• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the AArch64-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // AArch64GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AArch64.h"
17 #include "AArch64CallingConvention.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCSymbol.h"
40 #include "llvm/Support/CommandLine.h"
41 using namespace llvm;
42 
43 namespace {
44 
45 class AArch64FastISel final : public FastISel {
46   class Address {
47   public:
48     typedef enum {
49       RegBase,
50       FrameIndexBase
51     } BaseKind;
52 
53   private:
54     BaseKind Kind;
55     AArch64_AM::ShiftExtendType ExtType;
56     union {
57       unsigned Reg;
58       int FI;
59     } Base;
60     unsigned OffsetReg;
61     unsigned Shift;
62     int64_t Offset;
63     const GlobalValue *GV;
64 
65   public:
Address()66     Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
67       OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
setKind(BaseKind K)68     void setKind(BaseKind K) { Kind = K; }
getKind() const69     BaseKind getKind() const { return Kind; }
setExtendType(AArch64_AM::ShiftExtendType E)70     void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
getExtendType() const71     AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
isRegBase() const72     bool isRegBase() const { return Kind == RegBase; }
isFIBase() const73     bool isFIBase() const { return Kind == FrameIndexBase; }
setReg(unsigned Reg)74     void setReg(unsigned Reg) {
75       assert(isRegBase() && "Invalid base register access!");
76       Base.Reg = Reg;
77     }
getReg() const78     unsigned getReg() const {
79       assert(isRegBase() && "Invalid base register access!");
80       return Base.Reg;
81     }
setOffsetReg(unsigned Reg)82     void setOffsetReg(unsigned Reg) {
83       OffsetReg = Reg;
84     }
getOffsetReg() const85     unsigned getOffsetReg() const {
86       return OffsetReg;
87     }
setFI(unsigned FI)88     void setFI(unsigned FI) {
89       assert(isFIBase() && "Invalid base frame index  access!");
90       Base.FI = FI;
91     }
getFI() const92     unsigned getFI() const {
93       assert(isFIBase() && "Invalid base frame index access!");
94       return Base.FI;
95     }
setOffset(int64_t O)96     void setOffset(int64_t O) { Offset = O; }
getOffset()97     int64_t getOffset() { return Offset; }
setShift(unsigned S)98     void setShift(unsigned S) { Shift = S; }
getShift()99     unsigned getShift() { return Shift; }
100 
setGlobalValue(const GlobalValue * G)101     void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()102     const GlobalValue *getGlobalValue() { return GV; }
103   };
104 
105   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
106   /// make the right decision when generating code for different targets.
107   const AArch64Subtarget *Subtarget;
108   LLVMContext *Context;
109 
110   bool fastLowerArguments() override;
111   bool fastLowerCall(CallLoweringInfo &CLI) override;
112   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
113 
114 private:
115   // Selection routines.
116   bool selectAddSub(const Instruction *I);
117   bool selectLogicalOp(const Instruction *I);
118   bool selectLoad(const Instruction *I);
119   bool selectStore(const Instruction *I);
120   bool selectBranch(const Instruction *I);
121   bool selectIndirectBr(const Instruction *I);
122   bool selectCmp(const Instruction *I);
123   bool selectSelect(const Instruction *I);
124   bool selectFPExt(const Instruction *I);
125   bool selectFPTrunc(const Instruction *I);
126   bool selectFPToInt(const Instruction *I, bool Signed);
127   bool selectIntToFP(const Instruction *I, bool Signed);
128   bool selectRem(const Instruction *I, unsigned ISDOpcode);
129   bool selectRet(const Instruction *I);
130   bool selectTrunc(const Instruction *I);
131   bool selectIntExt(const Instruction *I);
132   bool selectMul(const Instruction *I);
133   bool selectShift(const Instruction *I);
134   bool selectBitCast(const Instruction *I);
135   bool selectFRem(const Instruction *I);
136   bool selectSDiv(const Instruction *I);
137   bool selectGetElementPtr(const Instruction *I);
138 
139   // Utility helper routines.
140   bool isTypeLegal(Type *Ty, MVT &VT);
141   bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
142   bool isValueAvailable(const Value *V) const;
143   bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
144   bool computeCallAddress(const Value *V, Address &Addr);
145   bool simplifyAddress(Address &Addr, MVT VT);
146   void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
147                             unsigned Flags, unsigned ScaleFactor,
148                             MachineMemOperand *MMO);
149   bool isMemCpySmall(uint64_t Len, unsigned Alignment);
150   bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
151                           unsigned Alignment);
152   bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
153                          const Value *Cond);
154   bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
155   bool optimizeSelect(const SelectInst *SI);
156   std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
157 
158   // Emit helper routines.
159   unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
160                       const Value *RHS, bool SetFlags = false,
161                       bool WantResult = true,  bool IsZExt = false);
162   unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
163                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
164                          bool SetFlags = false, bool WantResult = true);
165   unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
166                          bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
167                          bool WantResult = true);
168   unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
169                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
170                          AArch64_AM::ShiftExtendType ShiftType,
171                          uint64_t ShiftImm, bool SetFlags = false,
172                          bool WantResult = true);
173   unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
174                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
175                           AArch64_AM::ShiftExtendType ExtType,
176                           uint64_t ShiftImm, bool SetFlags = false,
177                          bool WantResult = true);
178 
179   // Emit functions.
180   bool emitCompareAndBranch(const BranchInst *BI);
181   bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
182   bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
183   bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
184   bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
185   unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
186                     MachineMemOperand *MMO = nullptr);
187   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
188                  MachineMemOperand *MMO = nullptr);
189   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
190   unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
191   unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
192                    bool SetFlags = false, bool WantResult = true,
193                    bool IsZExt = false);
194   unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
195   unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
196                    bool SetFlags = false, bool WantResult = true,
197                    bool IsZExt = false);
198   unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
199                        unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
200   unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
201                        unsigned RHSReg, bool RHSIsKill,
202                        AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
203                        bool WantResult = true);
204   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
205                          const Value *RHS);
206   unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
207                             bool LHSIsKill, uint64_t Imm);
208   unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
209                             bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
210                             uint64_t ShiftImm);
211   unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
212   unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
213                       unsigned Op1, bool Op1IsKill);
214   unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
215                         unsigned Op1, bool Op1IsKill);
216   unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
217                         unsigned Op1, bool Op1IsKill);
218   unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
219                       unsigned Op1Reg, bool Op1IsKill);
220   unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
221                       uint64_t Imm, bool IsZExt = true);
222   unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
223                       unsigned Op1Reg, bool Op1IsKill);
224   unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
225                       uint64_t Imm, bool IsZExt = true);
226   unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
227                       unsigned Op1Reg, bool Op1IsKill);
228   unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
229                       uint64_t Imm, bool IsZExt = false);
230 
231   unsigned materializeInt(const ConstantInt *CI, MVT VT);
232   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
233   unsigned materializeGV(const GlobalValue *GV);
234 
235   // Call handling routines.
236 private:
237   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
238   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
239                        unsigned &NumBytes);
240   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
241 
242 public:
243   // Backend specific FastISel code.
244   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
245   unsigned fastMaterializeConstant(const Constant *C) override;
246   unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
247 
AArch64FastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)248   explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
249                            const TargetLibraryInfo *LibInfo)
250       : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
251     Subtarget =
252         &static_cast<const AArch64Subtarget &>(FuncInfo.MF->getSubtarget());
253     Context = &FuncInfo.Fn->getContext();
254   }
255 
256   bool fastSelectInstruction(const Instruction *I) override;
257 
258 #include "AArch64GenFastISel.inc"
259 };
260 
261 } // end anonymous namespace
262 
263 #include "AArch64GenCallingConv.inc"
264 
265 /// \brief Check if the sign-/zero-extend will be a noop.
isIntExtFree(const Instruction * I)266 static bool isIntExtFree(const Instruction *I) {
267   assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
268          "Unexpected integer extend instruction.");
269   assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
270          "Unexpected value type.");
271   bool IsZExt = isa<ZExtInst>(I);
272 
273   if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
274     if (LI->hasOneUse())
275       return true;
276 
277   if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
278     if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
279       return true;
280 
281   return false;
282 }
283 
284 /// \brief Determine the implicit scale factor that is applied by a memory
285 /// operation for a given value type.
getImplicitScaleFactor(MVT VT)286 static unsigned getImplicitScaleFactor(MVT VT) {
287   switch (VT.SimpleTy) {
288   default:
289     return 0;    // invalid
290   case MVT::i1:  // fall-through
291   case MVT::i8:
292     return 1;
293   case MVT::i16:
294     return 2;
295   case MVT::i32: // fall-through
296   case MVT::f32:
297     return 4;
298   case MVT::i64: // fall-through
299   case MVT::f64:
300     return 8;
301   }
302 }
303 
CCAssignFnForCall(CallingConv::ID CC) const304 CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
305   if (CC == CallingConv::WebKit_JS)
306     return CC_AArch64_WebKit_JS;
307   if (CC == CallingConv::GHC)
308     return CC_AArch64_GHC;
309   return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
310 }
311 
fastMaterializeAlloca(const AllocaInst * AI)312 unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
313   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i64 &&
314          "Alloca should always return a pointer.");
315 
316   // Don't handle dynamic allocas.
317   if (!FuncInfo.StaticAllocaMap.count(AI))
318     return 0;
319 
320   DenseMap<const AllocaInst *, int>::iterator SI =
321       FuncInfo.StaticAllocaMap.find(AI);
322 
323   if (SI != FuncInfo.StaticAllocaMap.end()) {
324     unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
325     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
326             ResultReg)
327         .addFrameIndex(SI->second)
328         .addImm(0)
329         .addImm(0);
330     return ResultReg;
331   }
332 
333   return 0;
334 }
335 
materializeInt(const ConstantInt * CI,MVT VT)336 unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
337   if (VT > MVT::i64)
338     return 0;
339 
340   if (!CI->isZero())
341     return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
342 
343   // Create a copy from the zero register to materialize a "0" value.
344   const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
345                                                    : &AArch64::GPR32RegClass;
346   unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
347   unsigned ResultReg = createResultReg(RC);
348   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
349           ResultReg).addReg(ZeroReg, getKillRegState(true));
350   return ResultReg;
351 }
352 
materializeFP(const ConstantFP * CFP,MVT VT)353 unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
354   // Positive zero (+0.0) has to be materialized with a fmov from the zero
355   // register, because the immediate version of fmov cannot encode zero.
356   if (CFP->isNullValue())
357     return fastMaterializeFloatZero(CFP);
358 
359   if (VT != MVT::f32 && VT != MVT::f64)
360     return 0;
361 
362   const APFloat Val = CFP->getValueAPF();
363   bool Is64Bit = (VT == MVT::f64);
364   // This checks to see if we can use FMOV instructions to materialize
365   // a constant, otherwise we have to materialize via the constant pool.
366   if (TLI.isFPImmLegal(Val, VT)) {
367     int Imm =
368         Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
369     assert((Imm != -1) && "Cannot encode floating-point constant.");
370     unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
371     return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
372   }
373 
374   // For the MachO large code model materialize the FP constant in code.
375   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
376     unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
377     const TargetRegisterClass *RC = Is64Bit ?
378         &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
379 
380     unsigned TmpReg = createResultReg(RC);
381     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
382         .addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
383 
384     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
385     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
386             TII.get(TargetOpcode::COPY), ResultReg)
387         .addReg(TmpReg, getKillRegState(true));
388 
389     return ResultReg;
390   }
391 
392   // Materialize via constant pool.  MachineConstantPool wants an explicit
393   // alignment.
394   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
395   if (Align == 0)
396     Align = DL.getTypeAllocSize(CFP->getType());
397 
398   unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
399   unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
400   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
401           ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
402 
403   unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
404   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
405   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
406       .addReg(ADRPReg)
407       .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
408   return ResultReg;
409 }
410 
materializeGV(const GlobalValue * GV)411 unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
412   // We can't handle thread-local variables quickly yet.
413   if (GV->isThreadLocal())
414     return 0;
415 
416   // MachO still uses GOT for large code-model accesses, but ELF requires
417   // movz/movk sequences, which FastISel doesn't handle yet.
418   if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
419     return 0;
420 
421   unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
422 
423   EVT DestEVT = TLI.getValueType(DL, GV->getType(), true);
424   if (!DestEVT.isSimple())
425     return 0;
426 
427   unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
428   unsigned ResultReg;
429 
430   if (OpFlags & AArch64II::MO_GOT) {
431     // ADRP + LDRX
432     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
433             ADRPReg)
434       .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
435 
436     ResultReg = createResultReg(&AArch64::GPR64RegClass);
437     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
438             ResultReg)
439       .addReg(ADRPReg)
440       .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
441                         AArch64II::MO_NC);
442   } else if (OpFlags & AArch64II::MO_CONSTPOOL) {
443     // We can't handle addresses loaded from a constant pool quickly yet.
444     return 0;
445   } else {
446     // ADRP + ADDX
447     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
448             ADRPReg)
449       .addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
450 
451     ResultReg = createResultReg(&AArch64::GPR64spRegClass);
452     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
453             ResultReg)
454       .addReg(ADRPReg)
455       .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
456       .addImm(0);
457   }
458   return ResultReg;
459 }
460 
fastMaterializeConstant(const Constant * C)461 unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
462   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
463 
464   // Only handle simple types.
465   if (!CEVT.isSimple())
466     return 0;
467   MVT VT = CEVT.getSimpleVT();
468 
469   if (const auto *CI = dyn_cast<ConstantInt>(C))
470     return materializeInt(CI, VT);
471   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
472     return materializeFP(CFP, VT);
473   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
474     return materializeGV(GV);
475 
476   return 0;
477 }
478 
fastMaterializeFloatZero(const ConstantFP * CFP)479 unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
480   assert(CFP->isNullValue() &&
481          "Floating-point constant is not a positive zero.");
482   MVT VT;
483   if (!isTypeLegal(CFP->getType(), VT))
484     return 0;
485 
486   if (VT != MVT::f32 && VT != MVT::f64)
487     return 0;
488 
489   bool Is64Bit = (VT == MVT::f64);
490   unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
491   unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
492   return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
493 }
494 
495 /// \brief Check if the multiply is by a power-of-2 constant.
isMulPowOf2(const Value * I)496 static bool isMulPowOf2(const Value *I) {
497   if (const auto *MI = dyn_cast<MulOperator>(I)) {
498     if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
499       if (C->getValue().isPowerOf2())
500         return true;
501     if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
502       if (C->getValue().isPowerOf2())
503         return true;
504   }
505   return false;
506 }
507 
508 // Computes the address to get to an object.
computeAddress(const Value * Obj,Address & Addr,Type * Ty)509 bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
510 {
511   const User *U = nullptr;
512   unsigned Opcode = Instruction::UserOp1;
513   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
514     // Don't walk into other basic blocks unless the object is an alloca from
515     // another block, otherwise it may not have a virtual register assigned.
516     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
517         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
518       Opcode = I->getOpcode();
519       U = I;
520     }
521   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
522     Opcode = C->getOpcode();
523     U = C;
524   }
525 
526   if (auto *Ty = dyn_cast<PointerType>(Obj->getType()))
527     if (Ty->getAddressSpace() > 255)
528       // Fast instruction selection doesn't support the special
529       // address spaces.
530       return false;
531 
532   switch (Opcode) {
533   default:
534     break;
535   case Instruction::BitCast: {
536     // Look through bitcasts.
537     return computeAddress(U->getOperand(0), Addr, Ty);
538   }
539   case Instruction::IntToPtr: {
540     // Look past no-op inttoptrs.
541     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
542         TLI.getPointerTy(DL))
543       return computeAddress(U->getOperand(0), Addr, Ty);
544     break;
545   }
546   case Instruction::PtrToInt: {
547     // Look past no-op ptrtoints.
548     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
549       return computeAddress(U->getOperand(0), Addr, Ty);
550     break;
551   }
552   case Instruction::GetElementPtr: {
553     Address SavedAddr = Addr;
554     uint64_t TmpOffset = Addr.getOffset();
555 
556     // Iterate through the GEP folding the constants into offsets where
557     // we can.
558     gep_type_iterator GTI = gep_type_begin(U);
559     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
560          ++i, ++GTI) {
561       const Value *Op = *i;
562       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
563         const StructLayout *SL = DL.getStructLayout(STy);
564         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
565         TmpOffset += SL->getElementOffset(Idx);
566       } else {
567         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
568         for (;;) {
569           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
570             // Constant-offset addressing.
571             TmpOffset += CI->getSExtValue() * S;
572             break;
573           }
574           if (canFoldAddIntoGEP(U, Op)) {
575             // A compatible add with a constant operand. Fold the constant.
576             ConstantInt *CI =
577                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
578             TmpOffset += CI->getSExtValue() * S;
579             // Iterate on the other operand.
580             Op = cast<AddOperator>(Op)->getOperand(0);
581             continue;
582           }
583           // Unsupported
584           goto unsupported_gep;
585         }
586       }
587     }
588 
589     // Try to grab the base operand now.
590     Addr.setOffset(TmpOffset);
591     if (computeAddress(U->getOperand(0), Addr, Ty))
592       return true;
593 
594     // We failed, restore everything and try the other options.
595     Addr = SavedAddr;
596 
597   unsupported_gep:
598     break;
599   }
600   case Instruction::Alloca: {
601     const AllocaInst *AI = cast<AllocaInst>(Obj);
602     DenseMap<const AllocaInst *, int>::iterator SI =
603         FuncInfo.StaticAllocaMap.find(AI);
604     if (SI != FuncInfo.StaticAllocaMap.end()) {
605       Addr.setKind(Address::FrameIndexBase);
606       Addr.setFI(SI->second);
607       return true;
608     }
609     break;
610   }
611   case Instruction::Add: {
612     // Adds of constants are common and easy enough.
613     const Value *LHS = U->getOperand(0);
614     const Value *RHS = U->getOperand(1);
615 
616     if (isa<ConstantInt>(LHS))
617       std::swap(LHS, RHS);
618 
619     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
620       Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
621       return computeAddress(LHS, Addr, Ty);
622     }
623 
624     Address Backup = Addr;
625     if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
626       return true;
627     Addr = Backup;
628 
629     break;
630   }
631   case Instruction::Sub: {
632     // Subs of constants are common and easy enough.
633     const Value *LHS = U->getOperand(0);
634     const Value *RHS = U->getOperand(1);
635 
636     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
637       Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
638       return computeAddress(LHS, Addr, Ty);
639     }
640     break;
641   }
642   case Instruction::Shl: {
643     if (Addr.getOffsetReg())
644       break;
645 
646     const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
647     if (!CI)
648       break;
649 
650     unsigned Val = CI->getZExtValue();
651     if (Val < 1 || Val > 3)
652       break;
653 
654     uint64_t NumBytes = 0;
655     if (Ty && Ty->isSized()) {
656       uint64_t NumBits = DL.getTypeSizeInBits(Ty);
657       NumBytes = NumBits / 8;
658       if (!isPowerOf2_64(NumBits))
659         NumBytes = 0;
660     }
661 
662     if (NumBytes != (1ULL << Val))
663       break;
664 
665     Addr.setShift(Val);
666     Addr.setExtendType(AArch64_AM::LSL);
667 
668     const Value *Src = U->getOperand(0);
669     if (const auto *I = dyn_cast<Instruction>(Src)) {
670       if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
671         // Fold the zext or sext when it won't become a noop.
672         if (const auto *ZE = dyn_cast<ZExtInst>(I)) {
673           if (!isIntExtFree(ZE) &&
674               ZE->getOperand(0)->getType()->isIntegerTy(32)) {
675             Addr.setExtendType(AArch64_AM::UXTW);
676             Src = ZE->getOperand(0);
677           }
678         } else if (const auto *SE = dyn_cast<SExtInst>(I)) {
679           if (!isIntExtFree(SE) &&
680               SE->getOperand(0)->getType()->isIntegerTy(32)) {
681             Addr.setExtendType(AArch64_AM::SXTW);
682             Src = SE->getOperand(0);
683           }
684         }
685       }
686     }
687 
688     if (const auto *AI = dyn_cast<BinaryOperator>(Src))
689       if (AI->getOpcode() == Instruction::And) {
690         const Value *LHS = AI->getOperand(0);
691         const Value *RHS = AI->getOperand(1);
692 
693         if (const auto *C = dyn_cast<ConstantInt>(LHS))
694           if (C->getValue() == 0xffffffff)
695             std::swap(LHS, RHS);
696 
697         if (const auto *C = dyn_cast<ConstantInt>(RHS))
698           if (C->getValue() == 0xffffffff) {
699             Addr.setExtendType(AArch64_AM::UXTW);
700             unsigned Reg = getRegForValue(LHS);
701             if (!Reg)
702               return false;
703             bool RegIsKill = hasTrivialKill(LHS);
704             Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
705                                              AArch64::sub_32);
706             Addr.setOffsetReg(Reg);
707             return true;
708           }
709       }
710 
711     unsigned Reg = getRegForValue(Src);
712     if (!Reg)
713       return false;
714     Addr.setOffsetReg(Reg);
715     return true;
716   }
717   case Instruction::Mul: {
718     if (Addr.getOffsetReg())
719       break;
720 
721     if (!isMulPowOf2(U))
722       break;
723 
724     const Value *LHS = U->getOperand(0);
725     const Value *RHS = U->getOperand(1);
726 
727     // Canonicalize power-of-2 value to the RHS.
728     if (const auto *C = dyn_cast<ConstantInt>(LHS))
729       if (C->getValue().isPowerOf2())
730         std::swap(LHS, RHS);
731 
732     assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
733     const auto *C = cast<ConstantInt>(RHS);
734     unsigned Val = C->getValue().logBase2();
735     if (Val < 1 || Val > 3)
736       break;
737 
738     uint64_t NumBytes = 0;
739     if (Ty && Ty->isSized()) {
740       uint64_t NumBits = DL.getTypeSizeInBits(Ty);
741       NumBytes = NumBits / 8;
742       if (!isPowerOf2_64(NumBits))
743         NumBytes = 0;
744     }
745 
746     if (NumBytes != (1ULL << Val))
747       break;
748 
749     Addr.setShift(Val);
750     Addr.setExtendType(AArch64_AM::LSL);
751 
752     const Value *Src = LHS;
753     if (const auto *I = dyn_cast<Instruction>(Src)) {
754       if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
755         // Fold the zext or sext when it won't become a noop.
756         if (const auto *ZE = dyn_cast<ZExtInst>(I)) {
757           if (!isIntExtFree(ZE) &&
758               ZE->getOperand(0)->getType()->isIntegerTy(32)) {
759             Addr.setExtendType(AArch64_AM::UXTW);
760             Src = ZE->getOperand(0);
761           }
762         } else if (const auto *SE = dyn_cast<SExtInst>(I)) {
763           if (!isIntExtFree(SE) &&
764               SE->getOperand(0)->getType()->isIntegerTy(32)) {
765             Addr.setExtendType(AArch64_AM::SXTW);
766             Src = SE->getOperand(0);
767           }
768         }
769       }
770     }
771 
772     unsigned Reg = getRegForValue(Src);
773     if (!Reg)
774       return false;
775     Addr.setOffsetReg(Reg);
776     return true;
777   }
778   case Instruction::And: {
779     if (Addr.getOffsetReg())
780       break;
781 
782     if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
783       break;
784 
785     const Value *LHS = U->getOperand(0);
786     const Value *RHS = U->getOperand(1);
787 
788     if (const auto *C = dyn_cast<ConstantInt>(LHS))
789       if (C->getValue() == 0xffffffff)
790         std::swap(LHS, RHS);
791 
792     if (const auto *C = dyn_cast<ConstantInt>(RHS))
793       if (C->getValue() == 0xffffffff) {
794         Addr.setShift(0);
795         Addr.setExtendType(AArch64_AM::LSL);
796         Addr.setExtendType(AArch64_AM::UXTW);
797 
798         unsigned Reg = getRegForValue(LHS);
799         if (!Reg)
800           return false;
801         bool RegIsKill = hasTrivialKill(LHS);
802         Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
803                                          AArch64::sub_32);
804         Addr.setOffsetReg(Reg);
805         return true;
806       }
807     break;
808   }
809   case Instruction::SExt:
810   case Instruction::ZExt: {
811     if (!Addr.getReg() || Addr.getOffsetReg())
812       break;
813 
814     const Value *Src = nullptr;
815     // Fold the zext or sext when it won't become a noop.
816     if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
817       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
818         Addr.setExtendType(AArch64_AM::UXTW);
819         Src = ZE->getOperand(0);
820       }
821     } else if (const auto *SE = dyn_cast<SExtInst>(U)) {
822       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
823         Addr.setExtendType(AArch64_AM::SXTW);
824         Src = SE->getOperand(0);
825       }
826     }
827 
828     if (!Src)
829       break;
830 
831     Addr.setShift(0);
832     unsigned Reg = getRegForValue(Src);
833     if (!Reg)
834       return false;
835     Addr.setOffsetReg(Reg);
836     return true;
837   }
838   } // end switch
839 
840   if (Addr.isRegBase() && !Addr.getReg()) {
841     unsigned Reg = getRegForValue(Obj);
842     if (!Reg)
843       return false;
844     Addr.setReg(Reg);
845     return true;
846   }
847 
848   if (!Addr.getOffsetReg()) {
849     unsigned Reg = getRegForValue(Obj);
850     if (!Reg)
851       return false;
852     Addr.setOffsetReg(Reg);
853     return true;
854   }
855 
856   return false;
857 }
858 
computeCallAddress(const Value * V,Address & Addr)859 bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
860   const User *U = nullptr;
861   unsigned Opcode = Instruction::UserOp1;
862   bool InMBB = true;
863 
864   if (const auto *I = dyn_cast<Instruction>(V)) {
865     Opcode = I->getOpcode();
866     U = I;
867     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
868   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
869     Opcode = C->getOpcode();
870     U = C;
871   }
872 
873   switch (Opcode) {
874   default: break;
875   case Instruction::BitCast:
876     // Look past bitcasts if its operand is in the same BB.
877     if (InMBB)
878       return computeCallAddress(U->getOperand(0), Addr);
879     break;
880   case Instruction::IntToPtr:
881     // Look past no-op inttoptrs if its operand is in the same BB.
882     if (InMBB &&
883         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
884             TLI.getPointerTy(DL))
885       return computeCallAddress(U->getOperand(0), Addr);
886     break;
887   case Instruction::PtrToInt:
888     // Look past no-op ptrtoints if its operand is in the same BB.
889     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
890       return computeCallAddress(U->getOperand(0), Addr);
891     break;
892   }
893 
894   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
895     Addr.setGlobalValue(GV);
896     return true;
897   }
898 
899   // If all else fails, try to materialize the value in a register.
900   if (!Addr.getGlobalValue()) {
901     Addr.setReg(getRegForValue(V));
902     return Addr.getReg() != 0;
903   }
904 
905   return false;
906 }
907 
908 
isTypeLegal(Type * Ty,MVT & VT)909 bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
910   EVT evt = TLI.getValueType(DL, Ty, true);
911 
912   // Only handle simple types.
913   if (evt == MVT::Other || !evt.isSimple())
914     return false;
915   VT = evt.getSimpleVT();
916 
917   // This is a legal type, but it's not something we handle in fast-isel.
918   if (VT == MVT::f128)
919     return false;
920 
921   // Handle all other legal types, i.e. a register that will directly hold this
922   // value.
923   return TLI.isTypeLegal(VT);
924 }
925 
926 /// \brief Determine if the value type is supported by FastISel.
927 ///
928 /// FastISel for AArch64 can handle more value types than are legal. This adds
929 /// simple value type such as i1, i8, and i16.
isTypeSupported(Type * Ty,MVT & VT,bool IsVectorAllowed)930 bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
931   if (Ty->isVectorTy() && !IsVectorAllowed)
932     return false;
933 
934   if (isTypeLegal(Ty, VT))
935     return true;
936 
937   // If this is a type than can be sign or zero-extended to a basic operation
938   // go ahead and accept it now.
939   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
940     return true;
941 
942   return false;
943 }
944 
isValueAvailable(const Value * V) const945 bool AArch64FastISel::isValueAvailable(const Value *V) const {
946   if (!isa<Instruction>(V))
947     return true;
948 
949   const auto *I = cast<Instruction>(V);
950   if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
951     return true;
952 
953   return false;
954 }
955 
simplifyAddress(Address & Addr,MVT VT)956 bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
957   unsigned ScaleFactor = getImplicitScaleFactor(VT);
958   if (!ScaleFactor)
959     return false;
960 
961   bool ImmediateOffsetNeedsLowering = false;
962   bool RegisterOffsetNeedsLowering = false;
963   int64_t Offset = Addr.getOffset();
964   if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
965     ImmediateOffsetNeedsLowering = true;
966   else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
967            !isUInt<12>(Offset / ScaleFactor))
968     ImmediateOffsetNeedsLowering = true;
969 
970   // Cannot encode an offset register and an immediate offset in the same
971   // instruction. Fold the immediate offset into the load/store instruction and
972   // emit an additional add to take care of the offset register.
973   if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
974     RegisterOffsetNeedsLowering = true;
975 
976   // Cannot encode zero register as base.
977   if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
978     RegisterOffsetNeedsLowering = true;
979 
980   // If this is a stack pointer and the offset needs to be simplified then put
981   // the alloca address into a register, set the base type back to register and
982   // continue. This should almost never happen.
983   if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
984   {
985     unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
986     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
987             ResultReg)
988       .addFrameIndex(Addr.getFI())
989       .addImm(0)
990       .addImm(0);
991     Addr.setKind(Address::RegBase);
992     Addr.setReg(ResultReg);
993   }
994 
995   if (RegisterOffsetNeedsLowering) {
996     unsigned ResultReg = 0;
997     if (Addr.getReg()) {
998       if (Addr.getExtendType() == AArch64_AM::SXTW ||
999           Addr.getExtendType() == AArch64_AM::UXTW   )
1000         ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
1001                                   /*TODO:IsKill=*/false, Addr.getOffsetReg(),
1002                                   /*TODO:IsKill=*/false, Addr.getExtendType(),
1003                                   Addr.getShift());
1004       else
1005         ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
1006                                   /*TODO:IsKill=*/false, Addr.getOffsetReg(),
1007                                   /*TODO:IsKill=*/false, AArch64_AM::LSL,
1008                                   Addr.getShift());
1009     } else {
1010       if (Addr.getExtendType() == AArch64_AM::UXTW)
1011         ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
1012                                /*Op0IsKill=*/false, Addr.getShift(),
1013                                /*IsZExt=*/true);
1014       else if (Addr.getExtendType() == AArch64_AM::SXTW)
1015         ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
1016                                /*Op0IsKill=*/false, Addr.getShift(),
1017                                /*IsZExt=*/false);
1018       else
1019         ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
1020                                /*Op0IsKill=*/false, Addr.getShift());
1021     }
1022     if (!ResultReg)
1023       return false;
1024 
1025     Addr.setReg(ResultReg);
1026     Addr.setOffsetReg(0);
1027     Addr.setShift(0);
1028     Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
1029   }
1030 
1031   // Since the offset is too large for the load/store instruction get the
1032   // reg+offset into a register.
1033   if (ImmediateOffsetNeedsLowering) {
1034     unsigned ResultReg;
1035     if (Addr.getReg())
1036       // Try to fold the immediate into the add instruction.
1037       ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
1038     else
1039       ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
1040 
1041     if (!ResultReg)
1042       return false;
1043     Addr.setReg(ResultReg);
1044     Addr.setOffset(0);
1045   }
1046   return true;
1047 }
1048 
addLoadStoreOperands(Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags,unsigned ScaleFactor,MachineMemOperand * MMO)1049 void AArch64FastISel::addLoadStoreOperands(Address &Addr,
1050                                            const MachineInstrBuilder &MIB,
1051                                            unsigned Flags,
1052                                            unsigned ScaleFactor,
1053                                            MachineMemOperand *MMO) {
1054   int64_t Offset = Addr.getOffset() / ScaleFactor;
1055   // Frame base works a bit differently. Handle it separately.
1056   if (Addr.isFIBase()) {
1057     int FI = Addr.getFI();
1058     // FIXME: We shouldn't be using getObjectSize/getObjectAlignment.  The size
1059     // and alignment should be based on the VT.
1060     MMO = FuncInfo.MF->getMachineMemOperand(
1061         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
1062         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
1063     // Now add the rest of the operands.
1064     MIB.addFrameIndex(FI).addImm(Offset);
1065   } else {
1066     assert(Addr.isRegBase() && "Unexpected address kind.");
1067     const MCInstrDesc &II = MIB->getDesc();
1068     unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
1069     Addr.setReg(
1070       constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
1071     Addr.setOffsetReg(
1072       constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
1073     if (Addr.getOffsetReg()) {
1074       assert(Addr.getOffset() == 0 && "Unexpected offset");
1075       bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
1076                       Addr.getExtendType() == AArch64_AM::SXTX;
1077       MIB.addReg(Addr.getReg());
1078       MIB.addReg(Addr.getOffsetReg());
1079       MIB.addImm(IsSigned);
1080       MIB.addImm(Addr.getShift() != 0);
1081     } else
1082       MIB.addReg(Addr.getReg()).addImm(Offset);
1083   }
1084 
1085   if (MMO)
1086     MIB.addMemOperand(MMO);
1087 }
1088 
emitAddSub(bool UseAdd,MVT RetVT,const Value * LHS,const Value * RHS,bool SetFlags,bool WantResult,bool IsZExt)1089 unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
1090                                      const Value *RHS, bool SetFlags,
1091                                      bool WantResult,  bool IsZExt) {
1092   AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
1093   bool NeedExtend = false;
1094   switch (RetVT.SimpleTy) {
1095   default:
1096     return 0;
1097   case MVT::i1:
1098     NeedExtend = true;
1099     break;
1100   case MVT::i8:
1101     NeedExtend = true;
1102     ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
1103     break;
1104   case MVT::i16:
1105     NeedExtend = true;
1106     ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
1107     break;
1108   case MVT::i32:  // fall-through
1109   case MVT::i64:
1110     break;
1111   }
1112   MVT SrcVT = RetVT;
1113   RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
1114 
1115   // Canonicalize immediates to the RHS first.
1116   if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
1117     std::swap(LHS, RHS);
1118 
1119   // Canonicalize mul by power of 2 to the RHS.
1120   if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
1121     if (isMulPowOf2(LHS))
1122       std::swap(LHS, RHS);
1123 
1124   // Canonicalize shift immediate to the RHS.
1125   if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
1126     if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
1127       if (isa<ConstantInt>(SI->getOperand(1)))
1128         if (SI->getOpcode() == Instruction::Shl  ||
1129             SI->getOpcode() == Instruction::LShr ||
1130             SI->getOpcode() == Instruction::AShr   )
1131           std::swap(LHS, RHS);
1132 
1133   unsigned LHSReg = getRegForValue(LHS);
1134   if (!LHSReg)
1135     return 0;
1136   bool LHSIsKill = hasTrivialKill(LHS);
1137 
1138   if (NeedExtend)
1139     LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
1140 
1141   unsigned ResultReg = 0;
1142   if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
1143     uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
1144     if (C->isNegative())
1145       ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
1146                                 SetFlags, WantResult);
1147     else
1148       ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
1149                                 WantResult);
1150   } else if (const auto *C = dyn_cast<Constant>(RHS))
1151     if (C->isNullValue())
1152       ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
1153                                 WantResult);
1154 
1155   if (ResultReg)
1156     return ResultReg;
1157 
1158   // Only extend the RHS within the instruction if there is a valid extend type.
1159   if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
1160       isValueAvailable(RHS)) {
1161     if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
1162       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
1163         if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
1164           unsigned RHSReg = getRegForValue(SI->getOperand(0));
1165           if (!RHSReg)
1166             return 0;
1167           bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1168           return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1169                                RHSIsKill, ExtendType, C->getZExtValue(),
1170                                SetFlags, WantResult);
1171         }
1172     unsigned RHSReg = getRegForValue(RHS);
1173     if (!RHSReg)
1174       return 0;
1175     bool RHSIsKill = hasTrivialKill(RHS);
1176     return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1177                          ExtendType, 0, SetFlags, WantResult);
1178   }
1179 
1180   // Check if the mul can be folded into the instruction.
1181   if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1182     if (isMulPowOf2(RHS)) {
1183       const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
1184       const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
1185 
1186       if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
1187         if (C->getValue().isPowerOf2())
1188           std::swap(MulLHS, MulRHS);
1189 
1190       assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
1191       uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
1192       unsigned RHSReg = getRegForValue(MulLHS);
1193       if (!RHSReg)
1194         return 0;
1195       bool RHSIsKill = hasTrivialKill(MulLHS);
1196       ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1197                                 RHSIsKill, AArch64_AM::LSL, ShiftVal, SetFlags,
1198                                 WantResult);
1199       if (ResultReg)
1200         return ResultReg;
1201     }
1202   }
1203 
1204   // Check if the shift can be folded into the instruction.
1205   if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1206     if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
1207       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
1208         AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
1209         switch (SI->getOpcode()) {
1210         default: break;
1211         case Instruction::Shl:  ShiftType = AArch64_AM::LSL; break;
1212         case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
1213         case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
1214         }
1215         uint64_t ShiftVal = C->getZExtValue();
1216         if (ShiftType != AArch64_AM::InvalidShiftExtend) {
1217           unsigned RHSReg = getRegForValue(SI->getOperand(0));
1218           if (!RHSReg)
1219             return 0;
1220           bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1221           ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
1222                                     RHSIsKill, ShiftType, ShiftVal, SetFlags,
1223                                     WantResult);
1224           if (ResultReg)
1225             return ResultReg;
1226         }
1227       }
1228     }
1229   }
1230 
1231   unsigned RHSReg = getRegForValue(RHS);
1232   if (!RHSReg)
1233     return 0;
1234   bool RHSIsKill = hasTrivialKill(RHS);
1235 
1236   if (NeedExtend)
1237     RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
1238 
1239   return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1240                        SetFlags, WantResult);
1241 }
1242 
emitAddSub_rr(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,bool SetFlags,bool WantResult)1243 unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
1244                                         bool LHSIsKill, unsigned RHSReg,
1245                                         bool RHSIsKill, bool SetFlags,
1246                                         bool WantResult) {
1247   assert(LHSReg && RHSReg && "Invalid register number.");
1248 
1249   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1250     return 0;
1251 
1252   static const unsigned OpcTable[2][2][2] = {
1253     { { AArch64::SUBWrr,  AArch64::SUBXrr  },
1254       { AArch64::ADDWrr,  AArch64::ADDXrr  }  },
1255     { { AArch64::SUBSWrr, AArch64::SUBSXrr },
1256       { AArch64::ADDSWrr, AArch64::ADDSXrr }  }
1257   };
1258   bool Is64Bit = RetVT == MVT::i64;
1259   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1260   const TargetRegisterClass *RC =
1261       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1262   unsigned ResultReg;
1263   if (WantResult)
1264     ResultReg = createResultReg(RC);
1265   else
1266     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1267 
1268   const MCInstrDesc &II = TII.get(Opc);
1269   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1270   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1271   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1272       .addReg(LHSReg, getKillRegState(LHSIsKill))
1273       .addReg(RHSReg, getKillRegState(RHSIsKill));
1274   return ResultReg;
1275 }
1276 
emitAddSub_ri(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm,bool SetFlags,bool WantResult)1277 unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
1278                                         bool LHSIsKill, uint64_t Imm,
1279                                         bool SetFlags, bool WantResult) {
1280   assert(LHSReg && "Invalid register number.");
1281 
1282   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1283     return 0;
1284 
1285   unsigned ShiftImm;
1286   if (isUInt<12>(Imm))
1287     ShiftImm = 0;
1288   else if ((Imm & 0xfff000) == Imm) {
1289     ShiftImm = 12;
1290     Imm >>= 12;
1291   } else
1292     return 0;
1293 
1294   static const unsigned OpcTable[2][2][2] = {
1295     { { AArch64::SUBWri,  AArch64::SUBXri  },
1296       { AArch64::ADDWri,  AArch64::ADDXri  }  },
1297     { { AArch64::SUBSWri, AArch64::SUBSXri },
1298       { AArch64::ADDSWri, AArch64::ADDSXri }  }
1299   };
1300   bool Is64Bit = RetVT == MVT::i64;
1301   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1302   const TargetRegisterClass *RC;
1303   if (SetFlags)
1304     RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1305   else
1306     RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
1307   unsigned ResultReg;
1308   if (WantResult)
1309     ResultReg = createResultReg(RC);
1310   else
1311     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1312 
1313   const MCInstrDesc &II = TII.get(Opc);
1314   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1315   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1316       .addReg(LHSReg, getKillRegState(LHSIsKill))
1317       .addImm(Imm)
1318       .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
1319   return ResultReg;
1320 }
1321 
emitAddSub_rs(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,AArch64_AM::ShiftExtendType ShiftType,uint64_t ShiftImm,bool SetFlags,bool WantResult)1322 unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
1323                                         bool LHSIsKill, unsigned RHSReg,
1324                                         bool RHSIsKill,
1325                                         AArch64_AM::ShiftExtendType ShiftType,
1326                                         uint64_t ShiftImm, bool SetFlags,
1327                                         bool WantResult) {
1328   assert(LHSReg && RHSReg && "Invalid register number.");
1329 
1330   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1331     return 0;
1332 
1333   // Don't deal with undefined shifts.
1334   if (ShiftImm >= RetVT.getSizeInBits())
1335     return 0;
1336 
1337   static const unsigned OpcTable[2][2][2] = {
1338     { { AArch64::SUBWrs,  AArch64::SUBXrs  },
1339       { AArch64::ADDWrs,  AArch64::ADDXrs  }  },
1340     { { AArch64::SUBSWrs, AArch64::SUBSXrs },
1341       { AArch64::ADDSWrs, AArch64::ADDSXrs }  }
1342   };
1343   bool Is64Bit = RetVT == MVT::i64;
1344   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1345   const TargetRegisterClass *RC =
1346       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1347   unsigned ResultReg;
1348   if (WantResult)
1349     ResultReg = createResultReg(RC);
1350   else
1351     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1352 
1353   const MCInstrDesc &II = TII.get(Opc);
1354   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1355   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1356   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1357       .addReg(LHSReg, getKillRegState(LHSIsKill))
1358       .addReg(RHSReg, getKillRegState(RHSIsKill))
1359       .addImm(getShifterImm(ShiftType, ShiftImm));
1360   return ResultReg;
1361 }
1362 
emitAddSub_rx(bool UseAdd,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,AArch64_AM::ShiftExtendType ExtType,uint64_t ShiftImm,bool SetFlags,bool WantResult)1363 unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
1364                                         bool LHSIsKill, unsigned RHSReg,
1365                                         bool RHSIsKill,
1366                                         AArch64_AM::ShiftExtendType ExtType,
1367                                         uint64_t ShiftImm, bool SetFlags,
1368                                         bool WantResult) {
1369   assert(LHSReg && RHSReg && "Invalid register number.");
1370 
1371   if (RetVT != MVT::i32 && RetVT != MVT::i64)
1372     return 0;
1373 
1374   if (ShiftImm >= 4)
1375     return 0;
1376 
1377   static const unsigned OpcTable[2][2][2] = {
1378     { { AArch64::SUBWrx,  AArch64::SUBXrx  },
1379       { AArch64::ADDWrx,  AArch64::ADDXrx  }  },
1380     { { AArch64::SUBSWrx, AArch64::SUBSXrx },
1381       { AArch64::ADDSWrx, AArch64::ADDSXrx }  }
1382   };
1383   bool Is64Bit = RetVT == MVT::i64;
1384   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
1385   const TargetRegisterClass *RC = nullptr;
1386   if (SetFlags)
1387     RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
1388   else
1389     RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
1390   unsigned ResultReg;
1391   if (WantResult)
1392     ResultReg = createResultReg(RC);
1393   else
1394     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
1395 
1396   const MCInstrDesc &II = TII.get(Opc);
1397   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
1398   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
1399   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1400       .addReg(LHSReg, getKillRegState(LHSIsKill))
1401       .addReg(RHSReg, getKillRegState(RHSIsKill))
1402       .addImm(getArithExtendImm(ExtType, ShiftImm));
1403   return ResultReg;
1404 }
1405 
emitCmp(const Value * LHS,const Value * RHS,bool IsZExt)1406 bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
1407   Type *Ty = LHS->getType();
1408   EVT EVT = TLI.getValueType(DL, Ty, true);
1409   if (!EVT.isSimple())
1410     return false;
1411   MVT VT = EVT.getSimpleVT();
1412 
1413   switch (VT.SimpleTy) {
1414   default:
1415     return false;
1416   case MVT::i1:
1417   case MVT::i8:
1418   case MVT::i16:
1419   case MVT::i32:
1420   case MVT::i64:
1421     return emitICmp(VT, LHS, RHS, IsZExt);
1422   case MVT::f32:
1423   case MVT::f64:
1424     return emitFCmp(VT, LHS, RHS);
1425   }
1426 }
1427 
emitICmp(MVT RetVT,const Value * LHS,const Value * RHS,bool IsZExt)1428 bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
1429                                bool IsZExt) {
1430   return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
1431                  IsZExt) != 0;
1432 }
1433 
emitICmp_ri(MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm)1434 bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
1435                                   uint64_t Imm) {
1436   return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
1437                        /*SetFlags=*/true, /*WantResult=*/false) != 0;
1438 }
1439 
emitFCmp(MVT RetVT,const Value * LHS,const Value * RHS)1440 bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
1441   if (RetVT != MVT::f32 && RetVT != MVT::f64)
1442     return false;
1443 
1444   // Check to see if the 2nd operand is a constant that we can encode directly
1445   // in the compare.
1446   bool UseImm = false;
1447   if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
1448     if (CFP->isZero() && !CFP->isNegative())
1449       UseImm = true;
1450 
1451   unsigned LHSReg = getRegForValue(LHS);
1452   if (!LHSReg)
1453     return false;
1454   bool LHSIsKill = hasTrivialKill(LHS);
1455 
1456   if (UseImm) {
1457     unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
1458     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
1459         .addReg(LHSReg, getKillRegState(LHSIsKill));
1460     return true;
1461   }
1462 
1463   unsigned RHSReg = getRegForValue(RHS);
1464   if (!RHSReg)
1465     return false;
1466   bool RHSIsKill = hasTrivialKill(RHS);
1467 
1468   unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
1469   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
1470       .addReg(LHSReg, getKillRegState(LHSIsKill))
1471       .addReg(RHSReg, getKillRegState(RHSIsKill));
1472   return true;
1473 }
1474 
emitAdd(MVT RetVT,const Value * LHS,const Value * RHS,bool SetFlags,bool WantResult,bool IsZExt)1475 unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
1476                                   bool SetFlags, bool WantResult, bool IsZExt) {
1477   return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
1478                     IsZExt);
1479 }
1480 
1481 /// \brief This method is a wrapper to simplify add emission.
1482 ///
1483 /// First try to emit an add with an immediate operand using emitAddSub_ri. If
1484 /// that fails, then try to materialize the immediate into a register and use
1485 /// emitAddSub_rr instead.
emitAdd_ri_(MVT VT,unsigned Op0,bool Op0IsKill,int64_t Imm)1486 unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
1487                                       int64_t Imm) {
1488   unsigned ResultReg;
1489   if (Imm < 0)
1490     ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
1491   else
1492     ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
1493 
1494   if (ResultReg)
1495     return ResultReg;
1496 
1497   unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
1498   if (!CReg)
1499     return 0;
1500 
1501   ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
1502   return ResultReg;
1503 }
1504 
emitSub(MVT RetVT,const Value * LHS,const Value * RHS,bool SetFlags,bool WantResult,bool IsZExt)1505 unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
1506                                   bool SetFlags, bool WantResult, bool IsZExt) {
1507   return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
1508                     IsZExt);
1509 }
1510 
emitSubs_rr(MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,bool WantResult)1511 unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
1512                                       bool LHSIsKill, unsigned RHSReg,
1513                                       bool RHSIsKill, bool WantResult) {
1514   return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
1515                        RHSIsKill, /*SetFlags=*/true, WantResult);
1516 }
1517 
emitSubs_rs(MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,AArch64_AM::ShiftExtendType ShiftType,uint64_t ShiftImm,bool WantResult)1518 unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
1519                                       bool LHSIsKill, unsigned RHSReg,
1520                                       bool RHSIsKill,
1521                                       AArch64_AM::ShiftExtendType ShiftType,
1522                                       uint64_t ShiftImm, bool WantResult) {
1523   return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
1524                        RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
1525                        WantResult);
1526 }
1527 
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)1528 unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
1529                                         const Value *LHS, const Value *RHS) {
1530   // Canonicalize immediates to the RHS first.
1531   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
1532     std::swap(LHS, RHS);
1533 
1534   // Canonicalize mul by power-of-2 to the RHS.
1535   if (LHS->hasOneUse() && isValueAvailable(LHS))
1536     if (isMulPowOf2(LHS))
1537       std::swap(LHS, RHS);
1538 
1539   // Canonicalize shift immediate to the RHS.
1540   if (LHS->hasOneUse() && isValueAvailable(LHS))
1541     if (const auto *SI = dyn_cast<ShlOperator>(LHS))
1542       if (isa<ConstantInt>(SI->getOperand(1)))
1543         std::swap(LHS, RHS);
1544 
1545   unsigned LHSReg = getRegForValue(LHS);
1546   if (!LHSReg)
1547     return 0;
1548   bool LHSIsKill = hasTrivialKill(LHS);
1549 
1550   unsigned ResultReg = 0;
1551   if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
1552     uint64_t Imm = C->getZExtValue();
1553     ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
1554   }
1555   if (ResultReg)
1556     return ResultReg;
1557 
1558   // Check if the mul can be folded into the instruction.
1559   if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1560     if (isMulPowOf2(RHS)) {
1561       const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
1562       const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
1563 
1564       if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
1565         if (C->getValue().isPowerOf2())
1566           std::swap(MulLHS, MulRHS);
1567 
1568       assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
1569       uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
1570 
1571       unsigned RHSReg = getRegForValue(MulLHS);
1572       if (!RHSReg)
1573         return 0;
1574       bool RHSIsKill = hasTrivialKill(MulLHS);
1575       ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
1576                                    RHSIsKill, ShiftVal);
1577       if (ResultReg)
1578         return ResultReg;
1579     }
1580   }
1581 
1582   // Check if the shift can be folded into the instruction.
1583   if (RHS->hasOneUse() && isValueAvailable(RHS)) {
1584     if (const auto *SI = dyn_cast<ShlOperator>(RHS))
1585       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
1586         uint64_t ShiftVal = C->getZExtValue();
1587         unsigned RHSReg = getRegForValue(SI->getOperand(0));
1588         if (!RHSReg)
1589           return 0;
1590         bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
1591         ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
1592                                      RHSIsKill, ShiftVal);
1593         if (ResultReg)
1594           return ResultReg;
1595       }
1596   }
1597 
1598   unsigned RHSReg = getRegForValue(RHS);
1599   if (!RHSReg)
1600     return 0;
1601   bool RHSIsKill = hasTrivialKill(RHS);
1602 
1603   MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
1604   ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
1605   if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
1606     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1607     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1608   }
1609   return ResultReg;
1610 }
1611 
emitLogicalOp_ri(unsigned ISDOpc,MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm)1612 unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
1613                                            unsigned LHSReg, bool LHSIsKill,
1614                                            uint64_t Imm) {
1615   assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
1616          "ISD nodes are not consecutive!");
1617   static const unsigned OpcTable[3][2] = {
1618     { AArch64::ANDWri, AArch64::ANDXri },
1619     { AArch64::ORRWri, AArch64::ORRXri },
1620     { AArch64::EORWri, AArch64::EORXri }
1621   };
1622   const TargetRegisterClass *RC;
1623   unsigned Opc;
1624   unsigned RegSize;
1625   switch (RetVT.SimpleTy) {
1626   default:
1627     return 0;
1628   case MVT::i1:
1629   case MVT::i8:
1630   case MVT::i16:
1631   case MVT::i32: {
1632     unsigned Idx = ISDOpc - ISD::AND;
1633     Opc = OpcTable[Idx][0];
1634     RC = &AArch64::GPR32spRegClass;
1635     RegSize = 32;
1636     break;
1637   }
1638   case MVT::i64:
1639     Opc = OpcTable[ISDOpc - ISD::AND][1];
1640     RC = &AArch64::GPR64spRegClass;
1641     RegSize = 64;
1642     break;
1643   }
1644 
1645   if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
1646     return 0;
1647 
1648   unsigned ResultReg =
1649       fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
1650                       AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
1651   if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
1652     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1653     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1654   }
1655   return ResultReg;
1656 }
1657 
emitLogicalOp_rs(unsigned ISDOpc,MVT RetVT,unsigned LHSReg,bool LHSIsKill,unsigned RHSReg,bool RHSIsKill,uint64_t ShiftImm)1658 unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
1659                                            unsigned LHSReg, bool LHSIsKill,
1660                                            unsigned RHSReg, bool RHSIsKill,
1661                                            uint64_t ShiftImm) {
1662   assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
1663          "ISD nodes are not consecutive!");
1664   static const unsigned OpcTable[3][2] = {
1665     { AArch64::ANDWrs, AArch64::ANDXrs },
1666     { AArch64::ORRWrs, AArch64::ORRXrs },
1667     { AArch64::EORWrs, AArch64::EORXrs }
1668   };
1669 
1670   // Don't deal with undefined shifts.
1671   if (ShiftImm >= RetVT.getSizeInBits())
1672     return 0;
1673 
1674   const TargetRegisterClass *RC;
1675   unsigned Opc;
1676   switch (RetVT.SimpleTy) {
1677   default:
1678     return 0;
1679   case MVT::i1:
1680   case MVT::i8:
1681   case MVT::i16:
1682   case MVT::i32:
1683     Opc = OpcTable[ISDOpc - ISD::AND][0];
1684     RC = &AArch64::GPR32RegClass;
1685     break;
1686   case MVT::i64:
1687     Opc = OpcTable[ISDOpc - ISD::AND][1];
1688     RC = &AArch64::GPR64RegClass;
1689     break;
1690   }
1691   unsigned ResultReg =
1692       fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
1693                        AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
1694   if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
1695     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
1696     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
1697   }
1698   return ResultReg;
1699 }
1700 
emitAnd_ri(MVT RetVT,unsigned LHSReg,bool LHSIsKill,uint64_t Imm)1701 unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
1702                                      uint64_t Imm) {
1703   return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
1704 }
1705 
emitLoad(MVT VT,MVT RetVT,Address Addr,bool WantZExt,MachineMemOperand * MMO)1706 unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
1707                                    bool WantZExt, MachineMemOperand *MMO) {
1708   if (!TLI.allowsMisalignedMemoryAccesses(VT))
1709     return 0;
1710 
1711   // Simplify this down to something we can handle.
1712   if (!simplifyAddress(Addr, VT))
1713     return 0;
1714 
1715   unsigned ScaleFactor = getImplicitScaleFactor(VT);
1716   if (!ScaleFactor)
1717     llvm_unreachable("Unexpected value type.");
1718 
1719   // Negative offsets require unscaled, 9-bit, signed immediate offsets.
1720   // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
1721   bool UseScaled = true;
1722   if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
1723     UseScaled = false;
1724     ScaleFactor = 1;
1725   }
1726 
1727   static const unsigned GPOpcTable[2][8][4] = {
1728     // Sign-extend.
1729     { { AArch64::LDURSBWi,  AArch64::LDURSHWi,  AArch64::LDURWi,
1730         AArch64::LDURXi  },
1731       { AArch64::LDURSBXi,  AArch64::LDURSHXi,  AArch64::LDURSWi,
1732         AArch64::LDURXi  },
1733       { AArch64::LDRSBWui,  AArch64::LDRSHWui,  AArch64::LDRWui,
1734         AArch64::LDRXui  },
1735       { AArch64::LDRSBXui,  AArch64::LDRSHXui,  AArch64::LDRSWui,
1736         AArch64::LDRXui  },
1737       { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
1738         AArch64::LDRXroX },
1739       { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
1740         AArch64::LDRXroX },
1741       { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
1742         AArch64::LDRXroW },
1743       { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
1744         AArch64::LDRXroW }
1745     },
1746     // Zero-extend.
1747     { { AArch64::LDURBBi,   AArch64::LDURHHi,   AArch64::LDURWi,
1748         AArch64::LDURXi  },
1749       { AArch64::LDURBBi,   AArch64::LDURHHi,   AArch64::LDURWi,
1750         AArch64::LDURXi  },
1751       { AArch64::LDRBBui,   AArch64::LDRHHui,   AArch64::LDRWui,
1752         AArch64::LDRXui  },
1753       { AArch64::LDRBBui,   AArch64::LDRHHui,   AArch64::LDRWui,
1754         AArch64::LDRXui  },
1755       { AArch64::LDRBBroX,  AArch64::LDRHHroX,  AArch64::LDRWroX,
1756         AArch64::LDRXroX },
1757       { AArch64::LDRBBroX,  AArch64::LDRHHroX,  AArch64::LDRWroX,
1758         AArch64::LDRXroX },
1759       { AArch64::LDRBBroW,  AArch64::LDRHHroW,  AArch64::LDRWroW,
1760         AArch64::LDRXroW },
1761       { AArch64::LDRBBroW,  AArch64::LDRHHroW,  AArch64::LDRWroW,
1762         AArch64::LDRXroW }
1763     }
1764   };
1765 
1766   static const unsigned FPOpcTable[4][2] = {
1767     { AArch64::LDURSi,  AArch64::LDURDi  },
1768     { AArch64::LDRSui,  AArch64::LDRDui  },
1769     { AArch64::LDRSroX, AArch64::LDRDroX },
1770     { AArch64::LDRSroW, AArch64::LDRDroW }
1771   };
1772 
1773   unsigned Opc;
1774   const TargetRegisterClass *RC;
1775   bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
1776                       Addr.getOffsetReg();
1777   unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
1778   if (Addr.getExtendType() == AArch64_AM::UXTW ||
1779       Addr.getExtendType() == AArch64_AM::SXTW)
1780     Idx++;
1781 
1782   bool IsRet64Bit = RetVT == MVT::i64;
1783   switch (VT.SimpleTy) {
1784   default:
1785     llvm_unreachable("Unexpected value type.");
1786   case MVT::i1: // Intentional fall-through.
1787   case MVT::i8:
1788     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
1789     RC = (IsRet64Bit && !WantZExt) ?
1790              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1791     break;
1792   case MVT::i16:
1793     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
1794     RC = (IsRet64Bit && !WantZExt) ?
1795              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1796     break;
1797   case MVT::i32:
1798     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
1799     RC = (IsRet64Bit && !WantZExt) ?
1800              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
1801     break;
1802   case MVT::i64:
1803     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
1804     RC = &AArch64::GPR64RegClass;
1805     break;
1806   case MVT::f32:
1807     Opc = FPOpcTable[Idx][0];
1808     RC = &AArch64::FPR32RegClass;
1809     break;
1810   case MVT::f64:
1811     Opc = FPOpcTable[Idx][1];
1812     RC = &AArch64::FPR64RegClass;
1813     break;
1814   }
1815 
1816   // Create the base instruction, then add the operands.
1817   unsigned ResultReg = createResultReg(RC);
1818   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1819                                     TII.get(Opc), ResultReg);
1820   addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
1821 
1822   // Loading an i1 requires special handling.
1823   if (VT == MVT::i1) {
1824     unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
1825     assert(ANDReg && "Unexpected AND instruction emission failure.");
1826     ResultReg = ANDReg;
1827   }
1828 
1829   // For zero-extending loads to 64bit we emit a 32bit load and then convert
1830   // the 32bit reg to a 64bit reg.
1831   if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
1832     unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
1833     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1834             TII.get(AArch64::SUBREG_TO_REG), Reg64)
1835         .addImm(0)
1836         .addReg(ResultReg, getKillRegState(true))
1837         .addImm(AArch64::sub_32);
1838     ResultReg = Reg64;
1839   }
1840   return ResultReg;
1841 }
1842 
selectAddSub(const Instruction * I)1843 bool AArch64FastISel::selectAddSub(const Instruction *I) {
1844   MVT VT;
1845   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
1846     return false;
1847 
1848   if (VT.isVector())
1849     return selectOperator(I, I->getOpcode());
1850 
1851   unsigned ResultReg;
1852   switch (I->getOpcode()) {
1853   default:
1854     llvm_unreachable("Unexpected instruction.");
1855   case Instruction::Add:
1856     ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
1857     break;
1858   case Instruction::Sub:
1859     ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
1860     break;
1861   }
1862   if (!ResultReg)
1863     return false;
1864 
1865   updateValueMap(I, ResultReg);
1866   return true;
1867 }
1868 
selectLogicalOp(const Instruction * I)1869 bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
1870   MVT VT;
1871   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
1872     return false;
1873 
1874   if (VT.isVector())
1875     return selectOperator(I, I->getOpcode());
1876 
1877   unsigned ResultReg;
1878   switch (I->getOpcode()) {
1879   default:
1880     llvm_unreachable("Unexpected instruction.");
1881   case Instruction::And:
1882     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
1883     break;
1884   case Instruction::Or:
1885     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
1886     break;
1887   case Instruction::Xor:
1888     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
1889     break;
1890   }
1891   if (!ResultReg)
1892     return false;
1893 
1894   updateValueMap(I, ResultReg);
1895   return true;
1896 }
1897 
selectLoad(const Instruction * I)1898 bool AArch64FastISel::selectLoad(const Instruction *I) {
1899   MVT VT;
1900   // Verify we have a legal type before going any further.  Currently, we handle
1901   // simple types that will directly fit in a register (i32/f32/i64/f64) or
1902   // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
1903   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
1904       cast<LoadInst>(I)->isAtomic())
1905     return false;
1906 
1907   // See if we can handle this address.
1908   Address Addr;
1909   if (!computeAddress(I->getOperand(0), Addr, I->getType()))
1910     return false;
1911 
1912   // Fold the following sign-/zero-extend into the load instruction.
1913   bool WantZExt = true;
1914   MVT RetVT = VT;
1915   const Value *IntExtVal = nullptr;
1916   if (I->hasOneUse()) {
1917     if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
1918       if (isTypeSupported(ZE->getType(), RetVT))
1919         IntExtVal = ZE;
1920       else
1921         RetVT = VT;
1922     } else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
1923       if (isTypeSupported(SE->getType(), RetVT))
1924         IntExtVal = SE;
1925       else
1926         RetVT = VT;
1927       WantZExt = false;
1928     }
1929   }
1930 
1931   unsigned ResultReg =
1932       emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
1933   if (!ResultReg)
1934     return false;
1935 
1936   // There are a few different cases we have to handle, because the load or the
1937   // sign-/zero-extend might not be selected by FastISel if we fall-back to
1938   // SelectionDAG. There is also an ordering issue when both instructions are in
1939   // different basic blocks.
1940   // 1.) The load instruction is selected by FastISel, but the integer extend
1941   //     not. This usually happens when the integer extend is in a different
1942   //     basic block and SelectionDAG took over for that basic block.
1943   // 2.) The load instruction is selected before the integer extend. This only
1944   //     happens when the integer extend is in a different basic block.
1945   // 3.) The load instruction is selected by SelectionDAG and the integer extend
1946   //     by FastISel. This happens if there are instructions between the load
1947   //     and the integer extend that couldn't be selected by FastISel.
1948   if (IntExtVal) {
1949     // The integer extend hasn't been emitted yet. FastISel or SelectionDAG
1950     // could select it. Emit a copy to subreg if necessary. FastISel will remove
1951     // it when it selects the integer extend.
1952     unsigned Reg = lookUpRegForValue(IntExtVal);
1953     auto *MI = MRI.getUniqueVRegDef(Reg);
1954     if (!MI) {
1955       if (RetVT == MVT::i64 && VT <= MVT::i32) {
1956         if (WantZExt) {
1957           // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
1958           std::prev(FuncInfo.InsertPt)->eraseFromParent();
1959           ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
1960         } else
1961           ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
1962                                                  /*IsKill=*/true,
1963                                                  AArch64::sub_32);
1964       }
1965       updateValueMap(I, ResultReg);
1966       return true;
1967     }
1968 
1969     // The integer extend has already been emitted - delete all the instructions
1970     // that have been emitted by the integer extend lowering code and use the
1971     // result from the load instruction directly.
1972     while (MI) {
1973       Reg = 0;
1974       for (auto &Opnd : MI->uses()) {
1975         if (Opnd.isReg()) {
1976           Reg = Opnd.getReg();
1977           break;
1978         }
1979       }
1980       MI->eraseFromParent();
1981       MI = nullptr;
1982       if (Reg)
1983         MI = MRI.getUniqueVRegDef(Reg);
1984     }
1985     updateValueMap(IntExtVal, ResultReg);
1986     return true;
1987   }
1988 
1989   updateValueMap(I, ResultReg);
1990   return true;
1991 }
1992 
emitStore(MVT VT,unsigned SrcReg,Address Addr,MachineMemOperand * MMO)1993 bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
1994                                 MachineMemOperand *MMO) {
1995   if (!TLI.allowsMisalignedMemoryAccesses(VT))
1996     return false;
1997 
1998   // Simplify this down to something we can handle.
1999   if (!simplifyAddress(Addr, VT))
2000     return false;
2001 
2002   unsigned ScaleFactor = getImplicitScaleFactor(VT);
2003   if (!ScaleFactor)
2004     llvm_unreachable("Unexpected value type.");
2005 
2006   // Negative offsets require unscaled, 9-bit, signed immediate offsets.
2007   // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
2008   bool UseScaled = true;
2009   if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
2010     UseScaled = false;
2011     ScaleFactor = 1;
2012   }
2013 
2014   static const unsigned OpcTable[4][6] = {
2015     { AArch64::STURBBi,  AArch64::STURHHi,  AArch64::STURWi,  AArch64::STURXi,
2016       AArch64::STURSi,   AArch64::STURDi },
2017     { AArch64::STRBBui,  AArch64::STRHHui,  AArch64::STRWui,  AArch64::STRXui,
2018       AArch64::STRSui,   AArch64::STRDui },
2019     { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
2020       AArch64::STRSroX,  AArch64::STRDroX },
2021     { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
2022       AArch64::STRSroW,  AArch64::STRDroW }
2023   };
2024 
2025   unsigned Opc;
2026   bool VTIsi1 = false;
2027   bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
2028                       Addr.getOffsetReg();
2029   unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
2030   if (Addr.getExtendType() == AArch64_AM::UXTW ||
2031       Addr.getExtendType() == AArch64_AM::SXTW)
2032     Idx++;
2033 
2034   switch (VT.SimpleTy) {
2035   default: llvm_unreachable("Unexpected value type.");
2036   case MVT::i1:  VTIsi1 = true;
2037   case MVT::i8:  Opc = OpcTable[Idx][0]; break;
2038   case MVT::i16: Opc = OpcTable[Idx][1]; break;
2039   case MVT::i32: Opc = OpcTable[Idx][2]; break;
2040   case MVT::i64: Opc = OpcTable[Idx][3]; break;
2041   case MVT::f32: Opc = OpcTable[Idx][4]; break;
2042   case MVT::f64: Opc = OpcTable[Idx][5]; break;
2043   }
2044 
2045   // Storing an i1 requires special handling.
2046   if (VTIsi1 && SrcReg != AArch64::WZR) {
2047     unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
2048     assert(ANDReg && "Unexpected AND instruction emission failure.");
2049     SrcReg = ANDReg;
2050   }
2051   // Create the base instruction, then add the operands.
2052   const MCInstrDesc &II = TII.get(Opc);
2053   SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
2054   MachineInstrBuilder MIB =
2055       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
2056   addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
2057 
2058   return true;
2059 }
2060 
selectStore(const Instruction * I)2061 bool AArch64FastISel::selectStore(const Instruction *I) {
2062   MVT VT;
2063   const Value *Op0 = I->getOperand(0);
2064   // Verify we have a legal type before going any further.  Currently, we handle
2065   // simple types that will directly fit in a register (i32/f32/i64/f64) or
2066   // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
2067   if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
2068       cast<StoreInst>(I)->isAtomic())
2069     return false;
2070 
2071   // Get the value to be stored into a register. Use the zero register directly
2072   // when possible to avoid an unnecessary copy and a wasted register.
2073   unsigned SrcReg = 0;
2074   if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
2075     if (CI->isZero())
2076       SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
2077   } else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
2078     if (CF->isZero() && !CF->isNegative()) {
2079       VT = MVT::getIntegerVT(VT.getSizeInBits());
2080       SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
2081     }
2082   }
2083 
2084   if (!SrcReg)
2085     SrcReg = getRegForValue(Op0);
2086 
2087   if (!SrcReg)
2088     return false;
2089 
2090   // See if we can handle this address.
2091   Address Addr;
2092   if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
2093     return false;
2094 
2095   if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
2096     return false;
2097   return true;
2098 }
2099 
getCompareCC(CmpInst::Predicate Pred)2100 static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
2101   switch (Pred) {
2102   case CmpInst::FCMP_ONE:
2103   case CmpInst::FCMP_UEQ:
2104   default:
2105     // AL is our "false" for now. The other two need more compares.
2106     return AArch64CC::AL;
2107   case CmpInst::ICMP_EQ:
2108   case CmpInst::FCMP_OEQ:
2109     return AArch64CC::EQ;
2110   case CmpInst::ICMP_SGT:
2111   case CmpInst::FCMP_OGT:
2112     return AArch64CC::GT;
2113   case CmpInst::ICMP_SGE:
2114   case CmpInst::FCMP_OGE:
2115     return AArch64CC::GE;
2116   case CmpInst::ICMP_UGT:
2117   case CmpInst::FCMP_UGT:
2118     return AArch64CC::HI;
2119   case CmpInst::FCMP_OLT:
2120     return AArch64CC::MI;
2121   case CmpInst::ICMP_ULE:
2122   case CmpInst::FCMP_OLE:
2123     return AArch64CC::LS;
2124   case CmpInst::FCMP_ORD:
2125     return AArch64CC::VC;
2126   case CmpInst::FCMP_UNO:
2127     return AArch64CC::VS;
2128   case CmpInst::FCMP_UGE:
2129     return AArch64CC::PL;
2130   case CmpInst::ICMP_SLT:
2131   case CmpInst::FCMP_ULT:
2132     return AArch64CC::LT;
2133   case CmpInst::ICMP_SLE:
2134   case CmpInst::FCMP_ULE:
2135     return AArch64CC::LE;
2136   case CmpInst::FCMP_UNE:
2137   case CmpInst::ICMP_NE:
2138     return AArch64CC::NE;
2139   case CmpInst::ICMP_UGE:
2140     return AArch64CC::HS;
2141   case CmpInst::ICMP_ULT:
2142     return AArch64CC::LO;
2143   }
2144 }
2145 
2146 /// \brief Try to emit a combined compare-and-branch instruction.
emitCompareAndBranch(const BranchInst * BI)2147 bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
2148   assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
2149   const CmpInst *CI = cast<CmpInst>(BI->getCondition());
2150   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2151 
2152   const Value *LHS = CI->getOperand(0);
2153   const Value *RHS = CI->getOperand(1);
2154 
2155   MVT VT;
2156   if (!isTypeSupported(LHS->getType(), VT))
2157     return false;
2158 
2159   unsigned BW = VT.getSizeInBits();
2160   if (BW > 64)
2161     return false;
2162 
2163   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
2164   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
2165 
2166   // Try to take advantage of fallthrough opportunities.
2167   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2168     std::swap(TBB, FBB);
2169     Predicate = CmpInst::getInversePredicate(Predicate);
2170   }
2171 
2172   int TestBit = -1;
2173   bool IsCmpNE;
2174   switch (Predicate) {
2175   default:
2176     return false;
2177   case CmpInst::ICMP_EQ:
2178   case CmpInst::ICMP_NE:
2179     if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
2180       std::swap(LHS, RHS);
2181 
2182     if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
2183       return false;
2184 
2185     if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
2186       if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
2187         const Value *AndLHS = AI->getOperand(0);
2188         const Value *AndRHS = AI->getOperand(1);
2189 
2190         if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
2191           if (C->getValue().isPowerOf2())
2192             std::swap(AndLHS, AndRHS);
2193 
2194         if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
2195           if (C->getValue().isPowerOf2()) {
2196             TestBit = C->getValue().logBase2();
2197             LHS = AndLHS;
2198           }
2199       }
2200 
2201     if (VT == MVT::i1)
2202       TestBit = 0;
2203 
2204     IsCmpNE = Predicate == CmpInst::ICMP_NE;
2205     break;
2206   case CmpInst::ICMP_SLT:
2207   case CmpInst::ICMP_SGE:
2208     if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
2209       return false;
2210 
2211     TestBit = BW - 1;
2212     IsCmpNE = Predicate == CmpInst::ICMP_SLT;
2213     break;
2214   case CmpInst::ICMP_SGT:
2215   case CmpInst::ICMP_SLE:
2216     if (!isa<ConstantInt>(RHS))
2217       return false;
2218 
2219     if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
2220       return false;
2221 
2222     TestBit = BW - 1;
2223     IsCmpNE = Predicate == CmpInst::ICMP_SLE;
2224     break;
2225   } // end switch
2226 
2227   static const unsigned OpcTable[2][2][2] = {
2228     { {AArch64::CBZW,  AArch64::CBZX },
2229       {AArch64::CBNZW, AArch64::CBNZX} },
2230     { {AArch64::TBZW,  AArch64::TBZX },
2231       {AArch64::TBNZW, AArch64::TBNZX} }
2232   };
2233 
2234   bool IsBitTest = TestBit != -1;
2235   bool Is64Bit = BW == 64;
2236   if (TestBit < 32 && TestBit >= 0)
2237     Is64Bit = false;
2238 
2239   unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
2240   const MCInstrDesc &II = TII.get(Opc);
2241 
2242   unsigned SrcReg = getRegForValue(LHS);
2243   if (!SrcReg)
2244     return false;
2245   bool SrcIsKill = hasTrivialKill(LHS);
2246 
2247   if (BW == 64 && !Is64Bit)
2248     SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
2249                                         AArch64::sub_32);
2250 
2251   if ((BW < 32) && !IsBitTest)
2252     SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
2253 
2254   // Emit the combined compare and branch instruction.
2255   SrcReg = constrainOperandRegClass(II, SrcReg,  II.getNumDefs());
2256   MachineInstrBuilder MIB =
2257       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
2258           .addReg(SrcReg, getKillRegState(SrcIsKill));
2259   if (IsBitTest)
2260     MIB.addImm(TestBit);
2261   MIB.addMBB(TBB);
2262 
2263   finishCondBranch(BI->getParent(), TBB, FBB);
2264   return true;
2265 }
2266 
selectBranch(const Instruction * I)2267 bool AArch64FastISel::selectBranch(const Instruction *I) {
2268   const BranchInst *BI = cast<BranchInst>(I);
2269   if (BI->isUnconditional()) {
2270     MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
2271     fastEmitBranch(MSucc, BI->getDebugLoc());
2272     return true;
2273   }
2274 
2275   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
2276   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
2277 
2278   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
2279     if (CI->hasOneUse() && isValueAvailable(CI)) {
2280       // Try to optimize or fold the cmp.
2281       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2282       switch (Predicate) {
2283       default:
2284         break;
2285       case CmpInst::FCMP_FALSE:
2286         fastEmitBranch(FBB, DbgLoc);
2287         return true;
2288       case CmpInst::FCMP_TRUE:
2289         fastEmitBranch(TBB, DbgLoc);
2290         return true;
2291       }
2292 
2293       // Try to emit a combined compare-and-branch first.
2294       if (emitCompareAndBranch(BI))
2295         return true;
2296 
2297       // Try to take advantage of fallthrough opportunities.
2298       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2299         std::swap(TBB, FBB);
2300         Predicate = CmpInst::getInversePredicate(Predicate);
2301       }
2302 
2303       // Emit the cmp.
2304       if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
2305         return false;
2306 
2307       // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
2308       // instruction.
2309       AArch64CC::CondCode CC = getCompareCC(Predicate);
2310       AArch64CC::CondCode ExtraCC = AArch64CC::AL;
2311       switch (Predicate) {
2312       default:
2313         break;
2314       case CmpInst::FCMP_UEQ:
2315         ExtraCC = AArch64CC::EQ;
2316         CC = AArch64CC::VS;
2317         break;
2318       case CmpInst::FCMP_ONE:
2319         ExtraCC = AArch64CC::MI;
2320         CC = AArch64CC::GT;
2321         break;
2322       }
2323       assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2324 
2325       // Emit the extra branch for FCMP_UEQ and FCMP_ONE.
2326       if (ExtraCC != AArch64CC::AL) {
2327         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2328             .addImm(ExtraCC)
2329             .addMBB(TBB);
2330       }
2331 
2332       // Emit the branch.
2333       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2334           .addImm(CC)
2335           .addMBB(TBB);
2336 
2337       finishCondBranch(BI->getParent(), TBB, FBB);
2338       return true;
2339     }
2340   } else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
2341     uint64_t Imm = CI->getZExtValue();
2342     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
2343     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
2344         .addMBB(Target);
2345 
2346     // Obtain the branch probability and add the target to the successor list.
2347     if (FuncInfo.BPI) {
2348       auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
2349           BI->getParent(), Target->getBasicBlock());
2350       FuncInfo.MBB->addSuccessor(Target, BranchProbability);
2351     } else
2352       FuncInfo.MBB->addSuccessorWithoutProb(Target);
2353     return true;
2354   } else {
2355     AArch64CC::CondCode CC = AArch64CC::NE;
2356     if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
2357       // Fake request the condition, otherwise the intrinsic might be completely
2358       // optimized away.
2359       unsigned CondReg = getRegForValue(BI->getCondition());
2360       if (!CondReg)
2361         return false;
2362 
2363       // Emit the branch.
2364       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
2365         .addImm(CC)
2366         .addMBB(TBB);
2367 
2368       finishCondBranch(BI->getParent(), TBB, FBB);
2369       return true;
2370     }
2371   }
2372 
2373   unsigned CondReg = getRegForValue(BI->getCondition());
2374   if (CondReg == 0)
2375     return false;
2376   bool CondRegIsKill = hasTrivialKill(BI->getCondition());
2377 
2378   // i1 conditions come as i32 values, test the lowest bit with tb(n)z.
2379   unsigned Opcode = AArch64::TBNZW;
2380   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
2381     std::swap(TBB, FBB);
2382     Opcode = AArch64::TBZW;
2383   }
2384 
2385   const MCInstrDesc &II = TII.get(Opcode);
2386   unsigned ConstrainedCondReg
2387     = constrainOperandRegClass(II, CondReg, II.getNumDefs());
2388   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2389       .addReg(ConstrainedCondReg, getKillRegState(CondRegIsKill))
2390       .addImm(0)
2391       .addMBB(TBB);
2392 
2393   finishCondBranch(BI->getParent(), TBB, FBB);
2394   return true;
2395 }
2396 
selectIndirectBr(const Instruction * I)2397 bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
2398   const IndirectBrInst *BI = cast<IndirectBrInst>(I);
2399   unsigned AddrReg = getRegForValue(BI->getOperand(0));
2400   if (AddrReg == 0)
2401     return false;
2402 
2403   // Emit the indirect branch.
2404   const MCInstrDesc &II = TII.get(AArch64::BR);
2405   AddrReg = constrainOperandRegClass(II, AddrReg,  II.getNumDefs());
2406   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
2407 
2408   // Make sure the CFG is up-to-date.
2409   for (auto *Succ : BI->successors())
2410     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[Succ]);
2411 
2412   return true;
2413 }
2414 
selectCmp(const Instruction * I)2415 bool AArch64FastISel::selectCmp(const Instruction *I) {
2416   const CmpInst *CI = cast<CmpInst>(I);
2417 
2418   // Vectors of i1 are weird: bail out.
2419   if (CI->getType()->isVectorTy())
2420     return false;
2421 
2422   // Try to optimize or fold the cmp.
2423   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2424   unsigned ResultReg = 0;
2425   switch (Predicate) {
2426   default:
2427     break;
2428   case CmpInst::FCMP_FALSE:
2429     ResultReg = createResultReg(&AArch64::GPR32RegClass);
2430     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2431             TII.get(TargetOpcode::COPY), ResultReg)
2432         .addReg(AArch64::WZR, getKillRegState(true));
2433     break;
2434   case CmpInst::FCMP_TRUE:
2435     ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
2436     break;
2437   }
2438 
2439   if (ResultReg) {
2440     updateValueMap(I, ResultReg);
2441     return true;
2442   }
2443 
2444   // Emit the cmp.
2445   if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
2446     return false;
2447 
2448   ResultReg = createResultReg(&AArch64::GPR32RegClass);
2449 
2450   // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
2451   // condition codes are inverted, because they are used by CSINC.
2452   static unsigned CondCodeTable[2][2] = {
2453     { AArch64CC::NE, AArch64CC::VC },
2454     { AArch64CC::PL, AArch64CC::LE }
2455   };
2456   unsigned *CondCodes = nullptr;
2457   switch (Predicate) {
2458   default:
2459     break;
2460   case CmpInst::FCMP_UEQ:
2461     CondCodes = &CondCodeTable[0][0];
2462     break;
2463   case CmpInst::FCMP_ONE:
2464     CondCodes = &CondCodeTable[1][0];
2465     break;
2466   }
2467 
2468   if (CondCodes) {
2469     unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
2470     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2471             TmpReg1)
2472         .addReg(AArch64::WZR, getKillRegState(true))
2473         .addReg(AArch64::WZR, getKillRegState(true))
2474         .addImm(CondCodes[0]);
2475     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2476             ResultReg)
2477         .addReg(TmpReg1, getKillRegState(true))
2478         .addReg(AArch64::WZR, getKillRegState(true))
2479         .addImm(CondCodes[1]);
2480 
2481     updateValueMap(I, ResultReg);
2482     return true;
2483   }
2484 
2485   // Now set a register based on the comparison.
2486   AArch64CC::CondCode CC = getCompareCC(Predicate);
2487   assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2488   AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
2489   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
2490           ResultReg)
2491       .addReg(AArch64::WZR, getKillRegState(true))
2492       .addReg(AArch64::WZR, getKillRegState(true))
2493       .addImm(invertedCC);
2494 
2495   updateValueMap(I, ResultReg);
2496   return true;
2497 }
2498 
2499 /// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
2500 /// value.
optimizeSelect(const SelectInst * SI)2501 bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
2502   if (!SI->getType()->isIntegerTy(1))
2503     return false;
2504 
2505   const Value *Src1Val, *Src2Val;
2506   unsigned Opc = 0;
2507   bool NeedExtraOp = false;
2508   if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
2509     if (CI->isOne()) {
2510       Src1Val = SI->getCondition();
2511       Src2Val = SI->getFalseValue();
2512       Opc = AArch64::ORRWrr;
2513     } else {
2514       assert(CI->isZero());
2515       Src1Val = SI->getFalseValue();
2516       Src2Val = SI->getCondition();
2517       Opc = AArch64::BICWrr;
2518     }
2519   } else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
2520     if (CI->isOne()) {
2521       Src1Val = SI->getCondition();
2522       Src2Val = SI->getTrueValue();
2523       Opc = AArch64::ORRWrr;
2524       NeedExtraOp = true;
2525     } else {
2526       assert(CI->isZero());
2527       Src1Val = SI->getCondition();
2528       Src2Val = SI->getTrueValue();
2529       Opc = AArch64::ANDWrr;
2530     }
2531   }
2532 
2533   if (!Opc)
2534     return false;
2535 
2536   unsigned Src1Reg = getRegForValue(Src1Val);
2537   if (!Src1Reg)
2538     return false;
2539   bool Src1IsKill = hasTrivialKill(Src1Val);
2540 
2541   unsigned Src2Reg = getRegForValue(Src2Val);
2542   if (!Src2Reg)
2543     return false;
2544   bool Src2IsKill = hasTrivialKill(Src2Val);
2545 
2546   if (NeedExtraOp) {
2547     Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
2548     Src1IsKill = true;
2549   }
2550   unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32RegClass, Src1Reg,
2551                                        Src1IsKill, Src2Reg, Src2IsKill);
2552   updateValueMap(SI, ResultReg);
2553   return true;
2554 }
2555 
selectSelect(const Instruction * I)2556 bool AArch64FastISel::selectSelect(const Instruction *I) {
2557   assert(isa<SelectInst>(I) && "Expected a select instruction.");
2558   MVT VT;
2559   if (!isTypeSupported(I->getType(), VT))
2560     return false;
2561 
2562   unsigned Opc;
2563   const TargetRegisterClass *RC;
2564   switch (VT.SimpleTy) {
2565   default:
2566     return false;
2567   case MVT::i1:
2568   case MVT::i8:
2569   case MVT::i16:
2570   case MVT::i32:
2571     Opc = AArch64::CSELWr;
2572     RC = &AArch64::GPR32RegClass;
2573     break;
2574   case MVT::i64:
2575     Opc = AArch64::CSELXr;
2576     RC = &AArch64::GPR64RegClass;
2577     break;
2578   case MVT::f32:
2579     Opc = AArch64::FCSELSrrr;
2580     RC = &AArch64::FPR32RegClass;
2581     break;
2582   case MVT::f64:
2583     Opc = AArch64::FCSELDrrr;
2584     RC = &AArch64::FPR64RegClass;
2585     break;
2586   }
2587 
2588   const SelectInst *SI = cast<SelectInst>(I);
2589   const Value *Cond = SI->getCondition();
2590   AArch64CC::CondCode CC = AArch64CC::NE;
2591   AArch64CC::CondCode ExtraCC = AArch64CC::AL;
2592 
2593   if (optimizeSelect(SI))
2594     return true;
2595 
2596   // Try to pickup the flags, so we don't have to emit another compare.
2597   if (foldXALUIntrinsic(CC, I, Cond)) {
2598     // Fake request the condition to force emission of the XALU intrinsic.
2599     unsigned CondReg = getRegForValue(Cond);
2600     if (!CondReg)
2601       return false;
2602   } else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
2603              isValueAvailable(Cond)) {
2604     const auto *Cmp = cast<CmpInst>(Cond);
2605     // Try to optimize or fold the cmp.
2606     CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
2607     const Value *FoldSelect = nullptr;
2608     switch (Predicate) {
2609     default:
2610       break;
2611     case CmpInst::FCMP_FALSE:
2612       FoldSelect = SI->getFalseValue();
2613       break;
2614     case CmpInst::FCMP_TRUE:
2615       FoldSelect = SI->getTrueValue();
2616       break;
2617     }
2618 
2619     if (FoldSelect) {
2620       unsigned SrcReg = getRegForValue(FoldSelect);
2621       if (!SrcReg)
2622         return false;
2623       unsigned UseReg = lookUpRegForValue(SI);
2624       if (UseReg)
2625         MRI.clearKillFlags(UseReg);
2626 
2627       updateValueMap(I, SrcReg);
2628       return true;
2629     }
2630 
2631     // Emit the cmp.
2632     if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
2633       return false;
2634 
2635     // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
2636     CC = getCompareCC(Predicate);
2637     switch (Predicate) {
2638     default:
2639       break;
2640     case CmpInst::FCMP_UEQ:
2641       ExtraCC = AArch64CC::EQ;
2642       CC = AArch64CC::VS;
2643       break;
2644     case CmpInst::FCMP_ONE:
2645       ExtraCC = AArch64CC::MI;
2646       CC = AArch64CC::GT;
2647       break;
2648     }
2649     assert((CC != AArch64CC::AL) && "Unexpected condition code.");
2650   } else {
2651     unsigned CondReg = getRegForValue(Cond);
2652     if (!CondReg)
2653       return false;
2654     bool CondIsKill = hasTrivialKill(Cond);
2655 
2656     const MCInstrDesc &II = TII.get(AArch64::ANDSWri);
2657     CondReg = constrainOperandRegClass(II, CondReg, 1);
2658 
2659     // Emit a TST instruction (ANDS wzr, reg, #imm).
2660     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
2661             AArch64::WZR)
2662         .addReg(CondReg, getKillRegState(CondIsKill))
2663         .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
2664   }
2665 
2666   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
2667   bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
2668 
2669   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
2670   bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
2671 
2672   if (!Src1Reg || !Src2Reg)
2673     return false;
2674 
2675   if (ExtraCC != AArch64CC::AL) {
2676     Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
2677                                Src2IsKill, ExtraCC);
2678     Src2IsKill = true;
2679   }
2680   unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
2681                                         Src2IsKill, CC);
2682   updateValueMap(I, ResultReg);
2683   return true;
2684 }
2685 
selectFPExt(const Instruction * I)2686 bool AArch64FastISel::selectFPExt(const Instruction *I) {
2687   Value *V = I->getOperand(0);
2688   if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
2689     return false;
2690 
2691   unsigned Op = getRegForValue(V);
2692   if (Op == 0)
2693     return false;
2694 
2695   unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
2696   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
2697           ResultReg).addReg(Op);
2698   updateValueMap(I, ResultReg);
2699   return true;
2700 }
2701 
selectFPTrunc(const Instruction * I)2702 bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
2703   Value *V = I->getOperand(0);
2704   if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
2705     return false;
2706 
2707   unsigned Op = getRegForValue(V);
2708   if (Op == 0)
2709     return false;
2710 
2711   unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
2712   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
2713           ResultReg).addReg(Op);
2714   updateValueMap(I, ResultReg);
2715   return true;
2716 }
2717 
2718 // FPToUI and FPToSI
selectFPToInt(const Instruction * I,bool Signed)2719 bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
2720   MVT DestVT;
2721   if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
2722     return false;
2723 
2724   unsigned SrcReg = getRegForValue(I->getOperand(0));
2725   if (SrcReg == 0)
2726     return false;
2727 
2728   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true);
2729   if (SrcVT == MVT::f128)
2730     return false;
2731 
2732   unsigned Opc;
2733   if (SrcVT == MVT::f64) {
2734     if (Signed)
2735       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
2736     else
2737       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
2738   } else {
2739     if (Signed)
2740       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
2741     else
2742       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
2743   }
2744   unsigned ResultReg = createResultReg(
2745       DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
2746   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2747       .addReg(SrcReg);
2748   updateValueMap(I, ResultReg);
2749   return true;
2750 }
2751 
selectIntToFP(const Instruction * I,bool Signed)2752 bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
2753   MVT DestVT;
2754   if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
2755     return false;
2756   assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
2757           "Unexpected value type.");
2758 
2759   unsigned SrcReg = getRegForValue(I->getOperand(0));
2760   if (!SrcReg)
2761     return false;
2762   bool SrcIsKill = hasTrivialKill(I->getOperand(0));
2763 
2764   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType(), true);
2765 
2766   // Handle sign-extension.
2767   if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
2768     SrcReg =
2769         emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
2770     if (!SrcReg)
2771       return false;
2772     SrcIsKill = true;
2773   }
2774 
2775   unsigned Opc;
2776   if (SrcVT == MVT::i64) {
2777     if (Signed)
2778       Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
2779     else
2780       Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
2781   } else {
2782     if (Signed)
2783       Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
2784     else
2785       Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
2786   }
2787 
2788   unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
2789                                       SrcIsKill);
2790   updateValueMap(I, ResultReg);
2791   return true;
2792 }
2793 
fastLowerArguments()2794 bool AArch64FastISel::fastLowerArguments() {
2795   if (!FuncInfo.CanLowerReturn)
2796     return false;
2797 
2798   const Function *F = FuncInfo.Fn;
2799   if (F->isVarArg())
2800     return false;
2801 
2802   CallingConv::ID CC = F->getCallingConv();
2803   if (CC != CallingConv::C)
2804     return false;
2805 
2806   // Only handle simple cases of up to 8 GPR and FPR each.
2807   unsigned GPRCnt = 0;
2808   unsigned FPRCnt = 0;
2809   unsigned Idx = 0;
2810   for (auto const &Arg : F->args()) {
2811     // The first argument is at index 1.
2812     ++Idx;
2813     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2814         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2815         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2816         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2817       return false;
2818 
2819     Type *ArgTy = Arg.getType();
2820     if (ArgTy->isStructTy() || ArgTy->isArrayTy())
2821       return false;
2822 
2823     EVT ArgVT = TLI.getValueType(DL, ArgTy);
2824     if (!ArgVT.isSimple())
2825       return false;
2826 
2827     MVT VT = ArgVT.getSimpleVT().SimpleTy;
2828     if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
2829       return false;
2830 
2831     if (VT.isVector() &&
2832         (!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
2833       return false;
2834 
2835     if (VT >= MVT::i1 && VT <= MVT::i64)
2836       ++GPRCnt;
2837     else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
2838              VT.is128BitVector())
2839       ++FPRCnt;
2840     else
2841       return false;
2842 
2843     if (GPRCnt > 8 || FPRCnt > 8)
2844       return false;
2845   }
2846 
2847   static const MCPhysReg Registers[6][8] = {
2848     { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
2849       AArch64::W5, AArch64::W6, AArch64::W7 },
2850     { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
2851       AArch64::X5, AArch64::X6, AArch64::X7 },
2852     { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
2853       AArch64::H5, AArch64::H6, AArch64::H7 },
2854     { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
2855       AArch64::S5, AArch64::S6, AArch64::S7 },
2856     { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
2857       AArch64::D5, AArch64::D6, AArch64::D7 },
2858     { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
2859       AArch64::Q5, AArch64::Q6, AArch64::Q7 }
2860   };
2861 
2862   unsigned GPRIdx = 0;
2863   unsigned FPRIdx = 0;
2864   for (auto const &Arg : F->args()) {
2865     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
2866     unsigned SrcReg;
2867     const TargetRegisterClass *RC;
2868     if (VT >= MVT::i1 && VT <= MVT::i32) {
2869       SrcReg = Registers[0][GPRIdx++];
2870       RC = &AArch64::GPR32RegClass;
2871       VT = MVT::i32;
2872     } else if (VT == MVT::i64) {
2873       SrcReg = Registers[1][GPRIdx++];
2874       RC = &AArch64::GPR64RegClass;
2875     } else if (VT == MVT::f16) {
2876       SrcReg = Registers[2][FPRIdx++];
2877       RC = &AArch64::FPR16RegClass;
2878     } else if (VT ==  MVT::f32) {
2879       SrcReg = Registers[3][FPRIdx++];
2880       RC = &AArch64::FPR32RegClass;
2881     } else if ((VT == MVT::f64) || VT.is64BitVector()) {
2882       SrcReg = Registers[4][FPRIdx++];
2883       RC = &AArch64::FPR64RegClass;
2884     } else if (VT.is128BitVector()) {
2885       SrcReg = Registers[5][FPRIdx++];
2886       RC = &AArch64::FPR128RegClass;
2887     } else
2888       llvm_unreachable("Unexpected value type.");
2889 
2890     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2891     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2892     // Without this, EmitLiveInCopies may eliminate the livein if its only
2893     // use is a bitcast (which isn't turned into an instruction).
2894     unsigned ResultReg = createResultReg(RC);
2895     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2896             TII.get(TargetOpcode::COPY), ResultReg)
2897         .addReg(DstReg, getKillRegState(true));
2898     updateValueMap(&Arg, ResultReg);
2899   }
2900   return true;
2901 }
2902 
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)2903 bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
2904                                       SmallVectorImpl<MVT> &OutVTs,
2905                                       unsigned &NumBytes) {
2906   CallingConv::ID CC = CLI.CallConv;
2907   SmallVector<CCValAssign, 16> ArgLocs;
2908   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
2909   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
2910 
2911   // Get a count of how many bytes are to be pushed on the stack.
2912   NumBytes = CCInfo.getNextStackOffset();
2913 
2914   // Issue CALLSEQ_START
2915   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2916   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
2917     .addImm(NumBytes);
2918 
2919   // Process the args.
2920   for (CCValAssign &VA : ArgLocs) {
2921     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
2922     MVT ArgVT = OutVTs[VA.getValNo()];
2923 
2924     unsigned ArgReg = getRegForValue(ArgVal);
2925     if (!ArgReg)
2926       return false;
2927 
2928     // Handle arg promotion: SExt, ZExt, AExt.
2929     switch (VA.getLocInfo()) {
2930     case CCValAssign::Full:
2931       break;
2932     case CCValAssign::SExt: {
2933       MVT DestVT = VA.getLocVT();
2934       MVT SrcVT = ArgVT;
2935       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
2936       if (!ArgReg)
2937         return false;
2938       break;
2939     }
2940     case CCValAssign::AExt:
2941     // Intentional fall-through.
2942     case CCValAssign::ZExt: {
2943       MVT DestVT = VA.getLocVT();
2944       MVT SrcVT = ArgVT;
2945       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
2946       if (!ArgReg)
2947         return false;
2948       break;
2949     }
2950     default:
2951       llvm_unreachable("Unknown arg promotion!");
2952     }
2953 
2954     // Now copy/store arg to correct locations.
2955     if (VA.isRegLoc() && !VA.needsCustom()) {
2956       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2957               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
2958       CLI.OutRegs.push_back(VA.getLocReg());
2959     } else if (VA.needsCustom()) {
2960       // FIXME: Handle custom args.
2961       return false;
2962     } else {
2963       assert(VA.isMemLoc() && "Assuming store on stack.");
2964 
2965       // Don't emit stores for undef values.
2966       if (isa<UndefValue>(ArgVal))
2967         continue;
2968 
2969       // Need to store on the stack.
2970       unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
2971 
2972       unsigned BEAlign = 0;
2973       if (ArgSize < 8 && !Subtarget->isLittleEndian())
2974         BEAlign = 8 - ArgSize;
2975 
2976       Address Addr;
2977       Addr.setKind(Address::RegBase);
2978       Addr.setReg(AArch64::SP);
2979       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
2980 
2981       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
2982       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2983           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
2984           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
2985 
2986       if (!emitStore(ArgVT, ArgReg, Addr, MMO))
2987         return false;
2988     }
2989   }
2990   return true;
2991 }
2992 
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)2993 bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
2994                                  unsigned NumBytes) {
2995   CallingConv::ID CC = CLI.CallConv;
2996 
2997   // Issue CALLSEQ_END
2998   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2999   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3000     .addImm(NumBytes).addImm(0);
3001 
3002   // Now the return value.
3003   if (RetVT != MVT::isVoid) {
3004     SmallVector<CCValAssign, 16> RVLocs;
3005     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
3006     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
3007 
3008     // Only handle a single return value.
3009     if (RVLocs.size() != 1)
3010       return false;
3011 
3012     // Copy all of the result registers out of their specified physreg.
3013     MVT CopyVT = RVLocs[0].getValVT();
3014 
3015     // TODO: Handle big-endian results
3016     if (CopyVT.isVector() && !Subtarget->isLittleEndian())
3017       return false;
3018 
3019     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
3020     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3021             TII.get(TargetOpcode::COPY), ResultReg)
3022         .addReg(RVLocs[0].getLocReg());
3023     CLI.InRegs.push_back(RVLocs[0].getLocReg());
3024 
3025     CLI.ResultReg = ResultReg;
3026     CLI.NumResultRegs = 1;
3027   }
3028 
3029   return true;
3030 }
3031 
fastLowerCall(CallLoweringInfo & CLI)3032 bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3033   CallingConv::ID CC  = CLI.CallConv;
3034   bool IsTailCall     = CLI.IsTailCall;
3035   bool IsVarArg       = CLI.IsVarArg;
3036   const Value *Callee = CLI.Callee;
3037   MCSymbol *Symbol = CLI.Symbol;
3038 
3039   if (!Callee && !Symbol)
3040     return false;
3041 
3042   // Allow SelectionDAG isel to handle tail calls.
3043   if (IsTailCall)
3044     return false;
3045 
3046   CodeModel::Model CM = TM.getCodeModel();
3047   // Only support the small and large code model.
3048   if (CM != CodeModel::Small && CM != CodeModel::Large)
3049     return false;
3050 
3051   // FIXME: Add large code model support for ELF.
3052   if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
3053     return false;
3054 
3055   // Let SDISel handle vararg functions.
3056   if (IsVarArg)
3057     return false;
3058 
3059   // FIXME: Only handle *simple* calls for now.
3060   MVT RetVT;
3061   if (CLI.RetTy->isVoidTy())
3062     RetVT = MVT::isVoid;
3063   else if (!isTypeLegal(CLI.RetTy, RetVT))
3064     return false;
3065 
3066   for (auto Flag : CLI.OutFlags)
3067     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
3068       return false;
3069 
3070   // Set up the argument vectors.
3071   SmallVector<MVT, 16> OutVTs;
3072   OutVTs.reserve(CLI.OutVals.size());
3073 
3074   for (auto *Val : CLI.OutVals) {
3075     MVT VT;
3076     if (!isTypeLegal(Val->getType(), VT) &&
3077         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
3078       return false;
3079 
3080     // We don't handle vector parameters yet.
3081     if (VT.isVector() || VT.getSizeInBits() > 64)
3082       return false;
3083 
3084     OutVTs.push_back(VT);
3085   }
3086 
3087   Address Addr;
3088   if (Callee && !computeCallAddress(Callee, Addr))
3089     return false;
3090 
3091   // Handle the arguments now that we've gotten them.
3092   unsigned NumBytes;
3093   if (!processCallArgs(CLI, OutVTs, NumBytes))
3094     return false;
3095 
3096   // Issue the call.
3097   MachineInstrBuilder MIB;
3098   if (CM == CodeModel::Small) {
3099     const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
3100     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
3101     if (Symbol)
3102       MIB.addSym(Symbol, 0);
3103     else if (Addr.getGlobalValue())
3104       MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
3105     else if (Addr.getReg()) {
3106       unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
3107       MIB.addReg(Reg);
3108     } else
3109       return false;
3110   } else {
3111     unsigned CallReg = 0;
3112     if (Symbol) {
3113       unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
3114       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
3115               ADRPReg)
3116           .addSym(Symbol, AArch64II::MO_GOT | AArch64II::MO_PAGE);
3117 
3118       CallReg = createResultReg(&AArch64::GPR64RegClass);
3119       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3120               TII.get(AArch64::LDRXui), CallReg)
3121           .addReg(ADRPReg)
3122           .addSym(Symbol,
3123                   AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3124     } else if (Addr.getGlobalValue())
3125       CallReg = materializeGV(Addr.getGlobalValue());
3126     else if (Addr.getReg())
3127       CallReg = Addr.getReg();
3128 
3129     if (!CallReg)
3130       return false;
3131 
3132     const MCInstrDesc &II = TII.get(AArch64::BLR);
3133     CallReg = constrainOperandRegClass(II, CallReg, 0);
3134     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
3135   }
3136 
3137   // Add implicit physical register uses to the call.
3138   for (auto Reg : CLI.OutRegs)
3139     MIB.addReg(Reg, RegState::Implicit);
3140 
3141   // Add a register mask with the call-preserved registers.
3142   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3143   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3144 
3145   CLI.Call = MIB;
3146 
3147   // Finish off the call including any return values.
3148   return finishCall(CLI, RetVT, NumBytes);
3149 }
3150 
isMemCpySmall(uint64_t Len,unsigned Alignment)3151 bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
3152   if (Alignment)
3153     return Len / Alignment <= 4;
3154   else
3155     return Len < 32;
3156 }
3157 
tryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,unsigned Alignment)3158 bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
3159                                          uint64_t Len, unsigned Alignment) {
3160   // Make sure we don't bloat code by inlining very large memcpy's.
3161   if (!isMemCpySmall(Len, Alignment))
3162     return false;
3163 
3164   int64_t UnscaledOffset = 0;
3165   Address OrigDest = Dest;
3166   Address OrigSrc = Src;
3167 
3168   while (Len) {
3169     MVT VT;
3170     if (!Alignment || Alignment >= 8) {
3171       if (Len >= 8)
3172         VT = MVT::i64;
3173       else if (Len >= 4)
3174         VT = MVT::i32;
3175       else if (Len >= 2)
3176         VT = MVT::i16;
3177       else {
3178         VT = MVT::i8;
3179       }
3180     } else {
3181       // Bound based on alignment.
3182       if (Len >= 4 && Alignment == 4)
3183         VT = MVT::i32;
3184       else if (Len >= 2 && Alignment == 2)
3185         VT = MVT::i16;
3186       else {
3187         VT = MVT::i8;
3188       }
3189     }
3190 
3191     unsigned ResultReg = emitLoad(VT, VT, Src);
3192     if (!ResultReg)
3193       return false;
3194 
3195     if (!emitStore(VT, ResultReg, Dest))
3196       return false;
3197 
3198     int64_t Size = VT.getSizeInBits() / 8;
3199     Len -= Size;
3200     UnscaledOffset += Size;
3201 
3202     // We need to recompute the unscaled offset for each iteration.
3203     Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
3204     Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
3205   }
3206 
3207   return true;
3208 }
3209 
3210 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
3211 /// into the user. The condition code will only be updated on success.
foldXALUIntrinsic(AArch64CC::CondCode & CC,const Instruction * I,const Value * Cond)3212 bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
3213                                         const Instruction *I,
3214                                         const Value *Cond) {
3215   if (!isa<ExtractValueInst>(Cond))
3216     return false;
3217 
3218   const auto *EV = cast<ExtractValueInst>(Cond);
3219   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
3220     return false;
3221 
3222   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
3223   MVT RetVT;
3224   const Function *Callee = II->getCalledFunction();
3225   Type *RetTy =
3226   cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
3227   if (!isTypeLegal(RetTy, RetVT))
3228     return false;
3229 
3230   if (RetVT != MVT::i32 && RetVT != MVT::i64)
3231     return false;
3232 
3233   const Value *LHS = II->getArgOperand(0);
3234   const Value *RHS = II->getArgOperand(1);
3235 
3236   // Canonicalize immediate to the RHS.
3237   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
3238       isCommutativeIntrinsic(II))
3239     std::swap(LHS, RHS);
3240 
3241   // Simplify multiplies.
3242   Intrinsic::ID IID = II->getIntrinsicID();
3243   switch (IID) {
3244   default:
3245     break;
3246   case Intrinsic::smul_with_overflow:
3247     if (const auto *C = dyn_cast<ConstantInt>(RHS))
3248       if (C->getValue() == 2)
3249         IID = Intrinsic::sadd_with_overflow;
3250     break;
3251   case Intrinsic::umul_with_overflow:
3252     if (const auto *C = dyn_cast<ConstantInt>(RHS))
3253       if (C->getValue() == 2)
3254         IID = Intrinsic::uadd_with_overflow;
3255     break;
3256   }
3257 
3258   AArch64CC::CondCode TmpCC;
3259   switch (IID) {
3260   default:
3261     return false;
3262   case Intrinsic::sadd_with_overflow:
3263   case Intrinsic::ssub_with_overflow:
3264     TmpCC = AArch64CC::VS;
3265     break;
3266   case Intrinsic::uadd_with_overflow:
3267     TmpCC = AArch64CC::HS;
3268     break;
3269   case Intrinsic::usub_with_overflow:
3270     TmpCC = AArch64CC::LO;
3271     break;
3272   case Intrinsic::smul_with_overflow:
3273   case Intrinsic::umul_with_overflow:
3274     TmpCC = AArch64CC::NE;
3275     break;
3276   }
3277 
3278   // Check if both instructions are in the same basic block.
3279   if (!isValueAvailable(II))
3280     return false;
3281 
3282   // Make sure nothing is in the way
3283   BasicBlock::const_iterator Start(I);
3284   BasicBlock::const_iterator End(II);
3285   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
3286     // We only expect extractvalue instructions between the intrinsic and the
3287     // instruction to be selected.
3288     if (!isa<ExtractValueInst>(Itr))
3289       return false;
3290 
3291     // Check that the extractvalue operand comes from the intrinsic.
3292     const auto *EVI = cast<ExtractValueInst>(Itr);
3293     if (EVI->getAggregateOperand() != II)
3294       return false;
3295   }
3296 
3297   CC = TmpCC;
3298   return true;
3299 }
3300 
fastLowerIntrinsicCall(const IntrinsicInst * II)3301 bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
3302   // FIXME: Handle more intrinsics.
3303   switch (II->getIntrinsicID()) {
3304   default: return false;
3305   case Intrinsic::frameaddress: {
3306     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
3307     MFI->setFrameAddressIsTaken(true);
3308 
3309     const AArch64RegisterInfo *RegInfo =
3310         static_cast<const AArch64RegisterInfo *>(Subtarget->getRegisterInfo());
3311     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
3312     unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3313     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3314             TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
3315     // Recursively load frame address
3316     // ldr x0, [fp]
3317     // ldr x0, [x0]
3318     // ldr x0, [x0]
3319     // ...
3320     unsigned DestReg;
3321     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
3322     while (Depth--) {
3323       DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
3324                                 SrcReg, /*IsKill=*/true, 0);
3325       assert(DestReg && "Unexpected LDR instruction emission failure.");
3326       SrcReg = DestReg;
3327     }
3328 
3329     updateValueMap(II, SrcReg);
3330     return true;
3331   }
3332   case Intrinsic::memcpy:
3333   case Intrinsic::memmove: {
3334     const auto *MTI = cast<MemTransferInst>(II);
3335     // Don't handle volatile.
3336     if (MTI->isVolatile())
3337       return false;
3338 
3339     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
3340     // we would emit dead code because we don't currently handle memmoves.
3341     bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
3342     if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
3343       // Small memcpy's are common enough that we want to do them without a call
3344       // if possible.
3345       uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
3346       unsigned Alignment = MTI->getAlignment();
3347       if (isMemCpySmall(Len, Alignment)) {
3348         Address Dest, Src;
3349         if (!computeAddress(MTI->getRawDest(), Dest) ||
3350             !computeAddress(MTI->getRawSource(), Src))
3351           return false;
3352         if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
3353           return true;
3354       }
3355     }
3356 
3357     if (!MTI->getLength()->getType()->isIntegerTy(64))
3358       return false;
3359 
3360     if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
3361       // Fast instruction selection doesn't support the special
3362       // address spaces.
3363       return false;
3364 
3365     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
3366     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
3367   }
3368   case Intrinsic::memset: {
3369     const MemSetInst *MSI = cast<MemSetInst>(II);
3370     // Don't handle volatile.
3371     if (MSI->isVolatile())
3372       return false;
3373 
3374     if (!MSI->getLength()->getType()->isIntegerTy(64))
3375       return false;
3376 
3377     if (MSI->getDestAddressSpace() > 255)
3378       // Fast instruction selection doesn't support the special
3379       // address spaces.
3380       return false;
3381 
3382     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
3383   }
3384   case Intrinsic::sin:
3385   case Intrinsic::cos:
3386   case Intrinsic::pow: {
3387     MVT RetVT;
3388     if (!isTypeLegal(II->getType(), RetVT))
3389       return false;
3390 
3391     if (RetVT != MVT::f32 && RetVT != MVT::f64)
3392       return false;
3393 
3394     static const RTLIB::Libcall LibCallTable[3][2] = {
3395       { RTLIB::SIN_F32, RTLIB::SIN_F64 },
3396       { RTLIB::COS_F32, RTLIB::COS_F64 },
3397       { RTLIB::POW_F32, RTLIB::POW_F64 }
3398     };
3399     RTLIB::Libcall LC;
3400     bool Is64Bit = RetVT == MVT::f64;
3401     switch (II->getIntrinsicID()) {
3402     default:
3403       llvm_unreachable("Unexpected intrinsic.");
3404     case Intrinsic::sin:
3405       LC = LibCallTable[0][Is64Bit];
3406       break;
3407     case Intrinsic::cos:
3408       LC = LibCallTable[1][Is64Bit];
3409       break;
3410     case Intrinsic::pow:
3411       LC = LibCallTable[2][Is64Bit];
3412       break;
3413     }
3414 
3415     ArgListTy Args;
3416     Args.reserve(II->getNumArgOperands());
3417 
3418     // Populate the argument list.
3419     for (auto &Arg : II->arg_operands()) {
3420       ArgListEntry Entry;
3421       Entry.Val = Arg;
3422       Entry.Ty = Arg->getType();
3423       Args.push_back(Entry);
3424     }
3425 
3426     CallLoweringInfo CLI;
3427     MCContext &Ctx = MF->getContext();
3428     CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), II->getType(),
3429                   TLI.getLibcallName(LC), std::move(Args));
3430     if (!lowerCallTo(CLI))
3431       return false;
3432     updateValueMap(II, CLI.ResultReg);
3433     return true;
3434   }
3435   case Intrinsic::fabs: {
3436     MVT VT;
3437     if (!isTypeLegal(II->getType(), VT))
3438       return false;
3439 
3440     unsigned Opc;
3441     switch (VT.SimpleTy) {
3442     default:
3443       return false;
3444     case MVT::f32:
3445       Opc = AArch64::FABSSr;
3446       break;
3447     case MVT::f64:
3448       Opc = AArch64::FABSDr;
3449       break;
3450     }
3451     unsigned SrcReg = getRegForValue(II->getOperand(0));
3452     if (!SrcReg)
3453       return false;
3454     bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
3455     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3456     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3457       .addReg(SrcReg, getKillRegState(SrcRegIsKill));
3458     updateValueMap(II, ResultReg);
3459     return true;
3460   }
3461   case Intrinsic::trap: {
3462     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
3463         .addImm(1);
3464     return true;
3465   }
3466   case Intrinsic::sqrt: {
3467     Type *RetTy = II->getCalledFunction()->getReturnType();
3468 
3469     MVT VT;
3470     if (!isTypeLegal(RetTy, VT))
3471       return false;
3472 
3473     unsigned Op0Reg = getRegForValue(II->getOperand(0));
3474     if (!Op0Reg)
3475       return false;
3476     bool Op0IsKill = hasTrivialKill(II->getOperand(0));
3477 
3478     unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
3479     if (!ResultReg)
3480       return false;
3481 
3482     updateValueMap(II, ResultReg);
3483     return true;
3484   }
3485   case Intrinsic::sadd_with_overflow:
3486   case Intrinsic::uadd_with_overflow:
3487   case Intrinsic::ssub_with_overflow:
3488   case Intrinsic::usub_with_overflow:
3489   case Intrinsic::smul_with_overflow:
3490   case Intrinsic::umul_with_overflow: {
3491     // This implements the basic lowering of the xalu with overflow intrinsics.
3492     const Function *Callee = II->getCalledFunction();
3493     auto *Ty = cast<StructType>(Callee->getReturnType());
3494     Type *RetTy = Ty->getTypeAtIndex(0U);
3495 
3496     MVT VT;
3497     if (!isTypeLegal(RetTy, VT))
3498       return false;
3499 
3500     if (VT != MVT::i32 && VT != MVT::i64)
3501       return false;
3502 
3503     const Value *LHS = II->getArgOperand(0);
3504     const Value *RHS = II->getArgOperand(1);
3505     // Canonicalize immediate to the RHS.
3506     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
3507         isCommutativeIntrinsic(II))
3508       std::swap(LHS, RHS);
3509 
3510     // Simplify multiplies.
3511     Intrinsic::ID IID = II->getIntrinsicID();
3512     switch (IID) {
3513     default:
3514       break;
3515     case Intrinsic::smul_with_overflow:
3516       if (const auto *C = dyn_cast<ConstantInt>(RHS))
3517         if (C->getValue() == 2) {
3518           IID = Intrinsic::sadd_with_overflow;
3519           RHS = LHS;
3520         }
3521       break;
3522     case Intrinsic::umul_with_overflow:
3523       if (const auto *C = dyn_cast<ConstantInt>(RHS))
3524         if (C->getValue() == 2) {
3525           IID = Intrinsic::uadd_with_overflow;
3526           RHS = LHS;
3527         }
3528       break;
3529     }
3530 
3531     unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
3532     AArch64CC::CondCode CC = AArch64CC::Invalid;
3533     switch (IID) {
3534     default: llvm_unreachable("Unexpected intrinsic!");
3535     case Intrinsic::sadd_with_overflow:
3536       ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
3537       CC = AArch64CC::VS;
3538       break;
3539     case Intrinsic::uadd_with_overflow:
3540       ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
3541       CC = AArch64CC::HS;
3542       break;
3543     case Intrinsic::ssub_with_overflow:
3544       ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
3545       CC = AArch64CC::VS;
3546       break;
3547     case Intrinsic::usub_with_overflow:
3548       ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
3549       CC = AArch64CC::LO;
3550       break;
3551     case Intrinsic::smul_with_overflow: {
3552       CC = AArch64CC::NE;
3553       unsigned LHSReg = getRegForValue(LHS);
3554       if (!LHSReg)
3555         return false;
3556       bool LHSIsKill = hasTrivialKill(LHS);
3557 
3558       unsigned RHSReg = getRegForValue(RHS);
3559       if (!RHSReg)
3560         return false;
3561       bool RHSIsKill = hasTrivialKill(RHS);
3562 
3563       if (VT == MVT::i32) {
3564         MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
3565         unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
3566                                        /*IsKill=*/false, 32);
3567         MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
3568                                             AArch64::sub_32);
3569         ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
3570                                               AArch64::sub_32);
3571         emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
3572                     AArch64_AM::ASR, 31, /*WantResult=*/false);
3573       } else {
3574         assert(VT == MVT::i64 && "Unexpected value type.");
3575         // LHSReg and RHSReg cannot be killed by this Mul, since they are
3576         // reused in the next instruction.
3577         MulReg = emitMul_rr(VT, LHSReg, /*IsKill=*/false, RHSReg,
3578                             /*IsKill=*/false);
3579         unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
3580                                         RHSReg, RHSIsKill);
3581         emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
3582                     AArch64_AM::ASR, 63, /*WantResult=*/false);
3583       }
3584       break;
3585     }
3586     case Intrinsic::umul_with_overflow: {
3587       CC = AArch64CC::NE;
3588       unsigned LHSReg = getRegForValue(LHS);
3589       if (!LHSReg)
3590         return false;
3591       bool LHSIsKill = hasTrivialKill(LHS);
3592 
3593       unsigned RHSReg = getRegForValue(RHS);
3594       if (!RHSReg)
3595         return false;
3596       bool RHSIsKill = hasTrivialKill(RHS);
3597 
3598       if (VT == MVT::i32) {
3599         MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
3600         emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
3601                     /*IsKill=*/false, AArch64_AM::LSR, 32,
3602                     /*WantResult=*/false);
3603         MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
3604                                             AArch64::sub_32);
3605       } else {
3606         assert(VT == MVT::i64 && "Unexpected value type.");
3607         // LHSReg and RHSReg cannot be killed by this Mul, since they are
3608         // reused in the next instruction.
3609         MulReg = emitMul_rr(VT, LHSReg, /*IsKill=*/false, RHSReg,
3610                             /*IsKill=*/false);
3611         unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
3612                                         RHSReg, RHSIsKill);
3613         emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
3614                     /*IsKill=*/false, /*WantResult=*/false);
3615       }
3616       break;
3617     }
3618     }
3619 
3620     if (MulReg) {
3621       ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
3622       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3623               TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
3624     }
3625 
3626     ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
3627                                   AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
3628                                   /*IsKill=*/true, getInvertedCondCode(CC));
3629     (void)ResultReg2;
3630     assert((ResultReg1 + 1) == ResultReg2 &&
3631            "Nonconsecutive result registers.");
3632     updateValueMap(II, ResultReg1, 2);
3633     return true;
3634   }
3635   }
3636   return false;
3637 }
3638 
selectRet(const Instruction * I)3639 bool AArch64FastISel::selectRet(const Instruction *I) {
3640   const ReturnInst *Ret = cast<ReturnInst>(I);
3641   const Function &F = *I->getParent()->getParent();
3642 
3643   if (!FuncInfo.CanLowerReturn)
3644     return false;
3645 
3646   if (F.isVarArg())
3647     return false;
3648 
3649   if (TLI.supportSplitCSR(FuncInfo.MF))
3650     return false;
3651 
3652   // Build a list of return value registers.
3653   SmallVector<unsigned, 4> RetRegs;
3654 
3655   if (Ret->getNumOperands() > 0) {
3656     CallingConv::ID CC = F.getCallingConv();
3657     SmallVector<ISD::OutputArg, 4> Outs;
3658     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
3659 
3660     // Analyze operands of the call, assigning locations to each operand.
3661     SmallVector<CCValAssign, 16> ValLocs;
3662     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
3663     CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
3664                                                      : RetCC_AArch64_AAPCS;
3665     CCInfo.AnalyzeReturn(Outs, RetCC);
3666 
3667     // Only handle a single return value for now.
3668     if (ValLocs.size() != 1)
3669       return false;
3670 
3671     CCValAssign &VA = ValLocs[0];
3672     const Value *RV = Ret->getOperand(0);
3673 
3674     // Don't bother handling odd stuff for now.
3675     if ((VA.getLocInfo() != CCValAssign::Full) &&
3676         (VA.getLocInfo() != CCValAssign::BCvt))
3677       return false;
3678 
3679     // Only handle register returns for now.
3680     if (!VA.isRegLoc())
3681       return false;
3682 
3683     unsigned Reg = getRegForValue(RV);
3684     if (Reg == 0)
3685       return false;
3686 
3687     unsigned SrcReg = Reg + VA.getValNo();
3688     unsigned DestReg = VA.getLocReg();
3689     // Avoid a cross-class copy. This is very unlikely.
3690     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
3691       return false;
3692 
3693     EVT RVEVT = TLI.getValueType(DL, RV->getType());
3694     if (!RVEVT.isSimple())
3695       return false;
3696 
3697     // Vectors (of > 1 lane) in big endian need tricky handling.
3698     if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
3699         !Subtarget->isLittleEndian())
3700       return false;
3701 
3702     MVT RVVT = RVEVT.getSimpleVT();
3703     if (RVVT == MVT::f128)
3704       return false;
3705 
3706     MVT DestVT = VA.getValVT();
3707     // Special handling for extended integers.
3708     if (RVVT != DestVT) {
3709       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
3710         return false;
3711 
3712       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
3713         return false;
3714 
3715       bool IsZExt = Outs[0].Flags.isZExt();
3716       SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
3717       if (SrcReg == 0)
3718         return false;
3719     }
3720 
3721     // Make the copy.
3722     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3723             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
3724 
3725     // Add register to return instruction.
3726     RetRegs.push_back(VA.getLocReg());
3727   }
3728 
3729   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3730                                     TII.get(AArch64::RET_ReallyLR));
3731   for (unsigned RetReg : RetRegs)
3732     MIB.addReg(RetReg, RegState::Implicit);
3733   return true;
3734 }
3735 
selectTrunc(const Instruction * I)3736 bool AArch64FastISel::selectTrunc(const Instruction *I) {
3737   Type *DestTy = I->getType();
3738   Value *Op = I->getOperand(0);
3739   Type *SrcTy = Op->getType();
3740 
3741   EVT SrcEVT = TLI.getValueType(DL, SrcTy, true);
3742   EVT DestEVT = TLI.getValueType(DL, DestTy, true);
3743   if (!SrcEVT.isSimple())
3744     return false;
3745   if (!DestEVT.isSimple())
3746     return false;
3747 
3748   MVT SrcVT = SrcEVT.getSimpleVT();
3749   MVT DestVT = DestEVT.getSimpleVT();
3750 
3751   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
3752       SrcVT != MVT::i8)
3753     return false;
3754   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
3755       DestVT != MVT::i1)
3756     return false;
3757 
3758   unsigned SrcReg = getRegForValue(Op);
3759   if (!SrcReg)
3760     return false;
3761   bool SrcIsKill = hasTrivialKill(Op);
3762 
3763   // If we're truncating from i64 to a smaller non-legal type then generate an
3764   // AND. Otherwise, we know the high bits are undefined and a truncate only
3765   // generate a COPY. We cannot mark the source register also as result
3766   // register, because this can incorrectly transfer the kill flag onto the
3767   // source register.
3768   unsigned ResultReg;
3769   if (SrcVT == MVT::i64) {
3770     uint64_t Mask = 0;
3771     switch (DestVT.SimpleTy) {
3772     default:
3773       // Trunc i64 to i32 is handled by the target-independent fast-isel.
3774       return false;
3775     case MVT::i1:
3776       Mask = 0x1;
3777       break;
3778     case MVT::i8:
3779       Mask = 0xff;
3780       break;
3781     case MVT::i16:
3782       Mask = 0xffff;
3783       break;
3784     }
3785     // Issue an extract_subreg to get the lower 32-bits.
3786     unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
3787                                                 AArch64::sub_32);
3788     // Create the AND instruction which performs the actual truncation.
3789     ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
3790     assert(ResultReg && "Unexpected AND instruction emission failure.");
3791   } else {
3792     ResultReg = createResultReg(&AArch64::GPR32RegClass);
3793     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3794             TII.get(TargetOpcode::COPY), ResultReg)
3795         .addReg(SrcReg, getKillRegState(SrcIsKill));
3796   }
3797 
3798   updateValueMap(I, ResultReg);
3799   return true;
3800 }
3801 
emiti1Ext(unsigned SrcReg,MVT DestVT,bool IsZExt)3802 unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
3803   assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
3804           DestVT == MVT::i64) &&
3805          "Unexpected value type.");
3806   // Handle i8 and i16 as i32.
3807   if (DestVT == MVT::i8 || DestVT == MVT::i16)
3808     DestVT = MVT::i32;
3809 
3810   if (IsZExt) {
3811     unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
3812     assert(ResultReg && "Unexpected AND instruction emission failure.");
3813     if (DestVT == MVT::i64) {
3814       // We're ZExt i1 to i64.  The ANDWri Wd, Ws, #1 implicitly clears the
3815       // upper 32 bits.  Emit a SUBREG_TO_REG to extend from Wd to Xd.
3816       unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3817       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3818               TII.get(AArch64::SUBREG_TO_REG), Reg64)
3819           .addImm(0)
3820           .addReg(ResultReg)
3821           .addImm(AArch64::sub_32);
3822       ResultReg = Reg64;
3823     }
3824     return ResultReg;
3825   } else {
3826     if (DestVT == MVT::i64) {
3827       // FIXME: We're SExt i1 to i64.
3828       return 0;
3829     }
3830     return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
3831                             /*TODO:IsKill=*/false, 0, 0);
3832   }
3833 }
3834 
emitMul_rr(MVT RetVT,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)3835 unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
3836                                       unsigned Op1, bool Op1IsKill) {
3837   unsigned Opc, ZReg;
3838   switch (RetVT.SimpleTy) {
3839   default: return 0;
3840   case MVT::i8:
3841   case MVT::i16:
3842   case MVT::i32:
3843     RetVT = MVT::i32;
3844     Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
3845   case MVT::i64:
3846     Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
3847   }
3848 
3849   const TargetRegisterClass *RC =
3850       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3851   return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
3852                           /*IsKill=*/ZReg, true);
3853 }
3854 
emitSMULL_rr(MVT RetVT,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)3855 unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
3856                                         unsigned Op1, bool Op1IsKill) {
3857   if (RetVT != MVT::i64)
3858     return 0;
3859 
3860   return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
3861                           Op0, Op0IsKill, Op1, Op1IsKill,
3862                           AArch64::XZR, /*IsKill=*/true);
3863 }
3864 
emitUMULL_rr(MVT RetVT,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)3865 unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
3866                                         unsigned Op1, bool Op1IsKill) {
3867   if (RetVT != MVT::i64)
3868     return 0;
3869 
3870   return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
3871                           Op0, Op0IsKill, Op1, Op1IsKill,
3872                           AArch64::XZR, /*IsKill=*/true);
3873 }
3874 
emitLSL_rr(MVT RetVT,unsigned Op0Reg,bool Op0IsKill,unsigned Op1Reg,bool Op1IsKill)3875 unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
3876                                      unsigned Op1Reg, bool Op1IsKill) {
3877   unsigned Opc = 0;
3878   bool NeedTrunc = false;
3879   uint64_t Mask = 0;
3880   switch (RetVT.SimpleTy) {
3881   default: return 0;
3882   case MVT::i8:  Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff;   break;
3883   case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
3884   case MVT::i32: Opc = AArch64::LSLVWr;                                  break;
3885   case MVT::i64: Opc = AArch64::LSLVXr;                                  break;
3886   }
3887 
3888   const TargetRegisterClass *RC =
3889       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3890   if (NeedTrunc) {
3891     Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
3892     Op1IsKill = true;
3893   }
3894   unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
3895                                        Op1IsKill);
3896   if (NeedTrunc)
3897     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
3898   return ResultReg;
3899 }
3900 
emitLSL_ri(MVT RetVT,MVT SrcVT,unsigned Op0,bool Op0IsKill,uint64_t Shift,bool IsZExt)3901 unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
3902                                      bool Op0IsKill, uint64_t Shift,
3903                                      bool IsZExt) {
3904   assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
3905          "Unexpected source/return type pair.");
3906   assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
3907           SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
3908          "Unexpected source value type.");
3909   assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
3910           RetVT == MVT::i64) && "Unexpected return value type.");
3911 
3912   bool Is64Bit = (RetVT == MVT::i64);
3913   unsigned RegSize = Is64Bit ? 64 : 32;
3914   unsigned DstBits = RetVT.getSizeInBits();
3915   unsigned SrcBits = SrcVT.getSizeInBits();
3916   const TargetRegisterClass *RC =
3917       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3918 
3919   // Just emit a copy for "zero" shifts.
3920   if (Shift == 0) {
3921     if (RetVT == SrcVT) {
3922       unsigned ResultReg = createResultReg(RC);
3923       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3924               TII.get(TargetOpcode::COPY), ResultReg)
3925           .addReg(Op0, getKillRegState(Op0IsKill));
3926       return ResultReg;
3927     } else
3928       return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
3929   }
3930 
3931   // Don't deal with undefined shifts.
3932   if (Shift >= DstBits)
3933     return 0;
3934 
3935   // For immediate shifts we can fold the zero-/sign-extension into the shift.
3936   // {S|U}BFM Wd, Wn, #r, #s
3937   // Wd<32+s-r,32-r> = Wn<s:0> when r > s
3938 
3939   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
3940   // %2 = shl i16 %1, 4
3941   // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
3942   // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
3943   // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
3944   // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
3945 
3946   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
3947   // %2 = shl i16 %1, 8
3948   // Wd<32+7-24,32-24> = Wn<7:0>
3949   // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
3950   // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
3951   // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
3952 
3953   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
3954   // %2 = shl i16 %1, 12
3955   // Wd<32+3-20,32-20> = Wn<3:0>
3956   // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
3957   // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
3958   // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
3959 
3960   unsigned ImmR = RegSize - Shift;
3961   // Limit the width to the length of the source type.
3962   unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
3963   static const unsigned OpcTable[2][2] = {
3964     {AArch64::SBFMWri, AArch64::SBFMXri},
3965     {AArch64::UBFMWri, AArch64::UBFMXri}
3966   };
3967   unsigned Opc = OpcTable[IsZExt][Is64Bit];
3968   if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
3969     unsigned TmpReg = MRI.createVirtualRegister(RC);
3970     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3971             TII.get(AArch64::SUBREG_TO_REG), TmpReg)
3972         .addImm(0)
3973         .addReg(Op0, getKillRegState(Op0IsKill))
3974         .addImm(AArch64::sub_32);
3975     Op0 = TmpReg;
3976     Op0IsKill = true;
3977   }
3978   return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
3979 }
3980 
emitLSR_rr(MVT RetVT,unsigned Op0Reg,bool Op0IsKill,unsigned Op1Reg,bool Op1IsKill)3981 unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
3982                                      unsigned Op1Reg, bool Op1IsKill) {
3983   unsigned Opc = 0;
3984   bool NeedTrunc = false;
3985   uint64_t Mask = 0;
3986   switch (RetVT.SimpleTy) {
3987   default: return 0;
3988   case MVT::i8:  Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff;   break;
3989   case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
3990   case MVT::i32: Opc = AArch64::LSRVWr; break;
3991   case MVT::i64: Opc = AArch64::LSRVXr; break;
3992   }
3993 
3994   const TargetRegisterClass *RC =
3995       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
3996   if (NeedTrunc) {
3997     Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
3998     Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
3999     Op0IsKill = Op1IsKill = true;
4000   }
4001   unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
4002                                        Op1IsKill);
4003   if (NeedTrunc)
4004     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
4005   return ResultReg;
4006 }
4007 
emitLSR_ri(MVT RetVT,MVT SrcVT,unsigned Op0,bool Op0IsKill,uint64_t Shift,bool IsZExt)4008 unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
4009                                      bool Op0IsKill, uint64_t Shift,
4010                                      bool IsZExt) {
4011   assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
4012          "Unexpected source/return type pair.");
4013   assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
4014           SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
4015          "Unexpected source value type.");
4016   assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
4017           RetVT == MVT::i64) && "Unexpected return value type.");
4018 
4019   bool Is64Bit = (RetVT == MVT::i64);
4020   unsigned RegSize = Is64Bit ? 64 : 32;
4021   unsigned DstBits = RetVT.getSizeInBits();
4022   unsigned SrcBits = SrcVT.getSizeInBits();
4023   const TargetRegisterClass *RC =
4024       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4025 
4026   // Just emit a copy for "zero" shifts.
4027   if (Shift == 0) {
4028     if (RetVT == SrcVT) {
4029       unsigned ResultReg = createResultReg(RC);
4030       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4031               TII.get(TargetOpcode::COPY), ResultReg)
4032       .addReg(Op0, getKillRegState(Op0IsKill));
4033       return ResultReg;
4034     } else
4035       return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
4036   }
4037 
4038   // Don't deal with undefined shifts.
4039   if (Shift >= DstBits)
4040     return 0;
4041 
4042   // For immediate shifts we can fold the zero-/sign-extension into the shift.
4043   // {S|U}BFM Wd, Wn, #r, #s
4044   // Wd<s-r:0> = Wn<s:r> when r <= s
4045 
4046   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4047   // %2 = lshr i16 %1, 4
4048   // Wd<7-4:0> = Wn<7:4>
4049   // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
4050   // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
4051   // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
4052 
4053   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4054   // %2 = lshr i16 %1, 8
4055   // Wd<7-7,0> = Wn<7:7>
4056   // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
4057   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4058   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4059 
4060   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4061   // %2 = lshr i16 %1, 12
4062   // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
4063   // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
4064   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4065   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4066 
4067   if (Shift >= SrcBits && IsZExt)
4068     return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
4069 
4070   // It is not possible to fold a sign-extend into the LShr instruction. In this
4071   // case emit a sign-extend.
4072   if (!IsZExt) {
4073     Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
4074     if (!Op0)
4075       return 0;
4076     Op0IsKill = true;
4077     SrcVT = RetVT;
4078     SrcBits = SrcVT.getSizeInBits();
4079     IsZExt = true;
4080   }
4081 
4082   unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
4083   unsigned ImmS = SrcBits - 1;
4084   static const unsigned OpcTable[2][2] = {
4085     {AArch64::SBFMWri, AArch64::SBFMXri},
4086     {AArch64::UBFMWri, AArch64::UBFMXri}
4087   };
4088   unsigned Opc = OpcTable[IsZExt][Is64Bit];
4089   if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
4090     unsigned TmpReg = MRI.createVirtualRegister(RC);
4091     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4092             TII.get(AArch64::SUBREG_TO_REG), TmpReg)
4093         .addImm(0)
4094         .addReg(Op0, getKillRegState(Op0IsKill))
4095         .addImm(AArch64::sub_32);
4096     Op0 = TmpReg;
4097     Op0IsKill = true;
4098   }
4099   return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
4100 }
4101 
emitASR_rr(MVT RetVT,unsigned Op0Reg,bool Op0IsKill,unsigned Op1Reg,bool Op1IsKill)4102 unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
4103                                      unsigned Op1Reg, bool Op1IsKill) {
4104   unsigned Opc = 0;
4105   bool NeedTrunc = false;
4106   uint64_t Mask = 0;
4107   switch (RetVT.SimpleTy) {
4108   default: return 0;
4109   case MVT::i8:  Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff;   break;
4110   case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
4111   case MVT::i32: Opc = AArch64::ASRVWr;                                  break;
4112   case MVT::i64: Opc = AArch64::ASRVXr;                                  break;
4113   }
4114 
4115   const TargetRegisterClass *RC =
4116       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4117   if (NeedTrunc) {
4118     Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*IsZExt=*/false);
4119     Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
4120     Op0IsKill = Op1IsKill = true;
4121   }
4122   unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
4123                                        Op1IsKill);
4124   if (NeedTrunc)
4125     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
4126   return ResultReg;
4127 }
4128 
emitASR_ri(MVT RetVT,MVT SrcVT,unsigned Op0,bool Op0IsKill,uint64_t Shift,bool IsZExt)4129 unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
4130                                      bool Op0IsKill, uint64_t Shift,
4131                                      bool IsZExt) {
4132   assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
4133          "Unexpected source/return type pair.");
4134   assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
4135           SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
4136          "Unexpected source value type.");
4137   assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
4138           RetVT == MVT::i64) && "Unexpected return value type.");
4139 
4140   bool Is64Bit = (RetVT == MVT::i64);
4141   unsigned RegSize = Is64Bit ? 64 : 32;
4142   unsigned DstBits = RetVT.getSizeInBits();
4143   unsigned SrcBits = SrcVT.getSizeInBits();
4144   const TargetRegisterClass *RC =
4145       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4146 
4147   // Just emit a copy for "zero" shifts.
4148   if (Shift == 0) {
4149     if (RetVT == SrcVT) {
4150       unsigned ResultReg = createResultReg(RC);
4151       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4152               TII.get(TargetOpcode::COPY), ResultReg)
4153       .addReg(Op0, getKillRegState(Op0IsKill));
4154       return ResultReg;
4155     } else
4156       return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
4157   }
4158 
4159   // Don't deal with undefined shifts.
4160   if (Shift >= DstBits)
4161     return 0;
4162 
4163   // For immediate shifts we can fold the zero-/sign-extension into the shift.
4164   // {S|U}BFM Wd, Wn, #r, #s
4165   // Wd<s-r:0> = Wn<s:r> when r <= s
4166 
4167   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4168   // %2 = ashr i16 %1, 4
4169   // Wd<7-4:0> = Wn<7:4>
4170   // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
4171   // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
4172   // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
4173 
4174   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4175   // %2 = ashr i16 %1, 8
4176   // Wd<7-7,0> = Wn<7:7>
4177   // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
4178   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4179   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4180 
4181   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
4182   // %2 = ashr i16 %1, 12
4183   // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
4184   // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
4185   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
4186   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
4187 
4188   if (Shift >= SrcBits && IsZExt)
4189     return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
4190 
4191   unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
4192   unsigned ImmS = SrcBits - 1;
4193   static const unsigned OpcTable[2][2] = {
4194     {AArch64::SBFMWri, AArch64::SBFMXri},
4195     {AArch64::UBFMWri, AArch64::UBFMXri}
4196   };
4197   unsigned Opc = OpcTable[IsZExt][Is64Bit];
4198   if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
4199     unsigned TmpReg = MRI.createVirtualRegister(RC);
4200     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4201             TII.get(AArch64::SUBREG_TO_REG), TmpReg)
4202         .addImm(0)
4203         .addReg(Op0, getKillRegState(Op0IsKill))
4204         .addImm(AArch64::sub_32);
4205     Op0 = TmpReg;
4206     Op0IsKill = true;
4207   }
4208   return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
4209 }
4210 
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool IsZExt)4211 unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
4212                                      bool IsZExt) {
4213   assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
4214 
4215   // FastISel does not have plumbing to deal with extensions where the SrcVT or
4216   // DestVT are odd things, so test to make sure that they are both types we can
4217   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
4218   // bail out to SelectionDAG.
4219   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
4220        (DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
4221       ((SrcVT !=  MVT::i1) && (SrcVT !=  MVT::i8) &&
4222        (SrcVT !=  MVT::i16) && (SrcVT !=  MVT::i32)))
4223     return 0;
4224 
4225   unsigned Opc;
4226   unsigned Imm = 0;
4227 
4228   switch (SrcVT.SimpleTy) {
4229   default:
4230     return 0;
4231   case MVT::i1:
4232     return emiti1Ext(SrcReg, DestVT, IsZExt);
4233   case MVT::i8:
4234     if (DestVT == MVT::i64)
4235       Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
4236     else
4237       Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
4238     Imm = 7;
4239     break;
4240   case MVT::i16:
4241     if (DestVT == MVT::i64)
4242       Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
4243     else
4244       Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
4245     Imm = 15;
4246     break;
4247   case MVT::i32:
4248     assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
4249     Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
4250     Imm = 31;
4251     break;
4252   }
4253 
4254   // Handle i8 and i16 as i32.
4255   if (DestVT == MVT::i8 || DestVT == MVT::i16)
4256     DestVT = MVT::i32;
4257   else if (DestVT == MVT::i64) {
4258     unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
4259     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4260             TII.get(AArch64::SUBREG_TO_REG), Src64)
4261         .addImm(0)
4262         .addReg(SrcReg)
4263         .addImm(AArch64::sub_32);
4264     SrcReg = Src64;
4265   }
4266 
4267   const TargetRegisterClass *RC =
4268       (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4269   return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
4270 }
4271 
isZExtLoad(const MachineInstr * LI)4272 static bool isZExtLoad(const MachineInstr *LI) {
4273   switch (LI->getOpcode()) {
4274   default:
4275     return false;
4276   case AArch64::LDURBBi:
4277   case AArch64::LDURHHi:
4278   case AArch64::LDURWi:
4279   case AArch64::LDRBBui:
4280   case AArch64::LDRHHui:
4281   case AArch64::LDRWui:
4282   case AArch64::LDRBBroX:
4283   case AArch64::LDRHHroX:
4284   case AArch64::LDRWroX:
4285   case AArch64::LDRBBroW:
4286   case AArch64::LDRHHroW:
4287   case AArch64::LDRWroW:
4288     return true;
4289   }
4290 }
4291 
isSExtLoad(const MachineInstr * LI)4292 static bool isSExtLoad(const MachineInstr *LI) {
4293   switch (LI->getOpcode()) {
4294   default:
4295     return false;
4296   case AArch64::LDURSBWi:
4297   case AArch64::LDURSHWi:
4298   case AArch64::LDURSBXi:
4299   case AArch64::LDURSHXi:
4300   case AArch64::LDURSWi:
4301   case AArch64::LDRSBWui:
4302   case AArch64::LDRSHWui:
4303   case AArch64::LDRSBXui:
4304   case AArch64::LDRSHXui:
4305   case AArch64::LDRSWui:
4306   case AArch64::LDRSBWroX:
4307   case AArch64::LDRSHWroX:
4308   case AArch64::LDRSBXroX:
4309   case AArch64::LDRSHXroX:
4310   case AArch64::LDRSWroX:
4311   case AArch64::LDRSBWroW:
4312   case AArch64::LDRSHWroW:
4313   case AArch64::LDRSBXroW:
4314   case AArch64::LDRSHXroW:
4315   case AArch64::LDRSWroW:
4316     return true;
4317   }
4318 }
4319 
optimizeIntExtLoad(const Instruction * I,MVT RetVT,MVT SrcVT)4320 bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
4321                                          MVT SrcVT) {
4322   const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
4323   if (!LI || !LI->hasOneUse())
4324     return false;
4325 
4326   // Check if the load instruction has already been selected.
4327   unsigned Reg = lookUpRegForValue(LI);
4328   if (!Reg)
4329     return false;
4330 
4331   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
4332   if (!MI)
4333     return false;
4334 
4335   // Check if the correct load instruction has been emitted - SelectionDAG might
4336   // have emitted a zero-extending load, but we need a sign-extending load.
4337   bool IsZExt = isa<ZExtInst>(I);
4338   const auto *LoadMI = MI;
4339   if (LoadMI->getOpcode() == TargetOpcode::COPY &&
4340       LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
4341     unsigned LoadReg = MI->getOperand(1).getReg();
4342     LoadMI = MRI.getUniqueVRegDef(LoadReg);
4343     assert(LoadMI && "Expected valid instruction");
4344   }
4345   if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
4346     return false;
4347 
4348   // Nothing to be done.
4349   if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
4350     updateValueMap(I, Reg);
4351     return true;
4352   }
4353 
4354   if (IsZExt) {
4355     unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
4356     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4357             TII.get(AArch64::SUBREG_TO_REG), Reg64)
4358         .addImm(0)
4359         .addReg(Reg, getKillRegState(true))
4360         .addImm(AArch64::sub_32);
4361     Reg = Reg64;
4362   } else {
4363     assert((MI->getOpcode() == TargetOpcode::COPY &&
4364             MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
4365            "Expected copy instruction");
4366     Reg = MI->getOperand(1).getReg();
4367     MI->eraseFromParent();
4368   }
4369   updateValueMap(I, Reg);
4370   return true;
4371 }
4372 
selectIntExt(const Instruction * I)4373 bool AArch64FastISel::selectIntExt(const Instruction *I) {
4374   assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
4375          "Unexpected integer extend instruction.");
4376   MVT RetVT;
4377   MVT SrcVT;
4378   if (!isTypeSupported(I->getType(), RetVT))
4379     return false;
4380 
4381   if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
4382     return false;
4383 
4384   // Try to optimize already sign-/zero-extended values from load instructions.
4385   if (optimizeIntExtLoad(I, RetVT, SrcVT))
4386     return true;
4387 
4388   unsigned SrcReg = getRegForValue(I->getOperand(0));
4389   if (!SrcReg)
4390     return false;
4391   bool SrcIsKill = hasTrivialKill(I->getOperand(0));
4392 
4393   // Try to optimize already sign-/zero-extended values from function arguments.
4394   bool IsZExt = isa<ZExtInst>(I);
4395   if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
4396     if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
4397       if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
4398         unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
4399         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4400                 TII.get(AArch64::SUBREG_TO_REG), ResultReg)
4401             .addImm(0)
4402             .addReg(SrcReg, getKillRegState(SrcIsKill))
4403             .addImm(AArch64::sub_32);
4404         SrcReg = ResultReg;
4405       }
4406       // Conservatively clear all kill flags from all uses, because we are
4407       // replacing a sign-/zero-extend instruction at IR level with a nop at MI
4408       // level. The result of the instruction at IR level might have been
4409       // trivially dead, which is now not longer true.
4410       unsigned UseReg = lookUpRegForValue(I);
4411       if (UseReg)
4412         MRI.clearKillFlags(UseReg);
4413 
4414       updateValueMap(I, SrcReg);
4415       return true;
4416     }
4417   }
4418 
4419   unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
4420   if (!ResultReg)
4421     return false;
4422 
4423   updateValueMap(I, ResultReg);
4424   return true;
4425 }
4426 
selectRem(const Instruction * I,unsigned ISDOpcode)4427 bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
4428   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
4429   if (!DestEVT.isSimple())
4430     return false;
4431 
4432   MVT DestVT = DestEVT.getSimpleVT();
4433   if (DestVT != MVT::i64 && DestVT != MVT::i32)
4434     return false;
4435 
4436   unsigned DivOpc;
4437   bool Is64bit = (DestVT == MVT::i64);
4438   switch (ISDOpcode) {
4439   default:
4440     return false;
4441   case ISD::SREM:
4442     DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
4443     break;
4444   case ISD::UREM:
4445     DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
4446     break;
4447   }
4448   unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
4449   unsigned Src0Reg = getRegForValue(I->getOperand(0));
4450   if (!Src0Reg)
4451     return false;
4452   bool Src0IsKill = hasTrivialKill(I->getOperand(0));
4453 
4454   unsigned Src1Reg = getRegForValue(I->getOperand(1));
4455   if (!Src1Reg)
4456     return false;
4457   bool Src1IsKill = hasTrivialKill(I->getOperand(1));
4458 
4459   const TargetRegisterClass *RC =
4460       (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
4461   unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
4462                                      Src1Reg, /*IsKill=*/false);
4463   assert(QuotReg && "Unexpected DIV instruction emission failure.");
4464   // The remainder is computed as numerator - (quotient * denominator) using the
4465   // MSUB instruction.
4466   unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
4467                                         Src1Reg, Src1IsKill, Src0Reg,
4468                                         Src0IsKill);
4469   updateValueMap(I, ResultReg);
4470   return true;
4471 }
4472 
selectMul(const Instruction * I)4473 bool AArch64FastISel::selectMul(const Instruction *I) {
4474   MVT VT;
4475   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
4476     return false;
4477 
4478   if (VT.isVector())
4479     return selectBinaryOp(I, ISD::MUL);
4480 
4481   const Value *Src0 = I->getOperand(0);
4482   const Value *Src1 = I->getOperand(1);
4483   if (const auto *C = dyn_cast<ConstantInt>(Src0))
4484     if (C->getValue().isPowerOf2())
4485       std::swap(Src0, Src1);
4486 
4487   // Try to simplify to a shift instruction.
4488   if (const auto *C = dyn_cast<ConstantInt>(Src1))
4489     if (C->getValue().isPowerOf2()) {
4490       uint64_t ShiftVal = C->getValue().logBase2();
4491       MVT SrcVT = VT;
4492       bool IsZExt = true;
4493       if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
4494         if (!isIntExtFree(ZExt)) {
4495           MVT VT;
4496           if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
4497             SrcVT = VT;
4498             IsZExt = true;
4499             Src0 = ZExt->getOperand(0);
4500           }
4501         }
4502       } else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
4503         if (!isIntExtFree(SExt)) {
4504           MVT VT;
4505           if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
4506             SrcVT = VT;
4507             IsZExt = false;
4508             Src0 = SExt->getOperand(0);
4509           }
4510         }
4511       }
4512 
4513       unsigned Src0Reg = getRegForValue(Src0);
4514       if (!Src0Reg)
4515         return false;
4516       bool Src0IsKill = hasTrivialKill(Src0);
4517 
4518       unsigned ResultReg =
4519           emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
4520 
4521       if (ResultReg) {
4522         updateValueMap(I, ResultReg);
4523         return true;
4524       }
4525     }
4526 
4527   unsigned Src0Reg = getRegForValue(I->getOperand(0));
4528   if (!Src0Reg)
4529     return false;
4530   bool Src0IsKill = hasTrivialKill(I->getOperand(0));
4531 
4532   unsigned Src1Reg = getRegForValue(I->getOperand(1));
4533   if (!Src1Reg)
4534     return false;
4535   bool Src1IsKill = hasTrivialKill(I->getOperand(1));
4536 
4537   unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
4538 
4539   if (!ResultReg)
4540     return false;
4541 
4542   updateValueMap(I, ResultReg);
4543   return true;
4544 }
4545 
selectShift(const Instruction * I)4546 bool AArch64FastISel::selectShift(const Instruction *I) {
4547   MVT RetVT;
4548   if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
4549     return false;
4550 
4551   if (RetVT.isVector())
4552     return selectOperator(I, I->getOpcode());
4553 
4554   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
4555     unsigned ResultReg = 0;
4556     uint64_t ShiftVal = C->getZExtValue();
4557     MVT SrcVT = RetVT;
4558     bool IsZExt = I->getOpcode() != Instruction::AShr;
4559     const Value *Op0 = I->getOperand(0);
4560     if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
4561       if (!isIntExtFree(ZExt)) {
4562         MVT TmpVT;
4563         if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
4564           SrcVT = TmpVT;
4565           IsZExt = true;
4566           Op0 = ZExt->getOperand(0);
4567         }
4568       }
4569     } else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
4570       if (!isIntExtFree(SExt)) {
4571         MVT TmpVT;
4572         if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
4573           SrcVT = TmpVT;
4574           IsZExt = false;
4575           Op0 = SExt->getOperand(0);
4576         }
4577       }
4578     }
4579 
4580     unsigned Op0Reg = getRegForValue(Op0);
4581     if (!Op0Reg)
4582       return false;
4583     bool Op0IsKill = hasTrivialKill(Op0);
4584 
4585     switch (I->getOpcode()) {
4586     default: llvm_unreachable("Unexpected instruction.");
4587     case Instruction::Shl:
4588       ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
4589       break;
4590     case Instruction::AShr:
4591       ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
4592       break;
4593     case Instruction::LShr:
4594       ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
4595       break;
4596     }
4597     if (!ResultReg)
4598       return false;
4599 
4600     updateValueMap(I, ResultReg);
4601     return true;
4602   }
4603 
4604   unsigned Op0Reg = getRegForValue(I->getOperand(0));
4605   if (!Op0Reg)
4606     return false;
4607   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
4608 
4609   unsigned Op1Reg = getRegForValue(I->getOperand(1));
4610   if (!Op1Reg)
4611     return false;
4612   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
4613 
4614   unsigned ResultReg = 0;
4615   switch (I->getOpcode()) {
4616   default: llvm_unreachable("Unexpected instruction.");
4617   case Instruction::Shl:
4618     ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
4619     break;
4620   case Instruction::AShr:
4621     ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
4622     break;
4623   case Instruction::LShr:
4624     ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
4625     break;
4626   }
4627 
4628   if (!ResultReg)
4629     return false;
4630 
4631   updateValueMap(I, ResultReg);
4632   return true;
4633 }
4634 
selectBitCast(const Instruction * I)4635 bool AArch64FastISel::selectBitCast(const Instruction *I) {
4636   MVT RetVT, SrcVT;
4637 
4638   if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
4639     return false;
4640   if (!isTypeLegal(I->getType(), RetVT))
4641     return false;
4642 
4643   unsigned Opc;
4644   if (RetVT == MVT::f32 && SrcVT == MVT::i32)
4645     Opc = AArch64::FMOVWSr;
4646   else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
4647     Opc = AArch64::FMOVXDr;
4648   else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
4649     Opc = AArch64::FMOVSWr;
4650   else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
4651     Opc = AArch64::FMOVDXr;
4652   else
4653     return false;
4654 
4655   const TargetRegisterClass *RC = nullptr;
4656   switch (RetVT.SimpleTy) {
4657   default: llvm_unreachable("Unexpected value type.");
4658   case MVT::i32: RC = &AArch64::GPR32RegClass; break;
4659   case MVT::i64: RC = &AArch64::GPR64RegClass; break;
4660   case MVT::f32: RC = &AArch64::FPR32RegClass; break;
4661   case MVT::f64: RC = &AArch64::FPR64RegClass; break;
4662   }
4663   unsigned Op0Reg = getRegForValue(I->getOperand(0));
4664   if (!Op0Reg)
4665     return false;
4666   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
4667   unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
4668 
4669   if (!ResultReg)
4670     return false;
4671 
4672   updateValueMap(I, ResultReg);
4673   return true;
4674 }
4675 
selectFRem(const Instruction * I)4676 bool AArch64FastISel::selectFRem(const Instruction *I) {
4677   MVT RetVT;
4678   if (!isTypeLegal(I->getType(), RetVT))
4679     return false;
4680 
4681   RTLIB::Libcall LC;
4682   switch (RetVT.SimpleTy) {
4683   default:
4684     return false;
4685   case MVT::f32:
4686     LC = RTLIB::REM_F32;
4687     break;
4688   case MVT::f64:
4689     LC = RTLIB::REM_F64;
4690     break;
4691   }
4692 
4693   ArgListTy Args;
4694   Args.reserve(I->getNumOperands());
4695 
4696   // Populate the argument list.
4697   for (auto &Arg : I->operands()) {
4698     ArgListEntry Entry;
4699     Entry.Val = Arg;
4700     Entry.Ty = Arg->getType();
4701     Args.push_back(Entry);
4702   }
4703 
4704   CallLoweringInfo CLI;
4705   MCContext &Ctx = MF->getContext();
4706   CLI.setCallee(DL, Ctx, TLI.getLibcallCallingConv(LC), I->getType(),
4707                 TLI.getLibcallName(LC), std::move(Args));
4708   if (!lowerCallTo(CLI))
4709     return false;
4710   updateValueMap(I, CLI.ResultReg);
4711   return true;
4712 }
4713 
selectSDiv(const Instruction * I)4714 bool AArch64FastISel::selectSDiv(const Instruction *I) {
4715   MVT VT;
4716   if (!isTypeLegal(I->getType(), VT))
4717     return false;
4718 
4719   if (!isa<ConstantInt>(I->getOperand(1)))
4720     return selectBinaryOp(I, ISD::SDIV);
4721 
4722   const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
4723   if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
4724       !(C.isPowerOf2() || (-C).isPowerOf2()))
4725     return selectBinaryOp(I, ISD::SDIV);
4726 
4727   unsigned Lg2 = C.countTrailingZeros();
4728   unsigned Src0Reg = getRegForValue(I->getOperand(0));
4729   if (!Src0Reg)
4730     return false;
4731   bool Src0IsKill = hasTrivialKill(I->getOperand(0));
4732 
4733   if (cast<BinaryOperator>(I)->isExact()) {
4734     unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
4735     if (!ResultReg)
4736       return false;
4737     updateValueMap(I, ResultReg);
4738     return true;
4739   }
4740 
4741   int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
4742   unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
4743   if (!AddReg)
4744     return false;
4745 
4746   // (Src0 < 0) ? Pow2 - 1 : 0;
4747   if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
4748     return false;
4749 
4750   unsigned SelectOpc;
4751   const TargetRegisterClass *RC;
4752   if (VT == MVT::i64) {
4753     SelectOpc = AArch64::CSELXr;
4754     RC = &AArch64::GPR64RegClass;
4755   } else {
4756     SelectOpc = AArch64::CSELWr;
4757     RC = &AArch64::GPR32RegClass;
4758   }
4759   unsigned SelectReg =
4760       fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
4761                        Src0IsKill, AArch64CC::LT);
4762   if (!SelectReg)
4763     return false;
4764 
4765   // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
4766   // negate the result.
4767   unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
4768   unsigned ResultReg;
4769   if (C.isNegative())
4770     ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
4771                               SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
4772   else
4773     ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
4774 
4775   if (!ResultReg)
4776     return false;
4777 
4778   updateValueMap(I, ResultReg);
4779   return true;
4780 }
4781 
4782 /// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
4783 /// have to duplicate it for AArch64, because otherwise we would fail during the
4784 /// sign-extend emission.
getRegForGEPIndex(const Value * Idx)4785 std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
4786   unsigned IdxN = getRegForValue(Idx);
4787   if (IdxN == 0)
4788     // Unhandled operand. Halt "fast" selection and bail.
4789     return std::pair<unsigned, bool>(0, false);
4790 
4791   bool IdxNIsKill = hasTrivialKill(Idx);
4792 
4793   // If the index is smaller or larger than intptr_t, truncate or extend it.
4794   MVT PtrVT = TLI.getPointerTy(DL);
4795   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
4796   if (IdxVT.bitsLT(PtrVT)) {
4797     IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*IsZExt=*/false);
4798     IdxNIsKill = true;
4799   } else if (IdxVT.bitsGT(PtrVT))
4800     llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
4801   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
4802 }
4803 
4804 /// This is mostly a copy of the existing FastISel GEP code, but we have to
4805 /// duplicate it for AArch64, because otherwise we would bail out even for
4806 /// simple cases. This is because the standard fastEmit functions don't cover
4807 /// MUL at all and ADD is lowered very inefficientily.
selectGetElementPtr(const Instruction * I)4808 bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
4809   unsigned N = getRegForValue(I->getOperand(0));
4810   if (!N)
4811     return false;
4812   bool NIsKill = hasTrivialKill(I->getOperand(0));
4813 
4814   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
4815   // into a single N = N + TotalOffset.
4816   uint64_t TotalOffs = 0;
4817   Type *Ty = I->getOperand(0)->getType();
4818   MVT VT = TLI.getPointerTy(DL);
4819   for (auto OI = std::next(I->op_begin()), E = I->op_end(); OI != E; ++OI) {
4820     const Value *Idx = *OI;
4821     if (auto *StTy = dyn_cast<StructType>(Ty)) {
4822       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
4823       // N = N + Offset
4824       if (Field)
4825         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
4826       Ty = StTy->getElementType(Field);
4827     } else {
4828       Ty = cast<SequentialType>(Ty)->getElementType();
4829       // If this is a constant subscript, handle it quickly.
4830       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
4831         if (CI->isZero())
4832           continue;
4833         // N = N + Offset
4834         TotalOffs +=
4835             DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
4836         continue;
4837       }
4838       if (TotalOffs) {
4839         N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
4840         if (!N)
4841           return false;
4842         NIsKill = true;
4843         TotalOffs = 0;
4844       }
4845 
4846       // N = N + Idx * ElementSize;
4847       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
4848       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
4849       unsigned IdxN = Pair.first;
4850       bool IdxNIsKill = Pair.second;
4851       if (!IdxN)
4852         return false;
4853 
4854       if (ElementSize != 1) {
4855         unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
4856         if (!C)
4857           return false;
4858         IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
4859         if (!IdxN)
4860           return false;
4861         IdxNIsKill = true;
4862       }
4863       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
4864       if (!N)
4865         return false;
4866     }
4867   }
4868   if (TotalOffs) {
4869     N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
4870     if (!N)
4871       return false;
4872   }
4873   updateValueMap(I, N);
4874   return true;
4875 }
4876 
fastSelectInstruction(const Instruction * I)4877 bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
4878   switch (I->getOpcode()) {
4879   default:
4880     break;
4881   case Instruction::Add:
4882   case Instruction::Sub:
4883     return selectAddSub(I);
4884   case Instruction::Mul:
4885     return selectMul(I);
4886   case Instruction::SDiv:
4887     return selectSDiv(I);
4888   case Instruction::SRem:
4889     if (!selectBinaryOp(I, ISD::SREM))
4890       return selectRem(I, ISD::SREM);
4891     return true;
4892   case Instruction::URem:
4893     if (!selectBinaryOp(I, ISD::UREM))
4894       return selectRem(I, ISD::UREM);
4895     return true;
4896   case Instruction::Shl:
4897   case Instruction::LShr:
4898   case Instruction::AShr:
4899     return selectShift(I);
4900   case Instruction::And:
4901   case Instruction::Or:
4902   case Instruction::Xor:
4903     return selectLogicalOp(I);
4904   case Instruction::Br:
4905     return selectBranch(I);
4906   case Instruction::IndirectBr:
4907     return selectIndirectBr(I);
4908   case Instruction::BitCast:
4909     if (!FastISel::selectBitCast(I))
4910       return selectBitCast(I);
4911     return true;
4912   case Instruction::FPToSI:
4913     if (!selectCast(I, ISD::FP_TO_SINT))
4914       return selectFPToInt(I, /*Signed=*/true);
4915     return true;
4916   case Instruction::FPToUI:
4917     return selectFPToInt(I, /*Signed=*/false);
4918   case Instruction::ZExt:
4919   case Instruction::SExt:
4920     return selectIntExt(I);
4921   case Instruction::Trunc:
4922     if (!selectCast(I, ISD::TRUNCATE))
4923       return selectTrunc(I);
4924     return true;
4925   case Instruction::FPExt:
4926     return selectFPExt(I);
4927   case Instruction::FPTrunc:
4928     return selectFPTrunc(I);
4929   case Instruction::SIToFP:
4930     if (!selectCast(I, ISD::SINT_TO_FP))
4931       return selectIntToFP(I, /*Signed=*/true);
4932     return true;
4933   case Instruction::UIToFP:
4934     return selectIntToFP(I, /*Signed=*/false);
4935   case Instruction::Load:
4936     return selectLoad(I);
4937   case Instruction::Store:
4938     return selectStore(I);
4939   case Instruction::FCmp:
4940   case Instruction::ICmp:
4941     return selectCmp(I);
4942   case Instruction::Select:
4943     return selectSelect(I);
4944   case Instruction::Ret:
4945     return selectRet(I);
4946   case Instruction::FRem:
4947     return selectFRem(I);
4948   case Instruction::GetElementPtr:
4949     return selectGetElementPtr(I);
4950   }
4951 
4952   // fall-back to target-independent instruction selection.
4953   return selectOperator(I, I->getOpcode());
4954   // Silence warnings.
4955   (void)&CC_AArch64_DarwinPCS_VarArg;
4956 }
4957 
4958 namespace llvm {
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)4959 llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
4960                                         const TargetLibraryInfo *LibInfo) {
4961   return new AArch64FastISel(FuncInfo, LibInfo);
4962 }
4963 }
4964