1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CallGraph.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/DIBuilder.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Support/CommandLine.h"
44 #include <algorithm>
45
46 using namespace llvm;
47
48 static cl::opt<bool>
49 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
50 cl::Hidden,
51 cl::desc("Convert noalias attributes to metadata during inlining."));
52
53 static cl::opt<bool>
54 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
55 cl::init(true), cl::Hidden,
56 cl::desc("Convert align attributes to assumptions during inlining."));
57
InlineFunction(CallInst * CI,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)58 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
59 AAResults *CalleeAAR, bool InsertLifetime) {
60 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
61 }
InlineFunction(InvokeInst * II,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)62 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
63 AAResults *CalleeAAR, bool InsertLifetime) {
64 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
65 }
66
67 namespace {
68 /// A class for recording information about inlining a landing pad.
69 class LandingPadInliningInfo {
70 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
71 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
72 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
73 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
74 SmallVector<Value*, 8> UnwindDestPHIValues;
75
76 public:
LandingPadInliningInfo(InvokeInst * II)77 LandingPadInliningInfo(InvokeInst *II)
78 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
79 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
80 // If there are PHI nodes in the unwind destination block, we need to keep
81 // track of which values came into them from the invoke before removing
82 // the edge from this block.
83 llvm::BasicBlock *InvokeBB = II->getParent();
84 BasicBlock::iterator I = OuterResumeDest->begin();
85 for (; isa<PHINode>(I); ++I) {
86 // Save the value to use for this edge.
87 PHINode *PHI = cast<PHINode>(I);
88 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
89 }
90
91 CallerLPad = cast<LandingPadInst>(I);
92 }
93
94 /// The outer unwind destination is the target of
95 /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const96 BasicBlock *getOuterResumeDest() const {
97 return OuterResumeDest;
98 }
99
100 BasicBlock *getInnerResumeDest();
101
getLandingPadInst() const102 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
103
104 /// Forward the 'resume' instruction to the caller's landing pad block.
105 /// When the landing pad block has only one predecessor, this is
106 /// a simple branch. When there is more than one predecessor, we need to
107 /// split the landing pad block after the landingpad instruction and jump
108 /// to there.
109 void forwardResume(ResumeInst *RI,
110 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
111
112 /// Add incoming-PHI values to the unwind destination block for the given
113 /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const114 void addIncomingPHIValuesFor(BasicBlock *BB) const {
115 addIncomingPHIValuesForInto(BB, OuterResumeDest);
116 }
117
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const118 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
119 BasicBlock::iterator I = dest->begin();
120 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
121 PHINode *phi = cast<PHINode>(I);
122 phi->addIncoming(UnwindDestPHIValues[i], src);
123 }
124 }
125 };
126 } // anonymous namespace
127
128 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()129 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
130 if (InnerResumeDest) return InnerResumeDest;
131
132 // Split the landing pad.
133 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
134 InnerResumeDest =
135 OuterResumeDest->splitBasicBlock(SplitPoint,
136 OuterResumeDest->getName() + ".body");
137
138 // The number of incoming edges we expect to the inner landing pad.
139 const unsigned PHICapacity = 2;
140
141 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
142 Instruction *InsertPoint = &InnerResumeDest->front();
143 BasicBlock::iterator I = OuterResumeDest->begin();
144 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
145 PHINode *OuterPHI = cast<PHINode>(I);
146 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
147 OuterPHI->getName() + ".lpad-body",
148 InsertPoint);
149 OuterPHI->replaceAllUsesWith(InnerPHI);
150 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
151 }
152
153 // Create a PHI for the exception values.
154 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
155 "eh.lpad-body", InsertPoint);
156 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
157 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
158
159 // All done.
160 return InnerResumeDest;
161 }
162
163 /// Forward the 'resume' instruction to the caller's landing pad block.
164 /// When the landing pad block has only one predecessor, this is a simple
165 /// branch. When there is more than one predecessor, we need to split the
166 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)167 void LandingPadInliningInfo::forwardResume(
168 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
169 BasicBlock *Dest = getInnerResumeDest();
170 BasicBlock *Src = RI->getParent();
171
172 BranchInst::Create(Dest, Src);
173
174 // Update the PHIs in the destination. They were inserted in an order which
175 // makes this work.
176 addIncomingPHIValuesForInto(Src, Dest);
177
178 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
179 RI->eraseFromParent();
180 }
181
182 /// When we inline a basic block into an invoke,
183 /// we have to turn all of the calls that can throw into invokes.
184 /// This function analyze BB to see if there are any calls, and if so,
185 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
186 /// nodes in that block with the values specified in InvokeDestPHIValues.
187 static BasicBlock *
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge)188 HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) {
189 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
190 Instruction *I = &*BBI++;
191
192 // We only need to check for function calls: inlined invoke
193 // instructions require no special handling.
194 CallInst *CI = dyn_cast<CallInst>(I);
195
196 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
197 continue;
198
199 // Convert this function call into an invoke instruction. First, split the
200 // basic block.
201 BasicBlock *Split =
202 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
203
204 // Delete the unconditional branch inserted by splitBasicBlock
205 BB->getInstList().pop_back();
206
207 // Create the new invoke instruction.
208 SmallVector<Value*, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
209 SmallVector<OperandBundleDef, 1> OpBundles;
210
211 CI->getOperandBundlesAsDefs(OpBundles);
212
213 // Note: we're round tripping operand bundles through memory here, and that
214 // can potentially be avoided with a cleverer API design that we do not have
215 // as of this time.
216
217 InvokeInst *II =
218 InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, InvokeArgs,
219 OpBundles, CI->getName(), BB);
220 II->setDebugLoc(CI->getDebugLoc());
221 II->setCallingConv(CI->getCallingConv());
222 II->setAttributes(CI->getAttributes());
223
224 // Make sure that anything using the call now uses the invoke! This also
225 // updates the CallGraph if present, because it uses a WeakVH.
226 CI->replaceAllUsesWith(II);
227
228 // Delete the original call
229 Split->getInstList().pop_front();
230 return BB;
231 }
232 return nullptr;
233 }
234
235 /// If we inlined an invoke site, we need to convert calls
236 /// in the body of the inlined function into invokes.
237 ///
238 /// II is the invoke instruction being inlined. FirstNewBlock is the first
239 /// block of the inlined code (the last block is the end of the function),
240 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)241 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
242 ClonedCodeInfo &InlinedCodeInfo) {
243 BasicBlock *InvokeDest = II->getUnwindDest();
244
245 Function *Caller = FirstNewBlock->getParent();
246
247 // The inlined code is currently at the end of the function, scan from the
248 // start of the inlined code to its end, checking for stuff we need to
249 // rewrite.
250 LandingPadInliningInfo Invoke(II);
251
252 // Get all of the inlined landing pad instructions.
253 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
254 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
255 I != E; ++I)
256 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
257 InlinedLPads.insert(II->getLandingPadInst());
258
259 // Append the clauses from the outer landing pad instruction into the inlined
260 // landing pad instructions.
261 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
262 for (LandingPadInst *InlinedLPad : InlinedLPads) {
263 unsigned OuterNum = OuterLPad->getNumClauses();
264 InlinedLPad->reserveClauses(OuterNum);
265 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
266 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
267 if (OuterLPad->isCleanup())
268 InlinedLPad->setCleanup(true);
269 }
270
271 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
272 BB != E; ++BB) {
273 if (InlinedCodeInfo.ContainsCalls)
274 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
275 &*BB, Invoke.getOuterResumeDest()))
276 // Update any PHI nodes in the exceptional block to indicate that there
277 // is now a new entry in them.
278 Invoke.addIncomingPHIValuesFor(NewBB);
279
280 // Forward any resumes that are remaining here.
281 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
282 Invoke.forwardResume(RI, InlinedLPads);
283 }
284
285 // Now that everything is happy, we have one final detail. The PHI nodes in
286 // the exception destination block still have entries due to the original
287 // invoke instruction. Eliminate these entries (which might even delete the
288 // PHI node) now.
289 InvokeDest->removePredecessor(II->getParent());
290 }
291
292 /// If we inlined an invoke site, we need to convert calls
293 /// in the body of the inlined function into invokes.
294 ///
295 /// II is the invoke instruction being inlined. FirstNewBlock is the first
296 /// block of the inlined code (the last block is the end of the function),
297 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)298 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
299 ClonedCodeInfo &InlinedCodeInfo) {
300 BasicBlock *UnwindDest = II->getUnwindDest();
301 Function *Caller = FirstNewBlock->getParent();
302
303 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
304
305 // If there are PHI nodes in the unwind destination block, we need to keep
306 // track of which values came into them from the invoke before removing the
307 // edge from this block.
308 SmallVector<Value *, 8> UnwindDestPHIValues;
309 llvm::BasicBlock *InvokeBB = II->getParent();
310 for (Instruction &I : *UnwindDest) {
311 // Save the value to use for this edge.
312 PHINode *PHI = dyn_cast<PHINode>(&I);
313 if (!PHI)
314 break;
315 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
316 }
317
318 // Add incoming-PHI values to the unwind destination block for the given basic
319 // block, using the values for the original invoke's source block.
320 auto UpdatePHINodes = [&](BasicBlock *Src) {
321 BasicBlock::iterator I = UnwindDest->begin();
322 for (Value *V : UnwindDestPHIValues) {
323 PHINode *PHI = cast<PHINode>(I);
324 PHI->addIncoming(V, Src);
325 ++I;
326 }
327 };
328
329 // This connects all the instructions which 'unwind to caller' to the invoke
330 // destination.
331 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
332 BB != E; ++BB) {
333 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
334 if (CRI->unwindsToCaller()) {
335 CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI);
336 CRI->eraseFromParent();
337 UpdatePHINodes(&*BB);
338 }
339 }
340
341 Instruction *I = BB->getFirstNonPHI();
342 if (!I->isEHPad())
343 continue;
344
345 Instruction *Replacement = nullptr;
346 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
347 if (CatchSwitch->unwindsToCaller()) {
348 auto *NewCatchSwitch = CatchSwitchInst::Create(
349 CatchSwitch->getParentPad(), UnwindDest,
350 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
351 CatchSwitch);
352 for (BasicBlock *PadBB : CatchSwitch->handlers())
353 NewCatchSwitch->addHandler(PadBB);
354 Replacement = NewCatchSwitch;
355 }
356 } else if (!isa<FuncletPadInst>(I)) {
357 llvm_unreachable("unexpected EHPad!");
358 }
359
360 if (Replacement) {
361 Replacement->takeName(I);
362 I->replaceAllUsesWith(Replacement);
363 I->eraseFromParent();
364 UpdatePHINodes(&*BB);
365 }
366 }
367
368 if (InlinedCodeInfo.ContainsCalls)
369 for (Function::iterator BB = FirstNewBlock->getIterator(),
370 E = Caller->end();
371 BB != E; ++BB)
372 if (BasicBlock *NewBB =
373 HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest))
374 // Update any PHI nodes in the exceptional block to indicate that there
375 // is now a new entry in them.
376 UpdatePHINodes(NewBB);
377
378 // Now that everything is happy, we have one final detail. The PHI nodes in
379 // the exception destination block still have entries due to the original
380 // invoke instruction. Eliminate these entries (which might even delete the
381 // PHI node) now.
382 UnwindDest->removePredecessor(InvokeBB);
383 }
384
385 /// When inlining a function that contains noalias scope metadata,
386 /// this metadata needs to be cloned so that the inlined blocks
387 /// have different "unqiue scopes" at every call site. Were this not done, then
388 /// aliasing scopes from a function inlined into a caller multiple times could
389 /// not be differentiated (and this would lead to miscompiles because the
390 /// non-aliasing property communicated by the metadata could have
391 /// call-site-specific control dependencies).
CloneAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap)392 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
393 const Function *CalledFunc = CS.getCalledFunction();
394 SetVector<const MDNode *> MD;
395
396 // Note: We could only clone the metadata if it is already used in the
397 // caller. I'm omitting that check here because it might confuse
398 // inter-procedural alias analysis passes. We can revisit this if it becomes
399 // an efficiency or overhead problem.
400
401 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
402 I != IE; ++I)
403 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
404 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope))
405 MD.insert(M);
406 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias))
407 MD.insert(M);
408 }
409
410 if (MD.empty())
411 return;
412
413 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
414 // the set.
415 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
416 while (!Queue.empty()) {
417 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
418 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
419 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
420 if (MD.insert(M1))
421 Queue.push_back(M1);
422 }
423
424 // Now we have a complete set of all metadata in the chains used to specify
425 // the noalias scopes and the lists of those scopes.
426 SmallVector<TempMDTuple, 16> DummyNodes;
427 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
428 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
429 I != IE; ++I) {
430 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
431 MDMap[*I].reset(DummyNodes.back().get());
432 }
433
434 // Create new metadata nodes to replace the dummy nodes, replacing old
435 // metadata references with either a dummy node or an already-created new
436 // node.
437 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
438 I != IE; ++I) {
439 SmallVector<Metadata *, 4> NewOps;
440 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
441 const Metadata *V = (*I)->getOperand(i);
442 if (const MDNode *M = dyn_cast<MDNode>(V))
443 NewOps.push_back(MDMap[M]);
444 else
445 NewOps.push_back(const_cast<Metadata *>(V));
446 }
447
448 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
449 MDTuple *TempM = cast<MDTuple>(MDMap[*I]);
450 assert(TempM->isTemporary() && "Expected temporary node");
451
452 TempM->replaceAllUsesWith(NewM);
453 }
454
455 // Now replace the metadata in the new inlined instructions with the
456 // repacements from the map.
457 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
458 VMI != VMIE; ++VMI) {
459 if (!VMI->second)
460 continue;
461
462 Instruction *NI = dyn_cast<Instruction>(VMI->second);
463 if (!NI)
464 continue;
465
466 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
467 MDNode *NewMD = MDMap[M];
468 // If the call site also had alias scope metadata (a list of scopes to
469 // which instructions inside it might belong), propagate those scopes to
470 // the inlined instructions.
471 if (MDNode *CSM =
472 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
473 NewMD = MDNode::concatenate(NewMD, CSM);
474 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
475 } else if (NI->mayReadOrWriteMemory()) {
476 if (MDNode *M =
477 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
478 NI->setMetadata(LLVMContext::MD_alias_scope, M);
479 }
480
481 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
482 MDNode *NewMD = MDMap[M];
483 // If the call site also had noalias metadata (a list of scopes with
484 // which instructions inside it don't alias), propagate those scopes to
485 // the inlined instructions.
486 if (MDNode *CSM =
487 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
488 NewMD = MDNode::concatenate(NewMD, CSM);
489 NI->setMetadata(LLVMContext::MD_noalias, NewMD);
490 } else if (NI->mayReadOrWriteMemory()) {
491 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
492 NI->setMetadata(LLVMContext::MD_noalias, M);
493 }
494 }
495 }
496
497 /// If the inlined function has noalias arguments,
498 /// then add new alias scopes for each noalias argument, tag the mapped noalias
499 /// parameters with noalias metadata specifying the new scope, and tag all
500 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR)501 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
502 const DataLayout &DL, AAResults *CalleeAAR) {
503 if (!EnableNoAliasConversion)
504 return;
505
506 const Function *CalledFunc = CS.getCalledFunction();
507 SmallVector<const Argument *, 4> NoAliasArgs;
508
509 for (const Argument &I : CalledFunc->args()) {
510 if (I.hasNoAliasAttr() && !I.hasNUses(0))
511 NoAliasArgs.push_back(&I);
512 }
513
514 if (NoAliasArgs.empty())
515 return;
516
517 // To do a good job, if a noalias variable is captured, we need to know if
518 // the capture point dominates the particular use we're considering.
519 DominatorTree DT;
520 DT.recalculate(const_cast<Function&>(*CalledFunc));
521
522 // noalias indicates that pointer values based on the argument do not alias
523 // pointer values which are not based on it. So we add a new "scope" for each
524 // noalias function argument. Accesses using pointers based on that argument
525 // become part of that alias scope, accesses using pointers not based on that
526 // argument are tagged as noalias with that scope.
527
528 DenseMap<const Argument *, MDNode *> NewScopes;
529 MDBuilder MDB(CalledFunc->getContext());
530
531 // Create a new scope domain for this function.
532 MDNode *NewDomain =
533 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
534 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
535 const Argument *A = NoAliasArgs[i];
536
537 std::string Name = CalledFunc->getName();
538 if (A->hasName()) {
539 Name += ": %";
540 Name += A->getName();
541 } else {
542 Name += ": argument ";
543 Name += utostr(i);
544 }
545
546 // Note: We always create a new anonymous root here. This is true regardless
547 // of the linkage of the callee because the aliasing "scope" is not just a
548 // property of the callee, but also all control dependencies in the caller.
549 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
550 NewScopes.insert(std::make_pair(A, NewScope));
551 }
552
553 // Iterate over all new instructions in the map; for all memory-access
554 // instructions, add the alias scope metadata.
555 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
556 VMI != VMIE; ++VMI) {
557 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
558 if (!VMI->second)
559 continue;
560
561 Instruction *NI = dyn_cast<Instruction>(VMI->second);
562 if (!NI)
563 continue;
564
565 bool IsArgMemOnlyCall = false, IsFuncCall = false;
566 SmallVector<const Value *, 2> PtrArgs;
567
568 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
569 PtrArgs.push_back(LI->getPointerOperand());
570 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
571 PtrArgs.push_back(SI->getPointerOperand());
572 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
573 PtrArgs.push_back(VAAI->getPointerOperand());
574 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
575 PtrArgs.push_back(CXI->getPointerOperand());
576 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
577 PtrArgs.push_back(RMWI->getPointerOperand());
578 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
579 // If we know that the call does not access memory, then we'll still
580 // know that about the inlined clone of this call site, and we don't
581 // need to add metadata.
582 if (ICS.doesNotAccessMemory())
583 continue;
584
585 IsFuncCall = true;
586 if (CalleeAAR) {
587 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
588 if (MRB == FMRB_OnlyAccessesArgumentPointees ||
589 MRB == FMRB_OnlyReadsArgumentPointees)
590 IsArgMemOnlyCall = true;
591 }
592
593 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
594 AE = ICS.arg_end(); AI != AE; ++AI) {
595 // We need to check the underlying objects of all arguments, not just
596 // the pointer arguments, because we might be passing pointers as
597 // integers, etc.
598 // However, if we know that the call only accesses pointer arguments,
599 // then we only need to check the pointer arguments.
600 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
601 continue;
602
603 PtrArgs.push_back(*AI);
604 }
605 }
606
607 // If we found no pointers, then this instruction is not suitable for
608 // pairing with an instruction to receive aliasing metadata.
609 // However, if this is a call, this we might just alias with none of the
610 // noalias arguments.
611 if (PtrArgs.empty() && !IsFuncCall)
612 continue;
613
614 // It is possible that there is only one underlying object, but you
615 // need to go through several PHIs to see it, and thus could be
616 // repeated in the Objects list.
617 SmallPtrSet<const Value *, 4> ObjSet;
618 SmallVector<Metadata *, 4> Scopes, NoAliases;
619
620 SmallSetVector<const Argument *, 4> NAPtrArgs;
621 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
622 SmallVector<Value *, 4> Objects;
623 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
624 Objects, DL, /* LI = */ nullptr);
625
626 for (Value *O : Objects)
627 ObjSet.insert(O);
628 }
629
630 // Figure out if we're derived from anything that is not a noalias
631 // argument.
632 bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
633 for (const Value *V : ObjSet) {
634 // Is this value a constant that cannot be derived from any pointer
635 // value (we need to exclude constant expressions, for example, that
636 // are formed from arithmetic on global symbols).
637 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
638 isa<ConstantPointerNull>(V) ||
639 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
640 if (IsNonPtrConst)
641 continue;
642
643 // If this is anything other than a noalias argument, then we cannot
644 // completely describe the aliasing properties using alias.scope
645 // metadata (and, thus, won't add any).
646 if (const Argument *A = dyn_cast<Argument>(V)) {
647 if (!A->hasNoAliasAttr())
648 UsesAliasingPtr = true;
649 } else {
650 UsesAliasingPtr = true;
651 }
652
653 // If this is not some identified function-local object (which cannot
654 // directly alias a noalias argument), or some other argument (which,
655 // by definition, also cannot alias a noalias argument), then we could
656 // alias a noalias argument that has been captured).
657 if (!isa<Argument>(V) &&
658 !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
659 CanDeriveViaCapture = true;
660 }
661
662 // A function call can always get captured noalias pointers (via other
663 // parameters, globals, etc.).
664 if (IsFuncCall && !IsArgMemOnlyCall)
665 CanDeriveViaCapture = true;
666
667 // First, we want to figure out all of the sets with which we definitely
668 // don't alias. Iterate over all noalias set, and add those for which:
669 // 1. The noalias argument is not in the set of objects from which we
670 // definitely derive.
671 // 2. The noalias argument has not yet been captured.
672 // An arbitrary function that might load pointers could see captured
673 // noalias arguments via other noalias arguments or globals, and so we
674 // must always check for prior capture.
675 for (const Argument *A : NoAliasArgs) {
676 if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
677 // It might be tempting to skip the
678 // PointerMayBeCapturedBefore check if
679 // A->hasNoCaptureAttr() is true, but this is
680 // incorrect because nocapture only guarantees
681 // that no copies outlive the function, not
682 // that the value cannot be locally captured.
683 !PointerMayBeCapturedBefore(A,
684 /* ReturnCaptures */ false,
685 /* StoreCaptures */ false, I, &DT)))
686 NoAliases.push_back(NewScopes[A]);
687 }
688
689 if (!NoAliases.empty())
690 NI->setMetadata(LLVMContext::MD_noalias,
691 MDNode::concatenate(
692 NI->getMetadata(LLVMContext::MD_noalias),
693 MDNode::get(CalledFunc->getContext(), NoAliases)));
694
695 // Next, we want to figure out all of the sets to which we might belong.
696 // We might belong to a set if the noalias argument is in the set of
697 // underlying objects. If there is some non-noalias argument in our list
698 // of underlying objects, then we cannot add a scope because the fact
699 // that some access does not alias with any set of our noalias arguments
700 // cannot itself guarantee that it does not alias with this access
701 // (because there is some pointer of unknown origin involved and the
702 // other access might also depend on this pointer). We also cannot add
703 // scopes to arbitrary functions unless we know they don't access any
704 // non-parameter pointer-values.
705 bool CanAddScopes = !UsesAliasingPtr;
706 if (CanAddScopes && IsFuncCall)
707 CanAddScopes = IsArgMemOnlyCall;
708
709 if (CanAddScopes)
710 for (const Argument *A : NoAliasArgs) {
711 if (ObjSet.count(A))
712 Scopes.push_back(NewScopes[A]);
713 }
714
715 if (!Scopes.empty())
716 NI->setMetadata(
717 LLVMContext::MD_alias_scope,
718 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
719 MDNode::get(CalledFunc->getContext(), Scopes)));
720 }
721 }
722 }
723
724 /// If the inlined function has non-byval align arguments, then
725 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallSite CS,InlineFunctionInfo & IFI)726 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
727 if (!PreserveAlignmentAssumptions)
728 return;
729 auto &DL = CS.getCaller()->getParent()->getDataLayout();
730
731 // To avoid inserting redundant assumptions, we should check for assumptions
732 // already in the caller. To do this, we might need a DT of the caller.
733 DominatorTree DT;
734 bool DTCalculated = false;
735
736 Function *CalledFunc = CS.getCalledFunction();
737 for (Function::arg_iterator I = CalledFunc->arg_begin(),
738 E = CalledFunc->arg_end();
739 I != E; ++I) {
740 unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
741 if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
742 if (!DTCalculated) {
743 DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
744 ->getParent()));
745 DTCalculated = true;
746 }
747
748 // If we can already prove the asserted alignment in the context of the
749 // caller, then don't bother inserting the assumption.
750 Value *Arg = CS.getArgument(I->getArgNo());
751 if (getKnownAlignment(Arg, DL, CS.getInstruction(),
752 &IFI.ACT->getAssumptionCache(*CS.getCaller()),
753 &DT) >= Align)
754 continue;
755
756 IRBuilder<>(CS.getInstruction())
757 .CreateAlignmentAssumption(DL, Arg, Align);
758 }
759 }
760 }
761
762 /// Once we have cloned code over from a callee into the caller,
763 /// update the specified callgraph to reflect the changes we made.
764 /// Note that it's possible that not all code was copied over, so only
765 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallSite CS,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)766 static void UpdateCallGraphAfterInlining(CallSite CS,
767 Function::iterator FirstNewBlock,
768 ValueToValueMapTy &VMap,
769 InlineFunctionInfo &IFI) {
770 CallGraph &CG = *IFI.CG;
771 const Function *Caller = CS.getInstruction()->getParent()->getParent();
772 const Function *Callee = CS.getCalledFunction();
773 CallGraphNode *CalleeNode = CG[Callee];
774 CallGraphNode *CallerNode = CG[Caller];
775
776 // Since we inlined some uninlined call sites in the callee into the caller,
777 // add edges from the caller to all of the callees of the callee.
778 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
779
780 // Consider the case where CalleeNode == CallerNode.
781 CallGraphNode::CalledFunctionsVector CallCache;
782 if (CalleeNode == CallerNode) {
783 CallCache.assign(I, E);
784 I = CallCache.begin();
785 E = CallCache.end();
786 }
787
788 for (; I != E; ++I) {
789 const Value *OrigCall = I->first;
790
791 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
792 // Only copy the edge if the call was inlined!
793 if (VMI == VMap.end() || VMI->second == nullptr)
794 continue;
795
796 // If the call was inlined, but then constant folded, there is no edge to
797 // add. Check for this case.
798 Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
799 if (!NewCall)
800 continue;
801
802 // We do not treat intrinsic calls like real function calls because we
803 // expect them to become inline code; do not add an edge for an intrinsic.
804 CallSite CS = CallSite(NewCall);
805 if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
806 continue;
807
808 // Remember that this call site got inlined for the client of
809 // InlineFunction.
810 IFI.InlinedCalls.push_back(NewCall);
811
812 // It's possible that inlining the callsite will cause it to go from an
813 // indirect to a direct call by resolving a function pointer. If this
814 // happens, set the callee of the new call site to a more precise
815 // destination. This can also happen if the call graph node of the caller
816 // was just unnecessarily imprecise.
817 if (!I->second->getFunction())
818 if (Function *F = CallSite(NewCall).getCalledFunction()) {
819 // Indirect call site resolved to direct call.
820 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
821
822 continue;
823 }
824
825 CallerNode->addCalledFunction(CallSite(NewCall), I->second);
826 }
827
828 // Update the call graph by deleting the edge from Callee to Caller. We must
829 // do this after the loop above in case Caller and Callee are the same.
830 CallerNode->removeCallEdgeFor(CS);
831 }
832
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)833 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
834 BasicBlock *InsertBlock,
835 InlineFunctionInfo &IFI) {
836 Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
837 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
838
839 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
840
841 // Always generate a memcpy of alignment 1 here because we don't know
842 // the alignment of the src pointer. Other optimizations can infer
843 // better alignment.
844 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
845 }
846
847 /// When inlining a call site that has a byval argument,
848 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)849 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
850 const Function *CalledFunc,
851 InlineFunctionInfo &IFI,
852 unsigned ByValAlignment) {
853 PointerType *ArgTy = cast<PointerType>(Arg->getType());
854 Type *AggTy = ArgTy->getElementType();
855
856 Function *Caller = TheCall->getParent()->getParent();
857
858 // If the called function is readonly, then it could not mutate the caller's
859 // copy of the byval'd memory. In this case, it is safe to elide the copy and
860 // temporary.
861 if (CalledFunc->onlyReadsMemory()) {
862 // If the byval argument has a specified alignment that is greater than the
863 // passed in pointer, then we either have to round up the input pointer or
864 // give up on this transformation.
865 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
866 return Arg;
867
868 const DataLayout &DL = Caller->getParent()->getDataLayout();
869
870 // If the pointer is already known to be sufficiently aligned, or if we can
871 // round it up to a larger alignment, then we don't need a temporary.
872 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall,
873 &IFI.ACT->getAssumptionCache(*Caller)) >=
874 ByValAlignment)
875 return Arg;
876
877 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
878 // for code quality, but rarely happens and is required for correctness.
879 }
880
881 // Create the alloca. If we have DataLayout, use nice alignment.
882 unsigned Align =
883 Caller->getParent()->getDataLayout().getPrefTypeAlignment(AggTy);
884
885 // If the byval had an alignment specified, we *must* use at least that
886 // alignment, as it is required by the byval argument (and uses of the
887 // pointer inside the callee).
888 Align = std::max(Align, ByValAlignment);
889
890 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
891 &*Caller->begin()->begin());
892 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
893
894 // Uses of the argument in the function should use our new alloca
895 // instead.
896 return NewAlloca;
897 }
898
899 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)900 static bool isUsedByLifetimeMarker(Value *V) {
901 for (User *U : V->users()) {
902 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
903 switch (II->getIntrinsicID()) {
904 default: break;
905 case Intrinsic::lifetime_start:
906 case Intrinsic::lifetime_end:
907 return true;
908 }
909 }
910 }
911 return false;
912 }
913
914 // Check whether the given alloca already has
915 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)916 static bool hasLifetimeMarkers(AllocaInst *AI) {
917 Type *Ty = AI->getType();
918 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
919 Ty->getPointerAddressSpace());
920 if (Ty == Int8PtrTy)
921 return isUsedByLifetimeMarker(AI);
922
923 // Do a scan to find all the casts to i8*.
924 for (User *U : AI->users()) {
925 if (U->getType() != Int8PtrTy) continue;
926 if (U->stripPointerCasts() != AI) continue;
927 if (isUsedByLifetimeMarker(U))
928 return true;
929 }
930 return false;
931 }
932
933 /// Rebuild the entire inlined-at chain for this instruction so that the top of
934 /// the chain now is inlined-at the new call site.
935 static DebugLoc
updateInlinedAtInfo(DebugLoc DL,DILocation * InlinedAtNode,LLVMContext & Ctx,DenseMap<const DILocation *,DILocation * > & IANodes)936 updateInlinedAtInfo(DebugLoc DL, DILocation *InlinedAtNode, LLVMContext &Ctx,
937 DenseMap<const DILocation *, DILocation *> &IANodes) {
938 SmallVector<DILocation *, 3> InlinedAtLocations;
939 DILocation *Last = InlinedAtNode;
940 DILocation *CurInlinedAt = DL;
941
942 // Gather all the inlined-at nodes
943 while (DILocation *IA = CurInlinedAt->getInlinedAt()) {
944 // Skip any we've already built nodes for
945 if (DILocation *Found = IANodes[IA]) {
946 Last = Found;
947 break;
948 }
949
950 InlinedAtLocations.push_back(IA);
951 CurInlinedAt = IA;
952 }
953
954 // Starting from the top, rebuild the nodes to point to the new inlined-at
955 // location (then rebuilding the rest of the chain behind it) and update the
956 // map of already-constructed inlined-at nodes.
957 for (const DILocation *MD : make_range(InlinedAtLocations.rbegin(),
958 InlinedAtLocations.rend())) {
959 Last = IANodes[MD] = DILocation::getDistinct(
960 Ctx, MD->getLine(), MD->getColumn(), MD->getScope(), Last);
961 }
962
963 // And finally create the normal location for this instruction, referring to
964 // the new inlined-at chain.
965 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), Last);
966 }
967
968 /// Update inlined instructions' line numbers to
969 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall)970 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
971 Instruction *TheCall) {
972 DebugLoc TheCallDL = TheCall->getDebugLoc();
973 if (!TheCallDL)
974 return;
975
976 auto &Ctx = Fn->getContext();
977 DILocation *InlinedAtNode = TheCallDL;
978
979 // Create a unique call site, not to be confused with any other call from the
980 // same location.
981 InlinedAtNode = DILocation::getDistinct(
982 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
983 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
984
985 // Cache the inlined-at nodes as they're built so they are reused, without
986 // this every instruction's inlined-at chain would become distinct from each
987 // other.
988 DenseMap<const DILocation *, DILocation *> IANodes;
989
990 for (; FI != Fn->end(); ++FI) {
991 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
992 BI != BE; ++BI) {
993 DebugLoc DL = BI->getDebugLoc();
994 if (!DL) {
995 // If the inlined instruction has no line number, make it look as if it
996 // originates from the call location. This is important for
997 // ((__always_inline__, __nodebug__)) functions which must use caller
998 // location for all instructions in their function body.
999
1000 // Don't update static allocas, as they may get moved later.
1001 if (auto *AI = dyn_cast<AllocaInst>(BI))
1002 if (isa<Constant>(AI->getArraySize()))
1003 continue;
1004
1005 BI->setDebugLoc(TheCallDL);
1006 } else {
1007 BI->setDebugLoc(updateInlinedAtInfo(DL, InlinedAtNode, BI->getContext(), IANodes));
1008 }
1009 }
1010 }
1011 }
1012
1013 /// This function inlines the called function into the basic block of the
1014 /// caller. This returns false if it is not possible to inline this call.
1015 /// The program is still in a well defined state if this occurs though.
1016 ///
1017 /// Note that this only does one level of inlining. For example, if the
1018 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1019 /// exists in the instruction stream. Similarly this will inline a recursive
1020 /// function by one level.
InlineFunction(CallSite CS,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)1021 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1022 AAResults *CalleeAAR, bool InsertLifetime) {
1023 Instruction *TheCall = CS.getInstruction();
1024 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
1025 "Instruction not in function!");
1026
1027 // If IFI has any state in it, zap it before we fill it in.
1028 IFI.reset();
1029
1030 const Function *CalledFunc = CS.getCalledFunction();
1031 if (!CalledFunc || // Can't inline external function or indirect
1032 CalledFunc->isDeclaration() || // call, or call to a vararg function!
1033 CalledFunc->getFunctionType()->isVarArg()) return false;
1034
1035 // The inliner does not know how to inline through calls with operand bundles
1036 // in general ...
1037 if (CS.hasOperandBundles()) {
1038 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1039 uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1040 // ... but it knows how to inline through "deopt" operand bundles ...
1041 if (Tag == LLVMContext::OB_deopt)
1042 continue;
1043 // ... and "funclet" operand bundles.
1044 if (Tag == LLVMContext::OB_funclet)
1045 continue;
1046
1047 return false;
1048 }
1049 }
1050
1051 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1052 // calls that we inline.
1053 bool MarkNoUnwind = CS.doesNotThrow();
1054
1055 BasicBlock *OrigBB = TheCall->getParent();
1056 Function *Caller = OrigBB->getParent();
1057
1058 // GC poses two hazards to inlining, which only occur when the callee has GC:
1059 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1060 // caller.
1061 // 2. If the caller has a differing GC, it is invalid to inline.
1062 if (CalledFunc->hasGC()) {
1063 if (!Caller->hasGC())
1064 Caller->setGC(CalledFunc->getGC());
1065 else if (CalledFunc->getGC() != Caller->getGC())
1066 return false;
1067 }
1068
1069 // Get the personality function from the callee if it contains a landing pad.
1070 Constant *CalledPersonality =
1071 CalledFunc->hasPersonalityFn()
1072 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1073 : nullptr;
1074
1075 // Find the personality function used by the landing pads of the caller. If it
1076 // exists, then check to see that it matches the personality function used in
1077 // the callee.
1078 Constant *CallerPersonality =
1079 Caller->hasPersonalityFn()
1080 ? Caller->getPersonalityFn()->stripPointerCasts()
1081 : nullptr;
1082 if (CalledPersonality) {
1083 if (!CallerPersonality)
1084 Caller->setPersonalityFn(CalledPersonality);
1085 // If the personality functions match, then we can perform the
1086 // inlining. Otherwise, we can't inline.
1087 // TODO: This isn't 100% true. Some personality functions are proper
1088 // supersets of others and can be used in place of the other.
1089 else if (CalledPersonality != CallerPersonality)
1090 return false;
1091 }
1092
1093 // We need to figure out which funclet the callsite was in so that we may
1094 // properly nest the callee.
1095 Instruction *CallSiteEHPad = nullptr;
1096 if (CallerPersonality) {
1097 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1098 if (isFuncletEHPersonality(Personality)) {
1099 Optional<OperandBundleUse> ParentFunclet =
1100 CS.getOperandBundle(LLVMContext::OB_funclet);
1101 if (ParentFunclet)
1102 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1103
1104 // OK, the inlining site is legal. What about the target function?
1105
1106 if (CallSiteEHPad) {
1107 if (Personality == EHPersonality::MSVC_CXX) {
1108 // The MSVC personality cannot tolerate catches getting inlined into
1109 // cleanup funclets.
1110 if (isa<CleanupPadInst>(CallSiteEHPad)) {
1111 // Ok, the call site is within a cleanuppad. Let's check the callee
1112 // for catchpads.
1113 for (const BasicBlock &CalledBB : *CalledFunc) {
1114 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1115 return false;
1116 }
1117 }
1118 } else if (isAsynchronousEHPersonality(Personality)) {
1119 // SEH is even less tolerant, there may not be any sort of exceptional
1120 // funclet in the callee.
1121 for (const BasicBlock &CalledBB : *CalledFunc) {
1122 if (CalledBB.isEHPad())
1123 return false;
1124 }
1125 }
1126 }
1127 }
1128 }
1129
1130 // Get an iterator to the last basic block in the function, which will have
1131 // the new function inlined after it.
1132 Function::iterator LastBlock = --Caller->end();
1133
1134 // Make sure to capture all of the return instructions from the cloned
1135 // function.
1136 SmallVector<ReturnInst*, 8> Returns;
1137 ClonedCodeInfo InlinedFunctionInfo;
1138 Function::iterator FirstNewBlock;
1139
1140 { // Scope to destroy VMap after cloning.
1141 ValueToValueMapTy VMap;
1142 // Keep a list of pair (dst, src) to emit byval initializations.
1143 SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1144
1145 auto &DL = Caller->getParent()->getDataLayout();
1146
1147 assert(CalledFunc->arg_size() == CS.arg_size() &&
1148 "No varargs calls can be inlined!");
1149
1150 // Calculate the vector of arguments to pass into the function cloner, which
1151 // matches up the formal to the actual argument values.
1152 CallSite::arg_iterator AI = CS.arg_begin();
1153 unsigned ArgNo = 0;
1154 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
1155 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1156 Value *ActualArg = *AI;
1157
1158 // When byval arguments actually inlined, we need to make the copy implied
1159 // by them explicit. However, we don't do this if the callee is readonly
1160 // or readnone, because the copy would be unneeded: the callee doesn't
1161 // modify the struct.
1162 if (CS.isByValArgument(ArgNo)) {
1163 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1164 CalledFunc->getParamAlignment(ArgNo+1));
1165 if (ActualArg != *AI)
1166 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1167 }
1168
1169 VMap[&*I] = ActualArg;
1170 }
1171
1172 // Add alignment assumptions if necessary. We do this before the inlined
1173 // instructions are actually cloned into the caller so that we can easily
1174 // check what will be known at the start of the inlined code.
1175 AddAlignmentAssumptions(CS, IFI);
1176
1177 // We want the inliner to prune the code as it copies. We would LOVE to
1178 // have no dead or constant instructions leftover after inlining occurs
1179 // (which can happen, e.g., because an argument was constant), but we'll be
1180 // happy with whatever the cloner can do.
1181 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1182 /*ModuleLevelChanges=*/false, Returns, ".i",
1183 &InlinedFunctionInfo, TheCall);
1184
1185 // Remember the first block that is newly cloned over.
1186 FirstNewBlock = LastBlock; ++FirstNewBlock;
1187
1188 // Inject byval arguments initialization.
1189 for (std::pair<Value*, Value*> &Init : ByValInit)
1190 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1191 &*FirstNewBlock, IFI);
1192
1193 Optional<OperandBundleUse> ParentDeopt =
1194 CS.getOperandBundle(LLVMContext::OB_deopt);
1195 if (ParentDeopt) {
1196 SmallVector<OperandBundleDef, 2> OpDefs;
1197
1198 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1199 Instruction *I = dyn_cast_or_null<Instruction>(VH);
1200 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
1201
1202 OpDefs.clear();
1203
1204 CallSite ICS(I);
1205 OpDefs.reserve(ICS.getNumOperandBundles());
1206
1207 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1208 auto ChildOB = ICS.getOperandBundleAt(i);
1209 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1210 // If the inlined call has other operand bundles, let them be
1211 OpDefs.emplace_back(ChildOB);
1212 continue;
1213 }
1214
1215 // It may be useful to separate this logic (of handling operand
1216 // bundles) out to a separate "policy" component if this gets crowded.
1217 // Prepend the parent's deoptimization continuation to the newly
1218 // inlined call's deoptimization continuation.
1219 std::vector<Value *> MergedDeoptArgs;
1220 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1221 ChildOB.Inputs.size());
1222
1223 MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1224 ParentDeopt->Inputs.begin(),
1225 ParentDeopt->Inputs.end());
1226 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1227 ChildOB.Inputs.end());
1228
1229 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1230 }
1231
1232 Instruction *NewI = nullptr;
1233 if (isa<CallInst>(I))
1234 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1235 else
1236 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1237
1238 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1239 // this even if the call returns void.
1240 I->replaceAllUsesWith(NewI);
1241
1242 VH = nullptr;
1243 I->eraseFromParent();
1244 }
1245 }
1246
1247 // Update the callgraph if requested.
1248 if (IFI.CG)
1249 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1250
1251 // Update inlined instructions' line number information.
1252 fixupLineNumbers(Caller, FirstNewBlock, TheCall);
1253
1254 // Clone existing noalias metadata if necessary.
1255 CloneAliasScopeMetadata(CS, VMap);
1256
1257 // Add noalias metadata if necessary.
1258 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1259
1260 // FIXME: We could register any cloned assumptions instead of clearing the
1261 // whole function's cache.
1262 if (IFI.ACT)
1263 IFI.ACT->getAssumptionCache(*Caller).clear();
1264 }
1265
1266 // If there are any alloca instructions in the block that used to be the entry
1267 // block for the callee, move them to the entry block of the caller. First
1268 // calculate which instruction they should be inserted before. We insert the
1269 // instructions at the end of the current alloca list.
1270 {
1271 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1272 for (BasicBlock::iterator I = FirstNewBlock->begin(),
1273 E = FirstNewBlock->end(); I != E; ) {
1274 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1275 if (!AI) continue;
1276
1277 // If the alloca is now dead, remove it. This often occurs due to code
1278 // specialization.
1279 if (AI->use_empty()) {
1280 AI->eraseFromParent();
1281 continue;
1282 }
1283
1284 if (!isa<Constant>(AI->getArraySize()))
1285 continue;
1286
1287 // Keep track of the static allocas that we inline into the caller.
1288 IFI.StaticAllocas.push_back(AI);
1289
1290 // Scan for the block of allocas that we can move over, and move them
1291 // all at once.
1292 while (isa<AllocaInst>(I) &&
1293 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
1294 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1295 ++I;
1296 }
1297
1298 // Transfer all of the allocas over in a block. Using splice means
1299 // that the instructions aren't removed from the symbol table, then
1300 // reinserted.
1301 Caller->getEntryBlock().getInstList().splice(
1302 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1303 }
1304 // Move any dbg.declares describing the allocas into the entry basic block.
1305 DIBuilder DIB(*Caller->getParent());
1306 for (auto &AI : IFI.StaticAllocas)
1307 replaceDbgDeclareForAlloca(AI, AI, DIB, /*Deref=*/false);
1308 }
1309
1310 bool InlinedMustTailCalls = false;
1311 if (InlinedFunctionInfo.ContainsCalls) {
1312 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1313 if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1314 CallSiteTailKind = CI->getTailCallKind();
1315
1316 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1317 ++BB) {
1318 for (Instruction &I : *BB) {
1319 CallInst *CI = dyn_cast<CallInst>(&I);
1320 if (!CI)
1321 continue;
1322
1323 // We need to reduce the strength of any inlined tail calls. For
1324 // musttail, we have to avoid introducing potential unbounded stack
1325 // growth. For example, if functions 'f' and 'g' are mutually recursive
1326 // with musttail, we can inline 'g' into 'f' so long as we preserve
1327 // musttail on the cloned call to 'f'. If either the inlined call site
1328 // or the cloned call site is *not* musttail, the program already has
1329 // one frame of stack growth, so it's safe to remove musttail. Here is
1330 // a table of example transformations:
1331 //
1332 // f -> musttail g -> musttail f ==> f -> musttail f
1333 // f -> musttail g -> tail f ==> f -> tail f
1334 // f -> g -> musttail f ==> f -> f
1335 // f -> g -> tail f ==> f -> f
1336 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1337 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1338 CI->setTailCallKind(ChildTCK);
1339 InlinedMustTailCalls |= CI->isMustTailCall();
1340
1341 // Calls inlined through a 'nounwind' call site should be marked
1342 // 'nounwind'.
1343 if (MarkNoUnwind)
1344 CI->setDoesNotThrow();
1345 }
1346 }
1347 }
1348
1349 // Leave lifetime markers for the static alloca's, scoping them to the
1350 // function we just inlined.
1351 if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1352 IRBuilder<> builder(&FirstNewBlock->front());
1353 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1354 AllocaInst *AI = IFI.StaticAllocas[ai];
1355
1356 // If the alloca is already scoped to something smaller than the whole
1357 // function then there's no need to add redundant, less accurate markers.
1358 if (hasLifetimeMarkers(AI))
1359 continue;
1360
1361 // Try to determine the size of the allocation.
1362 ConstantInt *AllocaSize = nullptr;
1363 if (ConstantInt *AIArraySize =
1364 dyn_cast<ConstantInt>(AI->getArraySize())) {
1365 auto &DL = Caller->getParent()->getDataLayout();
1366 Type *AllocaType = AI->getAllocatedType();
1367 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1368 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1369
1370 // Don't add markers for zero-sized allocas.
1371 if (AllocaArraySize == 0)
1372 continue;
1373
1374 // Check that array size doesn't saturate uint64_t and doesn't
1375 // overflow when it's multiplied by type size.
1376 if (AllocaArraySize != ~0ULL &&
1377 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
1378 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1379 AllocaArraySize * AllocaTypeSize);
1380 }
1381 }
1382
1383 builder.CreateLifetimeStart(AI, AllocaSize);
1384 for (ReturnInst *RI : Returns) {
1385 // Don't insert llvm.lifetime.end calls between a musttail call and a
1386 // return. The return kills all local allocas.
1387 if (InlinedMustTailCalls &&
1388 RI->getParent()->getTerminatingMustTailCall())
1389 continue;
1390 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1391 }
1392 }
1393 }
1394
1395 // If the inlined code contained dynamic alloca instructions, wrap the inlined
1396 // code with llvm.stacksave/llvm.stackrestore intrinsics.
1397 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1398 Module *M = Caller->getParent();
1399 // Get the two intrinsics we care about.
1400 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1401 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1402
1403 // Insert the llvm.stacksave.
1404 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1405 .CreateCall(StackSave, {}, "savedstack");
1406
1407 // Insert a call to llvm.stackrestore before any return instructions in the
1408 // inlined function.
1409 for (ReturnInst *RI : Returns) {
1410 // Don't insert llvm.stackrestore calls between a musttail call and a
1411 // return. The return will restore the stack pointer.
1412 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1413 continue;
1414 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1415 }
1416 }
1417
1418 // Update the lexical scopes of the new funclets and callsites.
1419 // Anything that had 'none' as its parent is now nested inside the callsite's
1420 // EHPad.
1421
1422 if (CallSiteEHPad) {
1423 for (Function::iterator BB = FirstNewBlock->getIterator(),
1424 E = Caller->end();
1425 BB != E; ++BB) {
1426 // Add bundle operands to any top-level call sites.
1427 SmallVector<OperandBundleDef, 1> OpBundles;
1428 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
1429 Instruction *I = &*BBI++;
1430 CallSite CS(I);
1431 if (!CS)
1432 continue;
1433
1434 // Skip call sites which are nounwind intrinsics.
1435 auto *CalledFn =
1436 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
1437 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
1438 continue;
1439
1440 // Skip call sites which already have a "funclet" bundle.
1441 if (CS.getOperandBundle(LLVMContext::OB_funclet))
1442 continue;
1443
1444 CS.getOperandBundlesAsDefs(OpBundles);
1445 OpBundles.emplace_back("funclet", CallSiteEHPad);
1446
1447 Instruction *NewInst;
1448 if (CS.isCall())
1449 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
1450 else
1451 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
1452 NewInst->setDebugLoc(I->getDebugLoc());
1453 NewInst->takeName(I);
1454 I->replaceAllUsesWith(NewInst);
1455 I->eraseFromParent();
1456
1457 OpBundles.clear();
1458 }
1459
1460 Instruction *I = BB->getFirstNonPHI();
1461 if (!I->isEHPad())
1462 continue;
1463
1464 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
1465 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
1466 CatchSwitch->setParentPad(CallSiteEHPad);
1467 } else {
1468 auto *FPI = cast<FuncletPadInst>(I);
1469 if (isa<ConstantTokenNone>(FPI->getParentPad()))
1470 FPI->setParentPad(CallSiteEHPad);
1471 }
1472 }
1473 }
1474
1475 // If we are inlining for an invoke instruction, we must make sure to rewrite
1476 // any call instructions into invoke instructions.
1477 if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1478 BasicBlock *UnwindDest = II->getUnwindDest();
1479 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1480 if (isa<LandingPadInst>(FirstNonPHI)) {
1481 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1482 } else {
1483 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1484 }
1485 }
1486
1487 // Handle any inlined musttail call sites. In order for a new call site to be
1488 // musttail, the source of the clone and the inlined call site must have been
1489 // musttail. Therefore it's safe to return without merging control into the
1490 // phi below.
1491 if (InlinedMustTailCalls) {
1492 // Check if we need to bitcast the result of any musttail calls.
1493 Type *NewRetTy = Caller->getReturnType();
1494 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
1495
1496 // Handle the returns preceded by musttail calls separately.
1497 SmallVector<ReturnInst *, 8> NormalReturns;
1498 for (ReturnInst *RI : Returns) {
1499 CallInst *ReturnedMustTail =
1500 RI->getParent()->getTerminatingMustTailCall();
1501 if (!ReturnedMustTail) {
1502 NormalReturns.push_back(RI);
1503 continue;
1504 }
1505 if (!NeedBitCast)
1506 continue;
1507
1508 // Delete the old return and any preceding bitcast.
1509 BasicBlock *CurBB = RI->getParent();
1510 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
1511 RI->eraseFromParent();
1512 if (OldCast)
1513 OldCast->eraseFromParent();
1514
1515 // Insert a new bitcast and return with the right type.
1516 IRBuilder<> Builder(CurBB);
1517 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
1518 }
1519
1520 // Leave behind the normal returns so we can merge control flow.
1521 std::swap(Returns, NormalReturns);
1522 }
1523
1524 // If we cloned in _exactly one_ basic block, and if that block ends in a
1525 // return instruction, we splice the body of the inlined callee directly into
1526 // the calling basic block.
1527 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1528 // Move all of the instructions right before the call.
1529 OrigBB->getInstList().splice(TheCall->getIterator(),
1530 FirstNewBlock->getInstList(),
1531 FirstNewBlock->begin(), FirstNewBlock->end());
1532 // Remove the cloned basic block.
1533 Caller->getBasicBlockList().pop_back();
1534
1535 // If the call site was an invoke instruction, add a branch to the normal
1536 // destination.
1537 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1538 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1539 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
1540 }
1541
1542 // If the return instruction returned a value, replace uses of the call with
1543 // uses of the returned value.
1544 if (!TheCall->use_empty()) {
1545 ReturnInst *R = Returns[0];
1546 if (TheCall == R->getReturnValue())
1547 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1548 else
1549 TheCall->replaceAllUsesWith(R->getReturnValue());
1550 }
1551 // Since we are now done with the Call/Invoke, we can delete it.
1552 TheCall->eraseFromParent();
1553
1554 // Since we are now done with the return instruction, delete it also.
1555 Returns[0]->eraseFromParent();
1556
1557 // We are now done with the inlining.
1558 return true;
1559 }
1560
1561 // Otherwise, we have the normal case, of more than one block to inline or
1562 // multiple return sites.
1563
1564 // We want to clone the entire callee function into the hole between the
1565 // "starter" and "ender" blocks. How we accomplish this depends on whether
1566 // this is an invoke instruction or a call instruction.
1567 BasicBlock *AfterCallBB;
1568 BranchInst *CreatedBranchToNormalDest = nullptr;
1569 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1570
1571 // Add an unconditional branch to make this look like the CallInst case...
1572 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
1573
1574 // Split the basic block. This guarantees that no PHI nodes will have to be
1575 // updated due to new incoming edges, and make the invoke case more
1576 // symmetric to the call case.
1577 AfterCallBB =
1578 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
1579 CalledFunc->getName() + ".exit");
1580
1581 } else { // It's a call
1582 // If this is a call instruction, we need to split the basic block that
1583 // the call lives in.
1584 //
1585 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
1586 CalledFunc->getName() + ".exit");
1587 }
1588
1589 // Change the branch that used to go to AfterCallBB to branch to the first
1590 // basic block of the inlined function.
1591 //
1592 TerminatorInst *Br = OrigBB->getTerminator();
1593 assert(Br && Br->getOpcode() == Instruction::Br &&
1594 "splitBasicBlock broken!");
1595 Br->setOperand(0, &*FirstNewBlock);
1596
1597 // Now that the function is correct, make it a little bit nicer. In
1598 // particular, move the basic blocks inserted from the end of the function
1599 // into the space made by splitting the source basic block.
1600 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
1601 Caller->getBasicBlockList(), FirstNewBlock,
1602 Caller->end());
1603
1604 // Handle all of the return instructions that we just cloned in, and eliminate
1605 // any users of the original call/invoke instruction.
1606 Type *RTy = CalledFunc->getReturnType();
1607
1608 PHINode *PHI = nullptr;
1609 if (Returns.size() > 1) {
1610 // The PHI node should go at the front of the new basic block to merge all
1611 // possible incoming values.
1612 if (!TheCall->use_empty()) {
1613 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1614 &AfterCallBB->front());
1615 // Anything that used the result of the function call should now use the
1616 // PHI node as their operand.
1617 TheCall->replaceAllUsesWith(PHI);
1618 }
1619
1620 // Loop over all of the return instructions adding entries to the PHI node
1621 // as appropriate.
1622 if (PHI) {
1623 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1624 ReturnInst *RI = Returns[i];
1625 assert(RI->getReturnValue()->getType() == PHI->getType() &&
1626 "Ret value not consistent in function!");
1627 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1628 }
1629 }
1630
1631 // Add a branch to the merge points and remove return instructions.
1632 DebugLoc Loc;
1633 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1634 ReturnInst *RI = Returns[i];
1635 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
1636 Loc = RI->getDebugLoc();
1637 BI->setDebugLoc(Loc);
1638 RI->eraseFromParent();
1639 }
1640 // We need to set the debug location to *somewhere* inside the
1641 // inlined function. The line number may be nonsensical, but the
1642 // instruction will at least be associated with the right
1643 // function.
1644 if (CreatedBranchToNormalDest)
1645 CreatedBranchToNormalDest->setDebugLoc(Loc);
1646 } else if (!Returns.empty()) {
1647 // Otherwise, if there is exactly one return value, just replace anything
1648 // using the return value of the call with the computed value.
1649 if (!TheCall->use_empty()) {
1650 if (TheCall == Returns[0]->getReturnValue())
1651 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1652 else
1653 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1654 }
1655
1656 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1657 BasicBlock *ReturnBB = Returns[0]->getParent();
1658 ReturnBB->replaceAllUsesWith(AfterCallBB);
1659
1660 // Splice the code from the return block into the block that it will return
1661 // to, which contains the code that was after the call.
1662 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1663 ReturnBB->getInstList());
1664
1665 if (CreatedBranchToNormalDest)
1666 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
1667
1668 // Delete the return instruction now and empty ReturnBB now.
1669 Returns[0]->eraseFromParent();
1670 ReturnBB->eraseFromParent();
1671 } else if (!TheCall->use_empty()) {
1672 // No returns, but something is using the return value of the call. Just
1673 // nuke the result.
1674 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1675 }
1676
1677 // Since we are now done with the Call/Invoke, we can delete it.
1678 TheCall->eraseFromParent();
1679
1680 // If we inlined any musttail calls and the original return is now
1681 // unreachable, delete it. It can only contain a bitcast and ret.
1682 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
1683 AfterCallBB->eraseFromParent();
1684
1685 // We should always be able to fold the entry block of the function into the
1686 // single predecessor of the block...
1687 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1688 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1689
1690 // Splice the code entry block into calling block, right before the
1691 // unconditional branch.
1692 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
1693 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
1694
1695 // Remove the unconditional branch.
1696 OrigBB->getInstList().erase(Br);
1697
1698 // Now we can remove the CalleeEntry block, which is now empty.
1699 Caller->getBasicBlockList().erase(CalleeEntry);
1700
1701 // If we inserted a phi node, check to see if it has a single value (e.g. all
1702 // the entries are the same or undef). If so, remove the PHI so it doesn't
1703 // block other optimizations.
1704 if (PHI) {
1705 auto &DL = Caller->getParent()->getDataLayout();
1706 if (Value *V = SimplifyInstruction(PHI, DL, nullptr, nullptr,
1707 &IFI.ACT->getAssumptionCache(*Caller))) {
1708 PHI->replaceAllUsesWith(V);
1709 PHI->eraseFromParent();
1710 }
1711 }
1712
1713 return true;
1714 }
1715