1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 //
31 // This fits circles to a collection of points, where the error is related to
32 // the distance of a point from the circle. This uses auto-differentiation to
33 // take the derivatives.
34 //
35 // The input format is simple text. Feed on standard in:
36 //
37 // x_initial y_initial r_initial
38 // x1 y1
39 // x2 y2
40 // y3 y3
41 // ...
42 //
43 // And the result after solving will be printed to stdout:
44 //
45 // x y r
46 //
47 // There are closed form solutions [1] to this problem which you may want to
48 // consider instead of using this one. If you already have a decent guess, Ceres
49 // can squeeze down the last bit of error.
50 //
51 // [1] http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit/content/circfit.m
52
53 #include <cstdio>
54 #include <vector>
55
56 #include "ceres/ceres.h"
57 #include "gflags/gflags.h"
58 #include "glog/logging.h"
59
60 using ceres::AutoDiffCostFunction;
61 using ceres::CauchyLoss;
62 using ceres::CostFunction;
63 using ceres::LossFunction;
64 using ceres::Problem;
65 using ceres::Solve;
66 using ceres::Solver;
67
68 DEFINE_double(robust_threshold, 0.0, "Robust loss parameter. Set to 0 for "
69 "normal squared error (no robustification).");
70
71 // The cost for a single sample. The returned residual is related to the
72 // distance of the point from the circle (passed in as x, y, m parameters).
73 //
74 // Note that the radius is parameterized as r = m^2 to constrain the radius to
75 // positive values.
76 class DistanceFromCircleCost {
77 public:
DistanceFromCircleCost(double xx,double yy)78 DistanceFromCircleCost(double xx, double yy) : xx_(xx), yy_(yy) {}
operator ()(const T * const x,const T * const y,const T * const m,T * residual) const79 template <typename T> bool operator()(const T* const x,
80 const T* const y,
81 const T* const m, // r = m^2
82 T* residual) const {
83 // Since the radius is parameterized as m^2, unpack m to get r.
84 T r = *m * *m;
85
86 // Get the position of the sample in the circle's coordinate system.
87 T xp = xx_ - *x;
88 T yp = yy_ - *y;
89
90 // It is tempting to use the following cost:
91 //
92 // residual[0] = r - sqrt(xp*xp + yp*yp);
93 //
94 // which is the distance of the sample from the circle. This works
95 // reasonably well, but the sqrt() adds strong nonlinearities to the cost
96 // function. Instead, a different cost is used, which while not strictly a
97 // distance in the metric sense (it has units distance^2) it produces more
98 // robust fits when there are outliers. This is because the cost surface is
99 // more convex.
100 residual[0] = r*r - xp*xp - yp*yp;
101 return true;
102 }
103
104 private:
105 // The measured x,y coordinate that should be on the circle.
106 double xx_, yy_;
107 };
108
main(int argc,char ** argv)109 int main(int argc, char** argv) {
110 google::ParseCommandLineFlags(&argc, &argv, true);
111 google::InitGoogleLogging(argv[0]);
112
113 double x, y, r;
114 if (scanf("%lg %lg %lg", &x, &y, &r) != 3) {
115 fprintf(stderr, "Couldn't read first line.\n");
116 return 1;
117 }
118 fprintf(stderr, "Got x, y, r %lg, %lg, %lg\n", x, y, r);
119
120 // Save initial values for comparison.
121 double initial_x = x;
122 double initial_y = y;
123 double initial_r = r;
124
125 // Parameterize r as m^2 so that it can't be negative.
126 double m = sqrt(r);
127
128 Problem problem;
129
130 // Configure the loss function.
131 LossFunction* loss = NULL;
132 if (FLAGS_robust_threshold) {
133 loss = new CauchyLoss(FLAGS_robust_threshold);
134 }
135
136 // Add the residuals.
137 double xx, yy;
138 int num_points = 0;
139 while (scanf("%lf %lf\n", &xx, &yy) == 2) {
140 CostFunction *cost =
141 new AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(
142 new DistanceFromCircleCost(xx, yy));
143 problem.AddResidualBlock(cost, loss, &x, &y, &m);
144 num_points++;
145 }
146
147 std::cout << "Got " << num_points << " points.\n";
148
149 // Build and solve the problem.
150 Solver::Options options;
151 options.max_num_iterations = 500;
152 options.linear_solver_type = ceres::DENSE_QR;
153 Solver::Summary summary;
154 Solve(options, &problem, &summary);
155
156 // Recover r from m.
157 r = m * m;
158
159 std::cout << summary.BriefReport() << "\n";
160 std::cout << "x : " << initial_x << " -> " << x << "\n";
161 std::cout << "y : " << initial_y << " -> " << y << "\n";
162 std::cout << "r : " << initial_r << " -> " << r << "\n";
163 return 0;
164 }
165