• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // pack_neon.h: optimized NEON specializations of the templates in pack.h.
16 
17 #ifndef GEMMLOWP_INTERNAL_PACK_NEON_H_
18 #define GEMMLOWP_INTERNAL_PACK_NEON_H_
19 
20 #include "pack.h"
21 
22 #include <arm_neon.h>
23 
24 namespace gemmlowp {
25 
26 template <RoundingMode tRoundingMode>
27 class NEONRoundingOffsetGenerator {
28  public:
get()29   uint8x16_t get() {
30     assert(false);  // This generic path should never be called.
31     return vdupq_n_u8(0);
32   }
33 };
34 
35 // A RoundingOffsetGenerator for rounding-to-nearest, always returning
36 // the midpoint value 127.
37 template <>
38 class NEONRoundingOffsetGenerator<RoundingMode::Nearest> {
39  public:
get()40   uint8x16_t get() { return vdupq_n_u8(127); }
41 };
42 
43 // Variant of NEONRoundingOffsetGenerator that produces
44 // random NEON 128-bit vectors using a 8-bit Xorshift.
45 template <>
46 class NEONRoundingOffsetGenerator<RoundingMode::ProbabilisticXorshift> {
47  public:
NEONRoundingOffsetGenerator()48   NEONRoundingOffsetGenerator() {
49     uint8_t s = 128;
50     std::uint8_t a[16];
51     for (int i = 0; i < 16; i++) {
52       a[i] = s;
53       // Xorshift8(7,7,1). Very important to choose a different
54       // xorshift than we do in get(), otherwise lanes would contain
55       // the same values!
56       s ^= s << 7;
57       s ^= s >> 7;
58       s ^= s << 1;
59     }
60     x_ = vld1q_u8(a);
61   }
62 
get()63   uint8x16_t get() {
64     // Xorshift produces values in [1..255], we want [0..254].
65     uint8x16_t result = vsubq_u8(x_, vdupq_n_u8(1));
66     // Xorshift8(7,5,3)
67     x_ = veorq_u8(x_, vshlq_n_u8(x_, 7));
68     x_ = veorq_u8(x_, vshrq_n_u8(x_, 5));
69     x_ = veorq_u8(x_, vshlq_n_u8(x_, 3));
70     return result;
71   }
72 
73  private:
74   // State
75   uint8x16_t x_;
76 };
77 
78 // Variant of NEONRoundingOffsetGenerator that produces
79 // rounding vectors using an 8-bit add/mod low-discrepancy sequence.
80 template <>
81 class NEONRoundingOffsetGenerator<RoundingMode::ProbabilisticAddmod> {
82  public:
NEONRoundingOffsetGenerator()83   NEONRoundingOffsetGenerator() {
84     uint8_t s = 128;
85     std::uint8_t a[16];
86     // The initial offset is set by offsetting each lane to one
87     // more iteration of the sequence (s0...s15)  Then, upon iteration,
88     // each lane moves ahead by 16.
89     for (int i = 0; i < 16; i++) {
90       a[i] = s;
91       s += (97 + (s >= 158));
92     }
93     x_ = vld1q_u8(a);
94   }
95 
get()96   uint8x16_t get() {
97     // Get moves the lane ahead by 16 iterations of the sequence
98     // x_ = (x + (16*97)) % 255.  (16*97)%255 = 22.  255-22=233,
99     // so x_ += (22 + (x >= 233)).
100     // There's an excessively opaque bit hack here:
101     // A "true" compare on NEON produces an all-1s result (0xff).
102     // So instead of adding in the comparison result, we subtract it
103     // to get the same effect as adding 1.
104     uint8x16_t extra_one = vcgeq_u8(x_, vdupq_n_u8(233));
105     x_ = vaddq_u8(x_, vdupq_n_u8(22));
106     x_ = vsubq_u8(x_, extra_one);
107     return x_;
108   }
109 
110  private:
111   // State
112   uint8x16_t x_;
113 };
114 
115 // Requantizes source uint8 values in [0..255] range
116 // to the range specified by BitDepth, [0..((2^bits)-1)].
117 // Bias must be avoided. Currently this is achieved
118 // by probabilistic rounding.
119 template <typename QuantizationParams>
Requantize(uint8x16_t raw_src_data,NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode> * rounding_offset_generator)120 uint8x16_t Requantize(
121     uint8x16_t raw_src_data,
122     NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode>*
123         rounding_offset_generator) {
124   static const int kBits = QuantizationParams::BitDepth::kBits;
125   static const std::uint8_t kMaxVal = (1 << kBits) - 1;
126 
127   if (kBits == 8) {
128     return raw_src_data;
129   }
130 
131   uint8x16_t rounding_offset = rounding_offset_generator->get();
132 
133   // Compute:
134   //   x = maxval * src + rounding_offset
135   uint16x8_t x[2];
136   const uint8x8_t maxval_dup = vdup_n_u8(kMaxVal);
137   x[0] = vmlal_u8(vmovl_u8(vget_low_u8(rounding_offset)), maxval_dup,
138                   vget_low_u8(raw_src_data));
139   x[1] = vmlal_u8(vmovl_u8(vget_high_u8(rounding_offset)), maxval_dup,
140                   vget_high_u8(raw_src_data));
141 
142   // Divide by 255 (truncating).
143   //
144   // Here we use the following formula, valid for all integers y in 0..65534
145   // (which is more than we need since we've already early-returned
146   // if kBits==8).
147   //
148   //     y/255 = (y + 1 + (y >> 8)) >> 8.
149   uint8x8_t result[2];
150   for (int i = 0; i < 2; i++) {
151     result[i] = vshrn_n_u16(
152         vaddq_u16(vaddq_u16(x[i], vdupq_n_u16(1)), vshrq_n_u16(x[i], 8)), 8);
153   }
154 
155   return vcombine_u8(result[0], result[1]);
156 }
157 
158 typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor>
159     WidthMajorUint8SideMap;
160 
161 template <int Cells>
162 using DepthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2>, Cells>;
163 
164 template <typename QuantizationParams, int Cells>
165 class PackingRegisterBlock<
166     QuantizationParams, WidthMajorUint8SideMap,
167     PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells> > >
168     : public PackingRegisterBlockBase<
169           QuantizationParams, WidthMajorUint8SideMap,
170           PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells> > > {
171  public:
172   typedef DepthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
173   typedef typename KernelSideFormat::Cell CellFormat;
174   static const int kCells = KernelSideFormat::kCells;
175   static const int kCellWidth = CellFormat::kWidth;
176   static const int kKernelWidth = CellFormat::kWidth * kCells;
177   static const int kCellDepth = CellFormat::kDepth;
178   static const int kCellSize = CellFormat::kSize;
179 
180   typedef NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode>
181       RoundingOffsetGenerator;
182 
Pack(PackedSideBlock<KernelSideFormat> * dst,int start_width,RoundingOffsetGenerator * rounding_offset_generator)183   void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width,
184             RoundingOffsetGenerator* rounding_offset_generator) {
185     std::uint8_t* dst_ptr = dst->current_data();
186     const std::uint8_t* const src_ptr = this->complete_src_.data();
187     const int stride = this->complete_src_.stride();
188     // Load and requantize source WidthMajor data
189     uint8x16_t src_lines[4 * kCells];
190     for (int i = 0; i < 4 * kCells; i++) {
191       src_lines[i] = Requantize<QuantizationParams>(
192           vld1q_u8(src_ptr + i * stride), rounding_offset_generator);
193     }
194     // Reorder the data within registers to make DepthMajor 4x2 cells
195     uint8x16x2_t src_lines_intertwined_2x[2 * kCells];
196     for (int i = 0; i < kCells; i++) {
197       src_lines_intertwined_2x[2 * i] =
198           vzipq_u8(src_lines[4 * i], src_lines[4 * i + 2]);
199       src_lines_intertwined_2x[2 * i + 1] =
200           vzipq_u8(src_lines[4 * i + 1], src_lines[4 * i + 3]);
201     }
202     uint8x16x2_t src_lines_intertwined_4x[2 * kCells];
203     for (int i = 0; i < kCells; i++) {
204       src_lines_intertwined_4x[2 * i] =
205           vzipq_u8(src_lines_intertwined_2x[2 * i].val[0],
206                    src_lines_intertwined_2x[2 * i + 1].val[0]);
207       src_lines_intertwined_4x[2 * i + 1] =
208           vzipq_u8(src_lines_intertwined_2x[2 * i].val[1],
209                    src_lines_intertwined_2x[2 * i + 1].val[1]);
210     }
211     // Store the resulting DepthMajor 4x2 cells in the destination packed block
212     for (int outer = 0; outer < 2; outer++) {
213       for (int inner = 0; inner < 2; inner++) {
214         for (int cell = 0; cell < kCells; cell++) {
215           uint8x8_t value = vget_low_u8(
216               src_lines_intertwined_4x[2 * cell + outer].val[inner]);
217           vst1_u8(dst_ptr, value);
218           dst_ptr += 8;
219         }
220         for (int cell = 0; cell < kCells; cell++) {
221           uint8x8_t value = vget_high_u8(
222               src_lines_intertwined_4x[2 * cell + outer].val[inner]);
223           vst1_u8(dst_ptr, value);
224           dst_ptr += 8;
225         }
226       }
227     }
228     // Compute sums across the depth dimension
229     uint16x8_t sums_of_2_cells[kCells][4];
230     for (int outer = 0; outer < 2; outer++) {
231       for (int inner = 0; inner < 2; inner++) {
232         int i = 2 * outer + inner;
233         for (int cell = 0; cell < kCells; cell++) {
234           sums_of_2_cells[cell][i] = vaddl_u8(
235               vget_low_u8(
236                   src_lines_intertwined_4x[2 * cell + outer].val[inner]),
237               vget_high_u8(
238                   src_lines_intertwined_4x[2 * cell + outer].val[inner]));
239         }
240       }
241     }
242     int32x4_t sums_of_4_cells[kCells][4];
243     for (int i = 0; i < 4; i++) {
244       for (int cell = 0; cell < kCells; cell++) {
245         sums_of_4_cells[cell][i] = vreinterpretq_s32_u32(
246             vaddl_u16(vget_low_u16(sums_of_2_cells[cell][i]),
247                       vget_high_u16(sums_of_2_cells[cell][i])));
248       }
249     }
250     // Update the sums_of_each_slice vector
251     for (int cell = 0; cell < kCells; cell++) {
252       int32x4_t s01 =
253           vaddq_s32(sums_of_4_cells[cell][0], sums_of_4_cells[cell][1]);
254       int32x4_t s23 =
255           vaddq_s32(sums_of_4_cells[cell][2], sums_of_4_cells[cell][3]);
256       int32x4_t s = vaddq_s32(s01, s23);
257       std::int32_t* sums_of_each_slice_ptr =
258           dst->sums_of_each_slice() + start_width + 4 * cell;
259       vst1q_s32(sums_of_each_slice_ptr,
260                 vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr)));
261     }
262     dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
263   }
264 };
265 
266 template <int Cells>
267 using WidthMajorSideFormatNCells4x2 =
268     KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>;
269 
270 template <typename QuantizationParams, int Cells>
271 class PackingRegisterBlock<
272     QuantizationParams, WidthMajorUint8SideMap,
273     PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > >
274     : public PackingRegisterBlockBase<
275           QuantizationParams, WidthMajorUint8SideMap,
276           PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells> > > {
277  public:
278   typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat;
279   typedef typename KernelSideFormat::Cell CellFormat;
280   static const int kCells = KernelSideFormat::kCells;
281   static const int kCellWidth = CellFormat::kWidth;
282   static const int kKernelWidth = CellFormat::kWidth * kCells;
283   static const int kCellDepth = CellFormat::kDepth;
284   static const int kCellSize = CellFormat::kSize;
285 
286   typedef NEONRoundingOffsetGenerator<QuantizationParams::kRoundingMode>
287       RoundingOffsetGenerator;
288 
Pack(PackedSideBlock<KernelSideFormat> * dst,int start_width,RoundingOffsetGenerator * rounding_offset_generator)289   void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width,
290             RoundingOffsetGenerator* rounding_offset_generator) {
291     std::uint8_t* dst_ptr = dst->current_data();
292     const std::uint8_t* src_ptr = this->complete_src_.data();
293     const int stride = this->complete_src_.stride();
294     // Load and requantize source WidthMajor data
295     uint16x8_t src_lines[kCells * 4];
296     for (int i = 0; i < kCells; i++) {
297 // This packing path is used with our current
298 // less-than-8-bit kernel, and the partial unrolling of this loop
299 // results in substantially faster code (thanks to better
300 // register allocation) on Nexus 5.
301 
302 #define GEMMLOWP_UNROLLED_LOOP_ITER(k)                                        \
303   src_lines[4 * i + k] = vreinterpretq_u16_u8(Requantize<QuantizationParams>( \
304       vld1q_u8(src_ptr), rounding_offset_generator));                         \
305   src_ptr += stride;
306 
307       GEMMLOWP_UNROLLED_LOOP_ITER(0)
308       GEMMLOWP_UNROLLED_LOOP_ITER(1)
309       GEMMLOWP_UNROLLED_LOOP_ITER(2)
310       GEMMLOWP_UNROLLED_LOOP_ITER(3)
311 
312 #undef GEMMLOWP_UNROLLED_LOOP_ITER
313     }
314     // Reorder the data within registers to make WidthMajor 4x2 cells
315     uint16x8x2_t src_lines_intertwined_2x[2 * kCells];
316     for (int i = 0; i < kCells; i++) {
317       src_lines_intertwined_2x[2 * i] =
318           vzipq_u16(src_lines[4 * i], src_lines[4 * i + 2]);
319       src_lines_intertwined_2x[2 * i + 1] =
320           vzipq_u16(src_lines[4 * i + 1], src_lines[4 * i + 3]);
321     }
322     uint16x8x2_t src_lines_intertwined_4x[2 * kCells];
323     for (int i = 0; i < kCells; i++) {
324       src_lines_intertwined_4x[2 * i] =
325           vzipq_u16(src_lines_intertwined_2x[2 * i].val[0],
326                     src_lines_intertwined_2x[2 * i + 1].val[0]);
327       src_lines_intertwined_4x[2 * i + 1] =
328           vzipq_u16(src_lines_intertwined_2x[2 * i].val[1],
329                     src_lines_intertwined_2x[2 * i + 1].val[1]);
330     }
331     // Store the resulting WidthMajor 4x2 cells in the destination packed block
332     for (int outer = 0; outer < 2; outer++) {
333       for (int inner = 0; inner < 2; inner++) {
334         for (int cell = 0; cell < kCells; cell++) {
335           uint8x8_t value = vreinterpret_u8_u16(vget_low_u16(
336               src_lines_intertwined_4x[2 * cell + outer].val[inner]));
337           vst1_u8(dst_ptr, value);
338           dst_ptr += 8;
339         }
340         for (int cell = 0; cell < kCells; cell++) {
341           uint8x8_t value = vreinterpret_u8_u16(vget_high_u16(
342               src_lines_intertwined_4x[2 * cell + outer].val[inner]));
343           vst1_u8(dst_ptr, value);
344           dst_ptr += 8;
345         }
346       }
347     }
348     // Compute sums across the depth dimension
349     uint16x8_t sums_of_2[kCells][4];
350     for (int outer = 0; outer < 2; outer++) {
351       for (int inner = 0; inner < 2; inner++) {
352         int i = 2 * outer + inner;
353         for (int cell = 0; cell < kCells; cell++) {
354           sums_of_2[cell][i] = vpaddlq_u8(vreinterpretq_u8_u16(
355               src_lines_intertwined_4x[2 * cell + outer].val[inner]));
356         }
357       }
358     }
359     uint16x8_t sums_of_4[kCells][2];
360     for (int i = 0; i < 2; i++) {
361       for (int cell = 0; cell < kCells; cell++) {
362         sums_of_4[cell][i] =
363             vaddq_u16(sums_of_2[cell][2 * i], sums_of_2[cell][2 * i + 1]);
364       }
365     }
366     uint16x8_t sums_of_8[kCells];
367     for (int cell = 0; cell < kCells; cell++) {
368       sums_of_8[cell] = vaddq_u16(sums_of_4[cell][0], sums_of_4[cell][1]);
369     }
370 
371     uint16x4_t sums_of_16[kCells];
372     for (int cell = 0; cell < kCells; cell++) {
373       sums_of_16[cell] = vadd_u16(vget_low_u16(sums_of_8[cell]),
374                                   vget_high_u16(sums_of_8[cell]));
375     }
376     // Update the sums_of_each_slice vector
377     for (int cell = 0; cell < kCells; cell++) {
378       int32x4_t s = vreinterpretq_s32_u32(vmovl_u16(sums_of_16[cell]));
379       std::int32_t* sums_of_each_slice_ptr =
380           dst->sums_of_each_slice() + start_width + 4 * cell;
381       vst1q_s32(sums_of_each_slice_ptr,
382                 vaddq_s32(s, vld1q_s32(sums_of_each_slice_ptr)));
383     }
384     dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
385   }
386 };
387 
388 }  // namespace gemmlowp
389 
390 #endif  // GEMMLOWP_INTERNAL_PACK_NEON_H_
391