• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * mount.c
3  *
4  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include "fsck.h"
12 #include <locale.h>
13 
print_inode_info(struct f2fs_inode * inode,int name)14 void print_inode_info(struct f2fs_inode *inode, int name)
15 {
16 	unsigned int i = 0;
17 	int namelen = le32_to_cpu(inode->i_namelen);
18 
19 	if (name && namelen) {
20 		inode->i_name[namelen] = '\0';
21 		MSG(0, " - File name         : %s\n", inode->i_name);
22 		setlocale(LC_ALL, "");
23 		MSG(0, " - File size         : %'llu (bytes)\n",
24 				le64_to_cpu(inode->i_size));
25 		return;
26 	}
27 
28 	DISP_u32(inode, i_mode);
29 	DISP_u32(inode, i_uid);
30 	DISP_u32(inode, i_gid);
31 	DISP_u32(inode, i_links);
32 	DISP_u64(inode, i_size);
33 	DISP_u64(inode, i_blocks);
34 
35 	DISP_u64(inode, i_atime);
36 	DISP_u32(inode, i_atime_nsec);
37 	DISP_u64(inode, i_ctime);
38 	DISP_u32(inode, i_ctime_nsec);
39 	DISP_u64(inode, i_mtime);
40 	DISP_u32(inode, i_mtime_nsec);
41 
42 	DISP_u32(inode, i_generation);
43 	DISP_u32(inode, i_current_depth);
44 	DISP_u32(inode, i_xattr_nid);
45 	DISP_u32(inode, i_flags);
46 	DISP_u32(inode, i_inline);
47 	DISP_u32(inode, i_pino);
48 
49 	if (namelen) {
50 		DISP_u32(inode, i_namelen);
51 		inode->i_name[namelen] = '\0';
52 		DISP_utf(inode, i_name);
53 	}
54 
55 	printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
56 			inode->i_ext.fofs,
57 			inode->i_ext.blk_addr,
58 			inode->i_ext.len);
59 
60 	DISP_u32(inode, i_addr[0]);	/* Pointers to data blocks */
61 	DISP_u32(inode, i_addr[1]);	/* Pointers to data blocks */
62 	DISP_u32(inode, i_addr[2]);	/* Pointers to data blocks */
63 	DISP_u32(inode, i_addr[3]);	/* Pointers to data blocks */
64 
65 	for (i = 4; i < ADDRS_PER_INODE(inode); i++) {
66 		if (inode->i_addr[i] != 0x0) {
67 			printf("i_addr[0x%x] points data block\r\t\t[0x%4x]\n",
68 					i, inode->i_addr[i]);
69 			break;
70 		}
71 	}
72 
73 	DISP_u32(inode, i_nid[0]);	/* direct */
74 	DISP_u32(inode, i_nid[1]);	/* direct */
75 	DISP_u32(inode, i_nid[2]);	/* indirect */
76 	DISP_u32(inode, i_nid[3]);	/* indirect */
77 	DISP_u32(inode, i_nid[4]);	/* double indirect */
78 
79 	printf("\n");
80 }
81 
print_node_info(struct f2fs_node * node_block)82 void print_node_info(struct f2fs_node *node_block)
83 {
84 	nid_t ino = le32_to_cpu(node_block->footer.ino);
85 	nid_t nid = le32_to_cpu(node_block->footer.nid);
86 	/* Is this inode? */
87 	if (ino == nid) {
88 		DBG(0, "Node ID [0x%x:%u] is inode\n", nid, nid);
89 		print_inode_info(&node_block->i, 0);
90 	} else {
91 		int i;
92 		u32 *dump_blk = (u32 *)node_block;
93 		DBG(0, "Node ID [0x%x:%u] is direct node or indirect node.\n",
94 								nid, nid);
95 		for (i = 0; i <= 10; i++)
96 			MSG(0, "[%d]\t\t\t[0x%8x : %d]\n",
97 						i, dump_blk[i], dump_blk[i]);
98 	}
99 }
100 
print_raw_sb_info(struct f2fs_sb_info * sbi)101 void print_raw_sb_info(struct f2fs_sb_info *sbi)
102 {
103 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
104 
105 	if (!config.dbg_lv)
106 		return;
107 
108 	printf("\n");
109 	printf("+--------------------------------------------------------+\n");
110 	printf("| Super block                                            |\n");
111 	printf("+--------------------------------------------------------+\n");
112 
113 	DISP_u32(sb, magic);
114 	DISP_u32(sb, major_ver);
115 	DISP_u32(sb, minor_ver);
116 	DISP_u32(sb, log_sectorsize);
117 	DISP_u32(sb, log_sectors_per_block);
118 
119 	DISP_u32(sb, log_blocksize);
120 	DISP_u32(sb, log_blocks_per_seg);
121 	DISP_u32(sb, segs_per_sec);
122 	DISP_u32(sb, secs_per_zone);
123 	DISP_u32(sb, checksum_offset);
124 	DISP_u64(sb, block_count);
125 
126 	DISP_u32(sb, section_count);
127 	DISP_u32(sb, segment_count);
128 	DISP_u32(sb, segment_count_ckpt);
129 	DISP_u32(sb, segment_count_sit);
130 	DISP_u32(sb, segment_count_nat);
131 
132 	DISP_u32(sb, segment_count_ssa);
133 	DISP_u32(sb, segment_count_main);
134 	DISP_u32(sb, segment0_blkaddr);
135 
136 	DISP_u32(sb, cp_blkaddr);
137 	DISP_u32(sb, sit_blkaddr);
138 	DISP_u32(sb, nat_blkaddr);
139 	DISP_u32(sb, ssa_blkaddr);
140 	DISP_u32(sb, main_blkaddr);
141 
142 	DISP_u32(sb, root_ino);
143 	DISP_u32(sb, node_ino);
144 	DISP_u32(sb, meta_ino);
145 	DISP_u32(sb, cp_payload);
146 	DISP("%s", sb, version);
147 	printf("\n");
148 }
149 
print_ckpt_info(struct f2fs_sb_info * sbi)150 void print_ckpt_info(struct f2fs_sb_info *sbi)
151 {
152 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
153 
154 	if (!config.dbg_lv)
155 		return;
156 
157 	printf("\n");
158 	printf("+--------------------------------------------------------+\n");
159 	printf("| Checkpoint                                             |\n");
160 	printf("+--------------------------------------------------------+\n");
161 
162 	DISP_u64(cp, checkpoint_ver);
163 	DISP_u64(cp, user_block_count);
164 	DISP_u64(cp, valid_block_count);
165 	DISP_u32(cp, rsvd_segment_count);
166 	DISP_u32(cp, overprov_segment_count);
167 	DISP_u32(cp, free_segment_count);
168 
169 	DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
170 	DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
171 	DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
172 	DISP_u32(cp, cur_node_segno[0]);
173 	DISP_u32(cp, cur_node_segno[1]);
174 	DISP_u32(cp, cur_node_segno[2]);
175 
176 	DISP_u32(cp, cur_node_blkoff[0]);
177 	DISP_u32(cp, cur_node_blkoff[1]);
178 	DISP_u32(cp, cur_node_blkoff[2]);
179 
180 
181 	DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
182 	DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
183 	DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
184 	DISP_u32(cp, cur_data_segno[0]);
185 	DISP_u32(cp, cur_data_segno[1]);
186 	DISP_u32(cp, cur_data_segno[2]);
187 
188 	DISP_u32(cp, cur_data_blkoff[0]);
189 	DISP_u32(cp, cur_data_blkoff[1]);
190 	DISP_u32(cp, cur_data_blkoff[2]);
191 
192 	DISP_u32(cp, ckpt_flags);
193 	DISP_u32(cp, cp_pack_total_block_count);
194 	DISP_u32(cp, cp_pack_start_sum);
195 	DISP_u32(cp, valid_node_count);
196 	DISP_u32(cp, valid_inode_count);
197 	DISP_u32(cp, next_free_nid);
198 	DISP_u32(cp, sit_ver_bitmap_bytesize);
199 	DISP_u32(cp, nat_ver_bitmap_bytesize);
200 	DISP_u32(cp, checksum_offset);
201 	DISP_u64(cp, elapsed_time);
202 
203 	DISP_u32(cp, sit_nat_version_bitmap[0]);
204 	printf("\n\n");
205 }
206 
sanity_check_raw_super(struct f2fs_super_block * raw_super)207 int sanity_check_raw_super(struct f2fs_super_block *raw_super)
208 {
209 	unsigned int blocksize;
210 
211 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
212 		return -1;
213 	}
214 
215 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
216 		return -1;
217 	}
218 
219 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
220 	if (F2FS_BLKSIZE != blocksize) {
221 		return -1;
222 	}
223 
224 	if (le32_to_cpu(raw_super->log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE ||
225 		le32_to_cpu(raw_super->log_sectorsize) <
226 						F2FS_MIN_LOG_SECTOR_SIZE) {
227 		return -1;
228 	}
229 
230 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
231 				le32_to_cpu(raw_super->log_sectorsize) !=
232 						F2FS_MAX_LOG_SECTOR_SIZE) {
233 		return -1;
234 	}
235 
236 	return 0;
237 }
238 
validate_super_block(struct f2fs_sb_info * sbi,int block)239 int validate_super_block(struct f2fs_sb_info *sbi, int block)
240 {
241 	u64 offset;
242 
243 	sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
244 
245 	if (block == 0)
246 		offset = F2FS_SUPER_OFFSET;
247 	else
248 		offset = F2FS_BLKSIZE + F2FS_SUPER_OFFSET;
249 
250 	if (dev_read(sbi->raw_super, offset, sizeof(struct f2fs_super_block)))
251 		return -1;
252 
253 	if (!sanity_check_raw_super(sbi->raw_super)) {
254 		/* get kernel version */
255 		if (config.kd >= 0) {
256 			dev_read_version(config.version, 0, VERSION_LEN);
257 			get_kernel_version(config.version);
258 		} else {
259 			memset(config.version, 0, VERSION_LEN);
260 		}
261 
262 		/* build sb version */
263 		memcpy(config.sb_version, sbi->raw_super->version, VERSION_LEN);
264 		get_kernel_version(config.sb_version);
265 		memcpy(config.init_version, sbi->raw_super->init_version, VERSION_LEN);
266 		get_kernel_version(config.init_version);
267 
268 		MSG(0, "Info: MKFS version\n  \"%s\"\n", config.init_version);
269 		MSG(0, "Info: FSCK version\n  from \"%s\"\n    to \"%s\"\n",
270 					config.sb_version, config.version);
271 		if (memcmp(config.sb_version, config.version, VERSION_LEN)) {
272 			int ret;
273 
274 			memcpy(sbi->raw_super->version,
275 						config.version, VERSION_LEN);
276 			ret = dev_write(sbi->raw_super, offset,
277 					sizeof(struct f2fs_super_block));
278 			ASSERT(ret >= 0);
279 
280 			config.auto_fix = 0;
281 			config.fix_on = 1;
282 		}
283 		return 0;
284 	}
285 
286 	free(sbi->raw_super);
287 	MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", block);
288 
289 	return -EINVAL;
290 }
291 
init_sb_info(struct f2fs_sb_info * sbi)292 int init_sb_info(struct f2fs_sb_info *sbi)
293 {
294 	struct f2fs_super_block *raw_super = sbi->raw_super;
295 
296 	sbi->log_sectors_per_block =
297 		le32_to_cpu(raw_super->log_sectors_per_block);
298 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
299 	sbi->blocksize = 1 << sbi->log_blocksize;
300 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
301 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
302 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
303 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
304 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
305 	sbi->total_node_count =
306 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
307 		* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
308 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
309 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
310 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
311 	sbi->cur_victim_sec = NULL_SEGNO;
312 	return 0;
313 }
314 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)315 void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr,
316 				unsigned long long *version)
317 {
318 	void *cp_page_1, *cp_page_2;
319 	struct f2fs_checkpoint *cp_block;
320 	unsigned long blk_size = sbi->blocksize;
321 	unsigned long long cur_version = 0, pre_version = 0;
322 	unsigned int crc = 0;
323 	size_t crc_offset;
324 
325 	/* Read the 1st cp block in this CP pack */
326 	cp_page_1 = malloc(PAGE_SIZE);
327 	if (dev_read_block(cp_page_1, cp_addr) < 0)
328 		return NULL;
329 
330 	cp_block = (struct f2fs_checkpoint *)cp_page_1;
331 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
332 	if (crc_offset >= blk_size)
333 		goto invalid_cp1;
334 
335 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
336 	if (f2fs_crc_valid(crc, cp_block, crc_offset))
337 		goto invalid_cp1;
338 
339 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
340 
341 	/* Read the 2nd cp block in this CP pack */
342 	cp_page_2 = malloc(PAGE_SIZE);
343 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
344 
345 	if (dev_read_block(cp_page_2, cp_addr) < 0)
346 		goto invalid_cp2;
347 
348 	cp_block = (struct f2fs_checkpoint *)cp_page_2;
349 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
350 	if (crc_offset >= blk_size)
351 		goto invalid_cp2;
352 
353 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
354 	if (f2fs_crc_valid(crc, cp_block, crc_offset))
355 		goto invalid_cp2;
356 
357 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
358 
359 	if (cur_version == pre_version) {
360 		*version = cur_version;
361 		free(cp_page_2);
362 		return cp_page_1;
363 	}
364 
365 invalid_cp2:
366 	free(cp_page_2);
367 invalid_cp1:
368 	free(cp_page_1);
369 	return NULL;
370 }
371 
get_valid_checkpoint(struct f2fs_sb_info * sbi)372 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
373 {
374 	struct f2fs_super_block *raw_sb = sbi->raw_super;
375 	void *cp1, *cp2, *cur_page;
376 	unsigned long blk_size = sbi->blocksize;
377 	unsigned long long cp1_version = 0, cp2_version = 0;
378 	unsigned long long cp_start_blk_no;
379 	unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
380 	int ret;
381 
382 	sbi->ckpt = malloc(cp_blks * blk_size);
383 	if (!sbi->ckpt)
384 		return -ENOMEM;
385 	/*
386 	 * Finding out valid cp block involves read both
387 	 * sets( cp pack1 and cp pack 2)
388 	 */
389 	cp_start_blk_no = le32_to_cpu(raw_sb->cp_blkaddr);
390 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
391 
392 	/* The second checkpoint pack should start at the next segment */
393 	cp_start_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg);
394 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
395 
396 	if (cp1 && cp2) {
397 		if (ver_after(cp2_version, cp1_version)) {
398 			cur_page = cp2;
399 			sbi->cur_cp = 2;
400 		} else {
401 			cur_page = cp1;
402 			sbi->cur_cp = 1;
403 		}
404 	} else if (cp1) {
405 		cur_page = cp1;
406 		sbi->cur_cp = 1;
407 	} else if (cp2) {
408 		cur_page = cp2;
409 		sbi->cur_cp = 2;
410 	} else {
411 		free(cp1);
412 		free(cp2);
413 		goto fail_no_cp;
414 	}
415 
416 	memcpy(sbi->ckpt, cur_page, blk_size);
417 
418 	if (cp_blks > 1) {
419 		unsigned int i;
420 		unsigned long long cp_blk_no;
421 
422 		cp_blk_no = le32_to_cpu(raw_sb->cp_blkaddr);
423 		if (cur_page == cp2)
424 			cp_blk_no += 1 <<
425 				le32_to_cpu(raw_sb->log_blocks_per_seg);
426 		/* copy sit bitmap */
427 		for (i = 1; i < cp_blks; i++) {
428 			unsigned char *ckpt = (unsigned char *)sbi->ckpt;
429 			ret = dev_read_block(cur_page, cp_blk_no + i);
430 			ASSERT(ret >= 0);
431 			memcpy(ckpt + i * blk_size, cur_page, blk_size);
432 		}
433 	}
434 	free(cp1);
435 	free(cp2);
436 	return 0;
437 
438 fail_no_cp:
439 	free(sbi->ckpt);
440 	return -EINVAL;
441 }
442 
sanity_check_ckpt(struct f2fs_sb_info * sbi)443 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
444 {
445 	unsigned int total, fsmeta;
446 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
447 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
448 
449 	total = le32_to_cpu(raw_super->segment_count);
450 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
451 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
452 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
453 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
454 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
455 
456 	if (fsmeta >= total)
457 		return 1;
458 
459 	return 0;
460 }
461 
init_node_manager(struct f2fs_sb_info * sbi)462 int init_node_manager(struct f2fs_sb_info *sbi)
463 {
464 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
465 	struct f2fs_nm_info *nm_i = NM_I(sbi);
466 	unsigned char *version_bitmap;
467 	unsigned int nat_segs, nat_blocks;
468 
469 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
470 
471 	/* segment_count_nat includes pair segment so divide to 2. */
472 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
473 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
474 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
475 	nm_i->fcnt = 0;
476 	nm_i->nat_cnt = 0;
477 	nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
478 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
479 
480 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
481 
482 	nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
483 	if (!nm_i->nat_bitmap)
484 		return -ENOMEM;
485 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
486 	if (!version_bitmap)
487 		return -EFAULT;
488 
489 	/* copy version bitmap */
490 	memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
491 	return 0;
492 }
493 
build_node_manager(struct f2fs_sb_info * sbi)494 int build_node_manager(struct f2fs_sb_info *sbi)
495 {
496 	int err;
497 	sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
498 	if (!sbi->nm_info)
499 		return -ENOMEM;
500 
501 	err = init_node_manager(sbi);
502 	if (err)
503 		return err;
504 
505 	return 0;
506 }
507 
build_sit_info(struct f2fs_sb_info * sbi)508 int build_sit_info(struct f2fs_sb_info *sbi)
509 {
510 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
511 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
512 	struct sit_info *sit_i;
513 	unsigned int sit_segs, start;
514 	char *src_bitmap, *dst_bitmap;
515 	unsigned int bitmap_size;
516 
517 	sit_i = malloc(sizeof(struct sit_info));
518 	if (!sit_i)
519 		return -ENOMEM;
520 
521 	SM_I(sbi)->sit_info = sit_i;
522 
523 	sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
524 
525 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
526 		sit_i->sentries[start].cur_valid_map
527 			= calloc(SIT_VBLOCK_MAP_SIZE, 1);
528 		sit_i->sentries[start].ckpt_valid_map
529 			= calloc(SIT_VBLOCK_MAP_SIZE, 1);
530 		if (!sit_i->sentries[start].cur_valid_map
531 				|| !sit_i->sentries[start].ckpt_valid_map)
532 			return -ENOMEM;
533 	}
534 
535 	sit_segs = le32_to_cpu(raw_sb->segment_count_sit) >> 1;
536 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
537 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
538 
539 	dst_bitmap = malloc(bitmap_size);
540 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
541 
542 	sit_i->sit_base_addr = le32_to_cpu(raw_sb->sit_blkaddr);
543 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
544 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
545 	sit_i->sit_bitmap = dst_bitmap;
546 	sit_i->bitmap_size = bitmap_size;
547 	sit_i->dirty_sentries = 0;
548 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
549 	sit_i->elapsed_time = le64_to_cpu(ckpt->elapsed_time);
550 	return 0;
551 }
552 
reset_curseg(struct f2fs_sb_info * sbi,int type)553 void reset_curseg(struct f2fs_sb_info *sbi, int type)
554 {
555 	struct curseg_info *curseg = CURSEG_I(sbi, type);
556 	struct summary_footer *sum_footer;
557 	struct seg_entry *se;
558 
559 	sum_footer = &(curseg->sum_blk->footer);
560 	memset(sum_footer, 0, sizeof(struct summary_footer));
561 	if (IS_DATASEG(type))
562 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
563 	if (IS_NODESEG(type))
564 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
565 	se = get_seg_entry(sbi, curseg->segno);
566 	se->type = type;
567 }
568 
read_compacted_summaries(struct f2fs_sb_info * sbi)569 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
570 {
571 	struct curseg_info *curseg;
572 	unsigned int i, j, offset;
573 	block_t start;
574 	char *kaddr;
575 	int ret;
576 
577 	start = start_sum_block(sbi);
578 
579 	kaddr = (char *)malloc(PAGE_SIZE);
580 	ret = dev_read_block(kaddr, start++);
581 	ASSERT(ret >= 0);
582 
583 	curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
584 	memcpy(&curseg->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
585 
586 	curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
587 	memcpy(&curseg->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
588 						SUM_JOURNAL_SIZE);
589 
590 	offset = 2 * SUM_JOURNAL_SIZE;
591 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
592 		unsigned short blk_off;
593 		struct curseg_info *curseg = CURSEG_I(sbi, i);
594 
595 		reset_curseg(sbi, i);
596 
597 		if (curseg->alloc_type == SSR)
598 			blk_off = sbi->blocks_per_seg;
599 		else
600 			blk_off = curseg->next_blkoff;
601 
602 		for (j = 0; j < blk_off; j++) {
603 			struct f2fs_summary *s;
604 			s = (struct f2fs_summary *)(kaddr + offset);
605 			curseg->sum_blk->entries[j] = *s;
606 			offset += SUMMARY_SIZE;
607 			if (offset + SUMMARY_SIZE <=
608 					PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
609 				continue;
610 			memset(kaddr, 0, PAGE_SIZE);
611 			ret = dev_read_block(kaddr, start++);
612 			ASSERT(ret >= 0);
613 			offset = 0;
614 		}
615 	}
616 	free(kaddr);
617 }
618 
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum_blk)619 static void restore_node_summary(struct f2fs_sb_info *sbi,
620 		unsigned int segno, struct f2fs_summary_block *sum_blk)
621 {
622 	struct f2fs_node *node_blk;
623 	struct f2fs_summary *sum_entry;
624 	block_t addr;
625 	unsigned int i;
626 	int ret;
627 
628 	node_blk = malloc(F2FS_BLKSIZE);
629 	ASSERT(node_blk);
630 
631 	/* scan the node segment */
632 	addr = START_BLOCK(sbi, segno);
633 	sum_entry = &sum_blk->entries[0];
634 
635 	for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
636 		ret = dev_read_block(node_blk, addr);
637 		ASSERT(ret >= 0);
638 		sum_entry->nid = node_blk->footer.nid;
639 		addr++;
640 	}
641 	free(node_blk);
642 }
643 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)644 static void read_normal_summaries(struct f2fs_sb_info *sbi, int type)
645 {
646 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
647 	struct f2fs_summary_block *sum_blk;
648 	struct curseg_info *curseg;
649 	unsigned int segno = 0;
650 	block_t blk_addr = 0;
651 	int ret;
652 
653 	if (IS_DATASEG(type)) {
654 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
655 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
656 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
657 		else
658 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
659 	} else {
660 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
661 							CURSEG_HOT_NODE]);
662 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
663 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
664 							type - CURSEG_HOT_NODE);
665 		else
666 			blk_addr = GET_SUM_BLKADDR(sbi, segno);
667 	}
668 
669 	sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
670 	ret = dev_read_block(sum_blk, blk_addr);
671 	ASSERT(ret >= 0);
672 
673 	if (IS_NODESEG(type) && !is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
674 		restore_node_summary(sbi, segno, sum_blk);
675 
676 	curseg = CURSEG_I(sbi, type);
677 	memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
678 	reset_curseg(sbi, type);
679 	free(sum_blk);
680 }
681 
restore_curseg_summaries(struct f2fs_sb_info * sbi)682 static void restore_curseg_summaries(struct f2fs_sb_info *sbi)
683 {
684 	int type = CURSEG_HOT_DATA;
685 
686 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
687 		read_compacted_summaries(sbi);
688 		type = CURSEG_HOT_NODE;
689 	}
690 
691 	for (; type <= CURSEG_COLD_NODE; type++)
692 		read_normal_summaries(sbi, type);
693 }
694 
build_curseg(struct f2fs_sb_info * sbi)695 static void build_curseg(struct f2fs_sb_info *sbi)
696 {
697 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
698 	struct curseg_info *array;
699 	unsigned short blk_off;
700 	unsigned int segno;
701 	int i;
702 
703 	array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
704 	ASSERT(array);
705 
706 	SM_I(sbi)->curseg_array = array;
707 
708 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
709 		array[i].sum_blk = malloc(PAGE_CACHE_SIZE);
710 		ASSERT(array[i].sum_blk);
711 		if (i <= CURSEG_COLD_DATA) {
712 			blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
713 			segno = le32_to_cpu(ckpt->cur_data_segno[i]);
714 		}
715 		if (i > CURSEG_COLD_DATA) {
716 			blk_off = le16_to_cpu(ckpt->cur_node_blkoff[i -
717 							CURSEG_HOT_NODE]);
718 			segno = le32_to_cpu(ckpt->cur_node_segno[i -
719 							CURSEG_HOT_NODE]);
720 		}
721 		array[i].segno = segno;
722 		array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno);
723 		array[i].next_segno = NULL_SEGNO;
724 		array[i].next_blkoff = blk_off;
725 		array[i].alloc_type = ckpt->alloc_type[i];
726 	}
727 	restore_curseg_summaries(sbi);
728 }
729 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)730 inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
731 {
732 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
733 	ASSERT(segno <= end_segno);
734 }
735 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)736 static struct f2fs_sit_block *get_current_sit_page(struct f2fs_sb_info *sbi,
737 						unsigned int segno)
738 {
739 	struct sit_info *sit_i = SIT_I(sbi);
740 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
741 	block_t blk_addr = sit_i->sit_base_addr + offset;
742 	struct f2fs_sit_block *sit_blk = calloc(BLOCK_SZ, 1);
743 	int ret;
744 
745 	check_seg_range(sbi, segno);
746 
747 	/* calculate sit block address */
748 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
749 		blk_addr += sit_i->sit_blocks;
750 
751 	ret = dev_read_block(sit_blk, blk_addr);
752 	ASSERT(ret >= 0);
753 
754 	return sit_blk;
755 }
756 
rewrite_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_block * sit_blk)757 void rewrite_current_sit_page(struct f2fs_sb_info *sbi,
758 			unsigned int segno, struct f2fs_sit_block *sit_blk)
759 {
760 	struct sit_info *sit_i = SIT_I(sbi);
761 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
762 	block_t blk_addr = sit_i->sit_base_addr + offset;
763 	int ret;
764 
765 	/* calculate sit block address */
766 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
767 		blk_addr += sit_i->sit_blocks;
768 
769 	ret = dev_write_block(sit_blk, blk_addr);
770 	ASSERT(ret >= 0);
771 }
772 
check_block_count(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_entry * raw_sit)773 void check_block_count(struct f2fs_sb_info *sbi,
774 		unsigned int segno, struct f2fs_sit_entry *raw_sit)
775 {
776 	struct f2fs_sm_info *sm_info = SM_I(sbi);
777 	unsigned int end_segno = sm_info->segment_count - 1;
778 	int valid_blocks = 0;
779 	unsigned int i;
780 
781 	/* check segment usage */
782 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
783 		ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u",
784 				segno, GET_SIT_VBLOCKS(raw_sit));
785 
786 	/* check boundary of a given segment number */
787 	if (segno > end_segno)
788 		ASSERT_MSG("Invalid SEGNO: 0x%x", segno);
789 
790 	/* check bitmap with valid block count */
791 	for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
792 		valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]);
793 
794 	if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks)
795 		ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u",
796 				segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks);
797 
798 	if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE)
799 		ASSERT_MSG("Wrong SIT type: segno=0x%x, %u",
800 				segno, GET_SIT_TYPE(raw_sit));
801 }
802 
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * raw_sit)803 void seg_info_from_raw_sit(struct seg_entry *se,
804 		struct f2fs_sit_entry *raw_sit)
805 {
806 	se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
807 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(raw_sit);
808 	memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
809 	memcpy(se->ckpt_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
810 	se->type = GET_SIT_TYPE(raw_sit);
811 	se->orig_type = GET_SIT_TYPE(raw_sit);
812 	se->mtime = le64_to_cpu(raw_sit->mtime);
813 }
814 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)815 struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
816 		unsigned int segno)
817 {
818 	struct sit_info *sit_i = SIT_I(sbi);
819 	return &sit_i->sentries[segno];
820 }
821 
get_sum_block(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum_blk)822 int get_sum_block(struct f2fs_sb_info *sbi, unsigned int segno,
823 				struct f2fs_summary_block *sum_blk)
824 {
825 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
826 	struct curseg_info *curseg;
827 	int type, ret;
828 	u64 ssa_blk;
829 
830 	ssa_blk = GET_SUM_BLKADDR(sbi, segno);
831 	for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
832 		if (segno == ckpt->cur_node_segno[type]) {
833 			curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type);
834 			if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
835 				ASSERT_MSG("segno [0x%x] indicates a data "
836 						"segment, but should be node",
837 						segno);
838 				return -EINVAL;
839 			}
840 			memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ);
841 			return SEG_TYPE_CUR_NODE;
842 		}
843 	}
844 
845 	for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
846 		if (segno == ckpt->cur_data_segno[type]) {
847 			curseg = CURSEG_I(sbi, type);
848 			if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
849 				ASSERT_MSG("segno [0x%x] indicates a node "
850 						"segment, but should be data",
851 						segno);
852 				return -EINVAL;
853 			}
854 			DBG(2, "segno [0x%x] is current data seg[0x%x]\n",
855 								segno, type);
856 			memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ);
857 			return SEG_TYPE_CUR_DATA;
858 		}
859 	}
860 
861 	ret = dev_read_block(sum_blk, ssa_blk);
862 	ASSERT(ret >= 0);
863 
864 	if (IS_SUM_NODE_SEG(sum_blk->footer))
865 		return SEG_TYPE_NODE;
866 	else
867 		return SEG_TYPE_DATA;
868 
869 }
870 
get_sum_entry(struct f2fs_sb_info * sbi,u32 blk_addr,struct f2fs_summary * sum_entry)871 int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr,
872 				struct f2fs_summary *sum_entry)
873 {
874 	struct f2fs_summary_block *sum_blk;
875 	u32 segno, offset;
876 	int ret;
877 
878 	segno = GET_SEGNO(sbi, blk_addr);
879 	offset = OFFSET_IN_SEG(sbi, blk_addr);
880 
881 	sum_blk = calloc(BLOCK_SZ, 1);
882 
883 	ret = get_sum_block(sbi, segno, sum_blk);
884 	memcpy(sum_entry, &(sum_blk->entries[offset]),
885 				sizeof(struct f2fs_summary));
886 	free(sum_blk);
887 	return ret;
888 }
889 
get_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * raw_nat)890 static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
891 				struct f2fs_nat_entry *raw_nat)
892 {
893 	struct f2fs_nm_info *nm_i = NM_I(sbi);
894 	struct f2fs_nat_block *nat_block;
895 	pgoff_t block_off;
896 	pgoff_t block_addr;
897 	int seg_off, entry_off;
898 	int ret;
899 
900 	if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
901 		return;
902 
903 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
904 
905 	block_off = nid / NAT_ENTRY_PER_BLOCK;
906 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
907 
908 	seg_off = block_off >> sbi->log_blocks_per_seg;
909 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
910 			(seg_off << sbi->log_blocks_per_seg << 1) +
911 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
912 
913 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
914 		block_addr += sbi->blocks_per_seg;
915 
916 	ret = dev_read_block(nat_block, block_addr);
917 	ASSERT(ret >= 0);
918 
919 	memcpy(raw_nat, &nat_block->entries[entry_off],
920 					sizeof(struct f2fs_nat_entry));
921 	free(nat_block);
922 }
923 
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)924 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
925 {
926 	struct f2fs_nat_entry raw_nat;
927 	get_nat_entry(sbi, nid, &raw_nat);
928 	ni->nid = nid;
929 	node_info_from_raw_nat(ni, &raw_nat);
930 }
931 
build_sit_entries(struct f2fs_sb_info * sbi)932 void build_sit_entries(struct f2fs_sb_info *sbi)
933 {
934 	struct sit_info *sit_i = SIT_I(sbi);
935 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
936 	struct f2fs_summary_block *sum = curseg->sum_blk;
937 	unsigned int segno;
938 
939 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
940 		struct seg_entry *se = &sit_i->sentries[segno];
941 		struct f2fs_sit_block *sit_blk;
942 		struct f2fs_sit_entry sit;
943 		int i;
944 
945 		for (i = 0; i < sits_in_cursum(sum); i++) {
946 			if (le32_to_cpu(segno_in_journal(sum, i)) == segno) {
947 				sit = sit_in_journal(sum, i);
948 				goto got_it;
949 			}
950 		}
951 		sit_blk = get_current_sit_page(sbi, segno);
952 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
953 		free(sit_blk);
954 got_it:
955 		check_block_count(sbi, segno, &sit);
956 		seg_info_from_raw_sit(se, &sit);
957 	}
958 
959 }
960 
build_segment_manager(struct f2fs_sb_info * sbi)961 int build_segment_manager(struct f2fs_sb_info *sbi)
962 {
963 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
964 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
965 	struct f2fs_sm_info *sm_info;
966 
967 	sm_info = malloc(sizeof(struct f2fs_sm_info));
968 	if (!sm_info)
969 		return -ENOMEM;
970 
971 	/* init sm info */
972 	sbi->sm_info = sm_info;
973 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
974 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
975 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
976 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
977 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
978 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
979 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
980 
981 	build_sit_info(sbi);
982 
983 	build_curseg(sbi);
984 
985 	build_sit_entries(sbi);
986 
987 	return 0;
988 }
989 
build_sit_area_bitmap(struct f2fs_sb_info * sbi)990 void build_sit_area_bitmap(struct f2fs_sb_info *sbi)
991 {
992 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
993 	struct f2fs_sm_info *sm_i = SM_I(sbi);
994 	unsigned int segno = 0;
995 	char *ptr = NULL;
996 	u32 sum_vblocks = 0;
997 	u32 free_segs = 0;
998 	struct seg_entry *se;
999 
1000 	fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
1001 	fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
1002 	ptr = fsck->sit_area_bitmap;
1003 
1004 	ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
1005 
1006 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
1007 		se = get_seg_entry(sbi, segno);
1008 
1009 		memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
1010 		ptr += SIT_VBLOCK_MAP_SIZE;
1011 
1012 		if (se->valid_blocks == 0x0) {
1013 			if (sbi->ckpt->cur_node_segno[0] == segno ||
1014 					sbi->ckpt->cur_data_segno[0] == segno ||
1015 					sbi->ckpt->cur_node_segno[1] == segno ||
1016 					sbi->ckpt->cur_data_segno[1] == segno ||
1017 					sbi->ckpt->cur_node_segno[2] == segno ||
1018 					sbi->ckpt->cur_data_segno[2] == segno) {
1019 				continue;
1020 			} else {
1021 				free_segs++;
1022 			}
1023 		} else {
1024 			sum_vblocks += se->valid_blocks;
1025 		}
1026 	}
1027 	fsck->chk.sit_valid_blocks = sum_vblocks;
1028 	fsck->chk.sit_free_segs = free_segs;
1029 
1030 	DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n",
1031 			sum_vblocks, sum_vblocks,
1032 			free_segs, free_segs);
1033 }
1034 
rewrite_sit_area_bitmap(struct f2fs_sb_info * sbi)1035 void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi)
1036 {
1037 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
1038 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1039 	struct sit_info *sit_i = SIT_I(sbi);
1040 	unsigned int segno = 0;
1041 	struct f2fs_summary_block *sum = curseg->sum_blk;
1042 	char *ptr = NULL;
1043 
1044 	/* remove sit journal */
1045 	sum->n_sits = 0;
1046 
1047 	fsck->chk.free_segs = 0;
1048 
1049 	ptr = fsck->main_area_bitmap;
1050 
1051 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
1052 		struct f2fs_sit_block *sit_blk;
1053 		struct f2fs_sit_entry *sit;
1054 		struct seg_entry *se;
1055 		u16 valid_blocks = 0;
1056 		u16 type;
1057 		int i;
1058 
1059 		sit_blk = get_current_sit_page(sbi, segno);
1060 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
1061 		memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
1062 
1063 		/* update valid block count */
1064 		for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
1065 			valid_blocks += get_bits_in_byte(sit->valid_map[i]);
1066 
1067 		se = get_seg_entry(sbi, segno);
1068 		type = se->type;
1069 		if (type >= NO_CHECK_TYPE) {
1070 			ASSERT_MSG("Invalide type and valid blocks=%x,%x",
1071 					segno, valid_blocks);
1072 			type = 0;
1073 		}
1074 		sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) |
1075 								valid_blocks);
1076 		rewrite_current_sit_page(sbi, segno, sit_blk);
1077 		free(sit_blk);
1078 
1079 		if (valid_blocks == 0 &&
1080 				sbi->ckpt->cur_node_segno[0] != segno &&
1081 				sbi->ckpt->cur_data_segno[0] != segno &&
1082 				sbi->ckpt->cur_node_segno[1] != segno &&
1083 				sbi->ckpt->cur_data_segno[1] != segno &&
1084 				sbi->ckpt->cur_node_segno[2] != segno &&
1085 				sbi->ckpt->cur_data_segno[2] != segno)
1086 			fsck->chk.free_segs++;
1087 
1088 		ptr += SIT_VBLOCK_MAP_SIZE;
1089 	}
1090 }
1091 
lookup_nat_in_journal(struct f2fs_sb_info * sbi,u32 nid,struct f2fs_nat_entry * raw_nat)1092 int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid,
1093 					struct f2fs_nat_entry *raw_nat)
1094 {
1095 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1096 	struct f2fs_summary_block *sum = curseg->sum_blk;
1097 	int i = 0;
1098 
1099 	for (i = 0; i < nats_in_cursum(sum); i++) {
1100 		if (le32_to_cpu(nid_in_journal(sum, i)) == nid) {
1101 			memcpy(raw_nat, &nat_in_journal(sum, i),
1102 						sizeof(struct f2fs_nat_entry));
1103 			DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
1104 			return i;
1105 		}
1106 	}
1107 	return -1;
1108 }
1109 
nullify_nat_entry(struct f2fs_sb_info * sbi,u32 nid)1110 void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid)
1111 {
1112 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1113 	struct f2fs_summary_block *sum = curseg->sum_blk;
1114 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1115 	struct f2fs_nat_block *nat_block;
1116 	pgoff_t block_off;
1117 	pgoff_t block_addr;
1118 	int seg_off, entry_off;
1119 	int ret;
1120 	int i = 0;
1121 
1122 	/* check in journal */
1123 	for (i = 0; i < nats_in_cursum(sum); i++) {
1124 		if (le32_to_cpu(nid_in_journal(sum, i)) == nid) {
1125 			memset(&nat_in_journal(sum, i), 0,
1126 					sizeof(struct f2fs_nat_entry));
1127 			FIX_MSG("Remove nid [0x%x] in nat journal\n", nid);
1128 			return;
1129 		}
1130 	}
1131 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
1132 
1133 	block_off = nid / NAT_ENTRY_PER_BLOCK;
1134 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
1135 
1136 	seg_off = block_off >> sbi->log_blocks_per_seg;
1137 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
1138 			(seg_off << sbi->log_blocks_per_seg << 1) +
1139 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
1140 
1141 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
1142 		block_addr += sbi->blocks_per_seg;
1143 
1144 	ret = dev_read_block(nat_block, block_addr);
1145 	ASSERT(ret >= 0);
1146 
1147 	memset(&nat_block->entries[entry_off], 0,
1148 					sizeof(struct f2fs_nat_entry));
1149 
1150 	ret = dev_write_block(nat_block, block_addr);
1151 	ASSERT(ret >= 0);
1152 	free(nat_block);
1153 }
1154 
build_nat_area_bitmap(struct f2fs_sb_info * sbi)1155 void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
1156 {
1157 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
1158 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
1159 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1160 	struct f2fs_nat_block *nat_block;
1161 	u32 nid, nr_nat_blks;
1162 	pgoff_t block_off;
1163 	pgoff_t block_addr;
1164 	int seg_off;
1165 	int ret;
1166 	unsigned int i;
1167 
1168 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
1169 	ASSERT(nat_block);
1170 
1171 	/* Alloc & build nat entry bitmap */
1172 	nr_nat_blks = (le32_to_cpu(raw_sb->segment_count_nat) / 2) <<
1173 						sbi->log_blocks_per_seg;
1174 
1175 	fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
1176 	fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
1177 	fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
1178 	ASSERT(fsck->nat_area_bitmap != NULL);
1179 
1180 	for (block_off = 0; block_off < nr_nat_blks; block_off++) {
1181 
1182 		seg_off = block_off >> sbi->log_blocks_per_seg;
1183 		block_addr = (pgoff_t)(nm_i->nat_blkaddr +
1184 			(seg_off << sbi->log_blocks_per_seg << 1) +
1185 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
1186 
1187 		if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
1188 			block_addr += sbi->blocks_per_seg;
1189 
1190 		ret = dev_read_block(nat_block, block_addr);
1191 		ASSERT(ret >= 0);
1192 
1193 		nid = block_off * NAT_ENTRY_PER_BLOCK;
1194 		for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
1195 			struct f2fs_nat_entry raw_nat;
1196 			struct node_info ni;
1197 			ni.nid = nid + i;
1198 
1199 			if ((nid + i) == F2FS_NODE_INO(sbi) ||
1200 					(nid + i) == F2FS_META_INO(sbi)) {
1201 				ASSERT(nat_block->entries[i].block_addr != 0x0);
1202 				continue;
1203 			}
1204 
1205 			if (lookup_nat_in_journal(sbi, nid + i,
1206 							&raw_nat) >= 0) {
1207 				node_info_from_raw_nat(&ni, &raw_nat);
1208 				if (ni.blk_addr != 0x0) {
1209 					f2fs_set_bit(nid + i,
1210 							fsck->nat_area_bitmap);
1211 					fsck->chk.valid_nat_entry_cnt++;
1212 					DBG(3, "nid[0x%x] in nat cache\n",
1213 								nid + i);
1214 				}
1215 			} else {
1216 				node_info_from_raw_nat(&ni,
1217 						&nat_block->entries[i]);
1218 				if (ni.blk_addr == 0)
1219 					continue;
1220 				ASSERT(nid + i != 0x0);
1221 
1222 				DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n",
1223 					nid + i, ni.blk_addr, ni.ino);
1224 				f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
1225 				fsck->chk.valid_nat_entry_cnt++;
1226 			}
1227 		}
1228 	}
1229 	free(nat_block);
1230 
1231 	DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
1232 			fsck->chk.valid_nat_entry_cnt,
1233 			fsck->chk.valid_nat_entry_cnt);
1234 }
1235 
f2fs_do_mount(struct f2fs_sb_info * sbi)1236 int f2fs_do_mount(struct f2fs_sb_info *sbi)
1237 {
1238 	int ret;
1239 
1240 	sbi->active_logs = NR_CURSEG_TYPE;
1241 	ret = validate_super_block(sbi, 0);
1242 	if (ret) {
1243 		ret = validate_super_block(sbi, 1);
1244 		if (ret)
1245 			return -1;
1246 	}
1247 
1248 	print_raw_sb_info(sbi);
1249 
1250 	init_sb_info(sbi);
1251 
1252 	ret = get_valid_checkpoint(sbi);
1253 	if (ret) {
1254 		ERR_MSG("Can't find valid checkpoint\n");
1255 		return -1;
1256 	}
1257 
1258 	if (sanity_check_ckpt(sbi)) {
1259 		ERR_MSG("Checkpoint is polluted\n");
1260 		return -1;
1261 	}
1262 
1263 	print_ckpt_info(sbi);
1264 
1265 	if (config.auto_fix) {
1266 		u32 flag = le32_to_cpu(sbi->ckpt->ckpt_flags);
1267 
1268 		if (flag & CP_FSCK_FLAG)
1269 			config.fix_on = 1;
1270 		else
1271 			return 1;
1272 	}
1273 
1274 	config.bug_on = 0;
1275 
1276 	sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count);
1277 	sbi->total_valid_inode_count =
1278 			le32_to_cpu(sbi->ckpt->valid_inode_count);
1279 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1280 	sbi->total_valid_block_count =
1281 			le64_to_cpu(sbi->ckpt->valid_block_count);
1282 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1283 	sbi->alloc_valid_block_count = 0;
1284 
1285 	if (build_segment_manager(sbi)) {
1286 		ERR_MSG("build_segment_manager failed\n");
1287 		return -1;
1288 	}
1289 
1290 	if (build_node_manager(sbi)) {
1291 		ERR_MSG("build_segment_manager failed\n");
1292 		return -1;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
f2fs_do_umount(struct f2fs_sb_info * sbi)1298 void f2fs_do_umount(struct f2fs_sb_info *sbi)
1299 {
1300 	struct sit_info *sit_i = SIT_I(sbi);
1301 	struct f2fs_sm_info *sm_i = SM_I(sbi);
1302 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1303 	unsigned int i;
1304 
1305 	/* free nm_info */
1306 	free(nm_i->nat_bitmap);
1307 	free(sbi->nm_info);
1308 
1309 	/* free sit_info */
1310 	for (i = 0; i < TOTAL_SEGS(sbi); i++) {
1311 		free(sit_i->sentries[i].cur_valid_map);
1312 		free(sit_i->sentries[i].ckpt_valid_map);
1313 	}
1314 	free(sit_i->sit_bitmap);
1315 	free(sm_i->sit_info);
1316 
1317 	/* free sm_info */
1318 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1319 		free(sm_i->curseg_array[i].sum_blk);
1320 
1321 	free(sm_i->curseg_array);
1322 	free(sbi->sm_info);
1323 
1324 	free(sbi->ckpt);
1325 	free(sbi->raw_super);
1326 }
1327