• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5  */
6 
7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
8 
9 #include <stdio.h>
10 #include <assert.h>
11 
12 #include "private.h"
13 
14 #include "gsm.h"
15 #include "proto.h"
16 
17 /*
18  *  SHORT TERM ANALYSIS FILTERING SECTION
19  */
20 
21 /* 4.2.8 */
22 
23 static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
24 	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/
25 	word	* LARpp)	/* out: decoded ..			*/
26 {
27 	register word	temp1 /* , temp2 */;
28 	register long	ltmp;	/* for GSM_ADD */
29 
30 	/*  This procedure requires for efficient implementation
31 	 *  two tables.
32  	 *
33 	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
34 	 *  MIC[1..8]  = minimum value of the LARc[1..8]
35 	 */
36 
37 	/*  Compute the LARpp[1..8]
38 	 */
39 
40 	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
41 	 *
42 	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;
43 	 *		temp2  = *B << 1;
44 	 *		temp1  = GSM_SUB( temp1, temp2 );
45 	 *
46 	 *		assert(*INVA != MIN_WORD);
47 	 *
48 	 *		temp1  = GSM_MULT_R( *INVA, temp1 );
49 	 *		*LARpp = GSM_ADD( temp1, temp1 );
50 	 *	}
51 	 */
52 
53 #undef	STEP
54 #define	STEP( B, MIC, INVA )	\
55 		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\
56 		temp1    = GSM_SUB( temp1, B << 1 );		\
57 		temp1    = GSM_MULT_R( INVA, temp1 );		\
58 		*LARpp++ = GSM_ADD( temp1, temp1 );
59 
60 	STEP(      0,  -32,  13107 );
61 	STEP(      0,  -32,  13107 );
62 	STEP(   2048,  -16,  13107 );
63 	STEP(  -2560,  -16,  13107 );
64 
65 	STEP(     94,   -8,  19223 );
66 	STEP(  -1792,   -8,  17476 );
67 	STEP(   -341,   -4,  31454 );
68 	STEP(  -1144,   -4,  29708 );
69 
70 	/* NOTE: the addition of *MIC is used to restore
71 	 * 	 the sign of *LARc.
72 	 */
73 }
74 
75 /* 4.2.9 */
76 /* Computation of the quantized reflection coefficients
77  */
78 
79 /* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8]
80  */
81 
82 /*
83  *  Within each frame of 160 analyzed speech samples the short term
84  *  analysis and synthesis filters operate with four different sets of
85  *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
86  *  and the actual set of decoded LARs (LARpp(j))
87  *
88  * (Initial value: LARpp(j-1)[1..8] = 0.)
89  */
90 
91 static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
92 	register word * LARpp_j_1,
93 	register word * LARpp_j,
94 	register word * LARp)
95 {
96 	register int 	i;
97 	register longword ltmp;
98 
99 	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
100 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
101 		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));
102 	}
103 }
104 
105 static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
106 	register word * LARpp_j_1,
107 	register word * LARpp_j,
108 	register word * LARp)
109 {
110 	register int i;
111 	register longword ltmp;
112 	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
113 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
114 	}
115 }
116 
117 static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
118 	register word * LARpp_j_1,
119 	register word * LARpp_j,
120 	register word * LARp)
121 {
122 	register int i;
123 	register longword ltmp;
124 
125 	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
126 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
127 		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
128 	}
129 }
130 
131 
132 static void Coefficients_40_159 P2((LARpp_j, LARp),
133 	register word * LARpp_j,
134 	register word * LARp)
135 {
136 	register int i;
137 
138 	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
139 		*LARp = *LARpp_j;
140 }
141 
142 /* 4.2.9.2 */
143 
144 static void LARp_to_rp P1((LARp),
145 	register word * LARp)	/* [0..7] IN/OUT  */
146 /*
147  *  The input of this procedure is the interpolated LARp[0..7] array.
148  *  The reflection coefficients, rp[i], are used in the analysis
149  *  filter and in the synthesis filter.
150  */
151 {
152 	register int 		i;
153 	register word		temp;
154 	register longword	ltmp;
155 
156 	for (i = 1; i <= 8; i++, LARp++) {
157 
158 		/* temp = GSM_ABS( *LARp );
159 	         *
160 		 * if (temp < 11059) temp <<= 1;
161 		 * else if (temp < 20070) temp += 11059;
162 		 * else temp = GSM_ADD( temp >> 2, 26112 );
163 		 *
164 		 * *LARp = *LARp < 0 ? -temp : temp;
165 		 */
166 
167 		if (*LARp < 0) {
168 			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
169 			*LARp = - ((temp < 11059) ? temp << 1
170 				: ((temp < 20070) ? temp + 11059
171 				:  GSM_ADD( temp >> 2, 26112 )));
172 		} else {
173 			temp  = *LARp;
174 			*LARp =    (temp < 11059) ? temp << 1
175 				: ((temp < 20070) ? temp + 11059
176 				:  GSM_ADD( temp >> 2, 26112 ));
177 		}
178 	}
179 }
180 
181 
182 /* 4.2.10 */
183 static void Short_term_analysis_filtering P4((S,rp,k_n,s),
184 	struct gsm_state * S,
185 	register word	* rp,	/* [0..7]	IN	*/
186 	register int 	k_n, 	/*   k_end - k_start	*/
187 	register word	* s	/* [0..n-1]	IN/OUT	*/
188 )
189 /*
190  *  This procedure computes the short term residual signal d[..] to be fed
191  *  to the RPE-LTP loop from the s[..] signal and from the local rp[..]
192  *  array (quantized reflection coefficients).  As the call of this
193  *  procedure can be done in many ways (see the interpolation of the LAR
194  *  coefficient), it is assumed that the computation begins with index
195  *  k_start (for arrays d[..] and s[..]) and stops with index k_end
196  *  (k_start and k_end are defined in 4.2.9.1).  This procedure also
197  *  needs to keep the array u[0..7] in memory for each call.
198  */
199 {
200 	register word		* u = S->u;
201 	register int		i;
202 	register word		di, zzz, ui, sav, rpi;
203 	register longword 	ltmp;
204 
205 	for (; k_n--; s++) {
206 
207 		di = sav = *s;
208 
209 		for (i = 0; i < 8; i++) {		/* YYY */
210 
211 			ui    = u[i];
212 			rpi   = rp[i];
213 			u[i]  = sav;
214 
215 			zzz   = GSM_MULT_R(rpi, di);
216 			sav   = GSM_ADD(   ui,  zzz);
217 
218 			zzz   = GSM_MULT_R(rpi, ui);
219 			di    = GSM_ADD(   di,  zzz );
220 		}
221 
222 		*s = di;
223 	}
224 }
225 
226 #if defined(USE_FLOAT_MUL) && defined(FAST)
227 
228 static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
229 	struct gsm_state * S,
230 	register word	* rp,	/* [0..7]	IN	*/
231 	register int 	k_n, 	/*   k_end - k_start	*/
232 	register word	* s	/* [0..n-1]	IN/OUT	*/
233 )
234 {
235 	register word		* u = S->u;
236 	register int		i;
237 
238 	float 	  uf[8],
239 		 rpf[8];
240 
241 	register float scalef = 3.0517578125e-5;
242 	register float		sav, di, temp;
243 
244 	for (i = 0; i < 8; ++i) {
245 		uf[i]  = u[i];
246 		rpf[i] = rp[i] * scalef;
247 	}
248 	for (; k_n--; s++) {
249 		sav = di = *s;
250 		for (i = 0; i < 8; ++i) {
251 			register float rpfi = rpf[i];
252 			register float ufi  = uf[i];
253 
254 			uf[i] = sav;
255 			temp  = rpfi * di + ufi;
256 			di   += rpfi * ufi;
257 			sav   = temp;
258 		}
259 		*s = di;
260 	}
261 	for (i = 0; i < 8; ++i) u[i] = uf[i];
262 }
263 #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
264 
265 static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
266 	struct gsm_state * S,
267 	register word	* rrp,	/* [0..7]	IN	*/
268 	register int	k,	/* k_end - k_start	*/
269 	register word	* wt,	/* [0..k-1]	IN	*/
270 	register word	* sr	/* [0..k-1]	OUT	*/
271 )
272 {
273 	register word		* v = S->v;
274 	register int		i;
275 	register word		sri, tmp1, tmp2;
276 	register longword	ltmp;	/* for GSM_ADD  & GSM_SUB */
277 
278 	while (k--) {
279 		sri = *wt++;
280 		for (i = 8; i--;) {
281 
282 			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
283 			 */
284 			tmp1 = rrp[i];
285 			tmp2 = v[i];
286 			tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
287 				? MAX_WORD
288 				: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
289 					     + 16384) >> 15)) ;
290 
291 			sri  = GSM_SUB( sri, tmp2 );
292 
293 			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
294 			 */
295 			tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD
296 				? MAX_WORD
297 				: 0x0FFFF & (( (longword)tmp1 * (longword)sri
298 					     + 16384) >> 15)) ;
299 
300 			v[i+1] = GSM_ADD( v[i], tmp1);
301 		}
302 		*sr++ = v[0] = sri;
303 	}
304 }
305 
306 
307 #if defined(FAST) && defined(USE_FLOAT_MUL)
308 
309 static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
310 	struct gsm_state * S,
311 	register word	* rrp,	/* [0..7]	IN	*/
312 	register int	k,	/* k_end - k_start	*/
313 	register word	* wt,	/* [0..k-1]	IN	*/
314 	register word	* sr	/* [0..k-1]	OUT	*/
315 )
316 {
317 	register word		* v = S->v;
318 	register int		i;
319 
320 	float va[9], rrpa[8];
321 	register float scalef = 3.0517578125e-5, temp;
322 
323 	for (i = 0; i < 8; ++i) {
324 		va[i]   = v[i];
325 		rrpa[i] = (float)rrp[i] * scalef;
326 	}
327 	while (k--) {
328 		register float sri = *wt++;
329 		for (i = 8; i--;) {
330 			sri -= rrpa[i] * va[i];
331 			if     (sri < -32768.) sri = -32768.;
332 			else if (sri > 32767.) sri =  32767.;
333 
334 			temp = va[i] + rrpa[i] * sri;
335 			if     (temp < -32768.) temp = -32768.;
336 			else if (temp > 32767.) temp =  32767.;
337 			va[i+1] = temp;
338 		}
339 		*sr++ = va[0] = sri;
340 	}
341 	for (i = 0; i < 9; ++i) v[i] = va[i];
342 }
343 
344 #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
345 
346 void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
347 
348 	struct gsm_state * S,
349 
350 	word	* LARc,		/* coded log area ratio [0..7]  IN	*/
351 	word	* s		/* signal [0..159]		IN/OUT	*/
352 )
353 {
354 	word		* LARpp_j	= S->LARpp[ S->j      ];
355 	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];
356 
357 	word		LARp[8];
358 
359 #undef	FILTER
360 #if 	defined(FAST) && defined(USE_FLOAT_MUL)
361 # 	define	FILTER 	(* (S->fast			\
362 			   ? Fast_Short_term_analysis_filtering	\
363 		    	   : Short_term_analysis_filtering	))
364 
365 #else
366 # 	define	FILTER	Short_term_analysis_filtering
367 #endif
368 
369 	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
370 
371 	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );
372 	LARp_to_rp( LARp );
373 	FILTER( S, LARp, 13, s);
374 
375 	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
376 	LARp_to_rp( LARp );
377 	FILTER( S, LARp, 14, s + 13);
378 
379 	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
380 	LARp_to_rp( LARp );
381 	FILTER( S, LARp, 13, s + 27);
382 
383 	Coefficients_40_159( LARpp_j, LARp);
384 	LARp_to_rp( LARp );
385 	FILTER( S, LARp, 120, s + 40);
386 }
387 
388 void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
389 	struct gsm_state * S,
390 
391 	word	* LARcr,	/* received log area ratios [0..7] IN  */
392 	word	* wt,		/* received d [0..159]		   IN  */
393 
394 	word	* s		/* signal   s [0..159]		  OUT  */
395 )
396 {
397 	word		* LARpp_j	= S->LARpp[ S->j     ];
398 	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];
399 
400 	word		LARp[8];
401 
402 #undef	FILTER
403 #if 	defined(FAST) && defined(USE_FLOAT_MUL)
404 
405 # 	define	FILTER 	(* (S->fast			\
406 			   ? Fast_Short_term_synthesis_filtering	\
407 		    	   : Short_term_synthesis_filtering	))
408 #else
409 #	define	FILTER	Short_term_synthesis_filtering
410 #endif
411 
412 	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
413 
414 	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
415 	LARp_to_rp( LARp );
416 	FILTER( S, LARp, 13, wt, s );
417 
418 	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
419 	LARp_to_rp( LARp );
420 	FILTER( S, LARp, 14, wt + 13, s + 13 );
421 
422 	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
423 	LARp_to_rp( LARp );
424 	FILTER( S, LARp, 13, wt + 27, s + 27 );
425 
426 	Coefficients_40_159( LARpp_j, LARp );
427 	LARp_to_rp( LARp );
428 	FILTER(S, LARp, 120, wt + 40, s + 40);
429 }
430