• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004	Initial version
12  */
13 
14 #include <stdlib.h>
15 #include <limits.h>
16 #include "../fio.h"
17 #include "prio_tree.h"
18 
19 /*
20  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
21  * which is useful for storing intervals, e.g, we can consider a vma as a closed
22  * interval of file pages [offset_begin, offset_end], and store all vmas that
23  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
24  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
25  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
26  * time where 'log n' is the height of the PST, and 'm' is the number of stored
27  * intervals (vmas) that overlap (map) with the input interval X (the set of
28  * consecutive file pages).
29  *
30  * In our implementation, we store closed intervals of the form [radix_index,
31  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
32  * is designed for storing intervals with unique radix indices, i.e., each
33  * interval have different radix_index. However, this limitation can be easily
34  * overcome by using the size, i.e., heap_index - radix_index, as part of the
35  * index, so we index the tree using [(radix_index,size), heap_index].
36  *
37  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
38  * machine, the maximum height of a PST can be 64. We can use a balanced version
39  * of the priority search tree to optimize the tree height, but the balanced
40  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
41  */
42 
get_index(const struct prio_tree_node * node,unsigned long * radix,unsigned long * heap)43 static void get_index(const struct prio_tree_node *node,
44 		      unsigned long *radix, unsigned long *heap)
45 {
46 	*radix = node->start;
47 	*heap = node->last;
48 }
49 
50 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
51 
prio_tree_init(void)52 static void fio_init prio_tree_init(void)
53 {
54 	unsigned int i;
55 
56 	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
57 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
58 	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
59 }
60 
61 /*
62  * Maximum heap_index that can be stored in a PST with index_bits bits
63  */
prio_tree_maxindex(unsigned int bits)64 static inline unsigned long prio_tree_maxindex(unsigned int bits)
65 {
66 	return index_bits_to_maxindex[bits - 1];
67 }
68 
69 /*
70  * Extend a priority search tree so that it can store a node with heap_index
71  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
72  * However, this function is used rarely and the common case performance is
73  * not bad.
74  */
prio_tree_expand(struct prio_tree_root * root,struct prio_tree_node * node,unsigned long max_heap_index)75 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
76 		struct prio_tree_node *node, unsigned long max_heap_index)
77 {
78 	struct prio_tree_node *first = NULL, *prev, *last = NULL;
79 
80 	if (max_heap_index > prio_tree_maxindex(root->index_bits))
81 		root->index_bits++;
82 
83 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
84 		root->index_bits++;
85 
86 		if (prio_tree_empty(root))
87 			continue;
88 
89 		if (first == NULL) {
90 			first = root->prio_tree_node;
91 			prio_tree_remove(root, root->prio_tree_node);
92 			INIT_PRIO_TREE_NODE(first);
93 			last = first;
94 		} else {
95 			prev = last;
96 			last = root->prio_tree_node;
97 			prio_tree_remove(root, root->prio_tree_node);
98 			INIT_PRIO_TREE_NODE(last);
99 			prev->left = last;
100 			last->parent = prev;
101 		}
102 	}
103 
104 	INIT_PRIO_TREE_NODE(node);
105 
106 	if (first) {
107 		node->left = first;
108 		first->parent = node;
109 	} else
110 		last = node;
111 
112 	if (!prio_tree_empty(root)) {
113 		last->left = root->prio_tree_node;
114 		last->left->parent = last;
115 	}
116 
117 	root->prio_tree_node = node;
118 	return node;
119 }
120 
121 /*
122  * Replace a prio_tree_node with a new node and return the old node
123  */
prio_tree_replace(struct prio_tree_root * root,struct prio_tree_node * old,struct prio_tree_node * node)124 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
125 		struct prio_tree_node *old, struct prio_tree_node *node)
126 {
127 	INIT_PRIO_TREE_NODE(node);
128 
129 	if (prio_tree_root(old)) {
130 		assert(root->prio_tree_node == old);
131 		/*
132 		 * We can reduce root->index_bits here. However, it is complex
133 		 * and does not help much to improve performance (IMO).
134 		 */
135 		node->parent = node;
136 		root->prio_tree_node = node;
137 	} else {
138 		node->parent = old->parent;
139 		if (old->parent->left == old)
140 			old->parent->left = node;
141 		else
142 			old->parent->right = node;
143 	}
144 
145 	if (!prio_tree_left_empty(old)) {
146 		node->left = old->left;
147 		old->left->parent = node;
148 	}
149 
150 	if (!prio_tree_right_empty(old)) {
151 		node->right = old->right;
152 		old->right->parent = node;
153 	}
154 
155 	return old;
156 }
157 
158 /*
159  * Insert a prio_tree_node @node into a radix priority search tree @root. The
160  * algorithm typically takes O(log n) time where 'log n' is the number of bits
161  * required to represent the maximum heap_index. In the worst case, the algo
162  * can take O((log n)^2) - check prio_tree_expand.
163  *
164  * If a prior node with same radix_index and heap_index is already found in
165  * the tree, then returns the address of the prior node. Otherwise, inserts
166  * @node into the tree and returns @node.
167  */
prio_tree_insert(struct prio_tree_root * root,struct prio_tree_node * node)168 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
169 		struct prio_tree_node *node)
170 {
171 	struct prio_tree_node *cur, *res = node;
172 	unsigned long radix_index, heap_index;
173 	unsigned long r_index, h_index, index, mask;
174 	int size_flag = 0;
175 
176 	get_index(node, &radix_index, &heap_index);
177 
178 	if (prio_tree_empty(root) ||
179 			heap_index > prio_tree_maxindex(root->index_bits))
180 		return prio_tree_expand(root, node, heap_index);
181 
182 	cur = root->prio_tree_node;
183 	mask = 1UL << (root->index_bits - 1);
184 
185 	while (mask) {
186 		get_index(cur, &r_index, &h_index);
187 
188 		if (r_index == radix_index && h_index == heap_index)
189 			return cur;
190 
191                 if (h_index < heap_index ||
192 		    (h_index == heap_index && r_index > radix_index)) {
193 			struct prio_tree_node *tmp = node;
194 			node = prio_tree_replace(root, cur, node);
195 			cur = tmp;
196 			/* swap indices */
197 			index = r_index;
198 			r_index = radix_index;
199 			radix_index = index;
200 			index = h_index;
201 			h_index = heap_index;
202 			heap_index = index;
203 		}
204 
205 		if (size_flag)
206 			index = heap_index - radix_index;
207 		else
208 			index = radix_index;
209 
210 		if (index & mask) {
211 			if (prio_tree_right_empty(cur)) {
212 				INIT_PRIO_TREE_NODE(node);
213 				cur->right = node;
214 				node->parent = cur;
215 				return res;
216 			} else
217 				cur = cur->right;
218 		} else {
219 			if (prio_tree_left_empty(cur)) {
220 				INIT_PRIO_TREE_NODE(node);
221 				cur->left = node;
222 				node->parent = cur;
223 				return res;
224 			} else
225 				cur = cur->left;
226 		}
227 
228 		mask >>= 1;
229 
230 		if (!mask) {
231 			mask = 1UL << (BITS_PER_LONG - 1);
232 			size_flag = 1;
233 		}
234 	}
235 	/* Should not reach here */
236 	assert(0);
237 	return NULL;
238 }
239 
240 /*
241  * Remove a prio_tree_node @node from a radix priority search tree @root. The
242  * algorithm takes O(log n) time where 'log n' is the number of bits required
243  * to represent the maximum heap_index.
244  */
prio_tree_remove(struct prio_tree_root * root,struct prio_tree_node * node)245 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
246 {
247 	struct prio_tree_node *cur;
248 	unsigned long r_index, h_index_right, h_index_left;
249 
250 	cur = node;
251 
252 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
253 		if (!prio_tree_left_empty(cur))
254 			get_index(cur->left, &r_index, &h_index_left);
255 		else {
256 			cur = cur->right;
257 			continue;
258 		}
259 
260 		if (!prio_tree_right_empty(cur))
261 			get_index(cur->right, &r_index, &h_index_right);
262 		else {
263 			cur = cur->left;
264 			continue;
265 		}
266 
267 		/* both h_index_left and h_index_right cannot be 0 */
268 		if (h_index_left >= h_index_right)
269 			cur = cur->left;
270 		else
271 			cur = cur->right;
272 	}
273 
274 	if (prio_tree_root(cur)) {
275 		assert(root->prio_tree_node == cur);
276 		INIT_PRIO_TREE_ROOT(root);
277 		return;
278 	}
279 
280 	if (cur->parent->right == cur)
281 		cur->parent->right = cur->parent;
282 	else
283 		cur->parent->left = cur->parent;
284 
285 	while (cur != node)
286 		cur = prio_tree_replace(root, cur->parent, cur);
287 }
288 
289 /*
290  * Following functions help to enumerate all prio_tree_nodes in the tree that
291  * overlap with the input interval X [radix_index, heap_index]. The enumeration
292  * takes O(log n + m) time where 'log n' is the height of the tree (which is
293  * proportional to # of bits required to represent the maximum heap_index) and
294  * 'm' is the number of prio_tree_nodes that overlap the interval X.
295  */
296 
prio_tree_left(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)297 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
298 		unsigned long *r_index, unsigned long *h_index)
299 {
300 	if (prio_tree_left_empty(iter->cur))
301 		return NULL;
302 
303 	get_index(iter->cur->left, r_index, h_index);
304 
305 	if (iter->r_index <= *h_index) {
306 		iter->cur = iter->cur->left;
307 		iter->mask >>= 1;
308 		if (iter->mask) {
309 			if (iter->size_level)
310 				iter->size_level++;
311 		} else {
312 			if (iter->size_level) {
313 				assert(prio_tree_left_empty(iter->cur));
314 				assert(prio_tree_right_empty(iter->cur));
315 				iter->size_level++;
316 				iter->mask = ULONG_MAX;
317 			} else {
318 				iter->size_level = 1;
319 				iter->mask = 1UL << (BITS_PER_LONG - 1);
320 			}
321 		}
322 		return iter->cur;
323 	}
324 
325 	return NULL;
326 }
327 
prio_tree_right(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)328 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
329 		unsigned long *r_index, unsigned long *h_index)
330 {
331 	unsigned long value;
332 
333 	if (prio_tree_right_empty(iter->cur))
334 		return NULL;
335 
336 	if (iter->size_level)
337 		value = iter->value;
338 	else
339 		value = iter->value | iter->mask;
340 
341 	if (iter->h_index < value)
342 		return NULL;
343 
344 	get_index(iter->cur->right, r_index, h_index);
345 
346 	if (iter->r_index <= *h_index) {
347 		iter->cur = iter->cur->right;
348 		iter->mask >>= 1;
349 		iter->value = value;
350 		if (iter->mask) {
351 			if (iter->size_level)
352 				iter->size_level++;
353 		} else {
354 			if (iter->size_level) {
355 				assert(prio_tree_left_empty(iter->cur));
356 				assert(prio_tree_right_empty(iter->cur));
357 				iter->size_level++;
358 				iter->mask = ULONG_MAX;
359 			} else {
360 				iter->size_level = 1;
361 				iter->mask = 1UL << (BITS_PER_LONG - 1);
362 			}
363 		}
364 		return iter->cur;
365 	}
366 
367 	return NULL;
368 }
369 
prio_tree_parent(struct prio_tree_iter * iter)370 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
371 {
372 	iter->cur = iter->cur->parent;
373 	if (iter->mask == ULONG_MAX)
374 		iter->mask = 1UL;
375 	else if (iter->size_level == 1)
376 		iter->mask = 1UL;
377 	else
378 		iter->mask <<= 1;
379 	if (iter->size_level)
380 		iter->size_level--;
381 	if (!iter->size_level && (iter->value & iter->mask))
382 		iter->value ^= iter->mask;
383 	return iter->cur;
384 }
385 
overlap(struct prio_tree_iter * iter,unsigned long r_index,unsigned long h_index)386 static inline int overlap(struct prio_tree_iter *iter,
387 		unsigned long r_index, unsigned long h_index)
388 {
389 	return iter->h_index >= r_index && iter->r_index <= h_index;
390 }
391 
392 /*
393  * prio_tree_first:
394  *
395  * Get the first prio_tree_node that overlaps with the interval [radix_index,
396  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
397  * traversal of the tree.
398  */
prio_tree_first(struct prio_tree_iter * iter)399 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
400 {
401 	struct prio_tree_root *root;
402 	unsigned long r_index, h_index;
403 
404 	INIT_PRIO_TREE_ITER(iter);
405 
406 	root = iter->root;
407 	if (prio_tree_empty(root))
408 		return NULL;
409 
410 	get_index(root->prio_tree_node, &r_index, &h_index);
411 
412 	if (iter->r_index > h_index)
413 		return NULL;
414 
415 	iter->mask = 1UL << (root->index_bits - 1);
416 	iter->cur = root->prio_tree_node;
417 
418 	while (1) {
419 		if (overlap(iter, r_index, h_index))
420 			return iter->cur;
421 
422 		if (prio_tree_left(iter, &r_index, &h_index))
423 			continue;
424 
425 		if (prio_tree_right(iter, &r_index, &h_index))
426 			continue;
427 
428 		break;
429 	}
430 	return NULL;
431 }
432 
433 /*
434  * prio_tree_next:
435  *
436  * Get the next prio_tree_node that overlaps with the input interval in iter
437  */
prio_tree_next(struct prio_tree_iter * iter)438 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
439 {
440 	unsigned long r_index, h_index;
441 
442 	if (iter->cur == NULL)
443 		return prio_tree_first(iter);
444 
445 repeat:
446 	while (prio_tree_left(iter, &r_index, &h_index))
447 		if (overlap(iter, r_index, h_index))
448 			return iter->cur;
449 
450 	while (!prio_tree_right(iter, &r_index, &h_index)) {
451 	    	while (!prio_tree_root(iter->cur) &&
452 				iter->cur->parent->right == iter->cur)
453 			prio_tree_parent(iter);
454 
455 		if (prio_tree_root(iter->cur))
456 			return NULL;
457 
458 		prio_tree_parent(iter);
459 	}
460 
461 	if (overlap(iter, r_index, h_index))
462 		return iter->cur;
463 
464 	goto repeat;
465 }
466