• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // This fits circles to a collection of points, where the error is related to
32 // the distance of a point from the circle. This uses auto-differentiation to
33 // take the derivatives.
34 //
35 // The input format is simple text. Feed on standard in:
36 //
37 //   x_initial y_initial r_initial
38 //   x1 y1
39 //   x2 y2
40 //   y3 y3
41 //   ...
42 //
43 // And the result after solving will be printed to stdout:
44 //
45 //   x y r
46 //
47 // There are closed form solutions [1] to this problem which you may want to
48 // consider instead of using this one. If you already have a decent guess, Ceres
49 // can squeeze down the last bit of error.
50 //
51 //   [1] http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit/content/circfit.m
52 
53 #include <cstdio>
54 #include <vector>
55 
56 #include "ceres/ceres.h"
57 #include "gflags/gflags.h"
58 #include "glog/logging.h"
59 
60 using ceres::AutoDiffCostFunction;
61 using ceres::CauchyLoss;
62 using ceres::CostFunction;
63 using ceres::LossFunction;
64 using ceres::Problem;
65 using ceres::Solve;
66 using ceres::Solver;
67 
68 DEFINE_double(robust_threshold, 0.0, "Robust loss parameter. Set to 0 for "
69               "normal squared error (no robustification).");
70 
71 // The cost for a single sample. The returned residual is related to the
72 // distance of the point from the circle (passed in as x, y, m parameters).
73 //
74 // Note that the radius is parameterized as r = m^2 to constrain the radius to
75 // positive values.
76 class DistanceFromCircleCost {
77  public:
DistanceFromCircleCost(double xx,double yy)78   DistanceFromCircleCost(double xx, double yy) : xx_(xx), yy_(yy) {}
operator ()(const T * const x,const T * const y,const T * const m,T * residual) const79   template <typename T> bool operator()(const T* const x,
80                                         const T* const y,
81                                         const T* const m,  // r = m^2
82                                         T* residual) const {
83     // Since the radius is parameterized as m^2, unpack m to get r.
84     T r = *m * *m;
85 
86     // Get the position of the sample in the circle's coordinate system.
87     T xp = xx_ - *x;
88     T yp = yy_ - *y;
89 
90     // It is tempting to use the following cost:
91     //
92     //   residual[0] = r - sqrt(xp*xp + yp*yp);
93     //
94     // which is the distance of the sample from the circle. This works
95     // reasonably well, but the sqrt() adds strong nonlinearities to the cost
96     // function. Instead, a different cost is used, which while not strictly a
97     // distance in the metric sense (it has units distance^2) it produces more
98     // robust fits when there are outliers. This is because the cost surface is
99     // more convex.
100     residual[0] = r*r - xp*xp - yp*yp;
101     return true;
102   }
103 
104  private:
105   // The measured x,y coordinate that should be on the circle.
106   double xx_, yy_;
107 };
108 
main(int argc,char ** argv)109 int main(int argc, char** argv) {
110   google::ParseCommandLineFlags(&argc, &argv, true);
111   google::InitGoogleLogging(argv[0]);
112 
113   double x, y, r;
114   if (scanf("%lg %lg %lg", &x, &y, &r) != 3) {
115     fprintf(stderr, "Couldn't read first line.\n");
116     return 1;
117   }
118   fprintf(stderr, "Got x, y, r %lg, %lg, %lg\n", x, y, r);
119 
120   // Save initial values for comparison.
121   double initial_x = x;
122   double initial_y = y;
123   double initial_r = r;
124 
125   // Parameterize r as m^2 so that it can't be negative.
126   double m = sqrt(r);
127 
128   Problem problem;
129 
130   // Configure the loss function.
131   LossFunction* loss = NULL;
132   if (FLAGS_robust_threshold) {
133     loss = new CauchyLoss(FLAGS_robust_threshold);
134   }
135 
136   // Add the residuals.
137   double xx, yy;
138   int num_points = 0;
139   while (scanf("%lf %lf\n", &xx, &yy) == 2) {
140     CostFunction *cost =
141         new AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(
142             new DistanceFromCircleCost(xx, yy));
143     problem.AddResidualBlock(cost, loss, &x, &y, &m);
144     num_points++;
145   }
146 
147   std::cout << "Got " << num_points << " points.\n";
148 
149   // Build and solve the problem.
150   Solver::Options options;
151   options.max_num_iterations = 500;
152   options.linear_solver_type = ceres::DENSE_QR;
153   Solver::Summary summary;
154   Solve(options, &problem, &summary);
155 
156   // Recover r from m.
157   r = m * m;
158 
159   std::cout << summary.BriefReport() << "\n";
160   std::cout << "x : " << initial_x << " -> " << x << "\n";
161   std::cout << "y : " << initial_y << " -> " << y << "\n";
162   std::cout << "r : " << initial_r << " -> " << r << "\n";
163   return 0;
164 }
165