• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the VirtRegMap class.
11 //
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
15 // code as necessary.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/LiveStackAnalysis.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "regalloc"
44 
45 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
46 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
47 
48 //===----------------------------------------------------------------------===//
49 //  VirtRegMap implementation
50 //===----------------------------------------------------------------------===//
51 
52 char VirtRegMap::ID = 0;
53 
54 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
55 
runOnMachineFunction(MachineFunction & mf)56 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
57   MRI = &mf.getRegInfo();
58   TII = mf.getSubtarget().getInstrInfo();
59   TRI = mf.getSubtarget().getRegisterInfo();
60   MF = &mf;
61 
62   Virt2PhysMap.clear();
63   Virt2StackSlotMap.clear();
64   Virt2SplitMap.clear();
65 
66   grow();
67   return false;
68 }
69 
grow()70 void VirtRegMap::grow() {
71   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
72   Virt2PhysMap.resize(NumRegs);
73   Virt2StackSlotMap.resize(NumRegs);
74   Virt2SplitMap.resize(NumRegs);
75 }
76 
createSpillSlot(const TargetRegisterClass * RC)77 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
78   int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
79                                                       RC->getAlignment());
80   ++NumSpillSlots;
81   return SS;
82 }
83 
hasPreferredPhys(unsigned VirtReg)84 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
85   unsigned Hint = MRI->getSimpleHint(VirtReg);
86   if (!Hint)
87     return 0;
88   if (TargetRegisterInfo::isVirtualRegister(Hint))
89     Hint = getPhys(Hint);
90   return getPhys(VirtReg) == Hint;
91 }
92 
hasKnownPreference(unsigned VirtReg)93 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
94   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
95   if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
96     return true;
97   if (TargetRegisterInfo::isVirtualRegister(Hint.second))
98     return hasPhys(Hint.second);
99   return false;
100 }
101 
assignVirt2StackSlot(unsigned virtReg)102 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
103   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
104   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
105          "attempt to assign stack slot to already spilled register");
106   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
107   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
108 }
109 
assignVirt2StackSlot(unsigned virtReg,int SS)110 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113          "attempt to assign stack slot to already spilled register");
114   assert((SS >= 0 ||
115           (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
116          "illegal fixed frame index");
117   Virt2StackSlotMap[virtReg] = SS;
118 }
119 
print(raw_ostream & OS,const Module *) const120 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
121   OS << "********** REGISTER MAP **********\n";
122   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
123     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
124     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
125       OS << '[' << PrintReg(Reg, TRI) << " -> "
126          << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
127          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
128     }
129   }
130 
131   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
132     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
133     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
134       OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
135          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
136     }
137   }
138   OS << '\n';
139 }
140 
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const142 void VirtRegMap::dump() const {
143   print(dbgs());
144 }
145 #endif
146 
147 //===----------------------------------------------------------------------===//
148 //                              VirtRegRewriter
149 //===----------------------------------------------------------------------===//
150 //
151 // The VirtRegRewriter is the last of the register allocator passes.
152 // It rewrites virtual registers to physical registers as specified in the
153 // VirtRegMap analysis. It also updates live-in information on basic blocks
154 // according to LiveIntervals.
155 //
156 namespace {
157 class VirtRegRewriter : public MachineFunctionPass {
158   MachineFunction *MF;
159   const TargetMachine *TM;
160   const TargetRegisterInfo *TRI;
161   const TargetInstrInfo *TII;
162   MachineRegisterInfo *MRI;
163   SlotIndexes *Indexes;
164   LiveIntervals *LIS;
165   VirtRegMap *VRM;
166 
167   void rewrite();
168   void addMBBLiveIns();
169   bool readsUndefSubreg(const MachineOperand &MO) const;
170   void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
171 
172 public:
173   static char ID;
VirtRegRewriter()174   VirtRegRewriter() : MachineFunctionPass(ID) {}
175 
176   void getAnalysisUsage(AnalysisUsage &AU) const override;
177 
178   bool runOnMachineFunction(MachineFunction&) override;
179 };
180 } // end anonymous namespace
181 
182 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
183 
184 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
185                       "Virtual Register Rewriter", false, false)
186 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
187 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
188 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
189 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
190 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
191 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
192                     "Virtual Register Rewriter", false, false)
193 
194 char VirtRegRewriter::ID = 0;
195 
getAnalysisUsage(AnalysisUsage & AU) const196 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
197   AU.setPreservesCFG();
198   AU.addRequired<LiveIntervals>();
199   AU.addRequired<SlotIndexes>();
200   AU.addPreserved<SlotIndexes>();
201   AU.addRequired<LiveDebugVariables>();
202   AU.addRequired<LiveStacks>();
203   AU.addPreserved<LiveStacks>();
204   AU.addRequired<VirtRegMap>();
205   MachineFunctionPass::getAnalysisUsage(AU);
206 }
207 
runOnMachineFunction(MachineFunction & fn)208 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
209   MF = &fn;
210   TM = &MF->getTarget();
211   TRI = MF->getSubtarget().getRegisterInfo();
212   TII = MF->getSubtarget().getInstrInfo();
213   MRI = &MF->getRegInfo();
214   Indexes = &getAnalysis<SlotIndexes>();
215   LIS = &getAnalysis<LiveIntervals>();
216   VRM = &getAnalysis<VirtRegMap>();
217   DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
218                << "********** Function: "
219                << MF->getName() << '\n');
220   DEBUG(VRM->dump());
221 
222   // Add kill flags while we still have virtual registers.
223   LIS->addKillFlags(VRM);
224 
225   // Live-in lists on basic blocks are required for physregs.
226   addMBBLiveIns();
227 
228   // Rewrite virtual registers.
229   rewrite();
230 
231   // Write out new DBG_VALUE instructions.
232   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
233 
234   // All machine operands and other references to virtual registers have been
235   // replaced. Remove the virtual registers and release all the transient data.
236   VRM->clearAllVirt();
237   MRI->clearVirtRegs();
238   return true;
239 }
240 
addLiveInsForSubRanges(const LiveInterval & LI,unsigned PhysReg) const241 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
242                                              unsigned PhysReg) const {
243   assert(!LI.empty());
244   assert(LI.hasSubRanges());
245 
246   typedef std::pair<const LiveInterval::SubRange *,
247                     LiveInterval::const_iterator> SubRangeIteratorPair;
248   SmallVector<SubRangeIteratorPair, 4> SubRanges;
249   SlotIndex First;
250   SlotIndex Last;
251   for (const LiveInterval::SubRange &SR : LI.subranges()) {
252     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
253     if (!First.isValid() || SR.segments.front().start < First)
254       First = SR.segments.front().start;
255     if (!Last.isValid() || SR.segments.back().end > Last)
256       Last = SR.segments.back().end;
257   }
258 
259   // Check all mbb start positions between First and Last while
260   // simulatenously advancing an iterator for each subrange.
261   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
262        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
263     SlotIndex MBBBegin = MBBI->first;
264     // Advance all subrange iterators so that their end position is just
265     // behind MBBBegin (or the iterator is at the end).
266     LaneBitmask LaneMask = 0;
267     for (auto &RangeIterPair : SubRanges) {
268       const LiveInterval::SubRange *SR = RangeIterPair.first;
269       LiveInterval::const_iterator &SRI = RangeIterPair.second;
270       while (SRI != SR->end() && SRI->end <= MBBBegin)
271         ++SRI;
272       if (SRI == SR->end())
273         continue;
274       if (SRI->start <= MBBBegin)
275         LaneMask |= SR->LaneMask;
276     }
277     if (LaneMask == 0)
278       continue;
279     MachineBasicBlock *MBB = MBBI->second;
280     MBB->addLiveIn(PhysReg, LaneMask);
281   }
282 }
283 
284 // Compute MBB live-in lists from virtual register live ranges and their
285 // assignments.
addMBBLiveIns()286 void VirtRegRewriter::addMBBLiveIns() {
287   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
288     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
289     if (MRI->reg_nodbg_empty(VirtReg))
290       continue;
291     LiveInterval &LI = LIS->getInterval(VirtReg);
292     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
293       continue;
294     // This is a virtual register that is live across basic blocks. Its
295     // assigned PhysReg must be marked as live-in to those blocks.
296     unsigned PhysReg = VRM->getPhys(VirtReg);
297     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
298 
299     if (LI.hasSubRanges()) {
300       addLiveInsForSubRanges(LI, PhysReg);
301     } else {
302       // Go over MBB begin positions and see if we have segments covering them.
303       // The following works because segments and the MBBIndex list are both
304       // sorted by slot indexes.
305       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
306       for (const auto &Seg : LI) {
307         I = Indexes->advanceMBBIndex(I, Seg.start);
308         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
309           MachineBasicBlock *MBB = I->second;
310           MBB->addLiveIn(PhysReg);
311         }
312       }
313     }
314   }
315 
316   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
317   // each MBB's LiveIns set before calling addLiveIn on them.
318   for (MachineBasicBlock &MBB : *MF)
319     MBB.sortUniqueLiveIns();
320 }
321 
322 /// Returns true if the given machine operand \p MO only reads undefined lanes.
323 /// The function only works for use operands with a subregister set.
readsUndefSubreg(const MachineOperand & MO) const324 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
325   // Shortcut if the operand is already marked undef.
326   if (MO.isUndef())
327     return true;
328 
329   unsigned Reg = MO.getReg();
330   const LiveInterval &LI = LIS->getInterval(Reg);
331   const MachineInstr &MI = *MO.getParent();
332   SlotIndex BaseIndex = LIS->getInstructionIndex(&MI);
333   // This code is only meant to handle reading undefined subregisters which
334   // we couldn't properly detect before.
335   assert(LI.liveAt(BaseIndex) &&
336          "Reads of completely dead register should be marked undef already");
337   unsigned SubRegIdx = MO.getSubReg();
338   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
339   // See if any of the relevant subregister liveranges is defined at this point.
340   for (const LiveInterval::SubRange &SR : LI.subranges()) {
341     if ((SR.LaneMask & UseMask) != 0 && SR.liveAt(BaseIndex))
342       return false;
343   }
344   return true;
345 }
346 
rewrite()347 void VirtRegRewriter::rewrite() {
348   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
349   SmallVector<unsigned, 8> SuperDeads;
350   SmallVector<unsigned, 8> SuperDefs;
351   SmallVector<unsigned, 8> SuperKills;
352 
353   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
354        MBBI != MBBE; ++MBBI) {
355     DEBUG(MBBI->print(dbgs(), Indexes));
356     for (MachineBasicBlock::instr_iterator
357            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
358       MachineInstr *MI = &*MII;
359       ++MII;
360 
361       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
362            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
363         MachineOperand &MO = *MOI;
364 
365         // Make sure MRI knows about registers clobbered by regmasks.
366         if (MO.isRegMask())
367           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
368 
369         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
370           continue;
371         unsigned VirtReg = MO.getReg();
372         unsigned PhysReg = VRM->getPhys(VirtReg);
373         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
374                "Instruction uses unmapped VirtReg");
375         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
376 
377         // Preserve semantics of sub-register operands.
378         unsigned SubReg = MO.getSubReg();
379         if (SubReg != 0) {
380           if (NoSubRegLiveness) {
381             // A virtual register kill refers to the whole register, so we may
382             // have to add <imp-use,kill> operands for the super-register.  A
383             // partial redef always kills and redefines the super-register.
384             if (MO.readsReg() && (MO.isDef() || MO.isKill()))
385               SuperKills.push_back(PhysReg);
386 
387             if (MO.isDef()) {
388               // Also add implicit defs for the super-register.
389               if (MO.isDead())
390                 SuperDeads.push_back(PhysReg);
391               else
392                 SuperDefs.push_back(PhysReg);
393             }
394           } else {
395             if (MO.isUse()) {
396               if (readsUndefSubreg(MO))
397                 // We need to add an <undef> flag if the subregister is
398                 // completely undefined (and we are not adding super-register
399                 // defs).
400                 MO.setIsUndef(true);
401             } else if (!MO.isDead()) {
402               assert(MO.isDef());
403             }
404           }
405 
406           // The <def,undef> flag only makes sense for sub-register defs, and
407           // we are substituting a full physreg.  An <imp-use,kill> operand
408           // from the SuperKills list will represent the partial read of the
409           // super-register.
410           if (MO.isDef())
411             MO.setIsUndef(false);
412 
413           // PhysReg operands cannot have subregister indexes.
414           PhysReg = TRI->getSubReg(PhysReg, SubReg);
415           assert(PhysReg && "Invalid SubReg for physical register");
416           MO.setSubReg(0);
417         }
418         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
419         // we need the inlining here.
420         MO.setReg(PhysReg);
421       }
422 
423       // Add any missing super-register kills after rewriting the whole
424       // instruction.
425       while (!SuperKills.empty())
426         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
427 
428       while (!SuperDeads.empty())
429         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
430 
431       while (!SuperDefs.empty())
432         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
433 
434       DEBUG(dbgs() << "> " << *MI);
435 
436       // Finally, remove any identity copies.
437       if (MI->isIdentityCopy()) {
438         ++NumIdCopies;
439         DEBUG(dbgs() << "Deleting identity copy.\n");
440         if (Indexes)
441           Indexes->removeMachineInstrFromMaps(MI);
442         // It's safe to erase MI because MII has already been incremented.
443         MI->eraseFromParent();
444       }
445     }
446   }
447 }
448 
449