1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19
20 using namespace llvm;
21
22 #define DEBUG_TYPE "systemz-isel"
23
24 namespace {
25 // Used to build addressing modes.
26 struct SystemZAddressingMode {
27 // The shape of the address.
28 enum AddrForm {
29 // base+displacement
30 FormBD,
31
32 // base+displacement+index for load and store operands
33 FormBDXNormal,
34
35 // base+displacement+index for load address operands
36 FormBDXLA,
37
38 // base+displacement+index+ADJDYNALLOC
39 FormBDXDynAlloc
40 };
41 AddrForm Form;
42
43 // The type of displacement. The enum names here correspond directly
44 // to the definitions in SystemZOperand.td. We could split them into
45 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
46 enum DispRange {
47 Disp12Only,
48 Disp12Pair,
49 Disp20Only,
50 Disp20Only128,
51 Disp20Pair
52 };
53 DispRange DR;
54
55 // The parts of the address. The address is equivalent to:
56 //
57 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
58 SDValue Base;
59 int64_t Disp;
60 SDValue Index;
61 bool IncludesDynAlloc;
62
SystemZAddressingMode__anon88775ea20111::SystemZAddressingMode63 SystemZAddressingMode(AddrForm form, DispRange dr)
64 : Form(form), DR(dr), Base(), Disp(0), Index(),
65 IncludesDynAlloc(false) {}
66
67 // True if the address can have an index register.
hasIndexField__anon88775ea20111::SystemZAddressingMode68 bool hasIndexField() { return Form != FormBD; }
69
70 // True if the address can (and must) include ADJDYNALLOC.
isDynAlloc__anon88775ea20111::SystemZAddressingMode71 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
72
dump__anon88775ea20111::SystemZAddressingMode73 void dump() {
74 errs() << "SystemZAddressingMode " << this << '\n';
75
76 errs() << " Base ";
77 if (Base.getNode())
78 Base.getNode()->dump();
79 else
80 errs() << "null\n";
81
82 if (hasIndexField()) {
83 errs() << " Index ";
84 if (Index.getNode())
85 Index.getNode()->dump();
86 else
87 errs() << "null\n";
88 }
89
90 errs() << " Disp " << Disp;
91 if (IncludesDynAlloc)
92 errs() << " + ADJDYNALLOC";
93 errs() << '\n';
94 }
95 };
96
97 // Return a mask with Count low bits set.
allOnes(unsigned int Count)98 static uint64_t allOnes(unsigned int Count) {
99 assert(Count <= 64);
100 if (Count > 63)
101 return UINT64_MAX;
102 return (uint64_t(1) << Count) - 1;
103 }
104
105 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
106 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
107 // Rotate (I5). The combined operand value is effectively:
108 //
109 // (or (rotl Input, Rotate), ~Mask)
110 //
111 // for RNSBG and:
112 //
113 // (and (rotl Input, Rotate), Mask)
114 //
115 // otherwise. The output value has BitSize bits, although Input may be
116 // narrower (in which case the upper bits are don't care).
117 struct RxSBGOperands {
RxSBGOperands__anon88775ea20111::RxSBGOperands118 RxSBGOperands(unsigned Op, SDValue N)
119 : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
120 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
121 Rotate(0) {}
122
123 unsigned Opcode;
124 unsigned BitSize;
125 uint64_t Mask;
126 SDValue Input;
127 unsigned Start;
128 unsigned End;
129 unsigned Rotate;
130 };
131
132 class SystemZDAGToDAGISel : public SelectionDAGISel {
133 const SystemZSubtarget *Subtarget;
134
135 // Used by SystemZOperands.td to create integer constants.
getImm(const SDNode * Node,uint64_t Imm) const136 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
137 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
138 }
139
getTargetMachine() const140 const SystemZTargetMachine &getTargetMachine() const {
141 return static_cast<const SystemZTargetMachine &>(TM);
142 }
143
getInstrInfo() const144 const SystemZInstrInfo *getInstrInfo() const {
145 return Subtarget->getInstrInfo();
146 }
147
148 // Try to fold more of the base or index of AM into AM, where IsBase
149 // selects between the base and index.
150 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
151
152 // Try to describe N in AM, returning true on success.
153 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
154
155 // Extract individual target operands from matched address AM.
156 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
157 SDValue &Base, SDValue &Disp) const;
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp, SDValue &Index) const;
160
161 // Try to match Addr as a FormBD address with displacement type DR.
162 // Return true on success, storing the base and displacement in
163 // Base and Disp respectively.
164 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
165 SDValue &Base, SDValue &Disp) const;
166
167 // Try to match Addr as a FormBDX address with displacement type DR.
168 // Return true on success and if the result had no index. Store the
169 // base and displacement in Base and Disp respectively.
170 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
171 SDValue &Base, SDValue &Disp) const;
172
173 // Try to match Addr as a FormBDX* address of form Form with
174 // displacement type DR. Return true on success, storing the base,
175 // displacement and index in Base, Disp and Index respectively.
176 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
177 SystemZAddressingMode::DispRange DR, SDValue Addr,
178 SDValue &Base, SDValue &Disp, SDValue &Index) const;
179
180 // PC-relative address matching routines used by SystemZOperands.td.
selectPCRelAddress(SDValue Addr,SDValue & Target) const181 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
182 if (SystemZISD::isPCREL(Addr.getOpcode())) {
183 Target = Addr.getOperand(0);
184 return true;
185 }
186 return false;
187 }
188
189 // BD matching routines used by SystemZOperands.td.
selectBDAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp) const190 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
191 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
192 }
selectBDAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const193 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
194 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
195 }
selectBDAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp) const196 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
197 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
198 }
selectBDAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const199 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
200 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
201 }
202
203 // MVI matching routines used by SystemZOperands.td.
selectMVIAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const204 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
205 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
206 }
selectMVIAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const207 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
208 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
209 }
210
211 // BDX matching routines used by SystemZOperands.td.
selectBDXAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const212 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
213 SDValue &Index) const {
214 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
215 SystemZAddressingMode::Disp12Only,
216 Addr, Base, Disp, Index);
217 }
selectBDXAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const218 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
219 SDValue &Index) const {
220 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
221 SystemZAddressingMode::Disp12Pair,
222 Addr, Base, Disp, Index);
223 }
selectDynAlloc12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const224 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
225 SDValue &Index) const {
226 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
227 SystemZAddressingMode::Disp12Only,
228 Addr, Base, Disp, Index);
229 }
selectBDXAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const230 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
231 SDValue &Index) const {
232 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
233 SystemZAddressingMode::Disp20Only,
234 Addr, Base, Disp, Index);
235 }
selectBDXAddr20Only128(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const236 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
237 SDValue &Index) const {
238 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
239 SystemZAddressingMode::Disp20Only128,
240 Addr, Base, Disp, Index);
241 }
selectBDXAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const242 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
243 SDValue &Index) const {
244 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
245 SystemZAddressingMode::Disp20Pair,
246 Addr, Base, Disp, Index);
247 }
selectLAAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const248 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
249 SDValue &Index) const {
250 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
251 SystemZAddressingMode::Disp12Pair,
252 Addr, Base, Disp, Index);
253 }
selectLAAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const254 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
255 SDValue &Index) const {
256 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
257 SystemZAddressingMode::Disp20Pair,
258 Addr, Base, Disp, Index);
259 }
260
261 // Try to match Addr as an address with a base, 12-bit displacement
262 // and index, where the index is element Elem of a vector.
263 // Return true on success, storing the base, displacement and vector
264 // in Base, Disp and Index respectively.
265 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
266 SDValue &Disp, SDValue &Index) const;
267
268 // Check whether (or Op (and X InsertMask)) is effectively an insertion
269 // of X into bits InsertMask of some Y != Op. Return true if so and
270 // set Op to that Y.
271 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
272
273 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
274 // Return true on success.
275 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
276
277 // Try to fold some of RxSBG.Input into other fields of RxSBG.
278 // Return true on success.
279 bool expandRxSBG(RxSBGOperands &RxSBG) const;
280
281 // Return an undefined value of type VT.
282 SDValue getUNDEF(SDLoc DL, EVT VT) const;
283
284 // Convert N to VT, if it isn't already.
285 SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
286
287 // Try to implement AND or shift node N using RISBG with the zero flag set.
288 // Return the selected node on success, otherwise return null.
289 SDNode *tryRISBGZero(SDNode *N);
290
291 // Try to use RISBG or Opcode to implement OR or XOR node N.
292 // Return the selected node on success, otherwise return null.
293 SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
294
295 // If Op0 is null, then Node is a constant that can be loaded using:
296 //
297 // (Opcode UpperVal LowerVal)
298 //
299 // If Op0 is nonnull, then Node can be implemented using:
300 //
301 // (Opcode (Opcode Op0 UpperVal) LowerVal)
302 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
303 uint64_t UpperVal, uint64_t LowerVal);
304
305 // Try to use gather instruction Opcode to implement vector insertion N.
306 SDNode *tryGather(SDNode *N, unsigned Opcode);
307
308 // Try to use scatter instruction Opcode to implement store Store.
309 SDNode *tryScatter(StoreSDNode *Store, unsigned Opcode);
310
311 // Return true if Load and Store are loads and stores of the same size
312 // and are guaranteed not to overlap. Such operations can be implemented
313 // using block (SS-format) instructions.
314 //
315 // Partial overlap would lead to incorrect code, since the block operations
316 // are logically bytewise, even though they have a fast path for the
317 // non-overlapping case. We also need to avoid full overlap (i.e. two
318 // addresses that might be equal at run time) because although that case
319 // would be handled correctly, it might be implemented by millicode.
320 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
321
322 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
323 // from Y to X.
324 bool storeLoadCanUseMVC(SDNode *N) const;
325
326 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
327 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
328 // to X.
329 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
330
331 public:
SystemZDAGToDAGISel(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)332 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
333 : SelectionDAGISel(TM, OptLevel) {}
334
runOnMachineFunction(MachineFunction & MF)335 bool runOnMachineFunction(MachineFunction &MF) override {
336 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
337 return SelectionDAGISel::runOnMachineFunction(MF);
338 }
339
340 // Override MachineFunctionPass.
getPassName() const341 const char *getPassName() const override {
342 return "SystemZ DAG->DAG Pattern Instruction Selection";
343 }
344
345 // Override SelectionDAGISel.
346 SDNode *Select(SDNode *Node) override;
347 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
348 std::vector<SDValue> &OutOps) override;
349
350 // Include the pieces autogenerated from the target description.
351 #include "SystemZGenDAGISel.inc"
352 };
353 } // end anonymous namespace
354
createSystemZISelDag(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)355 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
356 CodeGenOpt::Level OptLevel) {
357 return new SystemZDAGToDAGISel(TM, OptLevel);
358 }
359
360 // Return true if Val should be selected as a displacement for an address
361 // with range DR. Here we're interested in the range of both the instruction
362 // described by DR and of any pairing instruction.
selectDisp(SystemZAddressingMode::DispRange DR,int64_t Val)363 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
364 switch (DR) {
365 case SystemZAddressingMode::Disp12Only:
366 return isUInt<12>(Val);
367
368 case SystemZAddressingMode::Disp12Pair:
369 case SystemZAddressingMode::Disp20Only:
370 case SystemZAddressingMode::Disp20Pair:
371 return isInt<20>(Val);
372
373 case SystemZAddressingMode::Disp20Only128:
374 return isInt<20>(Val) && isInt<20>(Val + 8);
375 }
376 llvm_unreachable("Unhandled displacement range");
377 }
378
379 // Change the base or index in AM to Value, where IsBase selects
380 // between the base and index.
changeComponent(SystemZAddressingMode & AM,bool IsBase,SDValue Value)381 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
382 SDValue Value) {
383 if (IsBase)
384 AM.Base = Value;
385 else
386 AM.Index = Value;
387 }
388
389 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
390 // where IsBase selects between the base and index. Try to fold the
391 // ADJDYNALLOC into AM.
expandAdjDynAlloc(SystemZAddressingMode & AM,bool IsBase,SDValue Value)392 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
393 SDValue Value) {
394 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
395 changeComponent(AM, IsBase, Value);
396 AM.IncludesDynAlloc = true;
397 return true;
398 }
399 return false;
400 }
401
402 // The base of AM is equivalent to Base + Index. Try to use Index as
403 // the index register.
expandIndex(SystemZAddressingMode & AM,SDValue Base,SDValue Index)404 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
405 SDValue Index) {
406 if (AM.hasIndexField() && !AM.Index.getNode()) {
407 AM.Base = Base;
408 AM.Index = Index;
409 return true;
410 }
411 return false;
412 }
413
414 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
415 // between the base and index. Try to fold Op1 into AM's displacement.
expandDisp(SystemZAddressingMode & AM,bool IsBase,SDValue Op0,uint64_t Op1)416 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
417 SDValue Op0, uint64_t Op1) {
418 // First try adjusting the displacement.
419 int64_t TestDisp = AM.Disp + Op1;
420 if (selectDisp(AM.DR, TestDisp)) {
421 changeComponent(AM, IsBase, Op0);
422 AM.Disp = TestDisp;
423 return true;
424 }
425
426 // We could consider forcing the displacement into a register and
427 // using it as an index, but it would need to be carefully tuned.
428 return false;
429 }
430
expandAddress(SystemZAddressingMode & AM,bool IsBase) const431 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
432 bool IsBase) const {
433 SDValue N = IsBase ? AM.Base : AM.Index;
434 unsigned Opcode = N.getOpcode();
435 if (Opcode == ISD::TRUNCATE) {
436 N = N.getOperand(0);
437 Opcode = N.getOpcode();
438 }
439 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
440 SDValue Op0 = N.getOperand(0);
441 SDValue Op1 = N.getOperand(1);
442
443 unsigned Op0Code = Op0->getOpcode();
444 unsigned Op1Code = Op1->getOpcode();
445
446 if (Op0Code == SystemZISD::ADJDYNALLOC)
447 return expandAdjDynAlloc(AM, IsBase, Op1);
448 if (Op1Code == SystemZISD::ADJDYNALLOC)
449 return expandAdjDynAlloc(AM, IsBase, Op0);
450
451 if (Op0Code == ISD::Constant)
452 return expandDisp(AM, IsBase, Op1,
453 cast<ConstantSDNode>(Op0)->getSExtValue());
454 if (Op1Code == ISD::Constant)
455 return expandDisp(AM, IsBase, Op0,
456 cast<ConstantSDNode>(Op1)->getSExtValue());
457
458 if (IsBase && expandIndex(AM, Op0, Op1))
459 return true;
460 }
461 if (Opcode == SystemZISD::PCREL_OFFSET) {
462 SDValue Full = N.getOperand(0);
463 SDValue Base = N.getOperand(1);
464 SDValue Anchor = Base.getOperand(0);
465 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
466 cast<GlobalAddressSDNode>(Anchor)->getOffset());
467 return expandDisp(AM, IsBase, Base, Offset);
468 }
469 return false;
470 }
471
472 // Return true if an instruction with displacement range DR should be
473 // used for displacement value Val. selectDisp(DR, Val) must already hold.
isValidDisp(SystemZAddressingMode::DispRange DR,int64_t Val)474 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
475 assert(selectDisp(DR, Val) && "Invalid displacement");
476 switch (DR) {
477 case SystemZAddressingMode::Disp12Only:
478 case SystemZAddressingMode::Disp20Only:
479 case SystemZAddressingMode::Disp20Only128:
480 return true;
481
482 case SystemZAddressingMode::Disp12Pair:
483 // Use the other instruction if the displacement is too large.
484 return isUInt<12>(Val);
485
486 case SystemZAddressingMode::Disp20Pair:
487 // Use the other instruction if the displacement is small enough.
488 return !isUInt<12>(Val);
489 }
490 llvm_unreachable("Unhandled displacement range");
491 }
492
493 // Return true if Base + Disp + Index should be performed by LA(Y).
shouldUseLA(SDNode * Base,int64_t Disp,SDNode * Index)494 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
495 // Don't use LA(Y) for constants.
496 if (!Base)
497 return false;
498
499 // Always use LA(Y) for frame addresses, since we know that the destination
500 // register is almost always (perhaps always) going to be different from
501 // the frame register.
502 if (Base->getOpcode() == ISD::FrameIndex)
503 return true;
504
505 if (Disp) {
506 // Always use LA(Y) if there is a base, displacement and index.
507 if (Index)
508 return true;
509
510 // Always use LA if the displacement is small enough. It should always
511 // be no worse than AGHI (and better if it avoids a move).
512 if (isUInt<12>(Disp))
513 return true;
514
515 // For similar reasons, always use LAY if the constant is too big for AGHI.
516 // LAY should be no worse than AGFI.
517 if (!isInt<16>(Disp))
518 return true;
519 } else {
520 // Don't use LA for plain registers.
521 if (!Index)
522 return false;
523
524 // Don't use LA for plain addition if the index operand is only used
525 // once. It should be a natural two-operand addition in that case.
526 if (Index->hasOneUse())
527 return false;
528
529 // Prefer addition if the second operation is sign-extended, in the
530 // hope of using AGF.
531 unsigned IndexOpcode = Index->getOpcode();
532 if (IndexOpcode == ISD::SIGN_EXTEND ||
533 IndexOpcode == ISD::SIGN_EXTEND_INREG)
534 return false;
535 }
536
537 // Don't use LA for two-operand addition if either operand is only
538 // used once. The addition instructions are better in that case.
539 if (Base->hasOneUse())
540 return false;
541
542 return true;
543 }
544
545 // Return true if Addr is suitable for AM, updating AM if so.
selectAddress(SDValue Addr,SystemZAddressingMode & AM) const546 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
547 SystemZAddressingMode &AM) const {
548 // Start out assuming that the address will need to be loaded separately,
549 // then try to extend it as much as we can.
550 AM.Base = Addr;
551
552 // First try treating the address as a constant.
553 if (Addr.getOpcode() == ISD::Constant &&
554 expandDisp(AM, true, SDValue(),
555 cast<ConstantSDNode>(Addr)->getSExtValue()))
556 ;
557 else
558 // Otherwise try expanding each component.
559 while (expandAddress(AM, true) ||
560 (AM.Index.getNode() && expandAddress(AM, false)))
561 continue;
562
563 // Reject cases where it isn't profitable to use LA(Y).
564 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
565 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
566 return false;
567
568 // Reject cases where the other instruction in a pair should be used.
569 if (!isValidDisp(AM.DR, AM.Disp))
570 return false;
571
572 // Make sure that ADJDYNALLOC is included where necessary.
573 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
574 return false;
575
576 DEBUG(AM.dump());
577 return true;
578 }
579
580 // Insert a node into the DAG at least before Pos. This will reposition
581 // the node as needed, and will assign it a node ID that is <= Pos's ID.
582 // Note that this does *not* preserve the uniqueness of node IDs!
583 // The selection DAG must no longer depend on their uniqueness when this
584 // function is used.
insertDAGNode(SelectionDAG * DAG,SDNode * Pos,SDValue N)585 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
586 if (N.getNode()->getNodeId() == -1 ||
587 N.getNode()->getNodeId() > Pos->getNodeId()) {
588 DAG->RepositionNode(Pos->getIterator(), N.getNode());
589 N.getNode()->setNodeId(Pos->getNodeId());
590 }
591 }
592
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp) const593 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
594 EVT VT, SDValue &Base,
595 SDValue &Disp) const {
596 Base = AM.Base;
597 if (!Base.getNode())
598 // Register 0 means "no base". This is mostly useful for shifts.
599 Base = CurDAG->getRegister(0, VT);
600 else if (Base.getOpcode() == ISD::FrameIndex) {
601 // Lower a FrameIndex to a TargetFrameIndex.
602 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
603 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
604 } else if (Base.getValueType() != VT) {
605 // Truncate values from i64 to i32, for shifts.
606 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
607 "Unexpected truncation");
608 SDLoc DL(Base);
609 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
610 insertDAGNode(CurDAG, Base.getNode(), Trunc);
611 Base = Trunc;
612 }
613
614 // Lower the displacement to a TargetConstant.
615 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
616 }
617
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp,SDValue & Index) const618 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
619 EVT VT, SDValue &Base,
620 SDValue &Disp,
621 SDValue &Index) const {
622 getAddressOperands(AM, VT, Base, Disp);
623
624 Index = AM.Index;
625 if (!Index.getNode())
626 // Register 0 means "no index".
627 Index = CurDAG->getRegister(0, VT);
628 }
629
selectBDAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const630 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
631 SDValue Addr, SDValue &Base,
632 SDValue &Disp) const {
633 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
634 if (!selectAddress(Addr, AM))
635 return false;
636
637 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
638 return true;
639 }
640
selectMVIAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const641 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
642 SDValue Addr, SDValue &Base,
643 SDValue &Disp) const {
644 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
645 if (!selectAddress(Addr, AM) || AM.Index.getNode())
646 return false;
647
648 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
649 return true;
650 }
651
selectBDXAddr(SystemZAddressingMode::AddrForm Form,SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const652 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
653 SystemZAddressingMode::DispRange DR,
654 SDValue Addr, SDValue &Base,
655 SDValue &Disp, SDValue &Index) const {
656 SystemZAddressingMode AM(Form, DR);
657 if (!selectAddress(Addr, AM))
658 return false;
659
660 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
661 return true;
662 }
663
selectBDVAddr12Only(SDValue Addr,SDValue Elem,SDValue & Base,SDValue & Disp,SDValue & Index) const664 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
665 SDValue &Base,
666 SDValue &Disp,
667 SDValue &Index) const {
668 SDValue Regs[2];
669 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
670 Regs[0].getNode() && Regs[1].getNode()) {
671 for (unsigned int I = 0; I < 2; ++I) {
672 Base = Regs[I];
673 Index = Regs[1 - I];
674 // We can't tell here whether the index vector has the right type
675 // for the access; the caller needs to do that instead.
676 if (Index.getOpcode() == ISD::ZERO_EXTEND)
677 Index = Index.getOperand(0);
678 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
679 Index.getOperand(1) == Elem) {
680 Index = Index.getOperand(0);
681 return true;
682 }
683 }
684 }
685 return false;
686 }
687
detectOrAndInsertion(SDValue & Op,uint64_t InsertMask) const688 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
689 uint64_t InsertMask) const {
690 // We're only interested in cases where the insertion is into some operand
691 // of Op, rather than into Op itself. The only useful case is an AND.
692 if (Op.getOpcode() != ISD::AND)
693 return false;
694
695 // We need a constant mask.
696 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
697 if (!MaskNode)
698 return false;
699
700 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
701 uint64_t AndMask = MaskNode->getZExtValue();
702 if (InsertMask & AndMask)
703 return false;
704
705 // It's only an insertion if all bits are covered or are known to be zero.
706 // The inner check covers all cases but is more expensive.
707 uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
708 if (Used != (AndMask | InsertMask)) {
709 APInt KnownZero, KnownOne;
710 CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
711 if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
712 return false;
713 }
714
715 Op = Op.getOperand(0);
716 return true;
717 }
718
refineRxSBGMask(RxSBGOperands & RxSBG,uint64_t Mask) const719 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
720 uint64_t Mask) const {
721 const SystemZInstrInfo *TII = getInstrInfo();
722 if (RxSBG.Rotate != 0)
723 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
724 Mask &= RxSBG.Mask;
725 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
726 RxSBG.Mask = Mask;
727 return true;
728 }
729 return false;
730 }
731
732 // Return true if any bits of (RxSBG.Input & Mask) are significant.
maskMatters(RxSBGOperands & RxSBG,uint64_t Mask)733 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
734 // Rotate the mask in the same way as RxSBG.Input is rotated.
735 if (RxSBG.Rotate != 0)
736 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
737 return (Mask & RxSBG.Mask) != 0;
738 }
739
expandRxSBG(RxSBGOperands & RxSBG) const740 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
741 SDValue N = RxSBG.Input;
742 unsigned Opcode = N.getOpcode();
743 switch (Opcode) {
744 case ISD::AND: {
745 if (RxSBG.Opcode == SystemZ::RNSBG)
746 return false;
747
748 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
749 if (!MaskNode)
750 return false;
751
752 SDValue Input = N.getOperand(0);
753 uint64_t Mask = MaskNode->getZExtValue();
754 if (!refineRxSBGMask(RxSBG, Mask)) {
755 // If some bits of Input are already known zeros, those bits will have
756 // been removed from the mask. See if adding them back in makes the
757 // mask suitable.
758 APInt KnownZero, KnownOne;
759 CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
760 Mask |= KnownZero.getZExtValue();
761 if (!refineRxSBGMask(RxSBG, Mask))
762 return false;
763 }
764 RxSBG.Input = Input;
765 return true;
766 }
767
768 case ISD::OR: {
769 if (RxSBG.Opcode != SystemZ::RNSBG)
770 return false;
771
772 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
773 if (!MaskNode)
774 return false;
775
776 SDValue Input = N.getOperand(0);
777 uint64_t Mask = ~MaskNode->getZExtValue();
778 if (!refineRxSBGMask(RxSBG, Mask)) {
779 // If some bits of Input are already known ones, those bits will have
780 // been removed from the mask. See if adding them back in makes the
781 // mask suitable.
782 APInt KnownZero, KnownOne;
783 CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
784 Mask &= ~KnownOne.getZExtValue();
785 if (!refineRxSBGMask(RxSBG, Mask))
786 return false;
787 }
788 RxSBG.Input = Input;
789 return true;
790 }
791
792 case ISD::ROTL: {
793 // Any 64-bit rotate left can be merged into the RxSBG.
794 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
795 return false;
796 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
797 if (!CountNode)
798 return false;
799
800 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
801 RxSBG.Input = N.getOperand(0);
802 return true;
803 }
804
805 case ISD::ANY_EXTEND:
806 // Bits above the extended operand are don't-care.
807 RxSBG.Input = N.getOperand(0);
808 return true;
809
810 case ISD::ZERO_EXTEND:
811 if (RxSBG.Opcode != SystemZ::RNSBG) {
812 // Restrict the mask to the extended operand.
813 unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
814 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
815 return false;
816
817 RxSBG.Input = N.getOperand(0);
818 return true;
819 }
820 // Fall through.
821
822 case ISD::SIGN_EXTEND: {
823 // Check that the extension bits are don't-care (i.e. are masked out
824 // by the final mask).
825 unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
826 if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
827 return false;
828
829 RxSBG.Input = N.getOperand(0);
830 return true;
831 }
832
833 case ISD::SHL: {
834 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
835 if (!CountNode)
836 return false;
837
838 uint64_t Count = CountNode->getZExtValue();
839 unsigned BitSize = N.getValueType().getSizeInBits();
840 if (Count < 1 || Count >= BitSize)
841 return false;
842
843 if (RxSBG.Opcode == SystemZ::RNSBG) {
844 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
845 // count bits from RxSBG.Input are ignored.
846 if (maskMatters(RxSBG, allOnes(Count)))
847 return false;
848 } else {
849 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
850 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
851 return false;
852 }
853
854 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
855 RxSBG.Input = N.getOperand(0);
856 return true;
857 }
858
859 case ISD::SRL:
860 case ISD::SRA: {
861 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
862 if (!CountNode)
863 return false;
864
865 uint64_t Count = CountNode->getZExtValue();
866 unsigned BitSize = N.getValueType().getSizeInBits();
867 if (Count < 1 || Count >= BitSize)
868 return false;
869
870 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
871 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
872 // count bits from RxSBG.Input are ignored.
873 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
874 return false;
875 } else {
876 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
877 // which is similar to SLL above.
878 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
879 return false;
880 }
881
882 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
883 RxSBG.Input = N.getOperand(0);
884 return true;
885 }
886 default:
887 return false;
888 }
889 }
890
getUNDEF(SDLoc DL,EVT VT) const891 SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
892 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
893 return SDValue(N, 0);
894 }
895
convertTo(SDLoc DL,EVT VT,SDValue N) const896 SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
897 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
898 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
899 DL, VT, getUNDEF(DL, MVT::i64), N);
900 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
901 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
902 assert(N.getValueType() == VT && "Unexpected value types");
903 return N;
904 }
905
tryRISBGZero(SDNode * N)906 SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
907 SDLoc DL(N);
908 EVT VT = N->getValueType(0);
909 if (!VT.isInteger() || VT.getSizeInBits() > 64)
910 return nullptr;
911 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
912 unsigned Count = 0;
913 while (expandRxSBG(RISBG))
914 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
915 Count += 1;
916 if (Count == 0)
917 return nullptr;
918 if (Count == 1) {
919 // Prefer to use normal shift instructions over RISBG, since they can handle
920 // all cases and are sometimes shorter.
921 if (N->getOpcode() != ISD::AND)
922 return nullptr;
923
924 // Prefer register extensions like LLC over RISBG. Also prefer to start
925 // out with normal ANDs if one instruction would be enough. We can convert
926 // these ANDs into an RISBG later if a three-address instruction is useful.
927 if (VT == MVT::i32 ||
928 RISBG.Mask == 0xff ||
929 RISBG.Mask == 0xffff ||
930 SystemZ::isImmLF(~RISBG.Mask) ||
931 SystemZ::isImmHF(~RISBG.Mask)) {
932 // Force the new mask into the DAG, since it may include known-one bits.
933 auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
934 if (MaskN->getZExtValue() != RISBG.Mask) {
935 SDValue NewMask = CurDAG->getConstant(RISBG.Mask, DL, VT);
936 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
937 return SelectCode(N);
938 }
939 return nullptr;
940 }
941 }
942
943 // If the RISBG operands require no rotation and just masks the bottom
944 // 8/16 bits, attempt to convert this to a LLC zero extension.
945 if (RISBG.Rotate == 0 && (RISBG.Mask == 0xff || RISBG.Mask == 0xffff)) {
946 unsigned OpCode = (RISBG.Mask == 0xff ? SystemZ::LLGCR : SystemZ::LLGHR);
947 if (VT == MVT::i32) {
948 if (Subtarget->hasHighWord())
949 OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCRMux : SystemZ::LLHRMux);
950 else
951 OpCode = (RISBG.Mask == 0xff ? SystemZ::LLCR : SystemZ::LLHR);
952 }
953
954 SDValue In = convertTo(DL, VT, RISBG.Input);
955 N = CurDAG->getMachineNode(OpCode, DL, VT, In);
956 return convertTo(DL, VT, SDValue(N, 0)).getNode();
957 }
958
959 unsigned Opcode = SystemZ::RISBG;
960 // Prefer RISBGN if available, since it does not clobber CC.
961 if (Subtarget->hasMiscellaneousExtensions())
962 Opcode = SystemZ::RISBGN;
963 EVT OpcodeVT = MVT::i64;
964 if (VT == MVT::i32 && Subtarget->hasHighWord()) {
965 Opcode = SystemZ::RISBMux;
966 OpcodeVT = MVT::i32;
967 RISBG.Start &= 31;
968 RISBG.End &= 31;
969 }
970 SDValue Ops[5] = {
971 getUNDEF(DL, OpcodeVT),
972 convertTo(DL, OpcodeVT, RISBG.Input),
973 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
974 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
975 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
976 };
977 N = CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops);
978 return convertTo(DL, VT, SDValue(N, 0)).getNode();
979 }
980
tryRxSBG(SDNode * N,unsigned Opcode)981 SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
982 SDLoc DL(N);
983 EVT VT = N->getValueType(0);
984 if (!VT.isInteger() || VT.getSizeInBits() > 64)
985 return nullptr;
986 // Try treating each operand of N as the second operand of the RxSBG
987 // and see which goes deepest.
988 RxSBGOperands RxSBG[] = {
989 RxSBGOperands(Opcode, N->getOperand(0)),
990 RxSBGOperands(Opcode, N->getOperand(1))
991 };
992 unsigned Count[] = { 0, 0 };
993 for (unsigned I = 0; I < 2; ++I)
994 while (expandRxSBG(RxSBG[I]))
995 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
996 Count[I] += 1;
997
998 // Do nothing if neither operand is suitable.
999 if (Count[0] == 0 && Count[1] == 0)
1000 return nullptr;
1001
1002 // Pick the deepest second operand.
1003 unsigned I = Count[0] > Count[1] ? 0 : 1;
1004 SDValue Op0 = N->getOperand(I ^ 1);
1005
1006 // Prefer IC for character insertions from memory.
1007 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1008 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1009 if (Load->getMemoryVT() == MVT::i8)
1010 return nullptr;
1011
1012 // See whether we can avoid an AND in the first operand by converting
1013 // ROSBG to RISBG.
1014 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1015 Opcode = SystemZ::RISBG;
1016 // Prefer RISBGN if available, since it does not clobber CC.
1017 if (Subtarget->hasMiscellaneousExtensions())
1018 Opcode = SystemZ::RISBGN;
1019 }
1020
1021 SDValue Ops[5] = {
1022 convertTo(DL, MVT::i64, Op0),
1023 convertTo(DL, MVT::i64, RxSBG[I].Input),
1024 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1025 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1026 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1027 };
1028 N = CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops);
1029 return convertTo(DL, VT, SDValue(N, 0)).getNode();
1030 }
1031
splitLargeImmediate(unsigned Opcode,SDNode * Node,SDValue Op0,uint64_t UpperVal,uint64_t LowerVal)1032 SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1033 SDValue Op0, uint64_t UpperVal,
1034 uint64_t LowerVal) {
1035 EVT VT = Node->getValueType(0);
1036 SDLoc DL(Node);
1037 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1038 if (Op0.getNode())
1039 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1040 Upper = SDValue(Select(Upper.getNode()), 0);
1041
1042 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1043 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1044 return Or.getNode();
1045 }
1046
tryGather(SDNode * N,unsigned Opcode)1047 SDNode *SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1048 SDValue ElemV = N->getOperand(2);
1049 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1050 if (!ElemN)
1051 return 0;
1052
1053 unsigned Elem = ElemN->getZExtValue();
1054 EVT VT = N->getValueType(0);
1055 if (Elem >= VT.getVectorNumElements())
1056 return 0;
1057
1058 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1059 if (!Load || !Load->hasOneUse())
1060 return 0;
1061 if (Load->getMemoryVT().getSizeInBits() !=
1062 Load->getValueType(0).getSizeInBits())
1063 return 0;
1064
1065 SDValue Base, Disp, Index;
1066 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1067 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1068 return 0;
1069
1070 SDLoc DL(Load);
1071 SDValue Ops[] = {
1072 N->getOperand(0), Base, Disp, Index,
1073 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1074 };
1075 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1076 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1077 return Res;
1078 }
1079
tryScatter(StoreSDNode * Store,unsigned Opcode)1080 SDNode *SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1081 SDValue Value = Store->getValue();
1082 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1083 return 0;
1084 if (Store->getMemoryVT().getSizeInBits() !=
1085 Value.getValueType().getSizeInBits())
1086 return 0;
1087
1088 SDValue ElemV = Value.getOperand(1);
1089 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1090 if (!ElemN)
1091 return 0;
1092
1093 SDValue Vec = Value.getOperand(0);
1094 EVT VT = Vec.getValueType();
1095 unsigned Elem = ElemN->getZExtValue();
1096 if (Elem >= VT.getVectorNumElements())
1097 return 0;
1098
1099 SDValue Base, Disp, Index;
1100 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1101 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1102 return 0;
1103
1104 SDLoc DL(Store);
1105 SDValue Ops[] = {
1106 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1107 Store->getChain()
1108 };
1109 return CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
1110 }
1111
canUseBlockOperation(StoreSDNode * Store,LoadSDNode * Load) const1112 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1113 LoadSDNode *Load) const {
1114 // Check that the two memory operands have the same size.
1115 if (Load->getMemoryVT() != Store->getMemoryVT())
1116 return false;
1117
1118 // Volatility stops an access from being decomposed.
1119 if (Load->isVolatile() || Store->isVolatile())
1120 return false;
1121
1122 // There's no chance of overlap if the load is invariant.
1123 if (Load->isInvariant())
1124 return true;
1125
1126 // Otherwise we need to check whether there's an alias.
1127 const Value *V1 = Load->getMemOperand()->getValue();
1128 const Value *V2 = Store->getMemOperand()->getValue();
1129 if (!V1 || !V2)
1130 return false;
1131
1132 // Reject equality.
1133 uint64_t Size = Load->getMemoryVT().getStoreSize();
1134 int64_t End1 = Load->getSrcValueOffset() + Size;
1135 int64_t End2 = Store->getSrcValueOffset() + Size;
1136 if (V1 == V2 && End1 == End2)
1137 return false;
1138
1139 return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1140 MemoryLocation(V2, End2, Store->getAAInfo()));
1141 }
1142
storeLoadCanUseMVC(SDNode * N) const1143 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1144 auto *Store = cast<StoreSDNode>(N);
1145 auto *Load = cast<LoadSDNode>(Store->getValue());
1146
1147 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1148 // instructions.
1149 uint64_t Size = Load->getMemoryVT().getStoreSize();
1150 if (Size > 1 && Size <= 8) {
1151 // Prefer LHRL, LRL and LGRL.
1152 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1153 return false;
1154 // Prefer STHRL, STRL and STGRL.
1155 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1156 return false;
1157 }
1158
1159 return canUseBlockOperation(Store, Load);
1160 }
1161
storeLoadCanUseBlockBinary(SDNode * N,unsigned I) const1162 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1163 unsigned I) const {
1164 auto *StoreA = cast<StoreSDNode>(N);
1165 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1166 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1167 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1168 }
1169
Select(SDNode * Node)1170 SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
1171 // Dump information about the Node being selected
1172 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1173
1174 // If we have a custom node, we already have selected!
1175 if (Node->isMachineOpcode()) {
1176 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1177 Node->setNodeId(-1);
1178 return nullptr;
1179 }
1180
1181 unsigned Opcode = Node->getOpcode();
1182 SDNode *ResNode = nullptr;
1183 switch (Opcode) {
1184 case ISD::OR:
1185 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1186 ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1187 goto or_xor;
1188
1189 case ISD::XOR:
1190 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1191 ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1192 // Fall through.
1193 or_xor:
1194 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1195 // split the operation into two.
1196 if (!ResNode && Node->getValueType(0) == MVT::i64)
1197 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1198 uint64_t Val = Op1->getZExtValue();
1199 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1200 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1201 Val - uint32_t(Val), uint32_t(Val));
1202 }
1203 break;
1204
1205 case ISD::AND:
1206 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1207 ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1208 // Fall through.
1209 case ISD::ROTL:
1210 case ISD::SHL:
1211 case ISD::SRL:
1212 case ISD::ZERO_EXTEND:
1213 if (!ResNode)
1214 ResNode = tryRISBGZero(Node);
1215 break;
1216
1217 case ISD::Constant:
1218 // If this is a 64-bit constant that is out of the range of LLILF,
1219 // LLIHF and LGFI, split it into two 32-bit pieces.
1220 if (Node->getValueType(0) == MVT::i64) {
1221 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1222 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1223 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1224 Val - uint32_t(Val), uint32_t(Val));
1225 }
1226 break;
1227
1228 case SystemZISD::SELECT_CCMASK: {
1229 SDValue Op0 = Node->getOperand(0);
1230 SDValue Op1 = Node->getOperand(1);
1231 // Prefer to put any load first, so that it can be matched as a
1232 // conditional load.
1233 if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1234 SDValue CCValid = Node->getOperand(2);
1235 SDValue CCMask = Node->getOperand(3);
1236 uint64_t ConstCCValid =
1237 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1238 uint64_t ConstCCMask =
1239 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1240 // Invert the condition.
1241 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1242 CCMask.getValueType());
1243 SDValue Op4 = Node->getOperand(4);
1244 Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1245 }
1246 break;
1247 }
1248
1249 case ISD::INSERT_VECTOR_ELT: {
1250 EVT VT = Node->getValueType(0);
1251 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
1252 if (ElemBitSize == 32)
1253 ResNode = tryGather(Node, SystemZ::VGEF);
1254 else if (ElemBitSize == 64)
1255 ResNode = tryGather(Node, SystemZ::VGEG);
1256 break;
1257 }
1258
1259 case ISD::STORE: {
1260 auto *Store = cast<StoreSDNode>(Node);
1261 unsigned ElemBitSize = Store->getValue().getValueType().getSizeInBits();
1262 if (ElemBitSize == 32)
1263 ResNode = tryScatter(Store, SystemZ::VSCEF);
1264 else if (ElemBitSize == 64)
1265 ResNode = tryScatter(Store, SystemZ::VSCEG);
1266 break;
1267 }
1268 }
1269
1270 // Select the default instruction
1271 if (!ResNode)
1272 ResNode = SelectCode(Node);
1273
1274 DEBUG(errs() << "=> ";
1275 if (ResNode == nullptr || ResNode == Node)
1276 Node->dump(CurDAG);
1277 else
1278 ResNode->dump(CurDAG);
1279 errs() << "\n";
1280 );
1281 return ResNode;
1282 }
1283
1284 bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1285 SelectInlineAsmMemoryOperand(const SDValue &Op,
1286 unsigned ConstraintID,
1287 std::vector<SDValue> &OutOps) {
1288 switch(ConstraintID) {
1289 default:
1290 llvm_unreachable("Unexpected asm memory constraint");
1291 case InlineAsm::Constraint_i:
1292 case InlineAsm::Constraint_m:
1293 case InlineAsm::Constraint_Q:
1294 case InlineAsm::Constraint_R:
1295 case InlineAsm::Constraint_S:
1296 case InlineAsm::Constraint_T:
1297 // Accept addresses with short displacements, which are compatible
1298 // with Q, R, S and T. But keep the index operand for future expansion.
1299 SDValue Base, Disp, Index;
1300 if (selectBDXAddr(SystemZAddressingMode::FormBD,
1301 SystemZAddressingMode::Disp12Only,
1302 Op, Base, Disp, Index)) {
1303 OutOps.push_back(Base);
1304 OutOps.push_back(Disp);
1305 OutOps.push_back(Index);
1306 return false;
1307 }
1308 break;
1309 }
1310 return true;
1311 }
1312