• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <gtest/gtest.h>
18 
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/syscall.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include <unwind.h>
31 
32 #include <atomic>
33 #include <vector>
34 
35 #include "private/bionic_constants.h"
36 #include "private/bionic_macros.h"
37 #include "private/ScopeGuard.h"
38 #include "BionicDeathTest.h"
39 #include "ScopedSignalHandler.h"
40 #include "utils.h"
41 
TEST(pthread,pthread_key_create)42 TEST(pthread, pthread_key_create) {
43   pthread_key_t key;
44   ASSERT_EQ(0, pthread_key_create(&key, NULL));
45   ASSERT_EQ(0, pthread_key_delete(key));
46   // Can't delete a key that's already been deleted.
47   ASSERT_EQ(EINVAL, pthread_key_delete(key));
48 }
49 
TEST(pthread,pthread_keys_max)50 TEST(pthread, pthread_keys_max) {
51   // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
52   ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
53 }
54 
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)55 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
56   int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
57   ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
58 }
59 
TEST(pthread,pthread_key_many_distinct)60 TEST(pthread, pthread_key_many_distinct) {
61   // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
62   // pthread keys, but We should be able to allocate at least this many keys.
63   int nkeys = PTHREAD_KEYS_MAX / 2;
64   std::vector<pthread_key_t> keys;
65 
66   auto scope_guard = make_scope_guard([&keys]{
67     for (const auto& key : keys) {
68       EXPECT_EQ(0, pthread_key_delete(key));
69     }
70   });
71 
72   for (int i = 0; i < nkeys; ++i) {
73     pthread_key_t key;
74     // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
75     ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
76     keys.push_back(key);
77     ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
78   }
79 
80   for (int i = keys.size() - 1; i >= 0; --i) {
81     ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
82     pthread_key_t key = keys.back();
83     keys.pop_back();
84     ASSERT_EQ(0, pthread_key_delete(key));
85   }
86 }
87 
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)88 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
89   std::vector<pthread_key_t> keys;
90   int rv = 0;
91 
92   // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
93   // be more than we are allowed to allocate now.
94   for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
95     pthread_key_t key;
96     rv = pthread_key_create(&key, NULL);
97     if (rv == EAGAIN) {
98       break;
99     }
100     EXPECT_EQ(0, rv);
101     keys.push_back(key);
102   }
103 
104   // Don't leak keys.
105   for (const auto& key : keys) {
106     EXPECT_EQ(0, pthread_key_delete(key));
107   }
108   keys.clear();
109 
110   // We should have eventually reached the maximum number of keys and received
111   // EAGAIN.
112   ASSERT_EQ(EAGAIN, rv);
113 }
114 
TEST(pthread,pthread_key_delete)115 TEST(pthread, pthread_key_delete) {
116   void* expected = reinterpret_cast<void*>(1234);
117   pthread_key_t key;
118   ASSERT_EQ(0, pthread_key_create(&key, NULL));
119   ASSERT_EQ(0, pthread_setspecific(key, expected));
120   ASSERT_EQ(expected, pthread_getspecific(key));
121   ASSERT_EQ(0, pthread_key_delete(key));
122   // After deletion, pthread_getspecific returns NULL.
123   ASSERT_EQ(NULL, pthread_getspecific(key));
124   // And you can't use pthread_setspecific with the deleted key.
125   ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
126 }
127 
TEST(pthread,pthread_key_fork)128 TEST(pthread, pthread_key_fork) {
129   void* expected = reinterpret_cast<void*>(1234);
130   pthread_key_t key;
131   ASSERT_EQ(0, pthread_key_create(&key, NULL));
132   ASSERT_EQ(0, pthread_setspecific(key, expected));
133   ASSERT_EQ(expected, pthread_getspecific(key));
134 
135   pid_t pid = fork();
136   ASSERT_NE(-1, pid) << strerror(errno);
137 
138   if (pid == 0) {
139     // The surviving thread inherits all the forking thread's TLS values...
140     ASSERT_EQ(expected, pthread_getspecific(key));
141     _exit(99);
142   }
143 
144   AssertChildExited(pid, 99);
145 
146   ASSERT_EQ(expected, pthread_getspecific(key));
147   ASSERT_EQ(0, pthread_key_delete(key));
148 }
149 
DirtyKeyFn(void * key)150 static void* DirtyKeyFn(void* key) {
151   return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
152 }
153 
TEST(pthread,pthread_key_dirty)154 TEST(pthread, pthread_key_dirty) {
155   pthread_key_t key;
156   ASSERT_EQ(0, pthread_key_create(&key, NULL));
157 
158   size_t stack_size = 640 * 1024;
159   void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
160   ASSERT_NE(MAP_FAILED, stack);
161   memset(stack, 0xff, stack_size);
162 
163   pthread_attr_t attr;
164   ASSERT_EQ(0, pthread_attr_init(&attr));
165   ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
166 
167   pthread_t t;
168   ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
169 
170   void* result;
171   ASSERT_EQ(0, pthread_join(t, &result));
172   ASSERT_EQ(nullptr, result); // Not ~0!
173 
174   ASSERT_EQ(0, munmap(stack, stack_size));
175   ASSERT_EQ(0, pthread_key_delete(key));
176 }
177 
TEST(pthread,static_pthread_key_used_before_creation)178 TEST(pthread, static_pthread_key_used_before_creation) {
179 #if defined(__BIONIC__)
180   // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
181   // So here tests if the static/global default value 0 can be detected as invalid key.
182   static pthread_key_t key;
183   ASSERT_EQ(nullptr, pthread_getspecific(key));
184   ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
185   ASSERT_EQ(EINVAL, pthread_key_delete(key));
186 #else
187   GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
188 #endif
189 }
190 
IdFn(void * arg)191 static void* IdFn(void* arg) {
192   return arg;
193 }
194 
195 class SpinFunctionHelper {
196  public:
SpinFunctionHelper()197   SpinFunctionHelper() {
198     SpinFunctionHelper::spin_flag_ = true;
199   }
~SpinFunctionHelper()200   ~SpinFunctionHelper() {
201     UnSpin();
202   }
GetFunction()203   auto GetFunction() -> void* (*)(void*) {
204     return SpinFunctionHelper::SpinFn;
205   }
206 
UnSpin()207   void UnSpin() {
208     SpinFunctionHelper::spin_flag_ = false;
209   }
210 
211  private:
SpinFn(void *)212   static void* SpinFn(void*) {
213     while (spin_flag_) {}
214     return NULL;
215   }
216   static std::atomic<bool> spin_flag_;
217 };
218 
219 // It doesn't matter if spin_flag_ is used in several tests,
220 // because it is always set to false after each test. Each thread
221 // loops on spin_flag_ can find it becomes false at some time.
222 std::atomic<bool> SpinFunctionHelper::spin_flag_;
223 
JoinFn(void * arg)224 static void* JoinFn(void* arg) {
225   return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
226 }
227 
AssertDetached(pthread_t t,bool is_detached)228 static void AssertDetached(pthread_t t, bool is_detached) {
229   pthread_attr_t attr;
230   ASSERT_EQ(0, pthread_getattr_np(t, &attr));
231   int detach_state;
232   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
233   pthread_attr_destroy(&attr);
234   ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
235 }
236 
MakeDeadThread(pthread_t & t)237 static void MakeDeadThread(pthread_t& t) {
238   ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
239   ASSERT_EQ(0, pthread_join(t, NULL));
240 }
241 
TEST(pthread,pthread_create)242 TEST(pthread, pthread_create) {
243   void* expected_result = reinterpret_cast<void*>(123);
244   // Can we create a thread?
245   pthread_t t;
246   ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
247   // If we join, do we get the expected value back?
248   void* result;
249   ASSERT_EQ(0, pthread_join(t, &result));
250   ASSERT_EQ(expected_result, result);
251 }
252 
TEST(pthread,pthread_create_EAGAIN)253 TEST(pthread, pthread_create_EAGAIN) {
254   pthread_attr_t attributes;
255   ASSERT_EQ(0, pthread_attr_init(&attributes));
256   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
257 
258   pthread_t t;
259   ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
260 }
261 
TEST(pthread,pthread_no_join_after_detach)262 TEST(pthread, pthread_no_join_after_detach) {
263   SpinFunctionHelper spinhelper;
264 
265   pthread_t t1;
266   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
267 
268   // After a pthread_detach...
269   ASSERT_EQ(0, pthread_detach(t1));
270   AssertDetached(t1, true);
271 
272   // ...pthread_join should fail.
273   ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
274 }
275 
TEST(pthread,pthread_no_op_detach_after_join)276 TEST(pthread, pthread_no_op_detach_after_join) {
277   SpinFunctionHelper spinhelper;
278 
279   pthread_t t1;
280   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
281 
282   // If thread 2 is already waiting to join thread 1...
283   pthread_t t2;
284   ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
285 
286   sleep(1); // (Give t2 a chance to call pthread_join.)
287 
288 #if defined(__BIONIC__)
289   ASSERT_EQ(EINVAL, pthread_detach(t1));
290 #else
291   ASSERT_EQ(0, pthread_detach(t1));
292 #endif
293   AssertDetached(t1, false);
294 
295   spinhelper.UnSpin();
296 
297   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
298   void* join_result;
299   ASSERT_EQ(0, pthread_join(t2, &join_result));
300   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
301 }
302 
TEST(pthread,pthread_join_self)303 TEST(pthread, pthread_join_self) {
304   ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
305 }
306 
307 struct TestBug37410 {
308   pthread_t main_thread;
309   pthread_mutex_t mutex;
310 
mainTestBug37410311   static void main() {
312     TestBug37410 data;
313     data.main_thread = pthread_self();
314     ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
315     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
316 
317     pthread_t t;
318     ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
319 
320     // Wait for the thread to be running...
321     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
322     ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
323 
324     // ...and exit.
325     pthread_exit(NULL);
326   }
327 
328  private:
thread_fnTestBug37410329   static void* thread_fn(void* arg) {
330     TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
331 
332     // Let the main thread know we're running.
333     pthread_mutex_unlock(&data->mutex);
334 
335     // And wait for the main thread to exit.
336     pthread_join(data->main_thread, NULL);
337 
338     return NULL;
339   }
340 };
341 
342 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
343 // run this test (which exits normally) in its own process.
344 
345 class pthread_DeathTest : public BionicDeathTest {};
346 
TEST_F(pthread_DeathTest,pthread_bug_37410)347 TEST_F(pthread_DeathTest, pthread_bug_37410) {
348   // http://code.google.com/p/android/issues/detail?id=37410
349   ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
350 }
351 
SignalHandlerFn(void * arg)352 static void* SignalHandlerFn(void* arg) {
353   sigset_t wait_set;
354   sigfillset(&wait_set);
355   return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
356 }
357 
TEST(pthread,pthread_sigmask)358 TEST(pthread, pthread_sigmask) {
359   // Check that SIGUSR1 isn't blocked.
360   sigset_t original_set;
361   sigemptyset(&original_set);
362   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
363   ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
364 
365   // Block SIGUSR1.
366   sigset_t set;
367   sigemptyset(&set);
368   sigaddset(&set, SIGUSR1);
369   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
370 
371   // Check that SIGUSR1 is blocked.
372   sigset_t final_set;
373   sigemptyset(&final_set);
374   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
375   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
376   // ...and that sigprocmask agrees with pthread_sigmask.
377   sigemptyset(&final_set);
378   ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
379   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
380 
381   // Spawn a thread that calls sigwait and tells us what it received.
382   pthread_t signal_thread;
383   int received_signal = -1;
384   ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
385 
386   // Send that thread SIGUSR1.
387   pthread_kill(signal_thread, SIGUSR1);
388 
389   // See what it got.
390   void* join_result;
391   ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
392   ASSERT_EQ(SIGUSR1, received_signal);
393   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
394 
395   // Restore the original signal mask.
396   ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
397 }
398 
TEST(pthread,pthread_setname_np__too_long)399 TEST(pthread, pthread_setname_np__too_long) {
400   // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
401   ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
402   ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
403 }
404 
TEST(pthread,pthread_setname_np__self)405 TEST(pthread, pthread_setname_np__self) {
406   ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
407 }
408 
TEST(pthread,pthread_setname_np__other)409 TEST(pthread, pthread_setname_np__other) {
410   SpinFunctionHelper spinhelper;
411 
412   pthread_t t1;
413   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
414   ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
415   spinhelper.UnSpin();
416   ASSERT_EQ(0, pthread_join(t1, nullptr));
417 }
418 
TEST(pthread,pthread_setname_np__no_such_thread)419 TEST(pthread, pthread_setname_np__no_such_thread) {
420   pthread_t dead_thread;
421   MakeDeadThread(dead_thread);
422 
423   // Call pthread_setname_np after thread has already exited.
424   ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
425 }
426 
TEST(pthread,pthread_kill__0)427 TEST(pthread, pthread_kill__0) {
428   // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
429   ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
430 }
431 
TEST(pthread,pthread_kill__invalid_signal)432 TEST(pthread, pthread_kill__invalid_signal) {
433   ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
434 }
435 
pthread_kill__in_signal_handler_helper(int signal_number)436 static void pthread_kill__in_signal_handler_helper(int signal_number) {
437   static int count = 0;
438   ASSERT_EQ(SIGALRM, signal_number);
439   if (++count == 1) {
440     // Can we call pthread_kill from a signal handler?
441     ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
442   }
443 }
444 
TEST(pthread,pthread_kill__in_signal_handler)445 TEST(pthread, pthread_kill__in_signal_handler) {
446   ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
447   ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
448 }
449 
TEST(pthread,pthread_detach__no_such_thread)450 TEST(pthread, pthread_detach__no_such_thread) {
451   pthread_t dead_thread;
452   MakeDeadThread(dead_thread);
453 
454   ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
455 }
456 
TEST(pthread,pthread_getcpuclockid__clock_gettime)457 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
458   SpinFunctionHelper spinhelper;
459 
460   pthread_t t;
461   ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
462 
463   clockid_t c;
464   ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
465   timespec ts;
466   ASSERT_EQ(0, clock_gettime(c, &ts));
467   spinhelper.UnSpin();
468   ASSERT_EQ(0, pthread_join(t, nullptr));
469 }
470 
TEST(pthread,pthread_getcpuclockid__no_such_thread)471 TEST(pthread, pthread_getcpuclockid__no_such_thread) {
472   pthread_t dead_thread;
473   MakeDeadThread(dead_thread);
474 
475   clockid_t c;
476   ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
477 }
478 
TEST(pthread,pthread_getschedparam__no_such_thread)479 TEST(pthread, pthread_getschedparam__no_such_thread) {
480   pthread_t dead_thread;
481   MakeDeadThread(dead_thread);
482 
483   int policy;
484   sched_param param;
485   ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
486 }
487 
TEST(pthread,pthread_setschedparam__no_such_thread)488 TEST(pthread, pthread_setschedparam__no_such_thread) {
489   pthread_t dead_thread;
490   MakeDeadThread(dead_thread);
491 
492   int policy = 0;
493   sched_param param;
494   ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
495 }
496 
TEST(pthread,pthread_join__no_such_thread)497 TEST(pthread, pthread_join__no_such_thread) {
498   pthread_t dead_thread;
499   MakeDeadThread(dead_thread);
500 
501   ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
502 }
503 
TEST(pthread,pthread_kill__no_such_thread)504 TEST(pthread, pthread_kill__no_such_thread) {
505   pthread_t dead_thread;
506   MakeDeadThread(dead_thread);
507 
508   ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
509 }
510 
TEST(pthread,pthread_join__multijoin)511 TEST(pthread, pthread_join__multijoin) {
512   SpinFunctionHelper spinhelper;
513 
514   pthread_t t1;
515   ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
516 
517   pthread_t t2;
518   ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
519 
520   sleep(1); // (Give t2 a chance to call pthread_join.)
521 
522   // Multiple joins to the same thread should fail.
523   ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
524 
525   spinhelper.UnSpin();
526 
527   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
528   void* join_result;
529   ASSERT_EQ(0, pthread_join(t2, &join_result));
530   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
531 }
532 
TEST(pthread,pthread_join__race)533 TEST(pthread, pthread_join__race) {
534   // http://b/11693195 --- pthread_join could return before the thread had actually exited.
535   // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
536   for (size_t i = 0; i < 1024; ++i) {
537     size_t stack_size = 640*1024;
538     void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
539 
540     pthread_attr_t a;
541     pthread_attr_init(&a);
542     pthread_attr_setstack(&a, stack, stack_size);
543 
544     pthread_t t;
545     ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
546     ASSERT_EQ(0, pthread_join(t, NULL));
547     ASSERT_EQ(0, munmap(stack, stack_size));
548   }
549 }
550 
GetActualGuardSizeFn(void * arg)551 static void* GetActualGuardSizeFn(void* arg) {
552   pthread_attr_t attributes;
553   pthread_getattr_np(pthread_self(), &attributes);
554   pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
555   return NULL;
556 }
557 
GetActualGuardSize(const pthread_attr_t & attributes)558 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
559   size_t result;
560   pthread_t t;
561   pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
562   pthread_join(t, NULL);
563   return result;
564 }
565 
GetActualStackSizeFn(void * arg)566 static void* GetActualStackSizeFn(void* arg) {
567   pthread_attr_t attributes;
568   pthread_getattr_np(pthread_self(), &attributes);
569   pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
570   return NULL;
571 }
572 
GetActualStackSize(const pthread_attr_t & attributes)573 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
574   size_t result;
575   pthread_t t;
576   pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
577   pthread_join(t, NULL);
578   return result;
579 }
580 
TEST(pthread,pthread_attr_setguardsize)581 TEST(pthread, pthread_attr_setguardsize) {
582   pthread_attr_t attributes;
583   ASSERT_EQ(0, pthread_attr_init(&attributes));
584 
585   // Get the default guard size.
586   size_t default_guard_size;
587   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
588 
589   // No such thing as too small: will be rounded up to one page by pthread_create.
590   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
591   size_t guard_size;
592   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
593   ASSERT_EQ(128U, guard_size);
594   ASSERT_EQ(4096U, GetActualGuardSize(attributes));
595 
596   // Large enough and a multiple of the page size.
597   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
598   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
599   ASSERT_EQ(32*1024U, guard_size);
600 
601   // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
602   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
603   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
604   ASSERT_EQ(32*1024U + 1, guard_size);
605 }
606 
TEST(pthread,pthread_attr_setstacksize)607 TEST(pthread, pthread_attr_setstacksize) {
608   pthread_attr_t attributes;
609   ASSERT_EQ(0, pthread_attr_init(&attributes));
610 
611   // Get the default stack size.
612   size_t default_stack_size;
613   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
614 
615   // Too small.
616   ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
617   size_t stack_size;
618   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
619   ASSERT_EQ(default_stack_size, stack_size);
620   ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
621 
622   // Large enough and a multiple of the page size; may be rounded up by pthread_create.
623   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
624   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
625   ASSERT_EQ(32*1024U, stack_size);
626   ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
627 
628   // Large enough but not aligned; will be rounded up by pthread_create.
629   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
630   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
631   ASSERT_EQ(32*1024U + 1, stack_size);
632 #if defined(__BIONIC__)
633   ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
634 #else // __BIONIC__
635   // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
636   ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
637 #endif // __BIONIC__
638 }
639 
TEST(pthread,pthread_rwlockattr_smoke)640 TEST(pthread, pthread_rwlockattr_smoke) {
641   pthread_rwlockattr_t attr;
642   ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
643 
644   int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
645   for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
646     ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
647     int pshared;
648     ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
649     ASSERT_EQ(pshared_value_array[i], pshared);
650   }
651 
652   int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
653                       PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
654   for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
655     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
656     int kind;
657     ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
658     ASSERT_EQ(kind_array[i], kind);
659   }
660 
661   ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
662 }
663 
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)664 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
665   pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
666   pthread_rwlock_t lock2;
667   ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
668   ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
669 }
670 
TEST(pthread,pthread_rwlock_smoke)671 TEST(pthread, pthread_rwlock_smoke) {
672   pthread_rwlock_t l;
673   ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
674 
675   // Single read lock
676   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
677   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
678 
679   // Multiple read lock
680   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
681   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
682   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
683   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
684 
685   // Write lock
686   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
687   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
688 
689   // Try writer lock
690   ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
691   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
692   ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
693   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
694 
695   // Try reader lock
696   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
697   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
698   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
699   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
700   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
701 
702   // Try writer lock after unlock
703   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
704   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
705 
706   // EDEADLK in "read after write"
707   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
708   ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
709   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
710 
711   // EDEADLK in "write after write"
712   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
713   ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
714   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
715 
716   ASSERT_EQ(0, pthread_rwlock_destroy(&l));
717 }
718 
719 struct RwlockWakeupHelperArg {
720   pthread_rwlock_t lock;
721   enum Progress {
722     LOCK_INITIALIZED,
723     LOCK_WAITING,
724     LOCK_RELEASED,
725     LOCK_ACCESSED,
726     LOCK_TIMEDOUT,
727   };
728   std::atomic<Progress> progress;
729   std::atomic<pid_t> tid;
730   std::function<int (pthread_rwlock_t*)> trylock_function;
731   std::function<int (pthread_rwlock_t*)> lock_function;
732   std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
733 };
734 
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)735 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
736   arg->tid = gettid();
737   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
738   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
739 
740   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
741   ASSERT_EQ(0, arg->lock_function(&arg->lock));
742   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
743   ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
744 
745   arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
746 }
747 
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)748 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
749   RwlockWakeupHelperArg wakeup_arg;
750   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
751   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
752   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
753   wakeup_arg.tid = 0;
754   wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
755   wakeup_arg.lock_function = lock_function;
756 
757   pthread_t thread;
758   ASSERT_EQ(0, pthread_create(&thread, NULL,
759     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
760   WaitUntilThreadSleep(wakeup_arg.tid);
761   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
762 
763   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
764   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
765 
766   ASSERT_EQ(0, pthread_join(thread, NULL));
767   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
768   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
769 }
770 
TEST(pthread,pthread_rwlock_reader_wakeup_writer)771 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
772   test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
773 }
774 
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)775 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
776   timespec ts;
777   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
778   ts.tv_sec += 1;
779   test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
780     return pthread_rwlock_timedwrlock(lock, &ts);
781   });
782 }
783 
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)784 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
785   RwlockWakeupHelperArg wakeup_arg;
786   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
787   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
788   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
789   wakeup_arg.tid = 0;
790   wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
791   wakeup_arg.lock_function = lock_function;
792 
793   pthread_t thread;
794   ASSERT_EQ(0, pthread_create(&thread, NULL,
795     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
796   WaitUntilThreadSleep(wakeup_arg.tid);
797   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
798 
799   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
800   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
801 
802   ASSERT_EQ(0, pthread_join(thread, NULL));
803   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
804   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
805 }
806 
TEST(pthread,pthread_rwlock_writer_wakeup_reader)807 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
808   test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
809 }
810 
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)811 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
812   timespec ts;
813   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
814   ts.tv_sec += 1;
815   test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
816     return pthread_rwlock_timedrdlock(lock, &ts);
817   });
818 }
819 
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)820 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
821   arg->tid = gettid();
822   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
823   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
824 
825   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
826 
827   timespec ts;
828   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
829   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
830   ts.tv_nsec = -1;
831   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
832   ts.tv_nsec = NS_PER_S;
833   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
834   ts.tv_nsec = NS_PER_S - 1;
835   ts.tv_sec = -1;
836   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
837   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
838   ts.tv_sec += 1;
839   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
840   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
841   arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
842 }
843 
TEST(pthread,pthread_rwlock_timedrdlock_timeout)844 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
845   RwlockWakeupHelperArg wakeup_arg;
846   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
847   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
848   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
849   wakeup_arg.tid = 0;
850   wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
851   wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
852 
853   pthread_t thread;
854   ASSERT_EQ(0, pthread_create(&thread, nullptr,
855       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
856   WaitUntilThreadSleep(wakeup_arg.tid);
857   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
858 
859   ASSERT_EQ(0, pthread_join(thread, nullptr));
860   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
861   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
862   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
863 }
864 
TEST(pthread,pthread_rwlock_timedwrlock_timeout)865 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
866   RwlockWakeupHelperArg wakeup_arg;
867   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
868   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
869   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
870   wakeup_arg.tid = 0;
871   wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
872   wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
873 
874   pthread_t thread;
875   ASSERT_EQ(0, pthread_create(&thread, nullptr,
876       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
877   WaitUntilThreadSleep(wakeup_arg.tid);
878   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
879 
880   ASSERT_EQ(0, pthread_join(thread, nullptr));
881   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
882   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
883   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
884 }
885 
886 class RwlockKindTestHelper {
887  private:
888   struct ThreadArg {
889     RwlockKindTestHelper* helper;
890     std::atomic<pid_t>& tid;
891 
ThreadArgRwlockKindTestHelper::ThreadArg892     ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
893       : helper(helper), tid(tid) { }
894   };
895 
896  public:
897   pthread_rwlock_t lock;
898 
899  public:
RwlockKindTestHelper(int kind_type)900   RwlockKindTestHelper(int kind_type) {
901     InitRwlock(kind_type);
902   }
903 
~RwlockKindTestHelper()904   ~RwlockKindTestHelper() {
905     DestroyRwlock();
906   }
907 
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)908   void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
909     tid = 0;
910     ThreadArg* arg = new ThreadArg(this, tid);
911     ASSERT_EQ(0, pthread_create(&thread, NULL,
912                                 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
913   }
914 
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)915   void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
916     tid = 0;
917     ThreadArg* arg = new ThreadArg(this, tid);
918     ASSERT_EQ(0, pthread_create(&thread, NULL,
919                                 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
920   }
921 
922  private:
InitRwlock(int kind_type)923   void InitRwlock(int kind_type) {
924     pthread_rwlockattr_t attr;
925     ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
926     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
927     ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
928     ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
929   }
930 
DestroyRwlock()931   void DestroyRwlock() {
932     ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
933   }
934 
WriterThreadFn(ThreadArg * arg)935   static void WriterThreadFn(ThreadArg* arg) {
936     arg->tid = gettid();
937 
938     RwlockKindTestHelper* helper = arg->helper;
939     ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
940     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
941     delete arg;
942   }
943 
ReaderThreadFn(ThreadArg * arg)944   static void ReaderThreadFn(ThreadArg* arg) {
945     arg->tid = gettid();
946 
947     RwlockKindTestHelper* helper = arg->helper;
948     ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
949     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
950     delete arg;
951   }
952 };
953 
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)954 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
955   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
956   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
957 
958   pthread_t writer_thread;
959   std::atomic<pid_t> writer_tid;
960   helper.CreateWriterThread(writer_thread, writer_tid);
961   WaitUntilThreadSleep(writer_tid);
962 
963   pthread_t reader_thread;
964   std::atomic<pid_t> reader_tid;
965   helper.CreateReaderThread(reader_thread, reader_tid);
966   ASSERT_EQ(0, pthread_join(reader_thread, NULL));
967 
968   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
969   ASSERT_EQ(0, pthread_join(writer_thread, NULL));
970 }
971 
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)972 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
973   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
974   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
975 
976   pthread_t writer_thread;
977   std::atomic<pid_t> writer_tid;
978   helper.CreateWriterThread(writer_thread, writer_tid);
979   WaitUntilThreadSleep(writer_tid);
980 
981   pthread_t reader_thread;
982   std::atomic<pid_t> reader_tid;
983   helper.CreateReaderThread(reader_thread, reader_tid);
984   WaitUntilThreadSleep(reader_tid);
985 
986   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
987   ASSERT_EQ(0, pthread_join(writer_thread, NULL));
988   ASSERT_EQ(0, pthread_join(reader_thread, NULL));
989 }
990 
991 static int g_once_fn_call_count = 0;
OnceFn()992 static void OnceFn() {
993   ++g_once_fn_call_count;
994 }
995 
TEST(pthread,pthread_once_smoke)996 TEST(pthread, pthread_once_smoke) {
997   pthread_once_t once_control = PTHREAD_ONCE_INIT;
998   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
999   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1000   ASSERT_EQ(1, g_once_fn_call_count);
1001 }
1002 
1003 static std::string pthread_once_1934122_result = "";
1004 
Routine2()1005 static void Routine2() {
1006   pthread_once_1934122_result += "2";
1007 }
1008 
Routine1()1009 static void Routine1() {
1010   pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1011   pthread_once_1934122_result += "1";
1012   pthread_once(&once_control_2, &Routine2);
1013 }
1014 
TEST(pthread,pthread_once_1934122)1015 TEST(pthread, pthread_once_1934122) {
1016   // Very old versions of Android couldn't call pthread_once from a
1017   // pthread_once init routine. http://b/1934122.
1018   pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1019   ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1020   ASSERT_EQ("12", pthread_once_1934122_result);
1021 }
1022 
1023 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1024 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1025 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1026 static int g_atfork_parent_calls = 0;
AtForkParent1()1027 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1028 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1029 static int g_atfork_child_calls = 0;
AtForkChild1()1030 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1031 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1032 
TEST(pthread,pthread_atfork_smoke)1033 TEST(pthread, pthread_atfork_smoke) {
1034   ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1035   ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1036 
1037   pid_t pid = fork();
1038   ASSERT_NE(-1, pid) << strerror(errno);
1039 
1040   // Child and parent calls are made in the order they were registered.
1041   if (pid == 0) {
1042     ASSERT_EQ(12, g_atfork_child_calls);
1043     _exit(0);
1044   }
1045   ASSERT_EQ(12, g_atfork_parent_calls);
1046 
1047   // Prepare calls are made in the reverse order.
1048   ASSERT_EQ(21, g_atfork_prepare_calls);
1049   AssertChildExited(pid, 0);
1050 }
1051 
TEST(pthread,pthread_attr_getscope)1052 TEST(pthread, pthread_attr_getscope) {
1053   pthread_attr_t attr;
1054   ASSERT_EQ(0, pthread_attr_init(&attr));
1055 
1056   int scope;
1057   ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1058   ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1059 }
1060 
TEST(pthread,pthread_condattr_init)1061 TEST(pthread, pthread_condattr_init) {
1062   pthread_condattr_t attr;
1063   pthread_condattr_init(&attr);
1064 
1065   clockid_t clock;
1066   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1067   ASSERT_EQ(CLOCK_REALTIME, clock);
1068 
1069   int pshared;
1070   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1071   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1072 }
1073 
TEST(pthread,pthread_condattr_setclock)1074 TEST(pthread, pthread_condattr_setclock) {
1075   pthread_condattr_t attr;
1076   pthread_condattr_init(&attr);
1077 
1078   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1079   clockid_t clock;
1080   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1081   ASSERT_EQ(CLOCK_REALTIME, clock);
1082 
1083   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1084   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1085   ASSERT_EQ(CLOCK_MONOTONIC, clock);
1086 
1087   ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1088 }
1089 
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1090 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1091 #if defined(__BIONIC__)
1092   pthread_condattr_t attr;
1093   pthread_condattr_init(&attr);
1094 
1095   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1096   ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1097 
1098   pthread_cond_t cond_var;
1099   ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1100 
1101   ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1102   ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1103 
1104   attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1105   clockid_t clock;
1106   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1107   ASSERT_EQ(CLOCK_MONOTONIC, clock);
1108   int pshared;
1109   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1110   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1111 #else  // !defined(__BIONIC__)
1112   GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1113 #endif  // !defined(__BIONIC__)
1114 }
1115 
1116 class pthread_CondWakeupTest : public ::testing::Test {
1117  protected:
1118   pthread_mutex_t mutex;
1119   pthread_cond_t cond;
1120 
1121   enum Progress {
1122     INITIALIZED,
1123     WAITING,
1124     SIGNALED,
1125     FINISHED,
1126   };
1127   std::atomic<Progress> progress;
1128   pthread_t thread;
1129   std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1130 
1131  protected:
SetUp()1132   void SetUp() override {
1133     ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1134   }
1135 
InitCond(clockid_t clock=CLOCK_REALTIME)1136   void InitCond(clockid_t clock=CLOCK_REALTIME) {
1137     pthread_condattr_t attr;
1138     ASSERT_EQ(0, pthread_condattr_init(&attr));
1139     ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1140     ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1141     ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1142   }
1143 
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1144   void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1145     progress = INITIALIZED;
1146     this->wait_function = wait_function;
1147     ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1148     while (progress != WAITING) {
1149       usleep(5000);
1150     }
1151     usleep(5000);
1152   }
1153 
TearDown()1154   void TearDown() override {
1155     ASSERT_EQ(0, pthread_join(thread, nullptr));
1156     ASSERT_EQ(FINISHED, progress);
1157     ASSERT_EQ(0, pthread_cond_destroy(&cond));
1158     ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1159   }
1160 
1161  private:
WaitThreadFn(pthread_CondWakeupTest * test)1162   static void WaitThreadFn(pthread_CondWakeupTest* test) {
1163     ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1164     test->progress = WAITING;
1165     while (test->progress == WAITING) {
1166       ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1167     }
1168     ASSERT_EQ(SIGNALED, test->progress);
1169     test->progress = FINISHED;
1170     ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1171   }
1172 };
1173 
TEST_F(pthread_CondWakeupTest,signal_wait)1174 TEST_F(pthread_CondWakeupTest, signal_wait) {
1175   InitCond();
1176   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1177     return pthread_cond_wait(cond, mutex);
1178   });
1179   progress = SIGNALED;
1180   ASSERT_EQ(0, pthread_cond_signal(&cond));
1181 }
1182 
TEST_F(pthread_CondWakeupTest,broadcast_wait)1183 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1184   InitCond();
1185   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1186     return pthread_cond_wait(cond, mutex);
1187   });
1188   progress = SIGNALED;
1189   ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1190 }
1191 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1192 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1193   InitCond(CLOCK_REALTIME);
1194   timespec ts;
1195   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1196   ts.tv_sec += 1;
1197   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1198     return pthread_cond_timedwait(cond, mutex, &ts);
1199   });
1200   progress = SIGNALED;
1201   ASSERT_EQ(0, pthread_cond_signal(&cond));
1202 }
1203 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1204 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1205   InitCond(CLOCK_MONOTONIC);
1206   timespec ts;
1207   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1208   ts.tv_sec += 1;
1209   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1210     return pthread_cond_timedwait(cond, mutex, &ts);
1211   });
1212   progress = SIGNALED;
1213   ASSERT_EQ(0, pthread_cond_signal(&cond));
1214 }
1215 
TEST(pthread,pthread_cond_timedwait_timeout)1216 TEST(pthread, pthread_cond_timedwait_timeout) {
1217   pthread_mutex_t mutex;
1218   ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1219   pthread_cond_t cond;
1220   ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1221   ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1222   timespec ts;
1223   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1224   ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1225   ts.tv_nsec = -1;
1226   ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1227   ts.tv_nsec = NS_PER_S;
1228   ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1229   ts.tv_nsec = NS_PER_S - 1;
1230   ts.tv_sec = -1;
1231   ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1232   ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1233 }
1234 
TEST(pthread,pthread_attr_getstack__main_thread)1235 TEST(pthread, pthread_attr_getstack__main_thread) {
1236   // This test is only meaningful for the main thread, so make sure we're running on it!
1237   ASSERT_EQ(getpid(), syscall(__NR_gettid));
1238 
1239   // Get the main thread's attributes.
1240   pthread_attr_t attributes;
1241   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1242 
1243   // Check that we correctly report that the main thread has no guard page.
1244   size_t guard_size;
1245   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1246   ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1247 
1248   // Get the stack base and the stack size (both ways).
1249   void* stack_base;
1250   size_t stack_size;
1251   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1252   size_t stack_size2;
1253   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1254 
1255   // The two methods of asking for the stack size should agree.
1256   EXPECT_EQ(stack_size, stack_size2);
1257 
1258 #if defined(__BIONIC__)
1259   // What does /proc/self/maps' [stack] line say?
1260   void* maps_stack_hi = NULL;
1261   std::vector<map_record> maps;
1262   ASSERT_TRUE(Maps::parse_maps(&maps));
1263   for (const auto& map : maps) {
1264     if (map.pathname == "[stack]") {
1265       maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1266       break;
1267     }
1268   }
1269 
1270   // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1271   // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1272   // region isn't very interesting.
1273   EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1274 
1275   // The stack size should correspond to RLIMIT_STACK.
1276   rlimit rl;
1277   ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1278   uint64_t original_rlim_cur = rl.rlim_cur;
1279   if (rl.rlim_cur == RLIM_INFINITY) {
1280     rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1281   }
1282   EXPECT_EQ(rl.rlim_cur, stack_size);
1283 
1284   auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1285     rl.rlim_cur = original_rlim_cur;
1286     ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1287   });
1288 
1289   //
1290   // What if RLIMIT_STACK is smaller than the stack's current extent?
1291   //
1292   rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1293   rl.rlim_max = RLIM_INFINITY;
1294   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1295 
1296   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1297   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1298   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1299 
1300   EXPECT_EQ(stack_size, stack_size2);
1301   ASSERT_EQ(1024U, stack_size);
1302 
1303   //
1304   // What if RLIMIT_STACK isn't a whole number of pages?
1305   //
1306   rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1307   rl.rlim_max = RLIM_INFINITY;
1308   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1309 
1310   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1311   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1312   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1313 
1314   EXPECT_EQ(stack_size, stack_size2);
1315   ASSERT_EQ(6666U, stack_size);
1316 #endif
1317 }
1318 
1319 struct GetStackSignalHandlerArg {
1320   volatile bool done;
1321   void* signal_handler_sp;
1322   void* main_stack_base;
1323   size_t main_stack_size;
1324 };
1325 
1326 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1327 
getstack_signal_handler(int sig)1328 static void getstack_signal_handler(int sig) {
1329   ASSERT_EQ(SIGUSR1, sig);
1330   // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1331   sleep(1);
1332   pthread_attr_t attr;
1333   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1334   void* stack_base;
1335   size_t stack_size;
1336   ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1337   getstack_signal_handler_arg.signal_handler_sp = &attr;
1338   getstack_signal_handler_arg.main_stack_base = stack_base;
1339   getstack_signal_handler_arg.main_stack_size = stack_size;
1340   getstack_signal_handler_arg.done = true;
1341 }
1342 
1343 // The previous code obtained the main thread's stack by reading the entry in
1344 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1345 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1346 // switches a process while the main thread is in an alternate stack, then the kernel will label
1347 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1348 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1349 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1350   // This test is only meaningful for the main thread, so make sure we're running on it!
1351   ASSERT_EQ(getpid(), syscall(__NR_gettid));
1352 
1353   const size_t sig_stack_size = 16 * 1024;
1354   void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1355                          -1, 0);
1356   ASSERT_NE(MAP_FAILED, sig_stack);
1357   stack_t ss;
1358   ss.ss_sp = sig_stack;
1359   ss.ss_size = sig_stack_size;
1360   ss.ss_flags = 0;
1361   stack_t oss;
1362   ASSERT_EQ(0, sigaltstack(&ss, &oss));
1363 
1364   pthread_attr_t attr;
1365   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1366   void* main_stack_base;
1367   size_t main_stack_size;
1368   ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1369 
1370   ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1371   getstack_signal_handler_arg.done = false;
1372   kill(getpid(), SIGUSR1);
1373   ASSERT_EQ(true, getstack_signal_handler_arg.done);
1374 
1375   // Verify if the stack used by the signal handler is the alternate stack just registered.
1376   ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp);
1377   ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size,
1378             getstack_signal_handler_arg.signal_handler_sp);
1379 
1380   // Verify if the main thread's stack got in the signal handler is correct.
1381   ASSERT_EQ(main_stack_base, getstack_signal_handler_arg.main_stack_base);
1382   ASSERT_LE(main_stack_size, getstack_signal_handler_arg.main_stack_size);
1383 
1384   ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1385   ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1386 }
1387 
pthread_attr_getstack_18908062_helper(void *)1388 static void pthread_attr_getstack_18908062_helper(void*) {
1389   char local_variable;
1390   pthread_attr_t attributes;
1391   pthread_getattr_np(pthread_self(), &attributes);
1392   void* stack_base;
1393   size_t stack_size;
1394   pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1395 
1396   // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1397   ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1398   ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1399 }
1400 
1401 // Check whether something on stack is in the range of
1402 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1403 TEST(pthread, pthread_attr_getstack_18908062) {
1404   pthread_t t;
1405   ASSERT_EQ(0, pthread_create(&t, NULL,
1406             reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1407             NULL));
1408   pthread_join(t, NULL);
1409 }
1410 
1411 #if defined(__BIONIC__)
1412 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1413 
pthread_gettid_np_helper(void * arg)1414 static void* pthread_gettid_np_helper(void* arg) {
1415   *reinterpret_cast<pid_t*>(arg) = gettid();
1416 
1417   // Wait for our parent to call pthread_gettid_np on us before exiting.
1418   pthread_mutex_lock(&pthread_gettid_np_mutex);
1419   pthread_mutex_unlock(&pthread_gettid_np_mutex);
1420   return NULL;
1421 }
1422 #endif
1423 
TEST(pthread,pthread_gettid_np)1424 TEST(pthread, pthread_gettid_np) {
1425 #if defined(__BIONIC__)
1426   ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1427 
1428   // Ensure the other thread doesn't exit until after we've called
1429   // pthread_gettid_np on it.
1430   pthread_mutex_lock(&pthread_gettid_np_mutex);
1431 
1432   pid_t t_gettid_result;
1433   pthread_t t;
1434   pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1435 
1436   pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1437 
1438   // Release the other thread and wait for it to exit.
1439   pthread_mutex_unlock(&pthread_gettid_np_mutex);
1440   pthread_join(t, NULL);
1441 
1442   ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1443 #else
1444   GTEST_LOG_(INFO) << "This test does nothing.\n";
1445 #endif
1446 }
1447 
1448 static size_t cleanup_counter = 0;
1449 
AbortCleanupRoutine(void *)1450 static void AbortCleanupRoutine(void*) {
1451   abort();
1452 }
1453 
CountCleanupRoutine(void *)1454 static void CountCleanupRoutine(void*) {
1455   ++cleanup_counter;
1456 }
1457 
PthreadCleanupTester()1458 static void PthreadCleanupTester() {
1459   pthread_cleanup_push(CountCleanupRoutine, NULL);
1460   pthread_cleanup_push(CountCleanupRoutine, NULL);
1461   pthread_cleanup_push(AbortCleanupRoutine, NULL);
1462 
1463   pthread_cleanup_pop(0); // Pop the abort without executing it.
1464   pthread_cleanup_pop(1); // Pop one count while executing it.
1465   ASSERT_EQ(1U, cleanup_counter);
1466   // Exit while the other count is still on the cleanup stack.
1467   pthread_exit(NULL);
1468 
1469   // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1470   pthread_cleanup_pop(0);
1471 }
1472 
PthreadCleanupStartRoutine(void *)1473 static void* PthreadCleanupStartRoutine(void*) {
1474   PthreadCleanupTester();
1475   return NULL;
1476 }
1477 
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1478 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1479   pthread_t t;
1480   ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1481   pthread_join(t, NULL);
1482   ASSERT_EQ(2U, cleanup_counter);
1483 }
1484 
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1485 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1486   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1487 }
1488 
TEST(pthread,pthread_mutexattr_gettype)1489 TEST(pthread, pthread_mutexattr_gettype) {
1490   pthread_mutexattr_t attr;
1491   ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1492 
1493   int attr_type;
1494 
1495   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1496   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1497   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1498 
1499   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1500   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1501   ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1502 
1503   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1504   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1505   ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1506 
1507   ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1508 }
1509 
1510 struct PthreadMutex {
1511   pthread_mutex_t lock;
1512 
PthreadMutexPthreadMutex1513   PthreadMutex(int mutex_type) {
1514     init(mutex_type);
1515   }
1516 
~PthreadMutexPthreadMutex1517   ~PthreadMutex() {
1518     destroy();
1519   }
1520 
1521  private:
initPthreadMutex1522   void init(int mutex_type) {
1523     pthread_mutexattr_t attr;
1524     ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1525     ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1526     ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1527     ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1528   }
1529 
destroyPthreadMutex1530   void destroy() {
1531     ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1532   }
1533 
1534   DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1535 };
1536 
TEST(pthread,pthread_mutex_lock_NORMAL)1537 TEST(pthread, pthread_mutex_lock_NORMAL) {
1538   PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1539 
1540   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1541   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1542   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1543   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1544   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1545 }
1546 
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1547 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1548   PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1549 
1550   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1551   ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1552   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1553   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1554   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1555   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1556   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1557 }
1558 
TEST(pthread,pthread_mutex_lock_RECURSIVE)1559 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1560   PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1561 
1562   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1563   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1564   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1565   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1566   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1567   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1568   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1569   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1570   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1571 }
1572 
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1573 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1574   pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1575   PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1576   ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1577   pthread_mutex_destroy(&lock_normal);
1578 
1579   pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1580   PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1581   ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1582   pthread_mutex_destroy(&lock_errorcheck);
1583 
1584   pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1585   PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1586   ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1587   ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1588 }
1589 class MutexWakeupHelper {
1590  private:
1591   PthreadMutex m;
1592   enum Progress {
1593     LOCK_INITIALIZED,
1594     LOCK_WAITING,
1595     LOCK_RELEASED,
1596     LOCK_ACCESSED
1597   };
1598   std::atomic<Progress> progress;
1599   std::atomic<pid_t> tid;
1600 
thread_fn(MutexWakeupHelper * helper)1601   static void thread_fn(MutexWakeupHelper* helper) {
1602     helper->tid = gettid();
1603     ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1604     helper->progress = LOCK_WAITING;
1605 
1606     ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1607     ASSERT_EQ(LOCK_RELEASED, helper->progress);
1608     ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1609 
1610     helper->progress = LOCK_ACCESSED;
1611   }
1612 
1613  public:
MutexWakeupHelper(int mutex_type)1614   MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1615   }
1616 
test()1617   void test() {
1618     ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1619     progress = LOCK_INITIALIZED;
1620     tid = 0;
1621 
1622     pthread_t thread;
1623     ASSERT_EQ(0, pthread_create(&thread, NULL,
1624       reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1625 
1626     WaitUntilThreadSleep(tid);
1627     ASSERT_EQ(LOCK_WAITING, progress);
1628 
1629     progress = LOCK_RELEASED;
1630     ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1631 
1632     ASSERT_EQ(0, pthread_join(thread, NULL));
1633     ASSERT_EQ(LOCK_ACCESSED, progress);
1634   }
1635 };
1636 
TEST(pthread,pthread_mutex_NORMAL_wakeup)1637 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1638   MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1639   helper.test();
1640 }
1641 
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)1642 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1643   MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1644   helper.test();
1645 }
1646 
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)1647 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1648   MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1649   helper.test();
1650 }
1651 
TEST(pthread,pthread_mutex_owner_tid_limit)1652 TEST(pthread, pthread_mutex_owner_tid_limit) {
1653 #if defined(__BIONIC__) && !defined(__LP64__)
1654   FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1655   ASSERT_TRUE(fp != NULL);
1656   long pid_max;
1657   ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1658   fclose(fp);
1659   // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1660   ASSERT_LE(pid_max, 65536);
1661 #else
1662   GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1663 #endif
1664 }
1665 
TEST(pthread,pthread_mutex_timedlock)1666 TEST(pthread, pthread_mutex_timedlock) {
1667   pthread_mutex_t m;
1668   ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
1669 
1670   // If the mutex is already locked, pthread_mutex_timedlock should time out.
1671   ASSERT_EQ(0, pthread_mutex_lock(&m));
1672 
1673   timespec ts;
1674   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1675   ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1676   ts.tv_nsec = -1;
1677   ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1678   ts.tv_nsec = NS_PER_S;
1679   ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1680   ts.tv_nsec = NS_PER_S - 1;
1681   ts.tv_sec = -1;
1682   ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1683 
1684   // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1685   ASSERT_EQ(0, pthread_mutex_unlock(&m));
1686 
1687   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1688   ts.tv_sec += 1;
1689   ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1690 
1691   ASSERT_EQ(0, pthread_mutex_unlock(&m));
1692   ASSERT_EQ(0, pthread_mutex_destroy(&m));
1693 }
1694 
1695 class StrictAlignmentAllocator {
1696  public:
allocate(size_t size,size_t alignment)1697   void* allocate(size_t size, size_t alignment) {
1698     char* p = new char[size + alignment * 2];
1699     allocated_array.push_back(p);
1700     while (!is_strict_aligned(p, alignment)) {
1701       ++p;
1702     }
1703     return p;
1704   }
1705 
~StrictAlignmentAllocator()1706   ~StrictAlignmentAllocator() {
1707     for (const auto& p : allocated_array) {
1708       delete[] p;
1709     }
1710   }
1711 
1712  private:
is_strict_aligned(char * p,size_t alignment)1713   bool is_strict_aligned(char* p, size_t alignment) {
1714     return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1715   }
1716 
1717   std::vector<char*> allocated_array;
1718 };
1719 
TEST(pthread,pthread_types_allow_four_bytes_alignment)1720 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1721 #if defined(__BIONIC__)
1722   // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1723   StrictAlignmentAllocator allocator;
1724   pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1725                              allocator.allocate(sizeof(pthread_mutex_t), 4));
1726   ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1727   ASSERT_EQ(0, pthread_mutex_lock(mutex));
1728   ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1729   ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1730 
1731   pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1732                            allocator.allocate(sizeof(pthread_cond_t), 4));
1733   ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1734   ASSERT_EQ(0, pthread_cond_signal(cond));
1735   ASSERT_EQ(0, pthread_cond_broadcast(cond));
1736   ASSERT_EQ(0, pthread_cond_destroy(cond));
1737 
1738   pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1739                                allocator.allocate(sizeof(pthread_rwlock_t), 4));
1740   ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1741   ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1742   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1743   ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1744   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1745   ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1746 
1747 #else
1748   GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1749 #endif
1750 }
1751 
TEST(pthread,pthread_mutex_lock_null_32)1752 TEST(pthread, pthread_mutex_lock_null_32) {
1753 #if defined(__BIONIC__) && !defined(__LP64__)
1754   ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
1755 #else
1756   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1757 #endif
1758 }
1759 
TEST(pthread,pthread_mutex_unlock_null_32)1760 TEST(pthread, pthread_mutex_unlock_null_32) {
1761 #if defined(__BIONIC__) && !defined(__LP64__)
1762   ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
1763 #else
1764   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1765 #endif
1766 }
1767 
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)1768 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1769 #if defined(__BIONIC__) && defined(__LP64__)
1770   pthread_mutex_t* null_value = nullptr;
1771   ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1772 #else
1773   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1774 #endif
1775 }
1776 
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)1777 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1778 #if defined(__BIONIC__) && defined(__LP64__)
1779   pthread_mutex_t* null_value = nullptr;
1780   ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1781 #else
1782   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1783 #endif
1784 }
1785 
1786 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1787 
1788 static volatile bool signal_handler_on_altstack_done;
1789 
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)1790 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1791   ASSERT_EQ(SIGUSR1, signo);
1792   // Check if we have enough stack space for unwinding.
1793   int count = 0;
1794   _Unwind_Backtrace(FrameCounter, &count);
1795   ASSERT_GT(count, 0);
1796   // Check if we have enough stack space for logging.
1797   std::string s(2048, '*');
1798   GTEST_LOG_(INFO) << s;
1799   signal_handler_on_altstack_done = true;
1800 }
1801 
TEST(pthread,big_enough_signal_stack_for_64bit_arch)1802 TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
1803   signal_handler_on_altstack_done = false;
1804   ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1805   kill(getpid(), SIGUSR1);
1806   ASSERT_TRUE(signal_handler_on_altstack_done);
1807 }
1808 
TEST(pthread,pthread_barrierattr_smoke)1809 TEST(pthread, pthread_barrierattr_smoke) {
1810   pthread_barrierattr_t attr;
1811   ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1812   int pshared;
1813   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1814   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1815   ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1816   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1817   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1818   ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1819 }
1820 
1821 struct BarrierTestHelperData {
1822   size_t thread_count;
1823   pthread_barrier_t barrier;
1824   std::atomic<int> finished_mask;
1825   std::atomic<int> serial_thread_count;
1826   size_t iteration_count;
1827   std::atomic<size_t> finished_iteration_count;
1828 
BarrierTestHelperDataBarrierTestHelperData1829   BarrierTestHelperData(size_t thread_count, size_t iteration_count)
1830       : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
1831         iteration_count(iteration_count), finished_iteration_count(0) {
1832   }
1833 };
1834 
1835 struct BarrierTestHelperArg {
1836   int id;
1837   BarrierTestHelperData* data;
1838 };
1839 
BarrierTestHelper(BarrierTestHelperArg * arg)1840 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1841   for (size_t i = 0; i < arg->data->iteration_count; ++i) {
1842     int result = pthread_barrier_wait(&arg->data->barrier);
1843     if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
1844       arg->data->serial_thread_count++;
1845     } else {
1846       ASSERT_EQ(0, result);
1847     }
1848     arg->data->finished_mask |= (1 << arg->id);
1849     if (arg->data->finished_mask == ((1 << arg->data->thread_count) - 1)) {
1850       ASSERT_EQ(1, arg->data->serial_thread_count);
1851       arg->data->finished_iteration_count++;
1852       arg->data->finished_mask = 0;
1853       arg->data->serial_thread_count = 0;
1854     }
1855   }
1856 }
1857 
TEST(pthread,pthread_barrier_smoke)1858 TEST(pthread, pthread_barrier_smoke) {
1859   const size_t BARRIER_ITERATION_COUNT = 10;
1860   const size_t BARRIER_THREAD_COUNT = 10;
1861   BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
1862   ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
1863   std::vector<pthread_t> threads(data.thread_count);
1864   std::vector<BarrierTestHelperArg> args(threads.size());
1865   for (size_t i = 0; i < threads.size(); ++i) {
1866     args[i].id = i;
1867     args[i].data = &data;
1868     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1869                                 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1870   }
1871   for (size_t i = 0; i < threads.size(); ++i) {
1872     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1873   }
1874   ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
1875   ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
1876 }
1877 
1878 struct BarrierDestroyTestArg {
1879   std::atomic<int> tid;
1880   pthread_barrier_t* barrier;
1881 };
1882 
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)1883 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
1884   arg->tid = gettid();
1885   ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
1886 }
1887 
TEST(pthread,pthread_barrier_destroy)1888 TEST(pthread, pthread_barrier_destroy) {
1889   pthread_barrier_t barrier;
1890   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
1891   pthread_t thread;
1892   BarrierDestroyTestArg arg;
1893   arg.tid = 0;
1894   arg.barrier = &barrier;
1895   ASSERT_EQ(0, pthread_create(&thread, nullptr,
1896                               reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
1897   WaitUntilThreadSleep(arg.tid);
1898   ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
1899   ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
1900   // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
1901   ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
1902   ASSERT_EQ(0, pthread_join(thread, nullptr));
1903 #if defined(__BIONIC__)
1904   ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
1905 #endif
1906 }
1907 
1908 struct BarrierOrderingTestHelperArg {
1909   pthread_barrier_t* barrier;
1910   size_t* array;
1911   size_t array_length;
1912   size_t id;
1913 };
1914 
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)1915 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
1916   const size_t ITERATION_COUNT = 10000;
1917   for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
1918     arg->array[arg->id] = i;
1919     int result = pthread_barrier_wait(arg->barrier);
1920     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
1921     for (size_t j = 0; j < arg->array_length; ++j) {
1922       ASSERT_EQ(i, arg->array[j]);
1923     }
1924     result = pthread_barrier_wait(arg->barrier);
1925     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
1926   }
1927 }
1928 
TEST(pthread,pthread_barrier_check_ordering)1929 TEST(pthread, pthread_barrier_check_ordering) {
1930   const size_t THREAD_COUNT = 4;
1931   pthread_barrier_t barrier;
1932   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
1933   size_t array[THREAD_COUNT];
1934   std::vector<pthread_t> threads(THREAD_COUNT);
1935   std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
1936   for (size_t i = 0; i < THREAD_COUNT; ++i) {
1937     args[i].barrier = &barrier;
1938     args[i].array = array;
1939     args[i].array_length = THREAD_COUNT;
1940     args[i].id = i;
1941     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1942                                 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
1943                                 &args[i]));
1944   }
1945   for (size_t i = 0; i < THREAD_COUNT; ++i) {
1946     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1947   }
1948 }
1949 
TEST(pthread,pthread_spinlock_smoke)1950 TEST(pthread, pthread_spinlock_smoke) {
1951   pthread_spinlock_t lock;
1952   ASSERT_EQ(0, pthread_spin_init(&lock, 0));
1953   ASSERT_EQ(0, pthread_spin_trylock(&lock));
1954   ASSERT_EQ(0, pthread_spin_unlock(&lock));
1955   ASSERT_EQ(0, pthread_spin_lock(&lock));
1956   ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
1957   ASSERT_EQ(0, pthread_spin_unlock(&lock));
1958   ASSERT_EQ(0, pthread_spin_destroy(&lock));
1959 }
1960