• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  * Version:  7.5
4  *
5  * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6  * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included
16  * in all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  */
25 
26 
27 /**
28  * \file swrast/s_span.c
29  * \brief Span processing functions used by all rasterization functions.
30  * This is where all the per-fragment tests are performed
31  * \author Brian Paul
32  */
33 
34 #include "main/glheader.h"
35 #include "main/colormac.h"
36 #include "main/format_pack.h"
37 #include "main/format_unpack.h"
38 #include "main/macros.h"
39 #include "main/imports.h"
40 #include "main/image.h"
41 #include "main/samplerobj.h"
42 
43 #include "s_atifragshader.h"
44 #include "s_alpha.h"
45 #include "s_blend.h"
46 #include "s_context.h"
47 #include "s_depth.h"
48 #include "s_fog.h"
49 #include "s_logic.h"
50 #include "s_masking.h"
51 #include "s_fragprog.h"
52 #include "s_span.h"
53 #include "s_stencil.h"
54 #include "s_texcombine.h"
55 
56 #include <stdbool.h>
57 
58 /**
59  * Set default fragment attributes for the span using the
60  * current raster values.  Used prior to glDraw/CopyPixels
61  * and glBitmap.
62  */
63 void
_swrast_span_default_attribs(struct gl_context * ctx,SWspan * span)64 _swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
65 {
66    GLchan r, g, b, a;
67    /* Z*/
68    {
69       const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
70       if (ctx->DrawBuffer->Visual.depthBits <= 16)
71          span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
72       else {
73          GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
74          tmpf = MIN2(tmpf, depthMax);
75          span->z = (GLint)tmpf;
76       }
77       span->zStep = 0;
78       span->interpMask |= SPAN_Z;
79    }
80 
81    /* W (for perspective correction) */
82    span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
83    span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
84    span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
85 
86    /* primary color, or color index */
87    UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
88    UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
89    UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
90    UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
91 #if CHAN_TYPE == GL_FLOAT
92    span->red = r;
93    span->green = g;
94    span->blue = b;
95    span->alpha = a;
96 #else
97    span->red   = IntToFixed(r);
98    span->green = IntToFixed(g);
99    span->blue  = IntToFixed(b);
100    span->alpha = IntToFixed(a);
101 #endif
102    span->redStep = 0;
103    span->greenStep = 0;
104    span->blueStep = 0;
105    span->alphaStep = 0;
106    span->interpMask |= SPAN_RGBA;
107 
108    COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
109    ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
110    ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
111 
112    /* Secondary color */
113    if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
114    {
115       COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
116       ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
117       ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
118    }
119 
120    /* fog */
121    {
122       const SWcontext *swrast = SWRAST_CONTEXT(ctx);
123       GLfloat fogVal; /* a coord or a blend factor */
124       if (swrast->_PreferPixelFog) {
125          /* fog blend factors will be computed from fog coordinates per pixel */
126          fogVal = ctx->Current.RasterDistance;
127       }
128       else {
129          /* fog blend factor should be computed from fogcoord now */
130          fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
131       }
132       span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
133       span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
134       span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
135    }
136 
137    /* texcoords */
138    {
139       GLuint i;
140       for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
141          const GLuint attr = FRAG_ATTRIB_TEX0 + i;
142          const GLfloat *tc = ctx->Current.RasterTexCoords[i];
143          if (_swrast_use_fragment_program(ctx) ||
144              ctx->ATIFragmentShader._Enabled) {
145             COPY_4V(span->attrStart[attr], tc);
146          }
147          else if (tc[3] > 0.0F) {
148             /* use (s/q, t/q, r/q, 1) */
149             span->attrStart[attr][0] = tc[0] / tc[3];
150             span->attrStart[attr][1] = tc[1] / tc[3];
151             span->attrStart[attr][2] = tc[2] / tc[3];
152             span->attrStart[attr][3] = 1.0;
153          }
154          else {
155             ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
156          }
157          ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
158          ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
159       }
160    }
161 }
162 
163 
164 /**
165  * Interpolate the active attributes (and'd with attrMask) to
166  * fill in span->array->attribs[].
167  * Perspective correction will be done.  The point/line/triangle function
168  * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
169  */
170 static inline void
interpolate_active_attribs(struct gl_context * ctx,SWspan * span,GLbitfield64 attrMask)171 interpolate_active_attribs(struct gl_context *ctx, SWspan *span,
172                            GLbitfield64 attrMask)
173 {
174    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
175 
176    /*
177     * Don't overwrite existing array values, such as colors that may have
178     * been produced by glDraw/CopyPixels.
179     */
180    attrMask &= ~span->arrayAttribs;
181 
182    ATTRIB_LOOP_BEGIN
183       if (attrMask & BITFIELD64_BIT(attr)) {
184          const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
185          GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
186          const GLfloat dv0dx = span->attrStepX[attr][0];
187          const GLfloat dv1dx = span->attrStepX[attr][1];
188          const GLfloat dv2dx = span->attrStepX[attr][2];
189          const GLfloat dv3dx = span->attrStepX[attr][3];
190          GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
191          GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
192          GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
193          GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
194          GLuint k;
195          for (k = 0; k < span->end; k++) {
196             const GLfloat invW = 1.0f / w;
197             span->array->attribs[attr][k][0] = v0 * invW;
198             span->array->attribs[attr][k][1] = v1 * invW;
199             span->array->attribs[attr][k][2] = v2 * invW;
200             span->array->attribs[attr][k][3] = v3 * invW;
201             v0 += dv0dx;
202             v1 += dv1dx;
203             v2 += dv2dx;
204             v3 += dv3dx;
205             w += dwdx;
206          }
207          ASSERT((span->arrayAttribs & BITFIELD64_BIT(attr)) == 0);
208          span->arrayAttribs |= BITFIELD64_BIT(attr);
209       }
210    ATTRIB_LOOP_END
211 }
212 
213 
214 /**
215  * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
216  * color array.
217  */
218 static inline void
interpolate_int_colors(struct gl_context * ctx,SWspan * span)219 interpolate_int_colors(struct gl_context *ctx, SWspan *span)
220 {
221 #if CHAN_BITS != 32
222    const GLuint n = span->end;
223    GLuint i;
224 
225    ASSERT(!(span->arrayMask & SPAN_RGBA));
226 #endif
227 
228    switch (span->array->ChanType) {
229 #if CHAN_BITS != 32
230    case GL_UNSIGNED_BYTE:
231       {
232          GLubyte (*rgba)[4] = span->array->rgba8;
233          if (span->interpMask & SPAN_FLAT) {
234             GLubyte color[4];
235             color[RCOMP] = FixedToInt(span->red);
236             color[GCOMP] = FixedToInt(span->green);
237             color[BCOMP] = FixedToInt(span->blue);
238             color[ACOMP] = FixedToInt(span->alpha);
239             for (i = 0; i < n; i++) {
240                COPY_4UBV(rgba[i], color);
241             }
242          }
243          else {
244             GLfixed r = span->red;
245             GLfixed g = span->green;
246             GLfixed b = span->blue;
247             GLfixed a = span->alpha;
248             GLint dr = span->redStep;
249             GLint dg = span->greenStep;
250             GLint db = span->blueStep;
251             GLint da = span->alphaStep;
252             for (i = 0; i < n; i++) {
253                rgba[i][RCOMP] = FixedToChan(r);
254                rgba[i][GCOMP] = FixedToChan(g);
255                rgba[i][BCOMP] = FixedToChan(b);
256                rgba[i][ACOMP] = FixedToChan(a);
257                r += dr;
258                g += dg;
259                b += db;
260                a += da;
261             }
262          }
263       }
264       break;
265    case GL_UNSIGNED_SHORT:
266       {
267          GLushort (*rgba)[4] = span->array->rgba16;
268          if (span->interpMask & SPAN_FLAT) {
269             GLushort color[4];
270             color[RCOMP] = FixedToInt(span->red);
271             color[GCOMP] = FixedToInt(span->green);
272             color[BCOMP] = FixedToInt(span->blue);
273             color[ACOMP] = FixedToInt(span->alpha);
274             for (i = 0; i < n; i++) {
275                COPY_4V(rgba[i], color);
276             }
277          }
278          else {
279             GLushort (*rgba)[4] = span->array->rgba16;
280             GLfixed r, g, b, a;
281             GLint dr, dg, db, da;
282             r = span->red;
283             g = span->green;
284             b = span->blue;
285             a = span->alpha;
286             dr = span->redStep;
287             dg = span->greenStep;
288             db = span->blueStep;
289             da = span->alphaStep;
290             for (i = 0; i < n; i++) {
291                rgba[i][RCOMP] = FixedToChan(r);
292                rgba[i][GCOMP] = FixedToChan(g);
293                rgba[i][BCOMP] = FixedToChan(b);
294                rgba[i][ACOMP] = FixedToChan(a);
295                r += dr;
296                g += dg;
297                b += db;
298                a += da;
299             }
300          }
301       }
302       break;
303 #endif
304    case GL_FLOAT:
305       interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
306       break;
307    default:
308       _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
309                     span->array->ChanType);
310    }
311    span->arrayMask |= SPAN_RGBA;
312 }
313 
314 
315 /**
316  * Populate the FRAG_ATTRIB_COL0 array.
317  */
318 static inline void
interpolate_float_colors(SWspan * span)319 interpolate_float_colors(SWspan *span)
320 {
321    GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
322    const GLuint n = span->end;
323    GLuint i;
324 
325    assert(!(span->arrayAttribs & FRAG_BIT_COL0));
326 
327    if (span->arrayMask & SPAN_RGBA) {
328       /* convert array of int colors */
329       for (i = 0; i < n; i++) {
330          col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
331          col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
332          col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
333          col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
334       }
335    }
336    else {
337       /* interpolate red/green/blue/alpha to get float colors */
338       ASSERT(span->interpMask & SPAN_RGBA);
339       if (span->interpMask & SPAN_FLAT) {
340          GLfloat r = FixedToFloat(span->red);
341          GLfloat g = FixedToFloat(span->green);
342          GLfloat b = FixedToFloat(span->blue);
343          GLfloat a = FixedToFloat(span->alpha);
344          for (i = 0; i < n; i++) {
345             ASSIGN_4V(col0[i], r, g, b, a);
346          }
347       }
348       else {
349          GLfloat r = FixedToFloat(span->red);
350          GLfloat g = FixedToFloat(span->green);
351          GLfloat b = FixedToFloat(span->blue);
352          GLfloat a = FixedToFloat(span->alpha);
353          GLfloat dr = FixedToFloat(span->redStep);
354          GLfloat dg = FixedToFloat(span->greenStep);
355          GLfloat db = FixedToFloat(span->blueStep);
356          GLfloat da = FixedToFloat(span->alphaStep);
357          for (i = 0; i < n; i++) {
358             col0[i][0] = r;
359             col0[i][1] = g;
360             col0[i][2] = b;
361             col0[i][3] = a;
362             r += dr;
363             g += dg;
364             b += db;
365             a += da;
366          }
367       }
368    }
369 
370    span->arrayAttribs |= FRAG_BIT_COL0;
371    span->array->ChanType = GL_FLOAT;
372 }
373 
374 
375 
376 /**
377  * Fill in the span.zArray array from the span->z, zStep values.
378  */
379 void
_swrast_span_interpolate_z(const struct gl_context * ctx,SWspan * span)380 _swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
381 {
382    const GLuint n = span->end;
383    GLuint i;
384 
385    ASSERT(!(span->arrayMask & SPAN_Z));
386 
387    if (ctx->DrawBuffer->Visual.depthBits <= 16) {
388       GLfixed zval = span->z;
389       GLuint *z = span->array->z;
390       for (i = 0; i < n; i++) {
391          z[i] = FixedToInt(zval);
392          zval += span->zStep;
393       }
394    }
395    else {
396       /* Deep Z buffer, no fixed->int shift */
397       GLuint zval = span->z;
398       GLuint *z = span->array->z;
399       for (i = 0; i < n; i++) {
400          z[i] = zval;
401          zval += span->zStep;
402       }
403    }
404    span->interpMask &= ~SPAN_Z;
405    span->arrayMask |= SPAN_Z;
406 }
407 
408 
409 /**
410  * Compute mipmap LOD from partial derivatives.
411  * This the ideal solution, as given in the OpenGL spec.
412  */
413 GLfloat
_swrast_compute_lambda(GLfloat dsdx,GLfloat dsdy,GLfloat dtdx,GLfloat dtdy,GLfloat dqdx,GLfloat dqdy,GLfloat texW,GLfloat texH,GLfloat s,GLfloat t,GLfloat q,GLfloat invQ)414 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
415                        GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
416                        GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
417 {
418    GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
419    GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
420    GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
421    GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
422    GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
423    GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
424    GLfloat rho = MAX2(x, y);
425    GLfloat lambda = LOG2(rho);
426    return lambda;
427 }
428 
429 
430 /**
431  * Compute mipmap LOD from partial derivatives.
432  * This is a faster approximation than above function.
433  */
434 #if 0
435 GLfloat
436 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
437                      GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
438                      GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
439 {
440    GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
441    GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
442    GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
443    GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
444    GLfloat maxU, maxV, rho, lambda;
445    dsdx2 = FABSF(dsdx2);
446    dsdy2 = FABSF(dsdy2);
447    dtdx2 = FABSF(dtdx2);
448    dtdy2 = FABSF(dtdy2);
449    maxU = MAX2(dsdx2, dsdy2) * texW;
450    maxV = MAX2(dtdx2, dtdy2) * texH;
451    rho = MAX2(maxU, maxV);
452    lambda = LOG2(rho);
453    return lambda;
454 }
455 #endif
456 
457 
458 /**
459  * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
460  * using the attrStart/Step values.
461  *
462  * This function only used during fixed-function fragment processing.
463  *
464  * Note: in the places where we divide by Q (or mult by invQ) we're
465  * really doing two things: perspective correction and texcoord
466  * projection.  Remember, for texcoord (s,t,r,q) we need to index
467  * texels with (s/q, t/q, r/q).
468  */
469 static void
interpolate_texcoords(struct gl_context * ctx,SWspan * span)470 interpolate_texcoords(struct gl_context *ctx, SWspan *span)
471 {
472    const GLuint maxUnit
473       = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
474    GLuint u;
475 
476    /* XXX CoordUnits vs. ImageUnits */
477    for (u = 0; u < maxUnit; u++) {
478       if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
479          const GLuint attr = FRAG_ATTRIB_TEX0 + u;
480          const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
481          GLfloat texW, texH;
482          GLboolean needLambda;
483          GLfloat (*texcoord)[4] = span->array->attribs[attr];
484          GLfloat *lambda = span->array->lambda[u];
485          const GLfloat dsdx = span->attrStepX[attr][0];
486          const GLfloat dsdy = span->attrStepY[attr][0];
487          const GLfloat dtdx = span->attrStepX[attr][1];
488          const GLfloat dtdy = span->attrStepY[attr][1];
489          const GLfloat drdx = span->attrStepX[attr][2];
490          const GLfloat dqdx = span->attrStepX[attr][3];
491          const GLfloat dqdy = span->attrStepY[attr][3];
492          GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
493          GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
494          GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
495          GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
496 
497          if (obj) {
498             const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
499             const struct swrast_texture_image *swImg =
500                swrast_texture_image_const(img);
501             const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, u);
502 
503             needLambda = (samp->MinFilter != samp->MagFilter)
504                || _swrast_use_fragment_program(ctx);
505             /* LOD is calculated directly in the ansiotropic filter, we can
506              * skip the normal lambda function as the result is ignored.
507              */
508             if (samp->MaxAnisotropy > 1.0 &&
509                 samp->MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
510                needLambda = GL_FALSE;
511             }
512             texW = swImg->WidthScale;
513             texH = swImg->HeightScale;
514          }
515          else {
516             /* using a fragment program */
517             texW = 1.0;
518             texH = 1.0;
519             needLambda = GL_FALSE;
520          }
521 
522          if (needLambda) {
523             GLuint i;
524             if (_swrast_use_fragment_program(ctx)
525                 || ctx->ATIFragmentShader._Enabled) {
526                /* do perspective correction but don't divide s, t, r by q */
527                const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
528                GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
529                for (i = 0; i < span->end; i++) {
530                   const GLfloat invW = 1.0F / w;
531                   texcoord[i][0] = s * invW;
532                   texcoord[i][1] = t * invW;
533                   texcoord[i][2] = r * invW;
534                   texcoord[i][3] = q * invW;
535                   lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
536                                                      dqdx, dqdy, texW, texH,
537                                                      s, t, q, invW);
538                   s += dsdx;
539                   t += dtdx;
540                   r += drdx;
541                   q += dqdx;
542                   w += dwdx;
543                }
544             }
545             else {
546                for (i = 0; i < span->end; i++) {
547                   const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
548                   texcoord[i][0] = s * invQ;
549                   texcoord[i][1] = t * invQ;
550                   texcoord[i][2] = r * invQ;
551                   texcoord[i][3] = q;
552                   lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
553                                                      dqdx, dqdy, texW, texH,
554                                                      s, t, q, invQ);
555                   s += dsdx;
556                   t += dtdx;
557                   r += drdx;
558                   q += dqdx;
559                }
560             }
561             span->arrayMask |= SPAN_LAMBDA;
562          }
563          else {
564             GLuint i;
565             if (_swrast_use_fragment_program(ctx) ||
566                 ctx->ATIFragmentShader._Enabled) {
567                /* do perspective correction but don't divide s, t, r by q */
568                const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
569                GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
570                for (i = 0; i < span->end; i++) {
571                   const GLfloat invW = 1.0F / w;
572                   texcoord[i][0] = s * invW;
573                   texcoord[i][1] = t * invW;
574                   texcoord[i][2] = r * invW;
575                   texcoord[i][3] = q * invW;
576                   lambda[i] = 0.0;
577                   s += dsdx;
578                   t += dtdx;
579                   r += drdx;
580                   q += dqdx;
581                   w += dwdx;
582                }
583             }
584             else if (dqdx == 0.0F) {
585                /* Ortho projection or polygon's parallel to window X axis */
586                const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
587                for (i = 0; i < span->end; i++) {
588                   texcoord[i][0] = s * invQ;
589                   texcoord[i][1] = t * invQ;
590                   texcoord[i][2] = r * invQ;
591                   texcoord[i][3] = q;
592                   lambda[i] = 0.0;
593                   s += dsdx;
594                   t += dtdx;
595                   r += drdx;
596                }
597             }
598             else {
599                for (i = 0; i < span->end; i++) {
600                   const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
601                   texcoord[i][0] = s * invQ;
602                   texcoord[i][1] = t * invQ;
603                   texcoord[i][2] = r * invQ;
604                   texcoord[i][3] = q;
605                   lambda[i] = 0.0;
606                   s += dsdx;
607                   t += dtdx;
608                   r += drdx;
609                   q += dqdx;
610                }
611             }
612          } /* lambda */
613       } /* if */
614    } /* for */
615 }
616 
617 
618 /**
619  * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
620  */
621 static inline void
interpolate_wpos(struct gl_context * ctx,SWspan * span)622 interpolate_wpos(struct gl_context *ctx, SWspan *span)
623 {
624    GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
625    GLuint i;
626    const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
627    GLfloat w, dw;
628 
629    if (span->arrayMask & SPAN_XY) {
630       for (i = 0; i < span->end; i++) {
631          wpos[i][0] = (GLfloat) span->array->x[i];
632          wpos[i][1] = (GLfloat) span->array->y[i];
633       }
634    }
635    else {
636       for (i = 0; i < span->end; i++) {
637          wpos[i][0] = (GLfloat) span->x + i;
638          wpos[i][1] = (GLfloat) span->y;
639       }
640    }
641 
642    dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
643    w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
644    for (i = 0; i < span->end; i++) {
645       wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
646       wpos[i][3] = w;
647       w += dw;
648    }
649 }
650 
651 
652 /**
653  * Apply the current polygon stipple pattern to a span of pixels.
654  */
655 static inline void
stipple_polygon_span(struct gl_context * ctx,SWspan * span)656 stipple_polygon_span(struct gl_context *ctx, SWspan *span)
657 {
658    GLubyte *mask = span->array->mask;
659 
660    ASSERT(ctx->Polygon.StippleFlag);
661 
662    if (span->arrayMask & SPAN_XY) {
663       /* arrays of x/y pixel coords */
664       GLuint i;
665       for (i = 0; i < span->end; i++) {
666          const GLint col = span->array->x[i] % 32;
667          const GLint row = span->array->y[i] % 32;
668          const GLuint stipple = ctx->PolygonStipple[row];
669          if (((1 << col) & stipple) == 0) {
670             mask[i] = 0;
671          }
672       }
673    }
674    else {
675       /* horizontal span of pixels */
676       const GLuint highBit = 1 << 31;
677       const GLuint stipple = ctx->PolygonStipple[span->y % 32];
678       GLuint i, m = highBit >> (GLuint) (span->x % 32);
679       for (i = 0; i < span->end; i++) {
680          if ((m & stipple) == 0) {
681             mask[i] = 0;
682          }
683          m = m >> 1;
684          if (m == 0) {
685             m = highBit;
686          }
687       }
688    }
689    span->writeAll = GL_FALSE;
690 }
691 
692 
693 /**
694  * Clip a pixel span to the current buffer/window boundaries:
695  * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
696  * window clipping and scissoring.
697  * Return:   GL_TRUE   some pixels still visible
698  *           GL_FALSE  nothing visible
699  */
700 static inline GLuint
clip_span(struct gl_context * ctx,SWspan * span)701 clip_span( struct gl_context *ctx, SWspan *span )
702 {
703    const GLint xmin = ctx->DrawBuffer->_Xmin;
704    const GLint xmax = ctx->DrawBuffer->_Xmax;
705    const GLint ymin = ctx->DrawBuffer->_Ymin;
706    const GLint ymax = ctx->DrawBuffer->_Ymax;
707 
708    span->leftClip = 0;
709 
710    if (span->arrayMask & SPAN_XY) {
711       /* arrays of x/y pixel coords */
712       const GLint *x = span->array->x;
713       const GLint *y = span->array->y;
714       const GLint n = span->end;
715       GLubyte *mask = span->array->mask;
716       GLint i;
717       GLuint passed = 0;
718       if (span->arrayMask & SPAN_MASK) {
719          /* note: using & intead of && to reduce branches */
720          for (i = 0; i < n; i++) {
721             mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
722                      & (y[i] >= ymin) & (y[i] < ymax);
723             passed += mask[i];
724          }
725       }
726       else {
727          /* note: using & intead of && to reduce branches */
728          for (i = 0; i < n; i++) {
729             mask[i] = (x[i] >= xmin) & (x[i] < xmax)
730                     & (y[i] >= ymin) & (y[i] < ymax);
731             passed += mask[i];
732          }
733       }
734       return passed > 0;
735    }
736    else {
737       /* horizontal span of pixels */
738       const GLint x = span->x;
739       const GLint y = span->y;
740       GLint n = span->end;
741 
742       /* Trivial rejection tests */
743       if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
744          span->end = 0;
745          return GL_FALSE;  /* all pixels clipped */
746       }
747 
748       /* Clip to right */
749       if (x + n > xmax) {
750          ASSERT(x < xmax);
751          n = span->end = xmax - x;
752       }
753 
754       /* Clip to the left */
755       if (x < xmin) {
756          const GLint leftClip = xmin - x;
757          GLuint i;
758 
759          ASSERT(leftClip > 0);
760          ASSERT(x + n > xmin);
761 
762          /* Clip 'leftClip' pixels from the left side.
763           * The span->leftClip field will be applied when we interpolate
764           * fragment attributes.
765           * For arrays of values, shift them left.
766           */
767          for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
768             if (span->interpMask & (1 << i)) {
769                GLuint j;
770                for (j = 0; j < 4; j++) {
771                   span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
772                }
773             }
774          }
775 
776          span->red += leftClip * span->redStep;
777          span->green += leftClip * span->greenStep;
778          span->blue += leftClip * span->blueStep;
779          span->alpha += leftClip * span->alphaStep;
780          span->index += leftClip * span->indexStep;
781          span->z += leftClip * span->zStep;
782          span->intTex[0] += leftClip * span->intTexStep[0];
783          span->intTex[1] += leftClip * span->intTexStep[1];
784 
785 #define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
786          memmove(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
787 
788          for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
789             if (span->arrayAttribs & (1 << i)) {
790                /* shift array elements left by 'leftClip' */
791                SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
792             }
793          }
794 
795          SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
796          SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
797          SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
798          SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
799          SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
800          SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
801          SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
802          for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
803             SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
804          }
805          SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
806 
807 #undef SHIFT_ARRAY
808 
809          span->leftClip = leftClip;
810          span->x = xmin;
811          span->end -= leftClip;
812          span->writeAll = GL_FALSE;
813       }
814 
815       ASSERT(span->x >= xmin);
816       ASSERT(span->x + span->end <= xmax);
817       ASSERT(span->y >= ymin);
818       ASSERT(span->y < ymax);
819 
820       return GL_TRUE;  /* some pixels visible */
821    }
822 }
823 
824 
825 /**
826  * Add specular colors to primary colors.
827  * Only called during fixed-function operation.
828  * Result is float color array (FRAG_ATTRIB_COL0).
829  */
830 static inline void
add_specular(struct gl_context * ctx,SWspan * span)831 add_specular(struct gl_context *ctx, SWspan *span)
832 {
833    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
834    const GLubyte *mask = span->array->mask;
835    GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
836    GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
837    GLuint i;
838 
839    ASSERT(!_swrast_use_fragment_program(ctx));
840    ASSERT(span->arrayMask & SPAN_RGBA);
841    ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
842    (void) swrast; /* silence warning */
843 
844    if (span->array->ChanType == GL_FLOAT) {
845       if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
846          interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
847       }
848    }
849    else {
850       /* need float colors */
851       if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
852          interpolate_float_colors(span);
853       }
854    }
855 
856    if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
857       /* XXX could avoid this and interpolate COL1 in the loop below */
858       interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
859    }
860 
861    ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
862    ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
863 
864    for (i = 0; i < span->end; i++) {
865       if (mask[i]) {
866          col0[i][0] += col1[i][0];
867          col0[i][1] += col1[i][1];
868          col0[i][2] += col1[i][2];
869       }
870    }
871 
872    span->array->ChanType = GL_FLOAT;
873 }
874 
875 
876 /**
877  * Apply antialiasing coverage value to alpha values.
878  */
879 static inline void
apply_aa_coverage(SWspan * span)880 apply_aa_coverage(SWspan *span)
881 {
882    const GLfloat *coverage = span->array->coverage;
883    GLuint i;
884    if (span->array->ChanType == GL_UNSIGNED_BYTE) {
885       GLubyte (*rgba)[4] = span->array->rgba8;
886       for (i = 0; i < span->end; i++) {
887          const GLfloat a = rgba[i][ACOMP] * coverage[i];
888          rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
889          ASSERT(coverage[i] >= 0.0);
890          ASSERT(coverage[i] <= 1.0);
891       }
892    }
893    else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
894       GLushort (*rgba)[4] = span->array->rgba16;
895       for (i = 0; i < span->end; i++) {
896          const GLfloat a = rgba[i][ACOMP] * coverage[i];
897          rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
898       }
899    }
900    else {
901       GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
902       for (i = 0; i < span->end; i++) {
903          rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
904          /* clamp later */
905       }
906    }
907 }
908 
909 
910 /**
911  * Clamp span's float colors to [0,1]
912  */
913 static inline void
clamp_colors(SWspan * span)914 clamp_colors(SWspan *span)
915 {
916    GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
917    GLuint i;
918    ASSERT(span->array->ChanType == GL_FLOAT);
919    for (i = 0; i < span->end; i++) {
920       rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
921       rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
922       rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
923       rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
924    }
925 }
926 
927 
928 /**
929  * Convert the span's color arrays to the given type.
930  * The only way 'output' can be greater than zero is when we have a fragment
931  * program that writes to gl_FragData[1] or higher.
932  * \param output  which fragment program color output is being processed
933  */
934 static inline void
convert_color_type(SWspan * span,GLenum newType,GLuint output)935 convert_color_type(SWspan *span, GLenum newType, GLuint output)
936 {
937    GLvoid *src, *dst;
938 
939    if (output > 0 || span->array->ChanType == GL_FLOAT) {
940       src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
941       span->array->ChanType = GL_FLOAT;
942    }
943    else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
944       src = span->array->rgba8;
945    }
946    else {
947       ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
948       src = span->array->rgba16;
949    }
950 
951    if (newType == GL_UNSIGNED_BYTE) {
952       dst = span->array->rgba8;
953    }
954    else if (newType == GL_UNSIGNED_SHORT) {
955       dst = span->array->rgba16;
956    }
957    else {
958       dst = span->array->attribs[FRAG_ATTRIB_COL0];
959    }
960 
961    _mesa_convert_colors(span->array->ChanType, src,
962                         newType, dst,
963                         span->end, span->array->mask);
964 
965    span->array->ChanType = newType;
966    span->array->rgba = dst;
967 }
968 
969 
970 
971 /**
972  * Apply fragment shader, fragment program or normal texturing to span.
973  */
974 static inline void
shade_texture_span(struct gl_context * ctx,SWspan * span)975 shade_texture_span(struct gl_context *ctx, SWspan *span)
976 {
977    if (_swrast_use_fragment_program(ctx) ||
978        ctx->ATIFragmentShader._Enabled) {
979       /* programmable shading */
980       if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
981          convert_color_type(span, GL_FLOAT, 0);
982       }
983       else {
984          span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
985       }
986 
987       if (span->primitive != GL_POINT ||
988 	  (span->interpMask & SPAN_RGBA) ||
989 	  ctx->Point.PointSprite) {
990          /* for single-pixel points, we populated the arrays already */
991          interpolate_active_attribs(ctx, span, ~0);
992       }
993       span->array->ChanType = GL_FLOAT;
994 
995       if (!(span->arrayMask & SPAN_Z))
996          _swrast_span_interpolate_z (ctx, span);
997 
998 #if 0
999       if (inputsRead & FRAG_BIT_WPOS)
1000 #else
1001       /* XXX always interpolate wpos so that DDX/DDY work */
1002 #endif
1003          interpolate_wpos(ctx, span);
1004 
1005       /* Run fragment program/shader now */
1006       if (_swrast_use_fragment_program(ctx)) {
1007          _swrast_exec_fragment_program(ctx, span);
1008       }
1009       else {
1010          ASSERT(ctx->ATIFragmentShader._Enabled);
1011          _swrast_exec_fragment_shader(ctx, span);
1012       }
1013    }
1014    else if (ctx->Texture._EnabledCoordUnits) {
1015       /* conventional texturing */
1016 
1017 #if CHAN_BITS == 32
1018       if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1019          interpolate_int_colors(ctx, span);
1020       }
1021 #else
1022       if (!(span->arrayMask & SPAN_RGBA))
1023          interpolate_int_colors(ctx, span);
1024 #endif
1025       if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1026          interpolate_texcoords(ctx, span);
1027 
1028       _swrast_texture_span(ctx, span);
1029    }
1030 }
1031 
1032 
1033 /** Put colors at x/y locations into a renderbuffer */
1034 static void
put_values(struct gl_context * ctx,struct gl_renderbuffer * rb,GLenum datatype,GLuint count,const GLint x[],const GLint y[],const void * values,const GLubyte * mask)1035 put_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1036            GLenum datatype,
1037            GLuint count, const GLint x[], const GLint y[],
1038            const void *values, const GLubyte *mask)
1039 {
1040    gl_pack_ubyte_rgba_func pack_ubyte = NULL;
1041    gl_pack_float_rgba_func pack_float = NULL;
1042    GLuint i;
1043 
1044    if (datatype == GL_UNSIGNED_BYTE)
1045       pack_ubyte = _mesa_get_pack_ubyte_rgba_function(rb->Format);
1046    else
1047       pack_float = _mesa_get_pack_float_rgba_function(rb->Format);
1048 
1049    for (i = 0; i < count; i++) {
1050       if (mask[i]) {
1051          GLubyte *dst = _swrast_pixel_address(rb, x[i], y[i]);
1052 
1053          if (datatype == GL_UNSIGNED_BYTE) {
1054             pack_ubyte((const GLubyte *) values + 4 * i, dst);
1055          }
1056          else {
1057             assert(datatype == GL_FLOAT);
1058             pack_float((const GLfloat *) values + 4 * i, dst);
1059          }
1060       }
1061    }
1062 }
1063 
1064 
1065 /** Put row of colors into renderbuffer */
1066 void
_swrast_put_row(struct gl_context * ctx,struct gl_renderbuffer * rb,GLenum datatype,GLuint count,GLint x,GLint y,const void * values,const GLubyte * mask)1067 _swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1068                 GLenum datatype,
1069                 GLuint count, GLint x, GLint y,
1070                 const void *values, const GLubyte *mask)
1071 {
1072    GLubyte *dst = _swrast_pixel_address(rb, x, y);
1073 
1074    if (!mask) {
1075       if (datatype == GL_UNSIGNED_BYTE) {
1076          _mesa_pack_ubyte_rgba_row(rb->Format, count,
1077                                    (const GLubyte (*)[4]) values, dst);
1078       }
1079       else {
1080          assert(datatype == GL_FLOAT);
1081          _mesa_pack_float_rgba_row(rb->Format, count,
1082                                    (const GLfloat (*)[4]) values, dst);
1083       }
1084    }
1085    else {
1086       const GLuint bpp = _mesa_get_format_bytes(rb->Format);
1087       GLuint i, runLen, runStart;
1088       /* We can't pass a 'mask' array to the _mesa_pack_rgba_row() functions
1089        * so look for runs where mask=1...
1090        */
1091       runLen = runStart = 0;
1092       for (i = 0; i < count; i++) {
1093          if (mask[i]) {
1094             if (runLen == 0)
1095                runStart = i;
1096             runLen++;
1097          }
1098 
1099          if (!mask[i] || i == count - 1) {
1100             /* might be the end of a run of pixels */
1101             if (runLen > 0) {
1102                if (datatype == GL_UNSIGNED_BYTE) {
1103                   _mesa_pack_ubyte_rgba_row(rb->Format, runLen,
1104                                      (const GLubyte (*)[4]) values + runStart,
1105                                      dst + runStart * bpp);
1106                }
1107                else {
1108                   assert(datatype == GL_FLOAT);
1109                   _mesa_pack_float_rgba_row(rb->Format, runLen,
1110                                    (const GLfloat (*)[4]) values + runStart,
1111                                    dst + runStart * bpp);
1112                }
1113                runLen = 0;
1114             }
1115          }
1116       }
1117    }
1118 }
1119 
1120 
1121 
1122 /**
1123  * Apply all the per-fragment operations to a span.
1124  * This now includes texturing (_swrast_write_texture_span() is history).
1125  * This function may modify any of the array values in the span.
1126  * span->interpMask and span->arrayMask may be changed but will be restored
1127  * to their original values before returning.
1128  */
1129 void
_swrast_write_rgba_span(struct gl_context * ctx,SWspan * span)1130 _swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1131 {
1132    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1133    const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1134    const GLbitfield origInterpMask = span->interpMask;
1135    const GLbitfield origArrayMask = span->arrayMask;
1136    const GLbitfield64 origArrayAttribs = span->arrayAttribs;
1137    const GLenum origChanType = span->array->ChanType;
1138    void * const origRgba = span->array->rgba;
1139    const GLboolean shader = (_swrast_use_fragment_program(ctx)
1140                              || ctx->ATIFragmentShader._Enabled);
1141    const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1142    struct gl_framebuffer *fb = ctx->DrawBuffer;
1143 
1144    /*
1145    printf("%s()  interp 0x%x  array 0x%x\n", __FUNCTION__,
1146           span->interpMask, span->arrayMask);
1147    */
1148 
1149    ASSERT(span->primitive == GL_POINT ||
1150           span->primitive == GL_LINE ||
1151 	  span->primitive == GL_POLYGON ||
1152           span->primitive == GL_BITMAP);
1153 
1154    /* Fragment write masks */
1155    if (span->arrayMask & SPAN_MASK) {
1156       /* mask was initialized by caller, probably glBitmap */
1157       span->writeAll = GL_FALSE;
1158    }
1159    else {
1160       memset(span->array->mask, 1, span->end);
1161       span->writeAll = GL_TRUE;
1162    }
1163 
1164    /* Clip to window/scissor box */
1165    if (!clip_span(ctx, span)) {
1166       return;
1167    }
1168 
1169    ASSERT(span->end <= SWRAST_MAX_WIDTH);
1170 
1171    /* Depth bounds test */
1172    if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1173       if (!_swrast_depth_bounds_test(ctx, span)) {
1174          return;
1175       }
1176    }
1177 
1178 #ifdef DEBUG
1179    /* Make sure all fragments are within window bounds */
1180    if (span->arrayMask & SPAN_XY) {
1181       /* array of pixel locations */
1182       GLuint i;
1183       for (i = 0; i < span->end; i++) {
1184          if (span->array->mask[i]) {
1185             assert(span->array->x[i] >= fb->_Xmin);
1186             assert(span->array->x[i] < fb->_Xmax);
1187             assert(span->array->y[i] >= fb->_Ymin);
1188             assert(span->array->y[i] < fb->_Ymax);
1189          }
1190       }
1191    }
1192 #endif
1193 
1194    /* Polygon Stippling */
1195    if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1196       stipple_polygon_span(ctx, span);
1197    }
1198 
1199    /* This is the normal place to compute the fragment color/Z
1200     * from texturing or shading.
1201     */
1202    if (shaderOrTexture && !swrast->_DeferredTexture) {
1203       shade_texture_span(ctx, span);
1204    }
1205 
1206    /* Do the alpha test */
1207    if (ctx->Color.AlphaEnabled) {
1208       if (!_swrast_alpha_test(ctx, span)) {
1209          /* all fragments failed test */
1210          goto end;
1211       }
1212    }
1213 
1214    /* Stencil and Z testing */
1215    if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1216       if (!(span->arrayMask & SPAN_Z))
1217          _swrast_span_interpolate_z(ctx, span);
1218 
1219       if (ctx->Transform.DepthClamp)
1220 	 _swrast_depth_clamp_span(ctx, span);
1221 
1222       if (ctx->Stencil._Enabled) {
1223          /* Combined Z/stencil tests */
1224          if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1225             /* all fragments failed test */
1226             goto end;
1227          }
1228       }
1229       else if (fb->Visual.depthBits > 0) {
1230          /* Just regular depth testing */
1231          ASSERT(ctx->Depth.Test);
1232          ASSERT(span->arrayMask & SPAN_Z);
1233          if (!_swrast_depth_test_span(ctx, span)) {
1234             /* all fragments failed test */
1235             goto end;
1236          }
1237       }
1238    }
1239 
1240    if (ctx->Query.CurrentOcclusionObject) {
1241       /* update count of 'passed' fragments */
1242       struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1243       GLuint i;
1244       for (i = 0; i < span->end; i++)
1245          q->Result += span->array->mask[i];
1246    }
1247 
1248    /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1249     * the occlusion test.
1250     */
1251    if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1252       /* no colors to write */
1253       goto end;
1254    }
1255 
1256    /* If we were able to defer fragment color computation to now, there's
1257     * a good chance that many fragments will have already been killed by
1258     * Z/stencil testing.
1259     */
1260    if (shaderOrTexture && swrast->_DeferredTexture) {
1261       shade_texture_span(ctx, span);
1262    }
1263 
1264 #if CHAN_BITS == 32
1265    if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1266       interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1267    }
1268 #else
1269    if ((span->arrayMask & SPAN_RGBA) == 0) {
1270       interpolate_int_colors(ctx, span);
1271    }
1272 #endif
1273 
1274    ASSERT(span->arrayMask & SPAN_RGBA);
1275 
1276    if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1277       /* Add primary and specular (diffuse + specular) colors */
1278       if (!shader) {
1279          if (ctx->Fog.ColorSumEnabled ||
1280              (ctx->Light.Enabled &&
1281               ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1282             add_specular(ctx, span);
1283          }
1284       }
1285    }
1286 
1287    /* Fog */
1288    if (swrast->_FogEnabled) {
1289       _swrast_fog_rgba_span(ctx, span);
1290    }
1291 
1292    /* Antialias coverage application */
1293    if (span->arrayMask & SPAN_COVERAGE) {
1294       apply_aa_coverage(span);
1295    }
1296 
1297    /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1298    if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1299        span->array->ChanType == GL_FLOAT) {
1300       clamp_colors(span);
1301    }
1302 
1303    /*
1304     * Write to renderbuffers.
1305     * Depending on glDrawBuffer() state and the which color outputs are
1306     * written by the fragment shader, we may either replicate one color to
1307     * all renderbuffers or write a different color to each renderbuffer.
1308     * multiFragOutputs=TRUE for the later case.
1309     */
1310    {
1311       const GLuint numBuffers = fb->_NumColorDrawBuffers;
1312       const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1313       const GLboolean multiFragOutputs =
1314          _swrast_use_fragment_program(ctx)
1315          && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0);
1316       GLuint buf;
1317 
1318       for (buf = 0; buf < numBuffers; buf++) {
1319          struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1320 
1321          /* color[fragOutput] will be written to buffer[buf] */
1322 
1323          if (rb) {
1324             /* re-use one of the attribute array buffers for rgbaSave */
1325             GLchan (*rgbaSave)[4] = (GLchan (*)[4]) span->array->attribs[0];
1326             struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1327             GLenum colorType = srb->ColorType;
1328 
1329             assert(colorType == GL_UNSIGNED_BYTE ||
1330                    colorType == GL_FLOAT);
1331 
1332             /* set span->array->rgba to colors for renderbuffer's datatype */
1333             if (span->array->ChanType != colorType) {
1334                convert_color_type(span, colorType, 0);
1335             }
1336             else {
1337                if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1338                   span->array->rgba = span->array->rgba8;
1339                }
1340                else {
1341                   span->array->rgba = (void *)
1342                      span->array->attribs[FRAG_ATTRIB_COL0];
1343                }
1344             }
1345 
1346             if (!multiFragOutputs && numBuffers > 1) {
1347                /* save colors for second, third renderbuffer writes */
1348                memcpy(rgbaSave, span->array->rgba,
1349                       4 * span->end * sizeof(GLchan));
1350             }
1351 
1352             ASSERT(rb->_BaseFormat == GL_RGBA ||
1353                    rb->_BaseFormat == GL_RGB ||
1354                    rb->_BaseFormat == GL_RED ||
1355                    rb->_BaseFormat == GL_RG ||
1356 		   rb->_BaseFormat == GL_ALPHA);
1357 
1358             if (ctx->Color.ColorLogicOpEnabled) {
1359                _swrast_logicop_rgba_span(ctx, rb, span);
1360             }
1361             else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1362                _swrast_blend_span(ctx, rb, span);
1363             }
1364 
1365             if (colorMask[buf] != 0xffffffff) {
1366                _swrast_mask_rgba_span(ctx, rb, span, buf);
1367             }
1368 
1369             if (span->arrayMask & SPAN_XY) {
1370                /* array of pixel coords */
1371                put_values(ctx, rb,
1372                           span->array->ChanType, span->end,
1373                           span->array->x, span->array->y,
1374                           span->array->rgba, span->array->mask);
1375             }
1376             else {
1377                /* horizontal run of pixels */
1378                _swrast_put_row(ctx, rb,
1379                                span->array->ChanType,
1380                                span->end, span->x, span->y,
1381                                span->array->rgba,
1382                                span->writeAll ? NULL: span->array->mask);
1383             }
1384 
1385             if (!multiFragOutputs && numBuffers > 1) {
1386                /* restore original span values */
1387                memcpy(span->array->rgba, rgbaSave,
1388                       4 * span->end * sizeof(GLchan));
1389             }
1390 
1391          } /* if rb */
1392       } /* for buf */
1393    }
1394 
1395 end:
1396    /* restore these values before returning */
1397    span->interpMask = origInterpMask;
1398    span->arrayMask = origArrayMask;
1399    span->arrayAttribs = origArrayAttribs;
1400    span->array->ChanType = origChanType;
1401    span->array->rgba = origRgba;
1402 }
1403 
1404 
1405 /**
1406  * Read float RGBA pixels from a renderbuffer.  Clipping will be done to
1407  * prevent reading ouside the buffer's boundaries.
1408  * \param rgba  the returned colors
1409  */
1410 void
_swrast_read_rgba_span(struct gl_context * ctx,struct gl_renderbuffer * rb,GLuint n,GLint x,GLint y,GLvoid * rgba)1411 _swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1412                         GLuint n, GLint x, GLint y,
1413                         GLvoid *rgba)
1414 {
1415    struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1416    GLenum dstType = GL_FLOAT;
1417    const GLint bufWidth = (GLint) rb->Width;
1418    const GLint bufHeight = (GLint) rb->Height;
1419 
1420    if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1421       /* completely above, below, or right */
1422       /* XXX maybe leave rgba values undefined? */
1423       memset(rgba, 0, 4 * n * sizeof(GLchan));
1424    }
1425    else {
1426       GLint skip, length;
1427       GLubyte *src;
1428 
1429       if (x < 0) {
1430          /* left edge clipping */
1431          skip = -x;
1432          length = (GLint) n - skip;
1433          if (length < 0) {
1434             /* completely left of window */
1435             return;
1436          }
1437          if (length > bufWidth) {
1438             length = bufWidth;
1439          }
1440       }
1441       else if ((GLint) (x + n) > bufWidth) {
1442          /* right edge clipping */
1443          skip = 0;
1444          length = bufWidth - x;
1445          if (length < 0) {
1446             /* completely to right of window */
1447             return;
1448          }
1449       }
1450       else {
1451          /* no clipping */
1452          skip = 0;
1453          length = (GLint) n;
1454       }
1455 
1456       ASSERT(rb);
1457       ASSERT(rb->_BaseFormat == GL_RGBA ||
1458 	     rb->_BaseFormat == GL_RGB ||
1459 	     rb->_BaseFormat == GL_RG ||
1460 	     rb->_BaseFormat == GL_RED ||
1461 	     rb->_BaseFormat == GL_LUMINANCE ||
1462 	     rb->_BaseFormat == GL_INTENSITY ||
1463 	     rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
1464 	     rb->_BaseFormat == GL_ALPHA);
1465 
1466       assert(srb->Map);
1467 
1468       src = _swrast_pixel_address(rb, x + skip, y);
1469 
1470       if (dstType == GL_UNSIGNED_BYTE) {
1471          _mesa_unpack_ubyte_rgba_row(rb->Format, length, src,
1472                                      (GLubyte (*)[4]) rgba + skip);
1473       }
1474       else if (dstType == GL_FLOAT) {
1475          _mesa_unpack_rgba_row(rb->Format, length, src,
1476                                (GLfloat (*)[4]) rgba + skip);
1477       }
1478       else {
1479          _mesa_problem(ctx, "unexpected type in _swrast_read_rgba_span()");
1480       }
1481    }
1482 }
1483 
1484 
1485 /**
1486  * Get colors at x/y positions with clipping.
1487  * \param type  type of values to return
1488  */
1489 static void
get_values(struct gl_context * ctx,struct gl_renderbuffer * rb,GLuint count,const GLint x[],const GLint y[],void * values,GLenum type)1490 get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1491            GLuint count, const GLint x[], const GLint y[],
1492            void *values, GLenum type)
1493 {
1494    GLuint i;
1495 
1496    for (i = 0; i < count; i++) {
1497       if (x[i] >= 0 && y[i] >= 0 &&
1498 	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1499          /* inside */
1500          const GLubyte *src = _swrast_pixel_address(rb, x[i], y[i]);
1501 
1502          if (type == GL_UNSIGNED_BYTE) {
1503             _mesa_unpack_ubyte_rgba_row(rb->Format, 1, src,
1504                                         (GLubyte (*)[4]) values + i);
1505          }
1506          else if (type == GL_FLOAT) {
1507             _mesa_unpack_rgba_row(rb->Format, 1, src,
1508                                   (GLfloat (*)[4]) values + i);
1509          }
1510          else {
1511             _mesa_problem(ctx, "unexpected type in get_values()");
1512          }
1513       }
1514    }
1515 }
1516 
1517 
1518 /**
1519  * Get row of colors with clipping.
1520  * \param type  type of values to return
1521  */
1522 static void
get_row(struct gl_context * ctx,struct gl_renderbuffer * rb,GLuint count,GLint x,GLint y,GLvoid * values,GLenum type)1523 get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1524         GLuint count, GLint x, GLint y,
1525         GLvoid *values, GLenum type)
1526 {
1527    GLint skip = 0;
1528    GLubyte *src;
1529 
1530    if (y < 0 || y >= (GLint) rb->Height)
1531       return; /* above or below */
1532 
1533    if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1534       return; /* entirely left or right */
1535 
1536    if (x + count > rb->Width) {
1537       /* right clip */
1538       GLint clip = x + count - rb->Width;
1539       count -= clip;
1540    }
1541 
1542    if (x < 0) {
1543       /* left clip */
1544       skip = -x;
1545       x = 0;
1546       count -= skip;
1547    }
1548 
1549    src = _swrast_pixel_address(rb, x, y);
1550 
1551    if (type == GL_UNSIGNED_BYTE) {
1552       _mesa_unpack_ubyte_rgba_row(rb->Format, count, src,
1553                                   (GLubyte (*)[4]) values + skip);
1554    }
1555    else if (type == GL_FLOAT) {
1556       _mesa_unpack_rgba_row(rb->Format, count, src,
1557                             (GLfloat (*)[4]) values + skip);
1558    }
1559    else {
1560       _mesa_problem(ctx, "unexpected type in get_row()");
1561    }
1562 }
1563 
1564 
1565 /**
1566  * Get RGBA pixels from the given renderbuffer.
1567  * Used by blending, logicop and masking functions.
1568  * \return pointer to the colors we read.
1569  */
1570 void *
_swrast_get_dest_rgba(struct gl_context * ctx,struct gl_renderbuffer * rb,SWspan * span)1571 _swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1572                       SWspan *span)
1573 {
1574    void *rbPixels;
1575 
1576    /* Point rbPixels to a temporary space */
1577    rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1578 
1579    /* Get destination values from renderbuffer */
1580    if (span->arrayMask & SPAN_XY) {
1581       get_values(ctx, rb, span->end, span->array->x, span->array->y,
1582                  rbPixels, span->array->ChanType);
1583    }
1584    else {
1585       get_row(ctx, rb, span->end, span->x, span->y,
1586               rbPixels, span->array->ChanType);
1587    }
1588 
1589    return rbPixels;
1590 }
1591