1 /*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
6 *
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
11 *
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
16 */
17
18 /* Brutally hacked by John Walker back from ANSI C to K&R (no
19 prototypes) to maintain the tradition that Netfone will compile
20 with Sun's original "cc". */
21
22 #include "md5.h"
23
24
25 #ifndef HIGHFIRST
26 #define byteReverse(buf, len) /* Nothing */
27 #else
28 /*
29 * Note: this code is harmless on little-endian machines.
30 */
31 static void
byteReverse(unsigned char * buf,unsigned longs)32 byteReverse(unsigned char *buf,
33 unsigned longs)
34 {
35 uint32_t t;
36 do {
37 t = (uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
38 ((unsigned) buf[1] << 8 | buf[0]);
39 *(uint32_t *) buf = t;
40 buf += 4;
41 } while (--longs);
42 }
43 #endif
44
45
46 /* The four core functions - F1 is optimized somewhat */
47
48 /* #define F1(x, y, z) (x & y | ~x & z) */
49 #define F1(x, y, z) (z ^ (x & (y ^ z)))
50 #define F2(x, y, z) F1(z, x, y)
51 #define F3(x, y, z) (x ^ y ^ z)
52 #define F4(x, y, z) (y ^ (x | ~z))
53
54 /* This is the central step in the MD5 algorithm. */
55 #define MD5STEP(f, w, x, y, z, data, s) \
56 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
57
58 /*
59 * The core of the MD5 algorithm, this alters an existing MD5 hash to
60 * reflect the addition of 16 longwords of new data. MD5Update blocks
61 * the data and converts bytes into longwords for this routine.
62 */
63 static void
MD5Transform(uint32_t buf[4],uint32_t in[16])64 MD5Transform(uint32_t buf[4],
65 uint32_t in[16])
66 {
67 uint32_t a, b, c, d;
68
69 a = buf[0];
70 b = buf[1];
71 c = buf[2];
72 d = buf[3];
73
74 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
75 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
76 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
77 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
78 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
79 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
80 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
81 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
82 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
83 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
84 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
85 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
86 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
87 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
88 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
89 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
90
91 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
92 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
93 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
94 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
95 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
96 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
97 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
98 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
99 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
100 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
101 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
102 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
103 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
104 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
105 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
106 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
107
108 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
109 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
110 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
111 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
112 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
113 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
114 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
115 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
116 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
117 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
118 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
119 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
120 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
121 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
122 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
123 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
124
125 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
126 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
127 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
128 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
129 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
130 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
131 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
132 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
133 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
134 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
135 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
136 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
137 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
138 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
139 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
140 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
141
142 buf[0] += a;
143 buf[1] += b;
144 buf[2] += c;
145 buf[3] += d;
146 }
147
148
149 /*
150 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
151 * initialization constants.
152 */
153 void
MD5Init(struct MD5Context * ctx)154 MD5Init(struct MD5Context *ctx)
155 {
156 ctx->buf[0] = 0x67452301;
157 ctx->buf[1] = 0xefcdab89;
158 ctx->buf[2] = 0x98badcfe;
159 ctx->buf[3] = 0x10325476;
160
161 ctx->bits[0] = 0;
162 ctx->bits[1] = 0;
163 }
164
165 /*
166 * Update context to reflect the concatenation of another buffer full
167 * of bytes.
168 */
169 void
MD5Update(struct MD5Context * ctx,const void * data,unsigned len)170 MD5Update(struct MD5Context *ctx,
171 const void *data,
172 unsigned len)
173 {
174 const unsigned char *buf = data;
175 uint32_t t;
176
177 /* Update bitcount */
178
179 t = ctx->bits[0];
180 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
181 ctx->bits[1]++; /* Carry from low to high */
182 ctx->bits[1] += len >> 29;
183
184 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
185
186 /* Handle any leading odd-sized chunks */
187
188 if (t) {
189 unsigned char *p = (unsigned char *) ctx->in + t;
190
191 t = 64 - t;
192 if (len < t) {
193 memcpy(p, buf, len);
194 return;
195 }
196 memcpy(p, buf, t);
197 byteReverse(ctx->in, 16);
198 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
199 buf += t;
200 len -= t;
201 }
202 /* Process data in 64-byte chunks */
203
204 while (len >= 64) {
205 memcpy(ctx->in, buf, 64);
206 byteReverse(ctx->in, 16);
207 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
208 buf += 64;
209 len -= 64;
210 }
211
212 /* Handle any remaining bytes of data. */
213
214 memcpy(ctx->in, buf, len);
215 }
216
217 /*
218 * Final wrapup - pad to 64-byte boundary with the bit pattern
219 * 1 0* (64-bit count of bits processed, MSB-first)
220 */
221 void
MD5Final(unsigned char digest[16],struct MD5Context * ctx)222 MD5Final (unsigned char digest[16],
223 struct MD5Context *ctx)
224 {
225 unsigned count;
226 unsigned char *p;
227
228 /* Compute number of bytes mod 64 */
229 count = (ctx->bits[0] >> 3) & 0x3F;
230
231 /* Set the first char of padding to 0x80. This is safe since there is
232 always at least one byte free */
233 p = ctx->in + count;
234 *p++ = 0x80;
235
236 /* Bytes of padding needed to make 64 bytes */
237 count = 64 - 1 - count;
238
239 /* Pad out to 56 mod 64 */
240 if (count < 8)
241 {
242 /* Two lots of padding: Pad the first block to 64 bytes */
243 memset(p, 0, count);
244 byteReverse(ctx->in, 16);
245 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
246
247 /* Now fill the next block with 56 bytes */
248 memset(ctx->in, 0, 56);
249 }
250 else
251 {
252 /* Pad block to 56 bytes */
253 memset(p, 0, count - 8);
254 }
255 byteReverse(ctx->in, 14);
256
257 /* Append length in bits and transform */
258 ((uint32_t *) ctx->in)[14] = ctx->bits[0];
259 ((uint32_t *) ctx->in)[15] = ctx->bits[1];
260
261 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
262 byteReverse((unsigned char *) ctx->buf, 4);
263 memcpy(digest, ctx->buf, 16);
264 memset(ctx, 0, sizeof(struct MD5Context)); /* In case it's sensitive */
265 }
266
267 /* end of md5.c */
268