1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachinePostDominators.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "machine-sink"
39
40 static cl::opt<bool>
41 SplitEdges("machine-sink-split",
42 cl::desc("Split critical edges during machine sinking"),
43 cl::init(true), cl::Hidden);
44
45 static cl::opt<bool>
46 UseBlockFreqInfo("machine-sink-bfi",
47 cl::desc("Use block frequency info to find successors to sink"),
48 cl::init(true), cl::Hidden);
49
50
51 STATISTIC(NumSunk, "Number of machine instructions sunk");
52 STATISTIC(NumSplit, "Number of critical edges split");
53 STATISTIC(NumCoalesces, "Number of copies coalesced");
54
55 namespace {
56 class MachineSinking : public MachineFunctionPass {
57 const TargetInstrInfo *TII;
58 const TargetRegisterInfo *TRI;
59 MachineRegisterInfo *MRI; // Machine register information
60 MachineDominatorTree *DT; // Machine dominator tree
61 MachinePostDominatorTree *PDT; // Machine post dominator tree
62 MachineLoopInfo *LI;
63 const MachineBlockFrequencyInfo *MBFI;
64 AliasAnalysis *AA;
65
66 // Remember which edges have been considered for breaking.
67 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
68 CEBCandidates;
69 // Remember which edges we are about to split.
70 // This is different from CEBCandidates since those edges
71 // will be split.
72 SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
73
74 SparseBitVector<> RegsToClearKillFlags;
75
76 typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
77 AllSuccsCache;
78
79 public:
80 static char ID; // Pass identification
MachineSinking()81 MachineSinking() : MachineFunctionPass(ID) {
82 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
83 }
84
85 bool runOnMachineFunction(MachineFunction &MF) override;
86
getAnalysisUsage(AnalysisUsage & AU) const87 void getAnalysisUsage(AnalysisUsage &AU) const override {
88 AU.setPreservesCFG();
89 MachineFunctionPass::getAnalysisUsage(AU);
90 AU.addRequired<AAResultsWrapperPass>();
91 AU.addRequired<MachineDominatorTree>();
92 AU.addRequired<MachinePostDominatorTree>();
93 AU.addRequired<MachineLoopInfo>();
94 AU.addPreserved<MachineDominatorTree>();
95 AU.addPreserved<MachinePostDominatorTree>();
96 AU.addPreserved<MachineLoopInfo>();
97 if (UseBlockFreqInfo)
98 AU.addRequired<MachineBlockFrequencyInfo>();
99 }
100
releaseMemory()101 void releaseMemory() override {
102 CEBCandidates.clear();
103 }
104
105 private:
106 bool ProcessBlock(MachineBasicBlock &MBB);
107 bool isWorthBreakingCriticalEdge(MachineInstr *MI,
108 MachineBasicBlock *From,
109 MachineBasicBlock *To);
110 /// \brief Postpone the splitting of the given critical
111 /// edge (\p From, \p To).
112 ///
113 /// We do not split the edges on the fly. Indeed, this invalidates
114 /// the dominance information and thus triggers a lot of updates
115 /// of that information underneath.
116 /// Instead, we postpone all the splits after each iteration of
117 /// the main loop. That way, the information is at least valid
118 /// for the lifetime of an iteration.
119 ///
120 /// \return True if the edge is marked as toSplit, false otherwise.
121 /// False can be returned if, for instance, this is not profitable.
122 bool PostponeSplitCriticalEdge(MachineInstr *MI,
123 MachineBasicBlock *From,
124 MachineBasicBlock *To,
125 bool BreakPHIEdge);
126 bool SinkInstruction(MachineInstr *MI, bool &SawStore,
127 AllSuccsCache &AllSuccessors);
128 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
129 MachineBasicBlock *DefMBB,
130 bool &BreakPHIEdge, bool &LocalUse) const;
131 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
132 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
133 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
134 MachineBasicBlock *MBB,
135 MachineBasicBlock *SuccToSinkTo,
136 AllSuccsCache &AllSuccessors);
137
138 bool PerformTrivialForwardCoalescing(MachineInstr *MI,
139 MachineBasicBlock *MBB);
140
141 SmallVector<MachineBasicBlock *, 4> &
142 GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
143 AllSuccsCache &AllSuccessors) const;
144 };
145 } // end anonymous namespace
146
147 char MachineSinking::ID = 0;
148 char &llvm::MachineSinkingID = MachineSinking::ID;
149 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
150 "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)151 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
152 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
154 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
155 "Machine code sinking", false, false)
156
157 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
158 MachineBasicBlock *MBB) {
159 if (!MI->isCopy())
160 return false;
161
162 unsigned SrcReg = MI->getOperand(1).getReg();
163 unsigned DstReg = MI->getOperand(0).getReg();
164 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
165 !TargetRegisterInfo::isVirtualRegister(DstReg) ||
166 !MRI->hasOneNonDBGUse(SrcReg))
167 return false;
168
169 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
170 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
171 if (SRC != DRC)
172 return false;
173
174 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
175 if (DefMI->isCopyLike())
176 return false;
177 DEBUG(dbgs() << "Coalescing: " << *DefMI);
178 DEBUG(dbgs() << "*** to: " << *MI);
179 MRI->replaceRegWith(DstReg, SrcReg);
180 MI->eraseFromParent();
181
182 // Conservatively, clear any kill flags, since it's possible that they are no
183 // longer correct.
184 MRI->clearKillFlags(SrcReg);
185
186 ++NumCoalesces;
187 return true;
188 }
189
190 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
191 /// occur in blocks dominated by the specified block. If any use is in the
192 /// definition block, then return false since it is never legal to move def
193 /// after uses.
194 bool
AllUsesDominatedByBlock(unsigned Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const195 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
196 MachineBasicBlock *MBB,
197 MachineBasicBlock *DefMBB,
198 bool &BreakPHIEdge,
199 bool &LocalUse) const {
200 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
201 "Only makes sense for vregs");
202
203 // Ignore debug uses because debug info doesn't affect the code.
204 if (MRI->use_nodbg_empty(Reg))
205 return true;
206
207 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
208 // into and they are all PHI nodes. In this case, machine-sink must break
209 // the critical edge first. e.g.
210 //
211 // BB#1: derived from LLVM BB %bb4.preheader
212 // Predecessors according to CFG: BB#0
213 // ...
214 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
215 // ...
216 // JE_4 <BB#37>, %EFLAGS<imp-use>
217 // Successors according to CFG: BB#37 BB#2
218 //
219 // BB#2: derived from LLVM BB %bb.nph
220 // Predecessors according to CFG: BB#0 BB#1
221 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
222 BreakPHIEdge = true;
223 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
224 MachineInstr *UseInst = MO.getParent();
225 unsigned OpNo = &MO - &UseInst->getOperand(0);
226 MachineBasicBlock *UseBlock = UseInst->getParent();
227 if (!(UseBlock == MBB && UseInst->isPHI() &&
228 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
229 BreakPHIEdge = false;
230 break;
231 }
232 }
233 if (BreakPHIEdge)
234 return true;
235
236 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
237 // Determine the block of the use.
238 MachineInstr *UseInst = MO.getParent();
239 unsigned OpNo = &MO - &UseInst->getOperand(0);
240 MachineBasicBlock *UseBlock = UseInst->getParent();
241 if (UseInst->isPHI()) {
242 // PHI nodes use the operand in the predecessor block, not the block with
243 // the PHI.
244 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
245 } else if (UseBlock == DefMBB) {
246 LocalUse = true;
247 return false;
248 }
249
250 // Check that it dominates.
251 if (!DT->dominates(MBB, UseBlock))
252 return false;
253 }
254
255 return true;
256 }
257
runOnMachineFunction(MachineFunction & MF)258 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
259 if (skipOptnoneFunction(*MF.getFunction()))
260 return false;
261
262 DEBUG(dbgs() << "******** Machine Sinking ********\n");
263
264 TII = MF.getSubtarget().getInstrInfo();
265 TRI = MF.getSubtarget().getRegisterInfo();
266 MRI = &MF.getRegInfo();
267 DT = &getAnalysis<MachineDominatorTree>();
268 PDT = &getAnalysis<MachinePostDominatorTree>();
269 LI = &getAnalysis<MachineLoopInfo>();
270 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
271 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
272
273 bool EverMadeChange = false;
274
275 while (1) {
276 bool MadeChange = false;
277
278 // Process all basic blocks.
279 CEBCandidates.clear();
280 ToSplit.clear();
281 for (auto &MBB: MF)
282 MadeChange |= ProcessBlock(MBB);
283
284 // If we have anything we marked as toSplit, split it now.
285 for (auto &Pair : ToSplit) {
286 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
287 if (NewSucc != nullptr) {
288 DEBUG(dbgs() << " *** Splitting critical edge:"
289 " BB#" << Pair.first->getNumber()
290 << " -- BB#" << NewSucc->getNumber()
291 << " -- BB#" << Pair.second->getNumber() << '\n');
292 MadeChange = true;
293 ++NumSplit;
294 } else
295 DEBUG(dbgs() << " *** Not legal to break critical edge\n");
296 }
297 // If this iteration over the code changed anything, keep iterating.
298 if (!MadeChange) break;
299 EverMadeChange = true;
300 }
301
302 // Now clear any kill flags for recorded registers.
303 for (auto I : RegsToClearKillFlags)
304 MRI->clearKillFlags(I);
305 RegsToClearKillFlags.clear();
306
307 return EverMadeChange;
308 }
309
ProcessBlock(MachineBasicBlock & MBB)310 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
311 // Can't sink anything out of a block that has less than two successors.
312 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
313
314 // Don't bother sinking code out of unreachable blocks. In addition to being
315 // unprofitable, it can also lead to infinite looping, because in an
316 // unreachable loop there may be nowhere to stop.
317 if (!DT->isReachableFromEntry(&MBB)) return false;
318
319 bool MadeChange = false;
320
321 // Cache all successors, sorted by frequency info and loop depth.
322 AllSuccsCache AllSuccessors;
323
324 // Walk the basic block bottom-up. Remember if we saw a store.
325 MachineBasicBlock::iterator I = MBB.end();
326 --I;
327 bool ProcessedBegin, SawStore = false;
328 do {
329 MachineInstr *MI = I; // The instruction to sink.
330
331 // Predecrement I (if it's not begin) so that it isn't invalidated by
332 // sinking.
333 ProcessedBegin = I == MBB.begin();
334 if (!ProcessedBegin)
335 --I;
336
337 if (MI->isDebugValue())
338 continue;
339
340 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
341 if (Joined) {
342 MadeChange = true;
343 continue;
344 }
345
346 if (SinkInstruction(MI, SawStore, AllSuccessors))
347 ++NumSunk, MadeChange = true;
348
349 // If we just processed the first instruction in the block, we're done.
350 } while (!ProcessedBegin);
351
352 return MadeChange;
353 }
354
isWorthBreakingCriticalEdge(MachineInstr * MI,MachineBasicBlock * From,MachineBasicBlock * To)355 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
356 MachineBasicBlock *From,
357 MachineBasicBlock *To) {
358 // FIXME: Need much better heuristics.
359
360 // If the pass has already considered breaking this edge (during this pass
361 // through the function), then let's go ahead and break it. This means
362 // sinking multiple "cheap" instructions into the same block.
363 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
364 return true;
365
366 if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
367 return true;
368
369 // MI is cheap, we probably don't want to break the critical edge for it.
370 // However, if this would allow some definitions of its source operands
371 // to be sunk then it's probably worth it.
372 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
373 const MachineOperand &MO = MI->getOperand(i);
374 if (!MO.isReg() || !MO.isUse())
375 continue;
376 unsigned Reg = MO.getReg();
377 if (Reg == 0)
378 continue;
379
380 // We don't move live definitions of physical registers,
381 // so sinking their uses won't enable any opportunities.
382 if (TargetRegisterInfo::isPhysicalRegister(Reg))
383 continue;
384
385 // If this instruction is the only user of a virtual register,
386 // check if breaking the edge will enable sinking
387 // both this instruction and the defining instruction.
388 if (MRI->hasOneNonDBGUse(Reg)) {
389 // If the definition resides in same MBB,
390 // claim it's likely we can sink these together.
391 // If definition resides elsewhere, we aren't
392 // blocking it from being sunk so don't break the edge.
393 MachineInstr *DefMI = MRI->getVRegDef(Reg);
394 if (DefMI->getParent() == MI->getParent())
395 return true;
396 }
397 }
398
399 return false;
400 }
401
PostponeSplitCriticalEdge(MachineInstr * MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)402 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
403 MachineBasicBlock *FromBB,
404 MachineBasicBlock *ToBB,
405 bool BreakPHIEdge) {
406 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
407 return false;
408
409 // Avoid breaking back edge. From == To means backedge for single BB loop.
410 if (!SplitEdges || FromBB == ToBB)
411 return false;
412
413 // Check for backedges of more "complex" loops.
414 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
415 LI->isLoopHeader(ToBB))
416 return false;
417
418 // It's not always legal to break critical edges and sink the computation
419 // to the edge.
420 //
421 // BB#1:
422 // v1024
423 // Beq BB#3
424 // <fallthrough>
425 // BB#2:
426 // ... no uses of v1024
427 // <fallthrough>
428 // BB#3:
429 // ...
430 // = v1024
431 //
432 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
433 //
434 // BB#1:
435 // ...
436 // Bne BB#2
437 // BB#4:
438 // v1024 =
439 // B BB#3
440 // BB#2:
441 // ... no uses of v1024
442 // <fallthrough>
443 // BB#3:
444 // ...
445 // = v1024
446 //
447 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
448 // flow. We need to ensure the new basic block where the computation is
449 // sunk to dominates all the uses.
450 // It's only legal to break critical edge and sink the computation to the
451 // new block if all the predecessors of "To", except for "From", are
452 // not dominated by "From". Given SSA property, this means these
453 // predecessors are dominated by "To".
454 //
455 // There is no need to do this check if all the uses are PHI nodes. PHI
456 // sources are only defined on the specific predecessor edges.
457 if (!BreakPHIEdge) {
458 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
459 E = ToBB->pred_end(); PI != E; ++PI) {
460 if (*PI == FromBB)
461 continue;
462 if (!DT->dominates(ToBB, *PI))
463 return false;
464 }
465 }
466
467 ToSplit.insert(std::make_pair(FromBB, ToBB));
468
469 return true;
470 }
471
AvoidsSinking(MachineInstr * MI,MachineRegisterInfo * MRI)472 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
473 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
474 }
475
476 /// collectDebgValues - Scan instructions following MI and collect any
477 /// matching DBG_VALUEs.
collectDebugValues(MachineInstr * MI,SmallVectorImpl<MachineInstr * > & DbgValues)478 static void collectDebugValues(MachineInstr *MI,
479 SmallVectorImpl<MachineInstr *> &DbgValues) {
480 DbgValues.clear();
481 if (!MI->getOperand(0).isReg())
482 return;
483
484 MachineBasicBlock::iterator DI = MI; ++DI;
485 for (MachineBasicBlock::iterator DE = MI->getParent()->end();
486 DI != DE; ++DI) {
487 if (!DI->isDebugValue())
488 return;
489 if (DI->getOperand(0).isReg() &&
490 DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
491 DbgValues.push_back(DI);
492 }
493 }
494
495 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(unsigned Reg,MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo,AllSuccsCache & AllSuccessors)496 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
497 MachineBasicBlock *MBB,
498 MachineBasicBlock *SuccToSinkTo,
499 AllSuccsCache &AllSuccessors) {
500 assert (MI && "Invalid MachineInstr!");
501 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
502
503 if (MBB == SuccToSinkTo)
504 return false;
505
506 // It is profitable if SuccToSinkTo does not post dominate current block.
507 if (!PDT->dominates(SuccToSinkTo, MBB))
508 return true;
509
510 // It is profitable to sink an instruction from a deeper loop to a shallower
511 // loop, even if the latter post-dominates the former (PR21115).
512 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
513 return true;
514
515 // Check if only use in post dominated block is PHI instruction.
516 bool NonPHIUse = false;
517 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
518 MachineBasicBlock *UseBlock = UseInst.getParent();
519 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
520 NonPHIUse = true;
521 }
522 if (!NonPHIUse)
523 return true;
524
525 // If SuccToSinkTo post dominates then also it may be profitable if MI
526 // can further profitably sinked into another block in next round.
527 bool BreakPHIEdge = false;
528 // FIXME - If finding successor is compile time expensive then cache results.
529 if (MachineBasicBlock *MBB2 =
530 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
531 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
532
533 // If SuccToSinkTo is final destination and it is a post dominator of current
534 // block then it is not profitable to sink MI into SuccToSinkTo block.
535 return false;
536 }
537
538 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
539 /// computing it if it was not already cached.
540 SmallVector<MachineBasicBlock *, 4> &
GetAllSortedSuccessors(MachineInstr * MI,MachineBasicBlock * MBB,AllSuccsCache & AllSuccessors) const541 MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
542 AllSuccsCache &AllSuccessors) const {
543
544 // Do we have the sorted successors in cache ?
545 auto Succs = AllSuccessors.find(MBB);
546 if (Succs != AllSuccessors.end())
547 return Succs->second;
548
549 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
550 MBB->succ_end());
551
552 // Handle cases where sinking can happen but where the sink point isn't a
553 // successor. For example:
554 //
555 // x = computation
556 // if () {} else {}
557 // use x
558 //
559 const std::vector<MachineDomTreeNode *> &Children =
560 DT->getNode(MBB)->getChildren();
561 for (const auto &DTChild : Children)
562 // DomTree children of MBB that have MBB as immediate dominator are added.
563 if (DTChild->getIDom()->getBlock() == MI->getParent() &&
564 // Skip MBBs already added to the AllSuccs vector above.
565 !MBB->isSuccessor(DTChild->getBlock()))
566 AllSuccs.push_back(DTChild->getBlock());
567
568 // Sort Successors according to their loop depth or block frequency info.
569 std::stable_sort(
570 AllSuccs.begin(), AllSuccs.end(),
571 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
572 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
573 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
574 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
575 return HasBlockFreq ? LHSFreq < RHSFreq
576 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
577 });
578
579 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
580
581 return it.first->second;
582 }
583
584 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
FindSuccToSinkTo(MachineInstr * MI,MachineBasicBlock * MBB,bool & BreakPHIEdge,AllSuccsCache & AllSuccessors)585 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
586 MachineBasicBlock *MBB,
587 bool &BreakPHIEdge,
588 AllSuccsCache &AllSuccessors) {
589
590 assert (MI && "Invalid MachineInstr!");
591 assert (MBB && "Invalid MachineBasicBlock!");
592
593 // Loop over all the operands of the specified instruction. If there is
594 // anything we can't handle, bail out.
595
596 // SuccToSinkTo - This is the successor to sink this instruction to, once we
597 // decide.
598 MachineBasicBlock *SuccToSinkTo = nullptr;
599 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
600 const MachineOperand &MO = MI->getOperand(i);
601 if (!MO.isReg()) continue; // Ignore non-register operands.
602
603 unsigned Reg = MO.getReg();
604 if (Reg == 0) continue;
605
606 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
607 if (MO.isUse()) {
608 // If the physreg has no defs anywhere, it's just an ambient register
609 // and we can freely move its uses. Alternatively, if it's allocatable,
610 // it could get allocated to something with a def during allocation.
611 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
612 return nullptr;
613 } else if (!MO.isDead()) {
614 // A def that isn't dead. We can't move it.
615 return nullptr;
616 }
617 } else {
618 // Virtual register uses are always safe to sink.
619 if (MO.isUse()) continue;
620
621 // If it's not safe to move defs of the register class, then abort.
622 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
623 return nullptr;
624
625 // Virtual register defs can only be sunk if all their uses are in blocks
626 // dominated by one of the successors.
627 if (SuccToSinkTo) {
628 // If a previous operand picked a block to sink to, then this operand
629 // must be sinkable to the same block.
630 bool LocalUse = false;
631 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
632 BreakPHIEdge, LocalUse))
633 return nullptr;
634
635 continue;
636 }
637
638 // Otherwise, we should look at all the successors and decide which one
639 // we should sink to. If we have reliable block frequency information
640 // (frequency != 0) available, give successors with smaller frequencies
641 // higher priority, otherwise prioritize smaller loop depths.
642 for (MachineBasicBlock *SuccBlock :
643 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
644 bool LocalUse = false;
645 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
646 BreakPHIEdge, LocalUse)) {
647 SuccToSinkTo = SuccBlock;
648 break;
649 }
650 if (LocalUse)
651 // Def is used locally, it's never safe to move this def.
652 return nullptr;
653 }
654
655 // If we couldn't find a block to sink to, ignore this instruction.
656 if (!SuccToSinkTo)
657 return nullptr;
658 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
659 return nullptr;
660 }
661 }
662
663 // It is not possible to sink an instruction into its own block. This can
664 // happen with loops.
665 if (MBB == SuccToSinkTo)
666 return nullptr;
667
668 // It's not safe to sink instructions to EH landing pad. Control flow into
669 // landing pad is implicitly defined.
670 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
671 return nullptr;
672
673 return SuccToSinkTo;
674 }
675
676 /// SinkInstruction - Determine whether it is safe to sink the specified machine
677 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr * MI,bool & SawStore,AllSuccsCache & AllSuccessors)678 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore,
679 AllSuccsCache &AllSuccessors) {
680 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
681 // be close to the source to make it easier to coalesce.
682 if (AvoidsSinking(MI, MRI))
683 return false;
684
685 // Check if it's safe to move the instruction.
686 if (!MI->isSafeToMove(AA, SawStore))
687 return false;
688
689 // Convergent operations may not be made control-dependent on additional
690 // values.
691 if (MI->isConvergent())
692 return false;
693
694 // FIXME: This should include support for sinking instructions within the
695 // block they are currently in to shorten the live ranges. We often get
696 // instructions sunk into the top of a large block, but it would be better to
697 // also sink them down before their first use in the block. This xform has to
698 // be careful not to *increase* register pressure though, e.g. sinking
699 // "x = y + z" down if it kills y and z would increase the live ranges of y
700 // and z and only shrink the live range of x.
701
702 bool BreakPHIEdge = false;
703 MachineBasicBlock *ParentBlock = MI->getParent();
704 MachineBasicBlock *SuccToSinkTo =
705 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
706
707 // If there are no outputs, it must have side-effects.
708 if (!SuccToSinkTo)
709 return false;
710
711
712 // If the instruction to move defines a dead physical register which is live
713 // when leaving the basic block, don't move it because it could turn into a
714 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
715 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
716 const MachineOperand &MO = MI->getOperand(I);
717 if (!MO.isReg()) continue;
718 unsigned Reg = MO.getReg();
719 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720 if (SuccToSinkTo->isLiveIn(Reg))
721 return false;
722 }
723
724 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
725
726 // If the block has multiple predecessors, this is a critical edge.
727 // Decide if we can sink along it or need to break the edge.
728 if (SuccToSinkTo->pred_size() > 1) {
729 // We cannot sink a load across a critical edge - there may be stores in
730 // other code paths.
731 bool TryBreak = false;
732 bool store = true;
733 if (!MI->isSafeToMove(AA, store)) {
734 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
735 TryBreak = true;
736 }
737
738 // We don't want to sink across a critical edge if we don't dominate the
739 // successor. We could be introducing calculations to new code paths.
740 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
741 DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
742 TryBreak = true;
743 }
744
745 // Don't sink instructions into a loop.
746 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
747 DEBUG(dbgs() << " *** NOTE: Loop header found\n");
748 TryBreak = true;
749 }
750
751 // Otherwise we are OK with sinking along a critical edge.
752 if (!TryBreak)
753 DEBUG(dbgs() << "Sinking along critical edge.\n");
754 else {
755 // Mark this edge as to be split.
756 // If the edge can actually be split, the next iteration of the main loop
757 // will sink MI in the newly created block.
758 bool Status =
759 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
760 if (!Status)
761 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
762 "break critical edge\n");
763 // The instruction will not be sunk this time.
764 return false;
765 }
766 }
767
768 if (BreakPHIEdge) {
769 // BreakPHIEdge is true if all the uses are in the successor MBB being
770 // sunken into and they are all PHI nodes. In this case, machine-sink must
771 // break the critical edge first.
772 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
773 SuccToSinkTo, BreakPHIEdge);
774 if (!Status)
775 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
776 "break critical edge\n");
777 // The instruction will not be sunk this time.
778 return false;
779 }
780
781 // Determine where to insert into. Skip phi nodes.
782 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
783 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
784 ++InsertPos;
785
786 // collect matching debug values.
787 SmallVector<MachineInstr *, 2> DbgValuesToSink;
788 collectDebugValues(MI, DbgValuesToSink);
789
790 // Move the instruction.
791 SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
792 ++MachineBasicBlock::iterator(MI));
793
794 // Move debug values.
795 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
796 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
797 MachineInstr *DbgMI = *DBI;
798 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI,
799 ++MachineBasicBlock::iterator(DbgMI));
800 }
801
802 // Conservatively, clear any kill flags, since it's possible that they are no
803 // longer correct.
804 // Note that we have to clear the kill flags for any register this instruction
805 // uses as we may sink over another instruction which currently kills the
806 // used registers.
807 for (MachineOperand &MO : MI->operands()) {
808 if (MO.isReg() && MO.isUse())
809 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
810 }
811
812 return true;
813 }
814