1page.title=Data Formats 2@jd:body 3 4<!-- 5 Copyright 2015 The Android Open Source Project 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18--> 19 20<div id="qv-wrapper"> 21 <div id="qv"> 22 <h2>In this document</h2> 23 <ol id="auto-toc"> 24 </ol> 25 </div> 26</div> 27 28<p> 29Android uses a wide variety of audio 30<a href="http://en.wikipedia.org/wiki/Data_format">data formats</a> 31internally, and exposes a subset of these in public APIs, 32<a href="http://en.wikipedia.org/wiki/Audio_file_format">file formats</a>, 33and the 34<a href="https://en.wikipedia.org/wiki/Hardware_abstraction">Hardware Abstraction Layer</a> (HAL). 35</p> 36 37<h2 id="properties">Properties</h2> 38 39<p> 40The audio data formats are classified by their properties: 41</p> 42 43<dl> 44 45 <dt><a href="https://en.wikipedia.org/wiki/Data_compression">Compression</a></dt> 46 <dd> 47 <a href="http://en.wikipedia.org/wiki/Raw_data">Uncompressed</a>, 48 <a href="http://en.wikipedia.org/wiki/Lossless_compression">lossless compressed</a>, or 49 <a href="http://en.wikipedia.org/wiki/Lossy_compression">lossy compressed</a>. 50 PCM is the most common uncompressed audio format. FLAC is a lossless compressed 51 format, while MP3 and AAC are lossy compressed formats. 52 </dd> 53 54 <dt><a href="http://en.wikipedia.org/wiki/Audio_bit_depth">Bit depth</a></dt> 55 <dd> 56 Number of significant bits per audio sample. 57 </dd> 58 59 <dt><a href="https://en.wikipedia.org/wiki/Sizeof">Container size</a></dt> 60 <dd> 61 Number of bits used to store or transmit a sample. Usually 62 this is the same as the bit depth, but sometimes additional 63 padding bits are allocated for alignment. For example, a 64 24-bit sample could be contained within a 32-bit word. 65 </dd> 66 67 <dt><a href="http://en.wikipedia.org/wiki/Data_structure_alignment">Alignment</a></dt> 68 <dd> 69 If the container size is exactly equal to the bit depth, the 70 representation is called <em>packed</em>. Otherwise the representation is 71 <em>unpacked</em>. The significant bits of the sample are typically 72 aligned with either the leftmost (most significant) or rightmost 73 (least significant) bit of the container. It is conventional to use 74 the terms <em>packed</em> and <em>unpacked</em> only when the bit 75 depth is not a 76 <a href="http://en.wikipedia.org/wiki/Power_of_two">power of two</a>. 77 </dd> 78 79 <dt><a href="http://en.wikipedia.org/wiki/Signedness">Signedness</a></dt> 80 <dd> 81 Whether samples are signed or unsigned. 82 </dd> 83 84 <dt>Representation</dt> 85 <dd> 86 Either fixed point or floating point; see below. 87 </dd> 88 89</dl> 90 91<h2 id="fixed">Fixed point representation</h2> 92 93<p> 94<a href="http://en.wikipedia.org/wiki/Fixed-point_arithmetic">Fixed point</a> 95is the most common representation for uncompressed PCM audio data, 96especially at hardware interfaces. 97</p> 98 99<p> 100A fixed-point number has a fixed (constant) number of digits 101before and after the <a href="https://en.wikipedia.org/wiki/Radix_point">radix point</a>. 102All of our representations use 103<a href="https://en.wikipedia.org/wiki/Binary_number">base 2</a>, 104so we substitute <em>bit</em> for <em>digit</em>, 105and <em>binary point</em> or simply <em>point</em> for <em>radix point</em>. 106The bits to the left of the point are the integer part, 107and the bits to the right of the point are the 108<a href="https://en.wikipedia.org/wiki/Fractional_part">fractional part</a>. 109</p> 110 111<p> 112We speak of <em>integer PCM</em>, because fixed-point values 113are usually stored and manipulated as integer values. 114The interpretation as fixed-point is implicit. 115</p> 116 117<p> 118We use <a href="https://en.wikipedia.org/wiki/Two%27s_complement">two's complement</a> 119for all signed fixed-point representations, 120so the following holds where all values are in units of one 121<a href="https://en.wikipedia.org/wiki/Least_significant_bit">LSB</a>: 122</p> 123<pre> 124|largest negative value| = |largest positive value| + 1 125</pre> 126 127<h3 id="q">Q and U notation</h3> 128 129<p> 130There are various 131<a href="https://en.wikipedia.org/wiki/Fixed-point_arithmetic#Notation">notations</a> 132for fixed-point representation in an integer. 133We use <a href="https://en.wikipedia.org/wiki/Q_(number_format)">Q notation</a>: 134Q<em>m</em>.<em>n</em> means <em>m</em> integer bits and <em>n</em> fractional bits. 135The "Q" counts as one bit, though the value is expressed in two's complement. 136The total number of bits is <em>m</em> + <em>n</em> + 1. 137</p> 138 139<p> 140U<em>m</em>.<em>n</em> is for unsigned numbers: 141<em>m</em> integer bits and <em>n</em> fractional bits, 142and the "U" counts as zero bits. 143The total number of bits is <em>m</em> + <em>n</em>. 144</p> 145 146<p> 147The integer part may be used in the final result, or be temporary. 148In the latter case, the bits that make up the integer part are called 149<em>guard bits</em>. The guard bits permit an intermediate calculation to overflow, 150as long as the final value is within range or can be clamped to be within range. 151Note that fixed-point guard bits are at the left, while floating-point unit 152<a href="https://en.wikipedia.org/wiki/Guard_digit">guard digits</a> 153are used to reduce roundoff error and are on the right. 154</p> 155 156<h2 id="floating">Floating point representation</h2> 157 158<p> 159<a href="https://en.wikipedia.org/wiki/Floating_point">Floating point</a> 160is an alternative to fixed point, in which the location of the point can vary. 161The primary advantages of floating-point include: 162</p> 163 164<ul> 165 <li>Greater <a href="https://en.wikipedia.org/wiki/Headroom_(audio_signal_processing)">headroom</a> 166 and <a href="https://en.wikipedia.org/wiki/Dynamic_range">dynamic range</a>; 167 floating-point arithmetic tolerates exceeeding nominal ranges 168 during intermediate computation, and only clamps values at the end 169 </li> 170 <li>Support for special values such as infinities and NaN</li> 171 <li>Easier to use in many cases</li> 172</ul> 173 174<p> 175Historically, floating-point arithmetic was slower than integer or fixed-point 176arithmetic, but now it is common for floating-point to be faster, 177provided control flow decisions aren't based on the value of a computation. 178</p> 179 180<h2 id="androidFormats">Android formats for audio</h2> 181 182<p> 183The major Android formats for audio are listed in the table below: 184</p> 185 186<table> 187 188<tr> 189 <th></th> 190 <th colspan="5"><center>Notation</center></th> 191</tr> 192 193<tr> 194 <th>Property</th> 195 <th>Q0.15</th> 196 <th>Q0.7 <sup>1</sup></th> 197 <th>Q0.23</th> 198 <th>Q0.31</th> 199 <th>float</th> 200</tr> 201 202<tr> 203 <td>Container<br />bits</td> 204 <td>16</td> 205 <td>8</td> 206 <td>24 or 32 <sup>2</sup></td> 207 <td>32</td> 208 <td>32</td> 209</tr> 210 211<tr> 212 <td>Significant bits<br />including sign</td> 213 <td>16</td> 214 <td>8</td> 215 <td>24</td> 216 <td>24 or 32 <sup>2</sup></td> 217 <td>25 <sup>3</sup></td> 218</tr> 219 220<tr> 221 <td>Headroom<br />in dB</td> 222 <td>0</td> 223 <td>0</td> 224 <td>0</td> 225 <td>0</td> 226 <td>126 <sup>4</sup></td> 227</tr> 228 229<tr> 230 <td>Dynamic range<br />in dB</td> 231 <td>90</td> 232 <td>42</td> 233 <td>138</td> 234 <td>138 to 186</td> 235 <td>900 <sup>5</sup></td> 236</tr> 237 238</table> 239 240<p> 241All fixed-point formats above have a nominal range of -1.0 to +1.0 minus one LSB. 242There is one more negative value than positive value due to the 243two's complement representation. 244</p> 245 246<p> 247Footnotes: 248</p> 249 250<ol> 251 252<li> 253All formats above express signed sample values. 254The 8-bit format is commonly called "unsigned", but 255it is actually a signed value with bias of <code>0.10000000</code>. 256</li> 257 258<li> 259Q0.23 may be packed into 24 bits (three 8-bit bytes), or unpacked 260in 32 bits. If unpacked, the significant bits are either right-justified 261towards the LSB with sign extension padding towards the MSB (Q8.23), 262or left-justified towards the MSB with zero fill towards the LSB 263(Q0.31). Q0.31 theoretically permits up to 32 significant bits, 264but hardware interfaces that accept Q0.31 rarely use all the bits. 265</li> 266 267<li> 268Single-precision floating point has 23 explicit bits plus one hidden bit and sign bit, 269resulting in 25 significant bits total. 270<a href="https://en.wikipedia.org/wiki/Denormal_number">Denormal numbers</a> 271have fewer significant bits. 272</li> 273 274<li> 275Single-precision floating point can express values up to ±1.7e+38, 276which explains the large headroom. 277</li> 278 279<li> 280The dynamic range shown is for denormals up to the nominal maximum 281value ±1.0. 282Note that some architecture-specific floating point implementations such as 283<a href="https://en.wikipedia.org/wiki/ARM_architecture#NEON">NEON</a> 284don't support denormals. 285</li> 286 287</ol> 288 289<h2 id="conversions">Conversions</h2> 290 291<p> 292This section discusses 293<a href="https://en.wikipedia.org/wiki/Data_conversion">data conversions</a> 294between various representations. 295</p> 296 297<h3 id="floatConversions">Floating point conversions</h3> 298 299<p> 300To convert a value from Q<em>m</em>.<em>n</em> format to floating point: 301</p> 302 303<ol> 304 <li>Convert the value to floating point as if it were an integer (by ignoring the point).</li> 305 <li>Multiply by 2<sup>-<em>n</em></sup>.</li> 306</ol> 307 308<p> 309For example, to convert a Q4.27 internal value to floating point, use: 310</p> 311<pre> 312float = integer * (2 ^ -27) 313</pre> 314 315<p> 316Conversions from floating point to fixed point follow these rules: 317</p> 318 319<ul> 320 321<li> 322Single-precision floating point has a nominal range of ±1.0, 323but the full range for intermediate values is ±1.7e+38. 324Conversion between floating point and fixed point for external representation 325(such as output to audio devices) will consider only the nominal range, with 326clamping for values that exceed that range. 327In particular, when +1.0 is converted 328to a fixed-point format, it is clamped to +1.0 minus one LSB. 329</li> 330 331<li> 332Denormals (subnormals) and both +/- 0.0 are allowed in representation, 333but may be silently converted to 0.0 during processing. 334</li> 335 336<li> 337Infinities will either pass through operations or will be silently hard-limited 338to +/- 1.0. Generally the latter is for conversion to a fixed-point format. 339</li> 340 341<li> 342NaN behavior is undefined: a NaN may propagate as an identical NaN, or may be 343converted to a Default NaN, may be silently hard limited to +/- 1.0, or 344silently converted to 0.0, or result in an error. 345</li> 346 347</ul> 348 349<h3 id="fixedConversion">Fixed point conversions</h3> 350 351<p> 352Conversions between different Q<em>m</em>.<em>n</em> formats follow these rules: 353</p> 354 355<ul> 356 357<li> 358When <em>m</em> is increased, sign extend the integer part at left. 359</li> 360 361<li> 362When <em>m</em> is decreased, clamp the integer part. 363</li> 364 365<li> 366When <em>n</em> is increased, zero extend the fractional part at right. 367</li> 368 369<li> 370When <em>n</em> is decreased, either dither, round, or truncate the excess fractional bits at right. 371</li> 372 373</ul> 374 375<p> 376For example, to convert a Q4.27 value to Q0.15 (without dither or 377rounding), right shift the Q4.27 value by 12 bits, and clamp any results 378that exceed the 16-bit signed range. This aligns the point of the 379Q representation. 380</p> 381 382<p>To convert Q7.24 to Q7.23, do a signed divide by 2, 383or equivalently add the sign bit to the Q7.24 integer quantity, and then signed right shift by 1. 384Note that a simple signed right shift is <em>not</em> equivalent to a signed divide by 2. 385</p> 386 387<h3 id="lossyConversion">Lossy and lossless conversions</h3> 388 389<p> 390A conversion is <em>lossless</em> if it is 391<a href="https://en.wikipedia.org/wiki/Inverse_function">invertible</a>: 392a conversion from <code>A</code> to <code>B</code> to 393<code>C</code> results in <code>A = C</code>. 394Otherwise the conversion is <a href="https://en.wikipedia.org/wiki/Lossy_data_conversion">lossy</a>. 395</p> 396 397<p> 398Lossless conversions permit 399<a href="https://en.wikipedia.org/wiki/Round-trip_format_conversion">round-trip format conversion</a>. 400</p> 401 402<p> 403Conversions from fixed point representation with 25 or fewer significant bits to floating point are lossless. 404Conversions from floating point to any common fixed point representation are lossy. 405</p> 406