1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "sparse.h"
11
sparse_product(const SparseMatrixType & ref)12 template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref)
13 {
14 const int rows = ref.rows();
15 const int cols = ref.cols();
16 typedef typename SparseMatrixType::Scalar Scalar;
17 enum { Flags = SparseMatrixType::Flags };
18
19 double density = std::max(8./(rows*cols), 0.01);
20 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
21 typedef Matrix<Scalar,Dynamic,1> DenseVector;
22
23 // test matrix-matrix product
24 {
25 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
26 DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
27 DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
28 DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
29 SparseMatrixType m2(rows, rows);
30 SparseMatrixType m3(rows, rows);
31 SparseMatrixType m4(rows, rows);
32 initSparse<Scalar>(density, refMat2, m2);
33 initSparse<Scalar>(density, refMat3, m3);
34 initSparse<Scalar>(density, refMat4, m4);
35 VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
36 VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
37 VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
38 VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
39
40 // sparse * dense
41 VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
42 VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
43 VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
44 VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
45
46 // dense * sparse
47 VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
48 VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
49 VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
50 VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
51
52 VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3);
53 }
54
55 // test matrix - diagonal product
56 if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch....
57 {
58 DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
59 DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
60 DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows));
61 SparseMatrixType m2(rows, rows);
62 SparseMatrixType m3(rows, rows);
63 initSparse<Scalar>(density, refM2, m2);
64 initSparse<Scalar>(density, refM3, m3);
65 VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
66 VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
67 VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
68 VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
69 }
70
71 // test self adjoint products
72 {
73 DenseMatrix b = DenseMatrix::Random(rows, rows);
74 DenseMatrix x = DenseMatrix::Random(rows, rows);
75 DenseMatrix refX = DenseMatrix::Random(rows, rows);
76 DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
77 DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
78 DenseMatrix refS = DenseMatrix::Zero(rows, rows);
79 SparseMatrixType mUp(rows, rows);
80 SparseMatrixType mLo(rows, rows);
81 SparseMatrixType mS(rows, rows);
82 do {
83 initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
84 } while (refUp.isZero());
85 refLo = refUp.transpose().conjugate();
86 mLo = mUp.transpose().conjugate();
87 refS = refUp + refLo;
88 refS.diagonal() *= 0.5;
89 mS = mUp + mLo;
90 for (int k=0; k<mS.outerSize(); ++k)
91 for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
92 if (it.index() == k)
93 it.valueRef() *= 0.5;
94
95 VERIFY_IS_APPROX(refS.adjoint(), refS);
96 VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
97 VERIFY_IS_APPROX(mS, refS);
98 VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
99 VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
100 VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
101 VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
102 }
103
104 }
105
test_eigen2_sparse_product()106 void test_eigen2_sparse_product()
107 {
108 for(int i = 0; i < g_repeat; i++) {
109 CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) );
110 CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) );
111 CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) );
112
113 CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) );
114 }
115 }
116