• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/Array>
12 #include <Eigen/QR>
13 
14 template<typename Derived1, typename Derived2>
15 bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = precision<typename Derived1::RealScalar>())
16 {
17   return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
18                           * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
19 }
20 
product(const MatrixType & m)21 template<typename MatrixType> void product(const MatrixType& m)
22 {
23   /* this test covers the following files:
24      Identity.h Product.h
25   */
26 
27   typedef typename MatrixType::Scalar Scalar;
28   typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
29   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
30   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
31   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
32   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
33   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
34                          MatrixType::Options^RowMajor> OtherMajorMatrixType;
35 
36   int rows = m.rows();
37   int cols = m.cols();
38 
39   // this test relies a lot on Random.h, and there's not much more that we can do
40   // to test it, hence I consider that we will have tested Random.h
41   MatrixType m1 = MatrixType::Random(rows, cols),
42              m2 = MatrixType::Random(rows, cols),
43              m3(rows, cols);
44   RowSquareMatrixType
45              identity = RowSquareMatrixType::Identity(rows, rows),
46              square = RowSquareMatrixType::Random(rows, rows),
47              res = RowSquareMatrixType::Random(rows, rows);
48   ColSquareMatrixType
49              square2 = ColSquareMatrixType::Random(cols, cols),
50              res2 = ColSquareMatrixType::Random(cols, cols);
51   RowVectorType v1 = RowVectorType::Random(rows);
52   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
53   OtherMajorMatrixType tm1 = m1;
54 
55   Scalar s1 = ei_random<Scalar>();
56 
57   int r = ei_random<int>(0, rows-1),
58       c = ei_random<int>(0, cols-1);
59 
60   // begin testing Product.h: only associativity for now
61   // (we use Transpose.h but this doesn't count as a test for it)
62 
63   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
64   m3 = m1;
65   m3 *= m1.transpose() * m2;
66   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
67   VERIFY_IS_APPROX(m3,                      m1.lazy() * (m1.transpose()*m2));
68 
69   // continue testing Product.h: distributivity
70   VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
71   VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
72 
73   // continue testing Product.h: compatibility with ScalarMultiple.h
74   VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
75   VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
76 
77   // again, test operator() to check const-qualification
78   s1 += (square.lazy() * m1)(r,c);
79 
80   // test Product.h together with Identity.h
81   VERIFY_IS_APPROX(v1,                      identity*v1);
82   VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
83   // again, test operator() to check const-qualification
84   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
85 
86   if (rows!=cols)
87      VERIFY_RAISES_ASSERT(m3 = m1*m1);
88 
89   // test the previous tests were not screwed up because operator* returns 0
90   // (we use the more accurate default epsilon)
91   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
92   {
93     VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
94   }
95 
96   // test optimized operator+= path
97   res = square;
98   res += (m1 * m2.transpose()).lazy();
99   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
100   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
101   {
102     VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
103   }
104   vcres = vc2;
105   vcres += (m1.transpose() * v1).lazy();
106   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
107   tm1 = m1;
108   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
109   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
110 
111   // test submatrix and matrix/vector product
112   for (int i=0; i<rows; ++i)
113     res.row(i) = m1.row(i) * m2.transpose();
114   VERIFY_IS_APPROX(res, m1 * m2.transpose());
115   // the other way round:
116   for (int i=0; i<rows; ++i)
117     res.col(i) = m1 * m2.transpose().col(i);
118   VERIFY_IS_APPROX(res, m1 * m2.transpose());
119 
120   res2 = square2;
121   res2 += (m1.transpose() * m2).lazy();
122   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
123 
124   if (NumTraits<Scalar>::HasFloatingPoint && std::min(rows,cols)>1)
125   {
126     VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
127   }
128 }
129 
130