• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
product_extra(const MatrixType & m)12 template<typename MatrixType> void product_extra(const MatrixType& m)
13 {
14   typedef typename MatrixType::Index Index;
15   typedef typename MatrixType::Scalar Scalar;
16   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
17   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
18   typedef Matrix<Scalar, Dynamic, Dynamic,
19                          MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
20 
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   MatrixType m1 = MatrixType::Random(rows, cols),
25              m2 = MatrixType::Random(rows, cols),
26              m3(rows, cols),
27              mzero = MatrixType::Zero(rows, cols),
28              identity = MatrixType::Identity(rows, rows),
29              square = MatrixType::Random(rows, rows),
30              res = MatrixType::Random(rows, rows),
31              square2 = MatrixType::Random(cols, cols),
32              res2 = MatrixType::Random(cols, cols);
33   RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
34   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
35   OtherMajorMatrixType tm1 = m1;
36 
37   Scalar s1 = internal::random<Scalar>(),
38          s2 = internal::random<Scalar>(),
39          s3 = internal::random<Scalar>();
40 
41   VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval());
42   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval());
43   VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2);
44   VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2);
45   VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2);
46   VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval());
47   VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2);
48   VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval());
49 
50   // a very tricky case where a scale factor has to be automatically conjugated:
51   VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
52 
53 
54   // test all possible conjugate combinations for the four matrix-vector product cases:
55 
56   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
57                    (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
58   VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
59                    (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
60   VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
61                    (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
62 
63   VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
64                    (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
65   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
66                    (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
67   VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
68                    (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
69 
70   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
71                    (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
72   VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
73                    (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
74   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
75                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
76 
77   VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
78                    (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
79   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
80                    (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
81   VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
82                    (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
83 
84   VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
85                    (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
86 
87   // test the vector-matrix product with non aligned starts
88   Index i = internal::random<Index>(0,m1.rows()-2);
89   Index j = internal::random<Index>(0,m1.cols()-2);
90   Index r = internal::random<Index>(1,m1.rows()-i);
91   Index c = internal::random<Index>(1,m1.cols()-j);
92   Index i2 = internal::random<Index>(0,m1.rows()-1);
93   Index j2 = internal::random<Index>(0,m1.cols()-1);
94 
95   VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval());
96   VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval());
97 
98   // regression test
99   MatrixType tmp = m1 * m1.adjoint() * s1;
100   VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1);
101 }
102 
103 // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
mat_mat_scalar_scalar_product()104 void mat_mat_scalar_scalar_product()
105 {
106   Eigen::Matrix2Xd dNdxy(2, 3);
107   dNdxy << -0.5, 0.5, 0,
108            -0.3, 0, 0.3;
109   double det = 6.0, wt = 0.5;
110   VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy);
111 }
112 
113 template <typename MatrixType>
zero_sized_objects(const MatrixType & m)114 void zero_sized_objects(const MatrixType& m)
115 {
116   typedef typename MatrixType::Scalar Scalar;
117   const int PacketSize  = internal::packet_traits<Scalar>::size;
118   const int PacketSize1 = PacketSize>1 ?  PacketSize-1 : 1;
119   DenseIndex rows = m.rows();
120   DenseIndex cols = m.cols();
121 
122   {
123     MatrixType res, a(rows,0), b(0,cols);
124     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) );
125     VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) );
126     VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) );
127     VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) );
128   }
129 
130   {
131     MatrixType res, a(rows,cols), b(cols,0);
132     res = a*b;
133     VERIFY(res.rows()==rows && res.cols()==0);
134     b.resize(0,rows);
135     res = b*a;
136     VERIFY(res.rows()==0 && res.cols()==cols);
137   }
138 
139   {
140     Matrix<Scalar,PacketSize,0> a;
141     Matrix<Scalar,0,1> b;
142     Matrix<Scalar,PacketSize,1> res;
143     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
144     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
145   }
146 
147   {
148     Matrix<Scalar,PacketSize1,0> a;
149     Matrix<Scalar,0,1> b;
150     Matrix<Scalar,PacketSize1,1> res;
151     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
152     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
153   }
154 
155   {
156     Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0);
157     Matrix<Scalar,Dynamic,1> b(0,1);
158     Matrix<Scalar,PacketSize,1> res;
159     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) );
160     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) );
161   }
162 
163   {
164     Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0);
165     Matrix<Scalar,Dynamic,1> b(0,1);
166     Matrix<Scalar,PacketSize1,1> res;
167     VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) );
168     VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) );
169   }
170 }
171 
bug_127()172 void bug_127()
173 {
174   // Bug 127
175   //
176   // a product of the form lhs*rhs with
177   //
178   // lhs:
179   // rows = 1, cols = 4
180   // RowsAtCompileTime = 1, ColsAtCompileTime = -1
181   // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
182   //
183   // rhs:
184   // rows = 4, cols = 0
185   // RowsAtCompileTime = -1, ColsAtCompileTime = -1
186   // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
187   //
188   // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
189   // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
190 
191   Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4);
192   Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0);
193   a*b;
194 }
195 
unaligned_objects()196 void unaligned_objects()
197 {
198   // Regression test for the bug reported here:
199   // http://forum.kde.org/viewtopic.php?f=74&t=107541
200   // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
201   // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
202   // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
203   for(int m=450;m<460;++m)
204   {
205     for(int n=8;n<12;++n)
206     {
207       MatrixXf M(m, n);
208       VectorXf v1(n), r1(500);
209       RowVectorXf v2(m), r2(16);
210 
211       M.setRandom();
212       v1.setRandom();
213       v2.setRandom();
214       for(int o=0; o<4; ++o)
215       {
216         r1.segment(o,m).noalias() = M * v1;
217         VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1));
218         r2.segment(o,n).noalias() = v2 * M;
219         VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M);
220       }
221     }
222   }
223 }
224 
test_product_extra()225 void test_product_extra()
226 {
227   for(int i = 0; i < g_repeat; i++) {
228     CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
229     CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
230     CALL_SUBTEST_2( mat_mat_scalar_scalar_product() );
231     CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
232     CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
233     CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
234   }
235   CALL_SUBTEST_5( bug_127() );
236   CALL_SUBTEST_6( unaligned_objects() );
237 }
238