• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_BICGSTAB_H
12 #define EIGEN_BICGSTAB_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /** \internal Low-level bi conjugate gradient stabilized algorithm
19   * \param mat The matrix A
20   * \param rhs The right hand side vector b
21   * \param x On input and initial solution, on output the computed solution.
22   * \param precond A preconditioner being able to efficiently solve for an
23   *                approximation of Ax=b (regardless of b)
24   * \param iters On input the max number of iteration, on output the number of performed iterations.
25   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
26   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
27   */
28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bicgstab(const MatrixType & mat,const Rhs & rhs,Dest & x,const Preconditioner & precond,int & iters,typename Dest::RealScalar & tol_error)29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
30               const Preconditioner& precond, int& iters,
31               typename Dest::RealScalar& tol_error)
32 {
33   using std::sqrt;
34   using std::abs;
35   typedef typename Dest::RealScalar RealScalar;
36   typedef typename Dest::Scalar Scalar;
37   typedef Matrix<Scalar,Dynamic,1> VectorType;
38   RealScalar tol = tol_error;
39   int maxIters = iters;
40 
41   int n = mat.cols();
42   VectorType r  = rhs - mat * x;
43   VectorType r0 = r;
44 
45   RealScalar r0_sqnorm = r0.squaredNorm();
46   RealScalar rhs_sqnorm = rhs.squaredNorm();
47   if(rhs_sqnorm == 0)
48   {
49     x.setZero();
50     return true;
51   }
52   Scalar rho    = 1;
53   Scalar alpha  = 1;
54   Scalar w      = 1;
55 
56   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
57   VectorType y(n),  z(n);
58   VectorType kt(n), ks(n);
59 
60   VectorType s(n), t(n);
61 
62   RealScalar tol2 = tol*tol;
63   RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
64   int i = 0;
65   int restarts = 0;
66 
67   while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
68   {
69     Scalar rho_old = rho;
70 
71     rho = r0.dot(r);
72     if (abs(rho) < eps2*r0_sqnorm)
73     {
74       // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
75       // Let's restart with a new r0:
76       r0 = r;
77       rho = r0_sqnorm = r.squaredNorm();
78       if(restarts++ == 0)
79         i = 0;
80     }
81     Scalar beta = (rho/rho_old) * (alpha / w);
82     p = r + beta * (p - w * v);
83 
84     y = precond.solve(p);
85 
86     v.noalias() = mat * y;
87 
88     alpha = rho / r0.dot(v);
89     s = r - alpha * v;
90 
91     z = precond.solve(s);
92     t.noalias() = mat * z;
93 
94     RealScalar tmp = t.squaredNorm();
95     if(tmp>RealScalar(0))
96       w = t.dot(s) / tmp;
97     else
98       w = Scalar(0);
99     x += alpha * y + w * z;
100     r = s - w * t;
101     ++i;
102   }
103   tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
104   iters = i;
105   return true;
106 }
107 
108 }
109 
110 template< typename _MatrixType,
111           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
112 class BiCGSTAB;
113 
114 namespace internal {
115 
116 template< typename _MatrixType, typename _Preconditioner>
117 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
118 {
119   typedef _MatrixType MatrixType;
120   typedef _Preconditioner Preconditioner;
121 };
122 
123 }
124 
125 /** \ingroup IterativeLinearSolvers_Module
126   * \brief A bi conjugate gradient stabilized solver for sparse square problems
127   *
128   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
129   * stabilized algorithm. The vectors x and b can be either dense or sparse.
130   *
131   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
132   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
133   *
134   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
135   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
136   * and NumTraits<Scalar>::epsilon() for the tolerance.
137   *
138   * This class can be used as the direct solver classes. Here is a typical usage example:
139   * \code
140   * int n = 10000;
141   * VectorXd x(n), b(n);
142   * SparseMatrix<double> A(n,n);
143   * // fill A and b
144   * BiCGSTAB<SparseMatrix<double> > solver;
145   * solver.compute(A);
146   * x = solver.solve(b);
147   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
148   * std::cout << "estimated error: " << solver.error()      << std::endl;
149   * // update b, and solve again
150   * x = solver.solve(b);
151   * \endcode
152   *
153   * By default the iterations start with x=0 as an initial guess of the solution.
154   * One can control the start using the solveWithGuess() method.
155   *
156   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
157   */
158 template< typename _MatrixType, typename _Preconditioner>
159 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
160 {
161   typedef IterativeSolverBase<BiCGSTAB> Base;
162   using Base::mp_matrix;
163   using Base::m_error;
164   using Base::m_iterations;
165   using Base::m_info;
166   using Base::m_isInitialized;
167 public:
168   typedef _MatrixType MatrixType;
169   typedef typename MatrixType::Scalar Scalar;
170   typedef typename MatrixType::Index Index;
171   typedef typename MatrixType::RealScalar RealScalar;
172   typedef _Preconditioner Preconditioner;
173 
174 public:
175 
176   /** Default constructor. */
177   BiCGSTAB() : Base() {}
178 
179   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
180     *
181     * This constructor is a shortcut for the default constructor followed
182     * by a call to compute().
183     *
184     * \warning this class stores a reference to the matrix A as well as some
185     * precomputed values that depend on it. Therefore, if \a A is changed
186     * this class becomes invalid. Call compute() to update it with the new
187     * matrix A, or modify a copy of A.
188     */
189   BiCGSTAB(const MatrixType& A) : Base(A) {}
190 
191   ~BiCGSTAB() {}
192 
193   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
194     * \a x0 as an initial solution.
195     *
196     * \sa compute()
197     */
198   template<typename Rhs,typename Guess>
199   inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
200   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
201   {
202     eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
203     eigen_assert(Base::rows()==b.rows()
204               && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
205     return internal::solve_retval_with_guess
206             <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
207   }
208 
209   /** \internal */
210   template<typename Rhs,typename Dest>
211   void _solveWithGuess(const Rhs& b, Dest& x) const
212   {
213     bool failed = false;
214     for(int j=0; j<b.cols(); ++j)
215     {
216       m_iterations = Base::maxIterations();
217       m_error = Base::m_tolerance;
218 
219       typename Dest::ColXpr xj(x,j);
220       if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
221         failed = true;
222     }
223     m_info = failed ? NumericalIssue
224            : m_error <= Base::m_tolerance ? Success
225            : NoConvergence;
226     m_isInitialized = true;
227   }
228 
229   /** \internal */
230   template<typename Rhs,typename Dest>
231   void _solve(const Rhs& b, Dest& x) const
232   {
233 //     x.setZero();
234   x = b;
235     _solveWithGuess(b,x);
236   }
237 
238 protected:
239 
240 };
241 
242 
243 namespace internal {
244 
245   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
246 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
247   : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
248 {
249   typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
250   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
251 
252   template<typename Dest> void evalTo(Dest& dst) const
253   {
254     dec()._solve(rhs(),dst);
255   }
256 };
257 
258 } // end namespace internal
259 
260 } // end namespace Eigen
261 
262 #endif // EIGEN_BICGSTAB_H
263