == 0) {
151 return true;
152 }
153 result->append(&buf[0], n);
154 }
155 }
156
PrintFileToLog(const std::string & file_name,LogSeverity level)157 bool PrintFileToLog(const std::string& file_name, LogSeverity level) {
158 File file;
159 if (!file.Open(file_name, O_RDONLY)) {
160 return false;
161 }
162
163 constexpr size_t kBufSize = 256; // Small buffer. Avoid stack overflow and stack size warnings.
164 char buf[kBufSize + 1]; // +1 for terminator.
165 size_t filled_to = 0;
166 while (true) {
167 DCHECK_LT(filled_to, kBufSize);
168 int64_t n = TEMP_FAILURE_RETRY(read(file.Fd(), &buf[filled_to], kBufSize - filled_to));
169 if (n <= 0) {
170 // Print the rest of the buffer, if it exists.
171 if (filled_to > 0) {
172 buf[filled_to] = 0;
173 LOG(level) << buf;
174 }
175 return n == 0;
176 }
177 // Scan for '\n'.
178 size_t i = filled_to;
179 bool found_newline = false;
180 for (; i < filled_to + n; ++i) {
181 if (buf[i] == '\n') {
182 // Found a line break, that's something to print now.
183 buf[i] = 0;
184 LOG(level) << buf;
185 // Copy the rest to the front.
186 if (i + 1 < filled_to + n) {
187 memmove(&buf[0], &buf[i + 1], filled_to + n - i - 1);
188 filled_to = filled_to + n - i - 1;
189 } else {
190 filled_to = 0;
191 }
192 found_newline = true;
193 break;
194 }
195 }
196 if (found_newline) {
197 continue;
198 } else {
199 filled_to += n;
200 // Check if we must flush now.
201 if (filled_to == kBufSize) {
202 buf[kBufSize] = 0;
203 LOG(level) << buf;
204 filled_to = 0;
205 }
206 }
207 }
208 }
209
PrettyDescriptor(mirror::String * java_descriptor)210 std::string PrettyDescriptor(mirror::String* java_descriptor) {
211 if (java_descriptor == nullptr) {
212 return "null";
213 }
214 return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str());
215 }
216
PrettyDescriptor(mirror::Class * klass)217 std::string PrettyDescriptor(mirror::Class* klass) {
218 if (klass == nullptr) {
219 return "null";
220 }
221 std::string temp;
222 return PrettyDescriptor(klass->GetDescriptor(&temp));
223 }
224
PrettyDescriptor(const char * descriptor)225 std::string PrettyDescriptor(const char* descriptor) {
226 // Count the number of '['s to get the dimensionality.
227 const char* c = descriptor;
228 size_t dim = 0;
229 while (*c == '[') {
230 dim++;
231 c++;
232 }
233
234 // Reference or primitive?
235 if (*c == 'L') {
236 // "[[La/b/C;" -> "a.b.C[][]".
237 c++; // Skip the 'L'.
238 } else {
239 // "[[B" -> "byte[][]".
240 // To make life easier, we make primitives look like unqualified
241 // reference types.
242 switch (*c) {
243 case 'B': c = "byte;"; break;
244 case 'C': c = "char;"; break;
245 case 'D': c = "double;"; break;
246 case 'F': c = "float;"; break;
247 case 'I': c = "int;"; break;
248 case 'J': c = "long;"; break;
249 case 'S': c = "short;"; break;
250 case 'Z': c = "boolean;"; break;
251 case 'V': c = "void;"; break; // Used when decoding return types.
252 default: return descriptor;
253 }
254 }
255
256 // At this point, 'c' is a string of the form "fully/qualified/Type;"
257 // or "primitive;". Rewrite the type with '.' instead of '/':
258 std::string result;
259 const char* p = c;
260 while (*p != ';') {
261 char ch = *p++;
262 if (ch == '/') {
263 ch = '.';
264 }
265 result.push_back(ch);
266 }
267 // ...and replace the semicolon with 'dim' "[]" pairs:
268 for (size_t i = 0; i < dim; ++i) {
269 result += "[]";
270 }
271 return result;
272 }
273
PrettyField(ArtField * f,bool with_type)274 std::string PrettyField(ArtField* f, bool with_type) {
275 if (f == nullptr) {
276 return "null";
277 }
278 std::string result;
279 if (with_type) {
280 result += PrettyDescriptor(f->GetTypeDescriptor());
281 result += ' ';
282 }
283 std::string temp;
284 result += PrettyDescriptor(f->GetDeclaringClass()->GetDescriptor(&temp));
285 result += '.';
286 result += f->GetName();
287 return result;
288 }
289
PrettyField(uint32_t field_idx,const DexFile & dex_file,bool with_type)290 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
291 if (field_idx >= dex_file.NumFieldIds()) {
292 return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
293 }
294 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
295 std::string result;
296 if (with_type) {
297 result += dex_file.GetFieldTypeDescriptor(field_id);
298 result += ' ';
299 }
300 result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
301 result += '.';
302 result += dex_file.GetFieldName(field_id);
303 return result;
304 }
305
PrettyType(uint32_t type_idx,const DexFile & dex_file)306 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
307 if (type_idx >= dex_file.NumTypeIds()) {
308 return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
309 }
310 const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
311 return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
312 }
313
PrettyArguments(const char * signature)314 std::string PrettyArguments(const char* signature) {
315 std::string result;
316 result += '(';
317 CHECK_EQ(*signature, '(');
318 ++signature; // Skip the '('.
319 while (*signature != ')') {
320 size_t argument_length = 0;
321 while (signature[argument_length] == '[') {
322 ++argument_length;
323 }
324 if (signature[argument_length] == 'L') {
325 argument_length = (strchr(signature, ';') - signature + 1);
326 } else {
327 ++argument_length;
328 }
329 {
330 std::string argument_descriptor(signature, argument_length);
331 result += PrettyDescriptor(argument_descriptor.c_str());
332 }
333 if (signature[argument_length] != ')') {
334 result += ", ";
335 }
336 signature += argument_length;
337 }
338 CHECK_EQ(*signature, ')');
339 ++signature; // Skip the ')'.
340 result += ')';
341 return result;
342 }
343
PrettyReturnType(const char * signature)344 std::string PrettyReturnType(const char* signature) {
345 const char* return_type = strchr(signature, ')');
346 CHECK(return_type != nullptr);
347 ++return_type; // Skip ')'.
348 return PrettyDescriptor(return_type);
349 }
350
PrettyMethod(ArtMethod * m,bool with_signature)351 std::string PrettyMethod(ArtMethod* m, bool with_signature) {
352 if (m == nullptr) {
353 return "null";
354 }
355 if (!m->IsRuntimeMethod()) {
356 m = m->GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize());
357 }
358 std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor()));
359 result += '.';
360 result += m->GetName();
361 if (UNLIKELY(m->IsFastNative())) {
362 result += "!";
363 }
364 if (with_signature) {
365 const Signature signature = m->GetSignature();
366 std::string sig_as_string(signature.ToString());
367 if (signature == Signature::NoSignature()) {
368 return result + sig_as_string;
369 }
370 result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
371 PrettyArguments(sig_as_string.c_str());
372 }
373 return result;
374 }
375
PrettyMethod(uint32_t method_idx,const DexFile & dex_file,bool with_signature)376 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
377 if (method_idx >= dex_file.NumMethodIds()) {
378 return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
379 }
380 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
381 std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
382 result += '.';
383 result += dex_file.GetMethodName(method_id);
384 if (with_signature) {
385 const Signature signature = dex_file.GetMethodSignature(method_id);
386 std::string sig_as_string(signature.ToString());
387 if (signature == Signature::NoSignature()) {
388 return result + sig_as_string;
389 }
390 result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
391 PrettyArguments(sig_as_string.c_str());
392 }
393 return result;
394 }
395
PrettyTypeOf(mirror::Object * obj)396 std::string PrettyTypeOf(mirror::Object* obj) {
397 if (obj == nullptr) {
398 return "null";
399 }
400 if (obj->GetClass() == nullptr) {
401 return "(raw)";
402 }
403 std::string temp;
404 std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp)));
405 if (obj->IsClass()) {
406 result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">";
407 }
408 return result;
409 }
410
PrettyClass(mirror::Class * c)411 std::string PrettyClass(mirror::Class* c) {
412 if (c == nullptr) {
413 return "null";
414 }
415 std::string result;
416 result += "java.lang.Class<";
417 result += PrettyDescriptor(c);
418 result += ">";
419 return result;
420 }
421
PrettyClassAndClassLoader(mirror::Class * c)422 std::string PrettyClassAndClassLoader(mirror::Class* c) {
423 if (c == nullptr) {
424 return "null";
425 }
426 std::string result;
427 result += "java.lang.Class<";
428 result += PrettyDescriptor(c);
429 result += ",";
430 result += PrettyTypeOf(c->GetClassLoader());
431 // TODO: add an identifying hash value for the loader
432 result += ">";
433 return result;
434 }
435
PrettyJavaAccessFlags(uint32_t access_flags)436 std::string PrettyJavaAccessFlags(uint32_t access_flags) {
437 std::string result;
438 if ((access_flags & kAccPublic) != 0) {
439 result += "public ";
440 }
441 if ((access_flags & kAccProtected) != 0) {
442 result += "protected ";
443 }
444 if ((access_flags & kAccPrivate) != 0) {
445 result += "private ";
446 }
447 if ((access_flags & kAccFinal) != 0) {
448 result += "final ";
449 }
450 if ((access_flags & kAccStatic) != 0) {
451 result += "static ";
452 }
453 if ((access_flags & kAccTransient) != 0) {
454 result += "transient ";
455 }
456 if ((access_flags & kAccVolatile) != 0) {
457 result += "volatile ";
458 }
459 if ((access_flags & kAccSynchronized) != 0) {
460 result += "synchronized ";
461 }
462 return result;
463 }
464
PrettySize(int64_t byte_count)465 std::string PrettySize(int64_t byte_count) {
466 // The byte thresholds at which we display amounts. A byte count is displayed
467 // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
468 static const int64_t kUnitThresholds[] = {
469 0, // B up to...
470 3*1024, // KB up to...
471 2*1024*1024, // MB up to...
472 1024*1024*1024 // GB from here.
473 };
474 static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
475 static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
476 const char* negative_str = "";
477 if (byte_count < 0) {
478 negative_str = "-";
479 byte_count = -byte_count;
480 }
481 int i = arraysize(kUnitThresholds);
482 while (--i > 0) {
483 if (byte_count >= kUnitThresholds[i]) {
484 break;
485 }
486 }
487 return StringPrintf("%s%" PRId64 "%s",
488 negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
489 }
490
PrintableChar(uint16_t ch)491 std::string PrintableChar(uint16_t ch) {
492 std::string result;
493 result += '\'';
494 if (NeedsEscaping(ch)) {
495 StringAppendF(&result, "\\u%04x", ch);
496 } else {
497 result += ch;
498 }
499 result += '\'';
500 return result;
501 }
502
PrintableString(const char * utf)503 std::string PrintableString(const char* utf) {
504 std::string result;
505 result += '"';
506 const char* p = utf;
507 size_t char_count = CountModifiedUtf8Chars(p);
508 for (size_t i = 0; i < char_count; ++i) {
509 uint32_t ch = GetUtf16FromUtf8(&p);
510 if (ch == '\\') {
511 result += "\\\\";
512 } else if (ch == '\n') {
513 result += "\\n";
514 } else if (ch == '\r') {
515 result += "\\r";
516 } else if (ch == '\t') {
517 result += "\\t";
518 } else {
519 const uint16_t leading = GetLeadingUtf16Char(ch);
520
521 if (NeedsEscaping(leading)) {
522 StringAppendF(&result, "\\u%04x", leading);
523 } else {
524 result += leading;
525 }
526
527 const uint32_t trailing = GetTrailingUtf16Char(ch);
528 if (trailing != 0) {
529 // All high surrogates will need escaping.
530 StringAppendF(&result, "\\u%04x", trailing);
531 }
532 }
533 }
534 result += '"';
535 return result;
536 }
537
538 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
MangleForJni(const std::string & s)539 std::string MangleForJni(const std::string& s) {
540 std::string result;
541 size_t char_count = CountModifiedUtf8Chars(s.c_str());
542 const char* cp = &s[0];
543 for (size_t i = 0; i < char_count; ++i) {
544 uint32_t ch = GetUtf16FromUtf8(&cp);
545 if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
546 result.push_back(ch);
547 } else if (ch == '.' || ch == '/') {
548 result += "_";
549 } else if (ch == '_') {
550 result += "_1";
551 } else if (ch == ';') {
552 result += "_2";
553 } else if (ch == '[') {
554 result += "_3";
555 } else {
556 const uint16_t leading = GetLeadingUtf16Char(ch);
557 const uint32_t trailing = GetTrailingUtf16Char(ch);
558
559 StringAppendF(&result, "_0%04x", leading);
560 if (trailing != 0) {
561 StringAppendF(&result, "_0%04x", trailing);
562 }
563 }
564 }
565 return result;
566 }
567
DotToDescriptor(const char * class_name)568 std::string DotToDescriptor(const char* class_name) {
569 std::string descriptor(class_name);
570 std::replace(descriptor.begin(), descriptor.end(), '.', '/');
571 if (descriptor.length() > 0 && descriptor[0] != '[') {
572 descriptor = "L" + descriptor + ";";
573 }
574 return descriptor;
575 }
576
DescriptorToDot(const char * descriptor)577 std::string DescriptorToDot(const char* descriptor) {
578 size_t length = strlen(descriptor);
579 if (length > 1) {
580 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
581 // Descriptors have the leading 'L' and trailing ';' stripped.
582 std::string result(descriptor + 1, length - 2);
583 std::replace(result.begin(), result.end(), '/', '.');
584 return result;
585 } else {
586 // For arrays the 'L' and ';' remain intact.
587 std::string result(descriptor);
588 std::replace(result.begin(), result.end(), '/', '.');
589 return result;
590 }
591 }
592 // Do nothing for non-class/array descriptors.
593 return descriptor;
594 }
595
DescriptorToName(const char * descriptor)596 std::string DescriptorToName(const char* descriptor) {
597 size_t length = strlen(descriptor);
598 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
599 std::string result(descriptor + 1, length - 2);
600 return result;
601 }
602 return descriptor;
603 }
604
JniShortName(ArtMethod * m)605 std::string JniShortName(ArtMethod* m) {
606 std::string class_name(m->GetDeclaringClassDescriptor());
607 // Remove the leading 'L' and trailing ';'...
608 CHECK_EQ(class_name[0], 'L') << class_name;
609 CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
610 class_name.erase(0, 1);
611 class_name.erase(class_name.size() - 1, 1);
612
613 std::string method_name(m->GetName());
614
615 std::string short_name;
616 short_name += "Java_";
617 short_name += MangleForJni(class_name);
618 short_name += "_";
619 short_name += MangleForJni(method_name);
620 return short_name;
621 }
622
JniLongName(ArtMethod * m)623 std::string JniLongName(ArtMethod* m) {
624 std::string long_name;
625 long_name += JniShortName(m);
626 long_name += "__";
627
628 std::string signature(m->GetSignature().ToString());
629 signature.erase(0, 1);
630 signature.erase(signature.begin() + signature.find(')'), signature.end());
631
632 long_name += MangleForJni(signature);
633
634 return long_name;
635 }
636
637 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
638 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
639 0x00000000, // 00..1f low control characters; nothing valid
640 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
641 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
642 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z'
643 };
644
645 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
IsValidPartOfMemberNameUtf8Slow(const char ** pUtf8Ptr)646 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
647 /*
648 * It's a multibyte encoded character. Decode it and analyze. We
649 * accept anything that isn't (a) an improperly encoded low value,
650 * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
651 * control character, or (e) a high space, layout, or special
652 * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
653 * U+fff0..U+ffff). This is all specified in the dex format
654 * document.
655 */
656
657 const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr);
658 const uint16_t leading = GetLeadingUtf16Char(pair);
659
660 // We have a surrogate pair resulting from a valid 4 byte UTF sequence.
661 // No further checks are necessary because 4 byte sequences span code
662 // points [U+10000, U+1FFFFF], which are valid codepoints in a dex
663 // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of
664 // the surrogate halves are valid and well formed in this instance.
665 if (GetTrailingUtf16Char(pair) != 0) {
666 return true;
667 }
668
669
670 // We've encountered a one, two or three byte UTF-8 sequence. The
671 // three byte UTF-8 sequence could be one half of a surrogate pair.
672 switch (leading >> 8) {
673 case 0x00:
674 // It's only valid if it's above the ISO-8859-1 high space (0xa0).
675 return (leading > 0x00a0);
676 case 0xd8:
677 case 0xd9:
678 case 0xda:
679 case 0xdb:
680 {
681 // We found a three byte sequence encoding one half of a surrogate.
682 // Look for the other half.
683 const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr);
684 const uint16_t trailing = GetLeadingUtf16Char(pair2);
685
686 return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff);
687 }
688 case 0xdc:
689 case 0xdd:
690 case 0xde:
691 case 0xdf:
692 // It's a trailing surrogate, which is not valid at this point.
693 return false;
694 case 0x20:
695 case 0xff:
696 // It's in the range that has spaces, controls, and specials.
697 switch (leading & 0xfff8) {
698 case 0x2000:
699 case 0x2008:
700 case 0x2028:
701 case 0xfff0:
702 case 0xfff8:
703 return false;
704 }
705 return true;
706 default:
707 return true;
708 }
709
710 UNREACHABLE();
711 }
712
713 /* Return whether the pointed-at modified-UTF-8 encoded character is
714 * valid as part of a member name, updating the pointer to point past
715 * the consumed character. This will consume two encoded UTF-16 code
716 * points if the character is encoded as a surrogate pair. Also, if
717 * this function returns false, then the given pointer may only have
718 * been partially advanced.
719 */
IsValidPartOfMemberNameUtf8(const char ** pUtf8Ptr)720 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
721 uint8_t c = (uint8_t) **pUtf8Ptr;
722 if (LIKELY(c <= 0x7f)) {
723 // It's low-ascii, so check the table.
724 uint32_t wordIdx = c >> 5;
725 uint32_t bitIdx = c & 0x1f;
726 (*pUtf8Ptr)++;
727 return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
728 }
729
730 // It's a multibyte encoded character. Call a non-inline function
731 // for the heavy lifting.
732 return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
733 }
734
IsValidMemberName(const char * s)735 bool IsValidMemberName(const char* s) {
736 bool angle_name = false;
737
738 switch (*s) {
739 case '\0':
740 // The empty string is not a valid name.
741 return false;
742 case '<':
743 angle_name = true;
744 s++;
745 break;
746 }
747
748 while (true) {
749 switch (*s) {
750 case '\0':
751 return !angle_name;
752 case '>':
753 return angle_name && s[1] == '\0';
754 }
755
756 if (!IsValidPartOfMemberNameUtf8(&s)) {
757 return false;
758 }
759 }
760 }
761
762 enum ClassNameType { kName, kDescriptor };
763 template<ClassNameType kType, char kSeparator>
IsValidClassName(const char * s)764 static bool IsValidClassName(const char* s) {
765 int arrayCount = 0;
766 while (*s == '[') {
767 arrayCount++;
768 s++;
769 }
770
771 if (arrayCount > 255) {
772 // Arrays may have no more than 255 dimensions.
773 return false;
774 }
775
776 ClassNameType type = kType;
777 if (type != kDescriptor && arrayCount != 0) {
778 /*
779 * If we're looking at an array of some sort, then it doesn't
780 * matter if what is being asked for is a class name; the
781 * format looks the same as a type descriptor in that case, so
782 * treat it as such.
783 */
784 type = kDescriptor;
785 }
786
787 if (type == kDescriptor) {
788 /*
789 * We are looking for a descriptor. Either validate it as a
790 * single-character primitive type, or continue on to check the
791 * embedded class name (bracketed by "L" and ";").
792 */
793 switch (*(s++)) {
794 case 'B':
795 case 'C':
796 case 'D':
797 case 'F':
798 case 'I':
799 case 'J':
800 case 'S':
801 case 'Z':
802 // These are all single-character descriptors for primitive types.
803 return (*s == '\0');
804 case 'V':
805 // Non-array void is valid, but you can't have an array of void.
806 return (arrayCount == 0) && (*s == '\0');
807 case 'L':
808 // Class name: Break out and continue below.
809 break;
810 default:
811 // Oddball descriptor character.
812 return false;
813 }
814 }
815
816 /*
817 * We just consumed the 'L' that introduces a class name as part
818 * of a type descriptor, or we are looking for an unadorned class
819 * name.
820 */
821
822 bool sepOrFirst = true; // first character or just encountered a separator.
823 for (;;) {
824 uint8_t c = (uint8_t) *s;
825 switch (c) {
826 case '\0':
827 /*
828 * Premature end for a type descriptor, but valid for
829 * a class name as long as we haven't encountered an
830 * empty component (including the degenerate case of
831 * the empty string "").
832 */
833 return (type == kName) && !sepOrFirst;
834 case ';':
835 /*
836 * Invalid character for a class name, but the
837 * legitimate end of a type descriptor. In the latter
838 * case, make sure that this is the end of the string
839 * and that it doesn't end with an empty component
840 * (including the degenerate case of "L;").
841 */
842 return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
843 case '/':
844 case '.':
845 if (c != kSeparator) {
846 // The wrong separator character.
847 return false;
848 }
849 if (sepOrFirst) {
850 // Separator at start or two separators in a row.
851 return false;
852 }
853 sepOrFirst = true;
854 s++;
855 break;
856 default:
857 if (!IsValidPartOfMemberNameUtf8(&s)) {
858 return false;
859 }
860 sepOrFirst = false;
861 break;
862 }
863 }
864 }
865
IsValidBinaryClassName(const char * s)866 bool IsValidBinaryClassName(const char* s) {
867 return IsValidClassName<kName, '.'>(s);
868 }
869
IsValidJniClassName(const char * s)870 bool IsValidJniClassName(const char* s) {
871 return IsValidClassName<kName, '/'>(s);
872 }
873
IsValidDescriptor(const char * s)874 bool IsValidDescriptor(const char* s) {
875 return IsValidClassName<kDescriptor, '/'>(s);
876 }
877
Split(const std::string & s,char separator,std::vector<std::string> * result)878 void Split(const std::string& s, char separator, std::vector<std::string>* result) {
879 const char* p = s.data();
880 const char* end = p + s.size();
881 while (p != end) {
882 if (*p == separator) {
883 ++p;
884 } else {
885 const char* start = p;
886 while (++p != end && *p != separator) {
887 // Skip to the next occurrence of the separator.
888 }
889 result->push_back(std::string(start, p - start));
890 }
891 }
892 }
893
Trim(const std::string & s)894 std::string Trim(const std::string& s) {
895 std::string result;
896 unsigned int start_index = 0;
897 unsigned int end_index = s.size() - 1;
898
899 // Skip initial whitespace.
900 while (start_index < s.size()) {
901 if (!isspace(s[start_index])) {
902 break;
903 }
904 start_index++;
905 }
906
907 // Skip terminating whitespace.
908 while (end_index >= start_index) {
909 if (!isspace(s[end_index])) {
910 break;
911 }
912 end_index--;
913 }
914
915 // All spaces, no beef.
916 if (end_index < start_index) {
917 return "";
918 }
919 // Start_index is the first non-space, end_index is the last one.
920 return s.substr(start_index, end_index - start_index + 1);
921 }
922
923 template <typename StringT>
Join(const std::vector<StringT> & strings,char separator)924 std::string Join(const std::vector<StringT>& strings, char separator) {
925 if (strings.empty()) {
926 return "";
927 }
928
929 std::string result(strings[0]);
930 for (size_t i = 1; i < strings.size(); ++i) {
931 result += separator;
932 result += strings[i];
933 }
934 return result;
935 }
936
937 // Explicit instantiations.
938 template std::string Join<std::string>(const std::vector<std::string>& strings, char separator);
939 template std::string Join<const char*>(const std::vector<const char*>& strings, char separator);
940
StartsWith(const std::string & s,const char * prefix)941 bool StartsWith(const std::string& s, const char* prefix) {
942 return s.compare(0, strlen(prefix), prefix) == 0;
943 }
944
EndsWith(const std::string & s,const char * suffix)945 bool EndsWith(const std::string& s, const char* suffix) {
946 size_t suffix_length = strlen(suffix);
947 size_t string_length = s.size();
948 if (suffix_length > string_length) {
949 return false;
950 }
951 size_t offset = string_length - suffix_length;
952 return s.compare(offset, suffix_length, suffix) == 0;
953 }
954
SetThreadName(const char * thread_name)955 void SetThreadName(const char* thread_name) {
956 int hasAt = 0;
957 int hasDot = 0;
958 const char* s = thread_name;
959 while (*s) {
960 if (*s == '.') {
961 hasDot = 1;
962 } else if (*s == '@') {
963 hasAt = 1;
964 }
965 s++;
966 }
967 int len = s - thread_name;
968 if (len < 15 || hasAt || !hasDot) {
969 s = thread_name;
970 } else {
971 s = thread_name + len - 15;
972 }
973 #if defined(__linux__)
974 // pthread_setname_np fails rather than truncating long strings.
975 char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel.
976 strncpy(buf, s, sizeof(buf)-1);
977 buf[sizeof(buf)-1] = '\0';
978 errno = pthread_setname_np(pthread_self(), buf);
979 if (errno != 0) {
980 PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
981 }
982 #else // __APPLE__
983 pthread_setname_np(thread_name);
984 #endif
985 }
986
GetTaskStats(pid_t tid,char * state,int * utime,int * stime,int * task_cpu)987 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
988 *utime = *stime = *task_cpu = 0;
989 std::string stats;
990 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
991 return;
992 }
993 // Skip the command, which may contain spaces.
994 stats = stats.substr(stats.find(')') + 2);
995 // Extract the three fields we care about.
996 std::vector<std::string> fields;
997 Split(stats, ' ', &fields);
998 *state = fields[0][0];
999 *utime = strtoull(fields[11].c_str(), nullptr, 10);
1000 *stime = strtoull(fields[12].c_str(), nullptr, 10);
1001 *task_cpu = strtoull(fields[36].c_str(), nullptr, 10);
1002 }
1003
GetSchedulerGroupName(pid_t tid)1004 std::string GetSchedulerGroupName(pid_t tid) {
1005 // /proc/<pid>/cgroup looks like this:
1006 // 2:devices:/
1007 // 1:cpuacct,cpu:/
1008 // We want the third field from the line whose second field contains the "cpu" token.
1009 std::string cgroup_file;
1010 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1011 return "";
1012 }
1013 std::vector<std::string> cgroup_lines;
1014 Split(cgroup_file, '\n', &cgroup_lines);
1015 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1016 std::vector<std::string> cgroup_fields;
1017 Split(cgroup_lines[i], ':', &cgroup_fields);
1018 std::vector<std::string> cgroups;
1019 Split(cgroup_fields[1], ',', &cgroups);
1020 for (size_t j = 0; j < cgroups.size(); ++j) {
1021 if (cgroups[j] == "cpu") {
1022 return cgroup_fields[2].substr(1); // Skip the leading slash.
1023 }
1024 }
1025 }
1026 return "";
1027 }
1028
1029 #if defined(__linux__)
1030
1031 ALWAYS_INLINE
WritePrefix(std::ostream * os,const char * prefix,bool odd)1032 static inline void WritePrefix(std::ostream* os, const char* prefix, bool odd) {
1033 if (prefix != nullptr) {
1034 *os << prefix;
1035 }
1036 *os << " ";
1037 if (!odd) {
1038 *os << " ";
1039 }
1040 }
1041
RunCommand(std::string cmd,std::ostream * os,const char * prefix)1042 static bool RunCommand(std::string cmd, std::ostream* os, const char* prefix) {
1043 FILE* stream = popen(cmd.c_str(), "r");
1044 if (stream) {
1045 if (os != nullptr) {
1046 bool odd_line = true; // We indent them differently.
1047 bool wrote_prefix = false; // Have we already written a prefix?
1048 constexpr size_t kMaxBuffer = 128; // Relatively small buffer. Should be OK as we're on an
1049 // alt stack, but just to be sure...
1050 char buffer[kMaxBuffer];
1051 while (!feof(stream)) {
1052 if (fgets(buffer, kMaxBuffer, stream) != nullptr) {
1053 // Split on newlines.
1054 char* tmp = buffer;
1055 for (;;) {
1056 char* new_line = strchr(tmp, '\n');
1057 if (new_line == nullptr) {
1058 // Print the rest.
1059 if (*tmp != 0) {
1060 if (!wrote_prefix) {
1061 WritePrefix(os, prefix, odd_line);
1062 }
1063 wrote_prefix = true;
1064 *os << tmp;
1065 }
1066 break;
1067 }
1068 if (!wrote_prefix) {
1069 WritePrefix(os, prefix, odd_line);
1070 }
1071 char saved = *(new_line + 1);
1072 *(new_line + 1) = 0;
1073 *os << tmp;
1074 *(new_line + 1) = saved;
1075 tmp = new_line + 1;
1076 odd_line = !odd_line;
1077 wrote_prefix = false;
1078 }
1079 }
1080 }
1081 }
1082 pclose(stream);
1083 return true;
1084 } else {
1085 return false;
1086 }
1087 }
1088
Addr2line(const std::string & map_src,uintptr_t offset,std::ostream & os,const char * prefix)1089 static void Addr2line(const std::string& map_src, uintptr_t offset, std::ostream& os,
1090 const char* prefix) {
1091 std::string cmdline(StringPrintf("addr2line --functions --inlines --demangle -e %s %zx",
1092 map_src.c_str(), offset));
1093 RunCommand(cmdline.c_str(), &os, prefix);
1094 }
1095
PcIsWithinQuickCode(ArtMethod * method,uintptr_t pc)1096 static bool PcIsWithinQuickCode(ArtMethod* method, uintptr_t pc) NO_THREAD_SAFETY_ANALYSIS {
1097 uintptr_t code = reinterpret_cast<uintptr_t>(EntryPointToCodePointer(
1098 method->GetEntryPointFromQuickCompiledCode()));
1099 if (code == 0) {
1100 return pc == 0;
1101 }
1102 uintptr_t code_size = reinterpret_cast<const OatQuickMethodHeader*>(code)[-1].code_size_;
1103 return code <= pc && pc <= (code + code_size);
1104 }
1105 #endif
1106
DumpNativeStack(std::ostream & os,pid_t tid,BacktraceMap * existing_map,const char * prefix,ArtMethod * current_method,void * ucontext_ptr)1107 void DumpNativeStack(std::ostream& os, pid_t tid, BacktraceMap* existing_map, const char* prefix,
1108 ArtMethod* current_method, void* ucontext_ptr) {
1109 #if __linux__
1110 // b/18119146
1111 if (RUNNING_ON_MEMORY_TOOL != 0) {
1112 return;
1113 }
1114
1115 BacktraceMap* map = existing_map;
1116 std::unique_ptr<BacktraceMap> tmp_map;
1117 if (map == nullptr) {
1118 tmp_map.reset(BacktraceMap::Create(getpid()));
1119 map = tmp_map.get();
1120 }
1121 std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid, map));
1122 if (!backtrace->Unwind(0, reinterpret_cast<ucontext*>(ucontext_ptr))) {
1123 os << prefix << "(backtrace::Unwind failed for thread " << tid
1124 << ": " << backtrace->GetErrorString(backtrace->GetError()) << ")\n";
1125 return;
1126 } else if (backtrace->NumFrames() == 0) {
1127 os << prefix << "(no native stack frames for thread " << tid << ")\n";
1128 return;
1129 }
1130
1131 // Check whether we have and should use addr2line.
1132 bool use_addr2line;
1133 if (kUseAddr2line) {
1134 // Try to run it to see whether we have it. Push an argument so that it doesn't assume a.out
1135 // and print to stderr.
1136 use_addr2line = (gAborting > 0) && RunCommand("addr2line -h", nullptr, nullptr);
1137 } else {
1138 use_addr2line = false;
1139 }
1140
1141 for (Backtrace::const_iterator it = backtrace->begin();
1142 it != backtrace->end(); ++it) {
1143 // We produce output like this:
1144 // ] #00 pc 000075bb8 /system/lib/libc.so (unwind_backtrace_thread+536)
1145 // In order for parsing tools to continue to function, the stack dump
1146 // format must at least adhere to this format:
1147 // #XX pc <RELATIVE_ADDR> <FULL_PATH_TO_SHARED_LIBRARY> ...
1148 // The parsers require a single space before and after pc, and two spaces
1149 // after the <RELATIVE_ADDR>. There can be any prefix data before the
1150 // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
1151 os << prefix << StringPrintf("#%02zu pc ", it->num);
1152 bool try_addr2line = false;
1153 if (!BacktraceMap::IsValid(it->map)) {
1154 os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR " ???"
1155 : "%08" PRIxPTR " ???",
1156 it->pc);
1157 } else {
1158 os << StringPrintf(Is64BitInstructionSet(kRuntimeISA) ? "%016" PRIxPTR " "
1159 : "%08" PRIxPTR " ",
1160 BacktraceMap::GetRelativePc(it->map, it->pc));
1161 os << it->map.name;
1162 os << " (";
1163 if (!it->func_name.empty()) {
1164 os << it->func_name;
1165 if (it->func_offset != 0) {
1166 os << "+" << it->func_offset;
1167 }
1168 try_addr2line = true;
1169 } else if (current_method != nullptr &&
1170 Locks::mutator_lock_->IsSharedHeld(Thread::Current()) &&
1171 PcIsWithinQuickCode(current_method, it->pc)) {
1172 const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
1173 os << JniLongName(current_method) << "+"
1174 << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
1175 } else {
1176 os << "???";
1177 }
1178 os << ")";
1179 }
1180 os << "\n";
1181 if (try_addr2line && use_addr2line) {
1182 Addr2line(it->map.name, it->pc - it->map.start, os, prefix);
1183 }
1184 }
1185 #else
1186 UNUSED(os, tid, existing_map, prefix, current_method, ucontext_ptr);
1187 #endif
1188 }
1189
1190 #if defined(__APPLE__)
1191
1192 // TODO: is there any way to get the kernel stack on Mac OS?
DumpKernelStack(std::ostream &,pid_t,const char *,bool)1193 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1194
1195 #else
1196
DumpKernelStack(std::ostream & os,pid_t tid,const char * prefix,bool include_count)1197 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1198 if (tid == GetTid()) {
1199 // There's no point showing that we're reading our stack out of /proc!
1200 return;
1201 }
1202
1203 std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1204 std::string kernel_stack;
1205 if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1206 os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1207 return;
1208 }
1209
1210 std::vector<std::string> kernel_stack_frames;
1211 Split(kernel_stack, '\n', &kernel_stack_frames);
1212 // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1213 // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1214 kernel_stack_frames.pop_back();
1215 for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1216 // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
1217 // into "futex_wait_queue_me+0xcd/0x110".
1218 const char* text = kernel_stack_frames[i].c_str();
1219 const char* close_bracket = strchr(text, ']');
1220 if (close_bracket != nullptr) {
1221 text = close_bracket + 2;
1222 }
1223 os << prefix;
1224 if (include_count) {
1225 os << StringPrintf("#%02zd ", i);
1226 }
1227 os << text << "\n";
1228 }
1229 }
1230
1231 #endif
1232
GetAndroidRoot()1233 const char* GetAndroidRoot() {
1234 const char* android_root = getenv("ANDROID_ROOT");
1235 if (android_root == nullptr) {
1236 if (OS::DirectoryExists("/system")) {
1237 android_root = "/system";
1238 } else {
1239 LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1240 return "";
1241 }
1242 }
1243 if (!OS::DirectoryExists(android_root)) {
1244 LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1245 return "";
1246 }
1247 return android_root;
1248 }
1249
GetAndroidData()1250 const char* GetAndroidData() {
1251 std::string error_msg;
1252 const char* dir = GetAndroidDataSafe(&error_msg);
1253 if (dir != nullptr) {
1254 return dir;
1255 } else {
1256 LOG(FATAL) << error_msg;
1257 return "";
1258 }
1259 }
1260
GetAndroidDataSafe(std::string * error_msg)1261 const char* GetAndroidDataSafe(std::string* error_msg) {
1262 const char* android_data = getenv("ANDROID_DATA");
1263 if (android_data == nullptr) {
1264 if (OS::DirectoryExists("/data")) {
1265 android_data = "/data";
1266 } else {
1267 *error_msg = "ANDROID_DATA not set and /data does not exist";
1268 return nullptr;
1269 }
1270 }
1271 if (!OS::DirectoryExists(android_data)) {
1272 *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data);
1273 return nullptr;
1274 }
1275 return android_data;
1276 }
1277
GetDalvikCache(const char * subdir,const bool create_if_absent,std::string * dalvik_cache,bool * have_android_data,bool * dalvik_cache_exists,bool * is_global_cache)1278 void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache,
1279 bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) {
1280 CHECK(subdir != nullptr);
1281 std::string error_msg;
1282 const char* android_data = GetAndroidDataSafe(&error_msg);
1283 if (android_data == nullptr) {
1284 *have_android_data = false;
1285 *dalvik_cache_exists = false;
1286 *is_global_cache = false;
1287 return;
1288 } else {
1289 *have_android_data = true;
1290 }
1291 const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1292 *dalvik_cache = dalvik_cache_root + subdir;
1293 *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str());
1294 *is_global_cache = strcmp(android_data, "/data") == 0;
1295 if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) {
1296 // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1297 *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) &&
1298 (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST));
1299 }
1300 }
1301
GetDalvikCacheImpl(const char * subdir,const bool create_if_absent,const bool abort_on_error)1302 static std::string GetDalvikCacheImpl(const char* subdir,
1303 const bool create_if_absent,
1304 const bool abort_on_error) {
1305 CHECK(subdir != nullptr);
1306 const char* android_data = GetAndroidData();
1307 const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1308 const std::string dalvik_cache = dalvik_cache_root + subdir;
1309 if (!OS::DirectoryExists(dalvik_cache.c_str())) {
1310 if (!create_if_absent) {
1311 // TODO: Check callers. Traditional behavior is to not to abort, even when abort_on_error.
1312 return "";
1313 }
1314
1315 // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1316 if (strcmp(android_data, "/data") == 0) {
1317 if (abort_on_error) {
1318 LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache
1319 << ", cannot create /data dalvik-cache.";
1320 UNREACHABLE();
1321 }
1322 return "";
1323 }
1324
1325 int result = mkdir(dalvik_cache_root.c_str(), 0700);
1326 if (result != 0 && errno != EEXIST) {
1327 if (abort_on_error) {
1328 PLOG(FATAL) << "Failed to create dalvik-cache root directory " << dalvik_cache_root;
1329 UNREACHABLE();
1330 }
1331 return "";
1332 }
1333
1334 result = mkdir(dalvik_cache.c_str(), 0700);
1335 if (result != 0) {
1336 if (abort_on_error) {
1337 PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1338 UNREACHABLE();
1339 }
1340 return "";
1341 }
1342 }
1343 return dalvik_cache;
1344 }
1345
GetDalvikCache(const char * subdir,const bool create_if_absent)1346 std::string GetDalvikCache(const char* subdir, const bool create_if_absent) {
1347 return GetDalvikCacheImpl(subdir, create_if_absent, false);
1348 }
1349
GetDalvikCacheOrDie(const char * subdir,const bool create_if_absent)1350 std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
1351 return GetDalvikCacheImpl(subdir, create_if_absent, true);
1352 }
1353
GetDalvikCacheFilename(const char * location,const char * cache_location,std::string * filename,std::string * error_msg)1354 bool GetDalvikCacheFilename(const char* location, const char* cache_location,
1355 std::string* filename, std::string* error_msg) {
1356 if (location[0] != '/') {
1357 *error_msg = StringPrintf("Expected path in location to be absolute: %s", location);
1358 return false;
1359 }
1360 std::string cache_file(&location[1]); // skip leading slash
1361 if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) {
1362 cache_file += "/";
1363 cache_file += DexFile::kClassesDex;
1364 }
1365 std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1366 *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str());
1367 return true;
1368 }
1369
GetDalvikCacheFilenameOrDie(const char * location,const char * cache_location)1370 std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
1371 std::string ret;
1372 std::string error_msg;
1373 if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) {
1374 LOG(FATAL) << error_msg;
1375 }
1376 return ret;
1377 }
1378
InsertIsaDirectory(const InstructionSet isa,std::string * filename)1379 static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
1380 // in = /foo/bar/baz
1381 // out = /foo/bar/<isa>/baz
1382 size_t pos = filename->rfind('/');
1383 CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
1384 filename->insert(pos, "/", 1);
1385 filename->insert(pos + 1, GetInstructionSetString(isa));
1386 }
1387
GetSystemImageFilename(const char * location,const InstructionSet isa)1388 std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
1389 // location = /system/framework/boot.art
1390 // filename = /system/framework/<isa>/boot.art
1391 std::string filename(location);
1392 InsertIsaDirectory(isa, &filename);
1393 return filename;
1394 }
1395
ExecAndReturnCode(std::vector<std::string> & arg_vector,std::string * error_msg)1396 int ExecAndReturnCode(std::vector<std::string>& arg_vector, std::string* error_msg) {
1397 const std::string command_line(Join(arg_vector, ' '));
1398 CHECK_GE(arg_vector.size(), 1U) << command_line;
1399
1400 // Convert the args to char pointers.
1401 const char* program = arg_vector[0].c_str();
1402 std::vector<char*> args;
1403 for (size_t i = 0; i < arg_vector.size(); ++i) {
1404 const std::string& arg = arg_vector[i];
1405 char* arg_str = const_cast<char*>(arg.c_str());
1406 CHECK(arg_str != nullptr) << i;
1407 args.push_back(arg_str);
1408 }
1409 args.push_back(nullptr);
1410
1411 // fork and exec
1412 pid_t pid = fork();
1413 if (pid == 0) {
1414 // no allocation allowed between fork and exec
1415
1416 // change process groups, so we don't get reaped by ProcessManager
1417 setpgid(0, 0);
1418
1419 execv(program, &args[0]);
1420 PLOG(ERROR) << "Failed to execv(" << command_line << ")";
1421 // _exit to avoid atexit handlers in child.
1422 _exit(1);
1423 } else {
1424 if (pid == -1) {
1425 *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
1426 command_line.c_str(), strerror(errno));
1427 return -1;
1428 }
1429
1430 // wait for subprocess to finish
1431 int status = -1;
1432 pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
1433 if (got_pid != pid) {
1434 *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
1435 "wanted %d, got %d: %s",
1436 command_line.c_str(), pid, got_pid, strerror(errno));
1437 return -1;
1438 }
1439 if (WIFEXITED(status)) {
1440 return WEXITSTATUS(status);
1441 }
1442 return -1;
1443 }
1444 }
1445
Exec(std::vector<std::string> & arg_vector,std::string * error_msg)1446 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
1447 int status = ExecAndReturnCode(arg_vector, error_msg);
1448 if (status != 0) {
1449 const std::string command_line(Join(arg_vector, ' '));
1450 *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
1451 command_line.c_str());
1452 return false;
1453 }
1454 return true;
1455 }
1456
FileExists(const std::string & filename)1457 bool FileExists(const std::string& filename) {
1458 struct stat buffer;
1459 return stat(filename.c_str(), &buffer) == 0;
1460 }
1461
FileExistsAndNotEmpty(const std::string & filename)1462 bool FileExistsAndNotEmpty(const std::string& filename) {
1463 struct stat buffer;
1464 if (stat(filename.c_str(), &buffer) != 0) {
1465 return false;
1466 }
1467 return buffer.st_size > 0;
1468 }
1469
PrettyDescriptor(Primitive::Type type)1470 std::string PrettyDescriptor(Primitive::Type type) {
1471 return PrettyDescriptor(Primitive::Descriptor(type));
1472 }
1473
DumpMethodCFGImpl(const DexFile * dex_file,uint32_t dex_method_idx,const DexFile::CodeItem * code_item,std::ostream & os)1474 static void DumpMethodCFGImpl(const DexFile* dex_file,
1475 uint32_t dex_method_idx,
1476 const DexFile::CodeItem* code_item,
1477 std::ostream& os) {
1478 os << "digraph {\n";
1479 os << " # /* " << PrettyMethod(dex_method_idx, *dex_file, true) << " */\n";
1480
1481 std::set<uint32_t> dex_pc_is_branch_target;
1482 {
1483 // Go and populate.
1484 const Instruction* inst = Instruction::At(code_item->insns_);
1485 for (uint32_t dex_pc = 0;
1486 dex_pc < code_item->insns_size_in_code_units_;
1487 dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
1488 if (inst->IsBranch()) {
1489 dex_pc_is_branch_target.insert(dex_pc + inst->GetTargetOffset());
1490 } else if (inst->IsSwitch()) {
1491 const uint16_t* insns = code_item->insns_ + dex_pc;
1492 int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1493 const uint16_t* switch_insns = insns + switch_offset;
1494 uint32_t switch_count = switch_insns[1];
1495 int32_t targets_offset;
1496 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1497 /* 0=sig, 1=count, 2/3=firstKey */
1498 targets_offset = 4;
1499 } else {
1500 /* 0=sig, 1=count, 2..count*2 = keys */
1501 targets_offset = 2 + 2 * switch_count;
1502 }
1503 for (uint32_t targ = 0; targ < switch_count; targ++) {
1504 int32_t offset =
1505 static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1506 static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1507 dex_pc_is_branch_target.insert(dex_pc + offset);
1508 }
1509 }
1510 }
1511 }
1512
1513 // Create nodes for "basic blocks."
1514 std::map<uint32_t, uint32_t> dex_pc_to_node_id; // This only has entries for block starts.
1515 std::map<uint32_t, uint32_t> dex_pc_to_incl_id; // This has entries for all dex pcs.
1516
1517 {
1518 const Instruction* inst = Instruction::At(code_item->insns_);
1519 bool first_in_block = true;
1520 bool force_new_block = false;
1521 for (uint32_t dex_pc = 0;
1522 dex_pc < code_item->insns_size_in_code_units_;
1523 dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
1524 if (dex_pc == 0 ||
1525 (dex_pc_is_branch_target.find(dex_pc) != dex_pc_is_branch_target.end()) ||
1526 force_new_block) {
1527 uint32_t id = dex_pc_to_node_id.size();
1528 if (id > 0) {
1529 // End last node.
1530 os << "}\"];\n";
1531 }
1532 // Start next node.
1533 os << " node" << id << " [shape=record,label=\"{";
1534 dex_pc_to_node_id.insert(std::make_pair(dex_pc, id));
1535 first_in_block = true;
1536 force_new_block = false;
1537 }
1538
1539 // Register instruction.
1540 dex_pc_to_incl_id.insert(std::make_pair(dex_pc, dex_pc_to_node_id.size() - 1));
1541
1542 // Print instruction.
1543 if (!first_in_block) {
1544 os << " | ";
1545 } else {
1546 first_in_block = false;
1547 }
1548
1549 // Dump the instruction. Need to escape '"', '<', '>', '{' and '}'.
1550 os << "<" << "p" << dex_pc << ">";
1551 os << " 0x" << std::hex << dex_pc << std::dec << ": ";
1552 std::string inst_str = inst->DumpString(dex_file);
1553 size_t cur_start = 0; // It's OK to start at zero, instruction dumps don't start with chars
1554 // we need to escape.
1555 while (cur_start != std::string::npos) {
1556 size_t next_escape = inst_str.find_first_of("\"{}<>", cur_start + 1);
1557 if (next_escape == std::string::npos) {
1558 os << inst_str.substr(cur_start, inst_str.size() - cur_start);
1559 break;
1560 } else {
1561 os << inst_str.substr(cur_start, next_escape - cur_start);
1562 // Escape all necessary characters.
1563 while (next_escape < inst_str.size()) {
1564 char c = inst_str.at(next_escape);
1565 if (c == '"' || c == '{' || c == '}' || c == '<' || c == '>') {
1566 os << '\\' << c;
1567 } else {
1568 break;
1569 }
1570 next_escape++;
1571 }
1572 if (next_escape >= inst_str.size()) {
1573 next_escape = std::string::npos;
1574 }
1575 cur_start = next_escape;
1576 }
1577 }
1578
1579 // Force a new block for some fall-throughs and some instructions that terminate the "local"
1580 // control flow.
1581 force_new_block = inst->IsSwitch() || inst->IsBasicBlockEnd();
1582 }
1583 // Close last node.
1584 if (dex_pc_to_node_id.size() > 0) {
1585 os << "}\"];\n";
1586 }
1587 }
1588
1589 // Create edges between them.
1590 {
1591 std::ostringstream regular_edges;
1592 std::ostringstream taken_edges;
1593 std::ostringstream exception_edges;
1594
1595 // Common set of exception edges.
1596 std::set<uint32_t> exception_targets;
1597
1598 // These blocks (given by the first dex pc) need exception per dex-pc handling in a second
1599 // pass. In the first pass we try and see whether we can use a common set of edges.
1600 std::set<uint32_t> blocks_with_detailed_exceptions;
1601
1602 {
1603 uint32_t last_node_id = std::numeric_limits<uint32_t>::max();
1604 uint32_t old_dex_pc = 0;
1605 uint32_t block_start_dex_pc = std::numeric_limits<uint32_t>::max();
1606 const Instruction* inst = Instruction::At(code_item->insns_);
1607 for (uint32_t dex_pc = 0;
1608 dex_pc < code_item->insns_size_in_code_units_;
1609 old_dex_pc = dex_pc, dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
1610 {
1611 auto it = dex_pc_to_node_id.find(dex_pc);
1612 if (it != dex_pc_to_node_id.end()) {
1613 if (!exception_targets.empty()) {
1614 // It seems the last block had common exception handlers. Add the exception edges now.
1615 uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second;
1616 for (uint32_t handler_pc : exception_targets) {
1617 auto node_id_it = dex_pc_to_incl_id.find(handler_pc);
1618 if (node_id_it != dex_pc_to_incl_id.end()) {
1619 exception_edges << " node" << node_id
1620 << " -> node" << node_id_it->second << ":p" << handler_pc
1621 << ";\n";
1622 }
1623 }
1624 exception_targets.clear();
1625 }
1626
1627 block_start_dex_pc = dex_pc;
1628
1629 // Seems to be a fall-through, connect to last_node_id. May be spurious edges for things
1630 // like switch data.
1631 uint32_t old_last = last_node_id;
1632 last_node_id = it->second;
1633 if (old_last != std::numeric_limits<uint32_t>::max()) {
1634 regular_edges << " node" << old_last << ":p" << old_dex_pc
1635 << " -> node" << last_node_id << ":p" << dex_pc
1636 << ";\n";
1637 }
1638 }
1639
1640 // Look at the exceptions of the first entry.
1641 CatchHandlerIterator catch_it(*code_item, dex_pc);
1642 for (; catch_it.HasNext(); catch_it.Next()) {
1643 exception_targets.insert(catch_it.GetHandlerAddress());
1644 }
1645 }
1646
1647 // Handle instruction.
1648
1649 // Branch: something with at most two targets.
1650 if (inst->IsBranch()) {
1651 const int32_t offset = inst->GetTargetOffset();
1652 const bool conditional = !inst->IsUnconditional();
1653
1654 auto target_it = dex_pc_to_node_id.find(dex_pc + offset);
1655 if (target_it != dex_pc_to_node_id.end()) {
1656 taken_edges << " node" << last_node_id << ":p" << dex_pc
1657 << " -> node" << target_it->second << ":p" << (dex_pc + offset)
1658 << ";\n";
1659 }
1660 if (!conditional) {
1661 // No fall-through.
1662 last_node_id = std::numeric_limits<uint32_t>::max();
1663 }
1664 } else if (inst->IsSwitch()) {
1665 // TODO: Iterate through all switch targets.
1666 const uint16_t* insns = code_item->insns_ + dex_pc;
1667 /* make sure the start of the switch is in range */
1668 int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1669 /* offset to switch table is a relative branch-style offset */
1670 const uint16_t* switch_insns = insns + switch_offset;
1671 uint32_t switch_count = switch_insns[1];
1672 int32_t targets_offset;
1673 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1674 /* 0=sig, 1=count, 2/3=firstKey */
1675 targets_offset = 4;
1676 } else {
1677 /* 0=sig, 1=count, 2..count*2 = keys */
1678 targets_offset = 2 + 2 * switch_count;
1679 }
1680 /* make sure the end of the switch is in range */
1681 /* verify each switch target */
1682 for (uint32_t targ = 0; targ < switch_count; targ++) {
1683 int32_t offset =
1684 static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1685 static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1686 int32_t abs_offset = dex_pc + offset;
1687 auto target_it = dex_pc_to_node_id.find(abs_offset);
1688 if (target_it != dex_pc_to_node_id.end()) {
1689 // TODO: value label.
1690 taken_edges << " node" << last_node_id << ":p" << dex_pc
1691 << " -> node" << target_it->second << ":p" << (abs_offset)
1692 << ";\n";
1693 }
1694 }
1695 }
1696
1697 // Exception edges. If this is not the first instruction in the block
1698 if (block_start_dex_pc != dex_pc) {
1699 std::set<uint32_t> current_handler_pcs;
1700 CatchHandlerIterator catch_it(*code_item, dex_pc);
1701 for (; catch_it.HasNext(); catch_it.Next()) {
1702 current_handler_pcs.insert(catch_it.GetHandlerAddress());
1703 }
1704 if (current_handler_pcs != exception_targets) {
1705 exception_targets.clear(); // Clear so we don't do something at the end.
1706 blocks_with_detailed_exceptions.insert(block_start_dex_pc);
1707 }
1708 }
1709
1710 if (inst->IsReturn() ||
1711 (inst->Opcode() == Instruction::THROW) ||
1712 (inst->IsBranch() && inst->IsUnconditional())) {
1713 // No fall-through.
1714 last_node_id = std::numeric_limits<uint32_t>::max();
1715 }
1716 }
1717 // Finish up the last block, if it had common exceptions.
1718 if (!exception_targets.empty()) {
1719 // It seems the last block had common exception handlers. Add the exception edges now.
1720 uint32_t node_id = dex_pc_to_node_id.find(block_start_dex_pc)->second;
1721 for (uint32_t handler_pc : exception_targets) {
1722 auto node_id_it = dex_pc_to_incl_id.find(handler_pc);
1723 if (node_id_it != dex_pc_to_incl_id.end()) {
1724 exception_edges << " node" << node_id
1725 << " -> node" << node_id_it->second << ":p" << handler_pc
1726 << ";\n";
1727 }
1728 }
1729 exception_targets.clear();
1730 }
1731 }
1732
1733 // Second pass for detailed exception blocks.
1734 // TODO
1735 // Exception edges. If this is not the first instruction in the block
1736 for (uint32_t dex_pc : blocks_with_detailed_exceptions) {
1737 const Instruction* inst = Instruction::At(&code_item->insns_[dex_pc]);
1738 uint32_t this_node_id = dex_pc_to_incl_id.find(dex_pc)->second;
1739 while (true) {
1740 CatchHandlerIterator catch_it(*code_item, dex_pc);
1741 if (catch_it.HasNext()) {
1742 std::set<uint32_t> handled_targets;
1743 for (; catch_it.HasNext(); catch_it.Next()) {
1744 uint32_t handler_pc = catch_it.GetHandlerAddress();
1745 auto it = handled_targets.find(handler_pc);
1746 if (it == handled_targets.end()) {
1747 auto node_id_it = dex_pc_to_incl_id.find(handler_pc);
1748 if (node_id_it != dex_pc_to_incl_id.end()) {
1749 exception_edges << " node" << this_node_id << ":p" << dex_pc
1750 << " -> node" << node_id_it->second << ":p" << handler_pc
1751 << ";\n";
1752 }
1753
1754 // Mark as done.
1755 handled_targets.insert(handler_pc);
1756 }
1757 }
1758 }
1759 if (inst->IsBasicBlockEnd()) {
1760 break;
1761 }
1762
1763 // Loop update. Have a break-out if the next instruction is a branch target and thus in
1764 // another block.
1765 dex_pc += inst->SizeInCodeUnits();
1766 if (dex_pc >= code_item->insns_size_in_code_units_) {
1767 break;
1768 }
1769 if (dex_pc_to_node_id.find(dex_pc) != dex_pc_to_node_id.end()) {
1770 break;
1771 }
1772 inst = inst->Next();
1773 }
1774 }
1775
1776 // Write out the sub-graphs to make edges styled.
1777 os << "\n";
1778 os << " subgraph regular_edges {\n";
1779 os << " edge [color=\"#000000\",weight=.3,len=3];\n\n";
1780 os << " " << regular_edges.str() << "\n";
1781 os << " }\n\n";
1782
1783 os << " subgraph taken_edges {\n";
1784 os << " edge [color=\"#00FF00\",weight=.3,len=3];\n\n";
1785 os << " " << taken_edges.str() << "\n";
1786 os << " }\n\n";
1787
1788 os << " subgraph exception_edges {\n";
1789 os << " edge [color=\"#FF0000\",weight=.3,len=3];\n\n";
1790 os << " " << exception_edges.str() << "\n";
1791 os << " }\n\n";
1792 }
1793
1794 os << "}\n";
1795 }
1796
DumpMethodCFG(ArtMethod * method,std::ostream & os)1797 void DumpMethodCFG(ArtMethod* method, std::ostream& os) {
1798 const DexFile* dex_file = method->GetDexFile();
1799 const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
1800
1801 DumpMethodCFGImpl(dex_file, method->GetDexMethodIndex(), code_item, os);
1802 }
1803
DumpMethodCFG(const DexFile * dex_file,uint32_t dex_method_idx,std::ostream & os)1804 void DumpMethodCFG(const DexFile* dex_file, uint32_t dex_method_idx, std::ostream& os) {
1805 // This is painful, we need to find the code item. That means finding the class, and then
1806 // iterating the table.
1807 if (dex_method_idx >= dex_file->NumMethodIds()) {
1808 os << "Could not find method-idx.";
1809 return;
1810 }
1811 const DexFile::MethodId& method_id = dex_file->GetMethodId(dex_method_idx);
1812
1813 const DexFile::ClassDef* class_def = dex_file->FindClassDef(method_id.class_idx_);
1814 if (class_def == nullptr) {
1815 os << "Could not find class-def.";
1816 return;
1817 }
1818
1819 const uint8_t* class_data = dex_file->GetClassData(*class_def);
1820 if (class_data == nullptr) {
1821 os << "No class data.";
1822 return;
1823 }
1824
1825 ClassDataItemIterator it(*dex_file, class_data);
1826 // Skip fields
1827 while (it.HasNextStaticField() || it.HasNextInstanceField()) {
1828 it.Next();
1829 }
1830
1831 // Find method, and dump it.
1832 while (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) {
1833 uint32_t method_idx = it.GetMemberIndex();
1834 if (method_idx == dex_method_idx) {
1835 DumpMethodCFGImpl(dex_file, dex_method_idx, it.GetMethodCodeItem(), os);
1836 return;
1837 }
1838 it.Next();
1839 }
1840
1841 // Otherwise complain.
1842 os << "Something went wrong, didn't find the method in the class data.";
1843 }
1844
ParseStringAfterChar(const std::string & s,char c,std::string * parsed_value,UsageFn Usage)1845 static void ParseStringAfterChar(const std::string& s,
1846 char c,
1847 std::string* parsed_value,
1848 UsageFn Usage) {
1849 std::string::size_type colon = s.find(c);
1850 if (colon == std::string::npos) {
1851 Usage("Missing char %c in option %s\n", c, s.c_str());
1852 }
1853 // Add one to remove the char we were trimming until.
1854 *parsed_value = s.substr(colon + 1);
1855 }
1856
ParseDouble(const std::string & option,char after_char,double min,double max,double * parsed_value,UsageFn Usage)1857 void ParseDouble(const std::string& option,
1858 char after_char,
1859 double min,
1860 double max,
1861 double* parsed_value,
1862 UsageFn Usage) {
1863 std::string substring;
1864 ParseStringAfterChar(option, after_char, &substring, Usage);
1865 bool sane_val = true;
1866 double value;
1867 if ((false)) {
1868 // TODO: this doesn't seem to work on the emulator. b/15114595
1869 std::stringstream iss(substring);
1870 iss >> value;
1871 // Ensure that we have a value, there was no cruft after it and it satisfies a sensible range.
1872 sane_val = iss.eof() && (value >= min) && (value <= max);
1873 } else {
1874 char* end = nullptr;
1875 value = strtod(substring.c_str(), &end);
1876 sane_val = *end == '\0' && value >= min && value <= max;
1877 }
1878 if (!sane_val) {
1879 Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str());
1880 }
1881 *parsed_value = value;
1882 }
1883
GetFileSizeBytes(const std::string & filename)1884 int64_t GetFileSizeBytes(const std::string& filename) {
1885 struct stat stat_buf;
1886 int rc = stat(filename.c_str(), &stat_buf);
1887 return rc == 0 ? stat_buf.st_size : -1;
1888 }
1889
SleepForever()1890 void SleepForever() {
1891 while (true) {
1892 usleep(1000000);
1893 }
1894 }
1895
1896 } // namespace art
1897