• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "sparse.h"
11 
12 template<typename SparseMatrixType, typename DenseMatrix, bool IsRowMajor=SparseMatrixType::IsRowMajor> struct test_outer;
13 
14 template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,false> {
runtest_outer15   static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
16     typedef typename SparseMatrixType::Index Index;
17     Index c  = internal::random<Index>(0,m2.cols()-1);
18     Index c1 = internal::random<Index>(0,m2.cols()-1);
19     VERIFY_IS_APPROX(m4=m2.col(c)*refMat2.col(c1).transpose(), refMat4=refMat2.col(c)*refMat2.col(c1).transpose());
20     VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.col(c).transpose(), refMat4=refMat2.col(c1)*refMat2.col(c).transpose());
21   }
22 };
23 
24 template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,true> {
runtest_outer25   static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
26     typedef typename SparseMatrixType::Index Index;
27     Index r  = internal::random<Index>(0,m2.rows()-1);
28     Index c1 = internal::random<Index>(0,m2.cols()-1);
29     VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose());
30     VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r));
31   }
32 };
33 
34 // (m2,m4,refMat2,refMat4,dv1);
35 //     VERIFY_IS_APPROX(m4=m2.innerVector(c)*dv1.transpose(), refMat4=refMat2.colVector(c)*dv1.transpose());
36 //     VERIFY_IS_APPROX(m4=dv1*mcm.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose());
37 
sparse_product()38 template<typename SparseMatrixType> void sparse_product()
39 {
40   typedef typename SparseMatrixType::Index Index;
41   Index n = 100;
42   const Index rows  = internal::random<Index>(1,n);
43   const Index cols  = internal::random<Index>(1,n);
44   const Index depth = internal::random<Index>(1,n);
45   typedef typename SparseMatrixType::Scalar Scalar;
46   enum { Flags = SparseMatrixType::Flags };
47 
48   double density = (std::max)(8./(rows*cols), 0.1);
49   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
50   typedef Matrix<Scalar,Dynamic,1> DenseVector;
51   typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
52   typedef SparseVector<Scalar,0,Index> ColSpVector;
53   typedef SparseVector<Scalar,RowMajor,Index> RowSpVector;
54 
55   Scalar s1 = internal::random<Scalar>();
56   Scalar s2 = internal::random<Scalar>();
57 
58   // test matrix-matrix product
59   {
60     DenseMatrix refMat2  = DenseMatrix::Zero(rows, depth);
61     DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows);
62     DenseMatrix refMat3  = DenseMatrix::Zero(depth, cols);
63     DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth);
64     DenseMatrix refMat4  = DenseMatrix::Zero(rows, cols);
65     DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows);
66     DenseMatrix refMat5  = DenseMatrix::Random(depth, cols);
67     DenseMatrix refMat6  = DenseMatrix::Random(rows, rows);
68     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
69 //     DenseVector dv1 = DenseVector::Random(rows);
70     SparseMatrixType m2 (rows, depth);
71     SparseMatrixType m2t(depth, rows);
72     SparseMatrixType m3 (depth, cols);
73     SparseMatrixType m3t(cols, depth);
74     SparseMatrixType m4 (rows, cols);
75     SparseMatrixType m4t(cols, rows);
76     SparseMatrixType m6(rows, rows);
77     initSparse(density, refMat2,  m2);
78     initSparse(density, refMat2t, m2t);
79     initSparse(density, refMat3,  m3);
80     initSparse(density, refMat3t, m3t);
81     initSparse(density, refMat4,  m4);
82     initSparse(density, refMat4t, m4t);
83     initSparse(density, refMat6, m6);
84 
85 //     int c = internal::random<int>(0,depth-1);
86 
87     // sparse * sparse
88     VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
89     VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
90     VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
91     VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
92 
93     VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
94     VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
95     VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);
96 
97     VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3);
98     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3);
99     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
100     VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());
101 
102     // test aliasing
103     m4 = m2; refMat4 = refMat2;
104     VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);
105 
106     // sparse * dense
107     VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
108     VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
109     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
110     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
111 
112     VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
113     VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
114 
115     // dense * sparse
116     VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
117     VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
118     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
119     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
120 
121     // sparse * dense and dense * sparse outer product
122     test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4);
123 
124     VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
125 
126     // sparse matrix * sparse vector
127     ColSpVector cv0(cols), cv1;
128     DenseVector dcv0(cols), dcv1;
129     initSparse(2*density,dcv0, cv0);
130 
131     RowSpVector rv0(depth), rv1;
132     RowDenseVector drv0(depth), drv1(rv1);
133     initSparse(2*density,drv0, rv0);
134 
135     VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
136     VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
137     VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
138     VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
139     VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
140   }
141 
142   // test matrix - diagonal product
143   {
144     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
145     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
146     DenseMatrix d3 = DenseMatrix::Zero(rows, cols);
147     DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols));
148     DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows));
149     SparseMatrixType m2(rows, cols);
150     SparseMatrixType m3(rows, cols);
151     initSparse<Scalar>(density, refM2, m2);
152     initSparse<Scalar>(density, refM3, m3);
153     VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
154     VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
155     VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2);
156     VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose());
157 
158     // also check with a SparseWrapper:
159     DenseVector v1 = DenseVector::Random(cols);
160     DenseVector v2 = DenseVector::Random(rows);
161     VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal());
162     VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
163     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
164     VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
165 
166     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
167 
168     // evaluate to a dense matrix to check the .row() and .col() iterator functions
169     VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
170     VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2);
171     VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2);
172     VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
173   }
174 
175   // test self adjoint products
176   {
177     DenseMatrix b = DenseMatrix::Random(rows, rows);
178     DenseMatrix x = DenseMatrix::Random(rows, rows);
179     DenseMatrix refX = DenseMatrix::Random(rows, rows);
180     DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
181     DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
182     DenseMatrix refS = DenseMatrix::Zero(rows, rows);
183     SparseMatrixType mUp(rows, rows);
184     SparseMatrixType mLo(rows, rows);
185     SparseMatrixType mS(rows, rows);
186     do {
187       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
188     } while (refUp.isZero());
189     refLo = refUp.adjoint();
190     mLo = mUp.adjoint();
191     refS = refUp + refLo;
192     refS.diagonal() *= 0.5;
193     mS = mUp + mLo;
194     // TODO be able to address the diagonal....
195     for (int k=0; k<mS.outerSize(); ++k)
196       for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
197         if (it.index() == k)
198           it.valueRef() *= 0.5;
199 
200     VERIFY_IS_APPROX(refS.adjoint(), refS);
201     VERIFY_IS_APPROX(mS.adjoint(), mS);
202     VERIFY_IS_APPROX(mS, refS);
203     VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
204 
205     VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
206     VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
207     VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
208 
209     // sparse selfadjointView * sparse
210     SparseMatrixType mSres(rows,rows);
211     VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
212                      refX = refLo.template selfadjointView<Lower>()*refS);
213     // sparse * sparse selfadjointview
214     VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
215                      refX = refS * refLo.template selfadjointView<Lower>());
216   }
217 
218 }
219 
220 // New test for Bug in SparseTimeDenseProduct
sparse_product_regression_test()221 template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test()
222 {
223   // This code does not compile with afflicted versions of the bug
224   SparseMatrixType sm1(3,2);
225   DenseMatrixType m2(2,2);
226   sm1.setZero();
227   m2.setZero();
228 
229   DenseMatrixType m3 = sm1*m2;
230 
231 
232   // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct
233   // bug
234 
235   SparseMatrixType sm2(20000,2);
236   sm2.setZero();
237   DenseMatrixType m4(sm2*m2);
238 
239   VERIFY_IS_APPROX( m4(0,0), 0.0 );
240 }
241 
test_sparse_product()242 void test_sparse_product()
243 {
244   for(int i = 0; i < g_repeat; i++) {
245     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) );
246     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
247     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
248     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
249     CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
250     CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
251   }
252 }
253