• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* ChangeLog for this library:
30  *
31  * NDK r8d: Add android_setCpu().
32  *
33  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
34  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
35  *
36  *          Rewrite the code to parse /proc/self/auxv instead of
37  *          the "Features" field in /proc/cpuinfo.
38  *
39  *          Dynamically allocate the buffer that hold the content
40  *          of /proc/cpuinfo to deal with newer hardware.
41  *
42  * NDK r7c: Fix CPU count computation. The old method only reported the
43  *           number of _active_ CPUs when the library was initialized,
44  *           which could be less than the real total.
45  *
46  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
47  *         for an ARMv6 CPU (see below).
48  *
49  *         Handle kernels that only report 'neon', and not 'vfpv3'
50  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
51  *
52  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
53  *
54  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
55  *         android_getCpuFamily().
56  *
57  * NDK r4: Initial release
58  */
59 #include <sys/system_properties.h>
60 #ifdef __arm__
61 #include <machine/cpu-features.h>
62 #endif
63 #include <pthread.h>
64 #include "cpu-features.h"
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <fcntl.h>
68 #include <errno.h>
69 
70 static  pthread_once_t     g_once;
71 static  int                g_inited;
72 static  AndroidCpuFamily   g_cpuFamily;
73 static  uint64_t           g_cpuFeatures;
74 static  int                g_cpuCount;
75 
76 static const int  android_cpufeatures_debug = 0;
77 
78 #ifdef __arm__
79 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_ARM
80 #elif defined __i386__
81 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_X86
82 #else
83 #  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_UNKNOWN
84 #endif
85 
86 #define  D(...) \
87     do { \
88         if (android_cpufeatures_debug) { \
89             printf(__VA_ARGS__); fflush(stdout); \
90         } \
91     } while (0)
92 
93 #ifdef __i386__
x86_cpuid(int func,int values[4])94 static __inline__ void x86_cpuid(int func, int values[4])
95 {
96     int a, b, c, d;
97     /* We need to preserve ebx since we're compiling PIC code */
98     /* this means we can't use "=b" for the second output register */
99     __asm__ __volatile__ ( \
100       "push %%ebx\n"
101       "cpuid\n" \
102       "mov %%ebx, %1\n"
103       "pop %%ebx\n"
104       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
105       : "a" (func) \
106     );
107     values[0] = a;
108     values[1] = b;
109     values[2] = c;
110     values[3] = d;
111 }
112 #endif
113 
114 /* Get the size of a file by reading it until the end. This is needed
115  * because files under /proc do not always return a valid size when
116  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
117  */
118 static int
get_file_size(const char * pathname)119 get_file_size(const char* pathname)
120 {
121     int fd, ret, result = 0;
122     char buffer[256];
123 
124     fd = open(pathname, O_RDONLY);
125     if (fd < 0) {
126         D("Can't open %s: %s\n", pathname, strerror(errno));
127         return -1;
128     }
129 
130     for (;;) {
131         int ret = read(fd, buffer, sizeof buffer);
132         if (ret < 0) {
133             if (errno == EINTR)
134                 continue;
135             D("Error while reading %s: %s\n", pathname, strerror(errno));
136             break;
137         }
138         if (ret == 0)
139             break;
140 
141         result += ret;
142     }
143     close(fd);
144     return result;
145 }
146 
147 /* Read the content of /proc/cpuinfo into a user-provided buffer.
148  * Return the length of the data, or -1 on error. Does *not*
149  * zero-terminate the content. Will not read more
150  * than 'buffsize' bytes.
151  */
152 static int
read_file(const char * pathname,char * buffer,size_t buffsize)153 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
154 {
155     int  fd, count;
156 
157     fd = open(pathname, O_RDONLY);
158     if (fd < 0) {
159         D("Could not open %s: %s\n", pathname, strerror(errno));
160         return -1;
161     }
162     count = 0;
163     while (count < (int)buffsize) {
164         int ret = read(fd, buffer + count, buffsize - count);
165         if (ret < 0) {
166             if (errno == EINTR)
167                 continue;
168             D("Error while reading from %s: %s\n", pathname, strerror(errno));
169             if (count == 0)
170                 count = -1;
171             break;
172         }
173         if (ret == 0)
174             break;
175         count += ret;
176     }
177     close(fd);
178     return count;
179 }
180 
181 /* Extract the content of a the first occurence of a given field in
182  * the content of /proc/cpuinfo and return it as a heap-allocated
183  * string that must be freed by the caller.
184  *
185  * Return NULL if not found
186  */
187 static char*
extract_cpuinfo_field(const char * buffer,int buflen,const char * field)188 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
189 {
190     int  fieldlen = strlen(field);
191     const char* bufend = buffer + buflen;
192     char* result = NULL;
193     int len, ignore;
194     const char *p, *q;
195 
196     /* Look for first field occurence, and ensures it starts the line. */
197     p = buffer;
198     bufend = buffer + buflen;
199     for (;;) {
200         p = memmem(p, bufend-p, field, fieldlen);
201         if (p == NULL)
202             goto EXIT;
203 
204         if (p == buffer || p[-1] == '\n')
205             break;
206 
207         p += fieldlen;
208     }
209 
210     /* Skip to the first column followed by a space */
211     p += fieldlen;
212     p  = memchr(p, ':', bufend-p);
213     if (p == NULL || p[1] != ' ')
214         goto EXIT;
215 
216     /* Find the end of the line */
217     p += 2;
218     q = memchr(p, '\n', bufend-p);
219     if (q == NULL)
220         q = bufend;
221 
222     /* Copy the line into a heap-allocated buffer */
223     len = q-p;
224     result = malloc(len+1);
225     if (result == NULL)
226         goto EXIT;
227 
228     memcpy(result, p, len);
229     result[len] = '\0';
230 
231 EXIT:
232     return result;
233 }
234 
235 /* Like strlen(), but for constant string literals */
236 #define STRLEN_CONST(x)  ((sizeof(x)-1)
237 
238 
239 /* Checks that a space-separated list of items contains one given 'item'.
240  * Returns 1 if found, 0 otherwise.
241  */
242 static int
has_list_item(const char * list,const char * item)243 has_list_item(const char* list, const char* item)
244 {
245     const char*  p = list;
246     int itemlen = strlen(item);
247 
248     if (list == NULL)
249         return 0;
250 
251     while (*p) {
252         const char*  q;
253 
254         /* skip spaces */
255         while (*p == ' ' || *p == '\t')
256             p++;
257 
258         /* find end of current list item */
259         q = p;
260         while (*q && *q != ' ' && *q != '\t')
261             q++;
262 
263         if (itemlen == q-p && !memcmp(p, item, itemlen))
264             return 1;
265 
266         /* skip to next item */
267         p = q;
268     }
269     return 0;
270 }
271 
272 /* Parse an decimal integer starting from 'input', but not going further
273  * than 'limit'. Return the value into '*result'.
274  *
275  * NOTE: Does not skip over leading spaces, or deal with sign characters.
276  * NOTE: Ignores overflows.
277  *
278  * The function returns NULL in case of error (bad format), or the new
279  * position after the decimal number in case of success (which will always
280  * be <= 'limit').
281  */
282 static const char*
parse_decimal(const char * input,const char * limit,int * result)283 parse_decimal(const char* input, const char* limit, int* result)
284 {
285     const char* p = input;
286     int val = 0;
287     while (p < limit) {
288         int d = (*p - '0');
289         if ((unsigned)d >= 10U)
290             break;
291         val = val*10 + d;
292         p++;
293     }
294     if (p == input)
295         return NULL;
296 
297     *result = val;
298     return p;
299 }
300 
301 /* This small data type is used to represent a CPU list / mask, as read
302  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
303  *
304  * For now, we don't expect more than 32 cores on mobile devices, so keep
305  * everything simple.
306  */
307 typedef struct {
308     uint32_t mask;
309 } CpuList;
310 
311 static __inline__ void
cpulist_init(CpuList * list)312 cpulist_init(CpuList* list) {
313     list->mask = 0;
314 }
315 
316 static __inline__ void
cpulist_and(CpuList * list1,CpuList * list2)317 cpulist_and(CpuList* list1, CpuList* list2) {
318     list1->mask &= list2->mask;
319 }
320 
321 static __inline__ void
cpulist_set(CpuList * list,int index)322 cpulist_set(CpuList* list, int index) {
323     if ((unsigned)index < 32) {
324         list->mask |= (uint32_t)(1U << index);
325     }
326 }
327 
328 static __inline__ int
cpulist_count(CpuList * list)329 cpulist_count(CpuList* list) {
330     return __builtin_popcount(list->mask);
331 }
332 
333 /* Parse a textual list of cpus and store the result inside a CpuList object.
334  * Input format is the following:
335  * - comma-separated list of items (no spaces)
336  * - each item is either a single decimal number (cpu index), or a range made
337  *   of two numbers separated by a single dash (-). Ranges are inclusive.
338  *
339  * Examples:   0
340  *             2,4-127,128-143
341  *             0-1
342  */
343 static void
cpulist_parse(CpuList * list,const char * line,int line_len)344 cpulist_parse(CpuList* list, const char* line, int line_len)
345 {
346     const char* p = line;
347     const char* end = p + line_len;
348     const char* q;
349 
350     /* NOTE: the input line coming from sysfs typically contains a
351      * trailing newline, so take care of it in the code below
352      */
353     while (p < end && *p != '\n')
354     {
355         int val, start_value, end_value;
356 
357         /* Find the end of current item, and put it into 'q' */
358         q = memchr(p, ',', end-p);
359         if (q == NULL) {
360             q = end;
361         }
362 
363         /* Get first value */
364         p = parse_decimal(p, q, &start_value);
365         if (p == NULL)
366             goto BAD_FORMAT;
367 
368         end_value = start_value;
369 
370         /* If we're not at the end of the item, expect a dash and
371          * and integer; extract end value.
372          */
373         if (p < q && *p == '-') {
374             p = parse_decimal(p+1, q, &end_value);
375             if (p == NULL)
376                 goto BAD_FORMAT;
377         }
378 
379         /* Set bits CPU list bits */
380         for (val = start_value; val <= end_value; val++) {
381             cpulist_set(list, val);
382         }
383 
384         /* Jump to next item */
385         p = q;
386         if (p < end)
387             p++;
388     }
389 
390 BAD_FORMAT:
391     ;
392 }
393 
394 /* Read a CPU list from one sysfs file */
395 static void
cpulist_read_from(CpuList * list,const char * filename)396 cpulist_read_from(CpuList* list, const char* filename)
397 {
398     char   file[64];
399     int    filelen;
400 
401     cpulist_init(list);
402 
403     filelen = read_file(filename, file, sizeof file);
404     if (filelen < 0) {
405         D("Could not read %s: %s\n", filename, strerror(errno));
406         return;
407     }
408 
409     cpulist_parse(list, file, filelen);
410 }
411 
412 // See <asm/hwcap.h> kernel header.
413 #define HWCAP_VFP       (1 << 6)
414 #define HWCAP_IWMMXT    (1 << 9)
415 #define HWCAP_NEON      (1 << 12)
416 #define HWCAP_VFPv3     (1 << 13)
417 #define HWCAP_VFPv3D16  (1 << 14)
418 #define HWCAP_VFPv4     (1 << 16)
419 #define HWCAP_IDIVA     (1 << 17)
420 #define HWCAP_IDIVT     (1 << 18)
421 
422 #define AT_HWCAP 16
423 
424 #if defined(__arm__)
425 /* Compute the ELF HWCAP flags.
426  */
427 static uint32_t
get_elf_hwcap(const char * cpuinfo,int cpuinfo_len)428 get_elf_hwcap(const char* cpuinfo, int cpuinfo_len)
429 {
430   /* IMPORTANT:
431    *   Accessing /proc/self/auxv doesn't work anymore on all
432    *   platform versions. More specifically, when running inside
433    *   a regular application process, most of /proc/self/ will be
434    *   non-readable, including /proc/self/auxv. This doesn't
435    *   happen however if the application is debuggable, or when
436    *   running under the "shell" UID, which is why this was not
437    *   detected appropriately.
438    */
439 #if 0
440     uint32_t result = 0;
441     const char filepath[] = "/proc/self/auxv";
442     int fd = open(filepath, O_RDONLY);
443     if (fd < 0) {
444         D("Could not open %s: %s\n", filepath, strerror(errno));
445         return 0;
446     }
447 
448     struct { uint32_t tag; uint32_t value; } entry;
449 
450     for (;;) {
451         int ret = read(fd, (char*)&entry, sizeof entry);
452         if (ret < 0) {
453             if (errno == EINTR)
454                 continue;
455             D("Error while reading %s: %s\n", filepath, strerror(errno));
456             break;
457         }
458         // Detect end of list.
459         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
460           break;
461         if (entry.tag == AT_HWCAP) {
462           result = entry.value;
463           break;
464         }
465     }
466     close(fd);
467     return result;
468 #else
469     // Recreate ELF hwcaps by parsing /proc/cpuinfo Features tag.
470     uint32_t hwcaps = 0;
471 
472     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
473 
474     if (cpuFeatures != NULL) {
475         D("Found cpuFeatures = '%s'\n", cpuFeatures);
476 
477         if (has_list_item(cpuFeatures, "vfp"))
478             hwcaps |= HWCAP_VFP;
479         if (has_list_item(cpuFeatures, "vfpv3"))
480             hwcaps |= HWCAP_VFPv3;
481         if (has_list_item(cpuFeatures, "vfpv3d16"))
482             hwcaps |= HWCAP_VFPv3D16;
483         if (has_list_item(cpuFeatures, "vfpv4"))
484             hwcaps |= HWCAP_VFPv4;
485         if (has_list_item(cpuFeatures, "neon"))
486             hwcaps |= HWCAP_NEON;
487         if (has_list_item(cpuFeatures, "idiva"))
488             hwcaps |= HWCAP_IDIVA;
489         if (has_list_item(cpuFeatures, "idivt"))
490             hwcaps |= HWCAP_IDIVT;
491         if (has_list_item(cpuFeatures, "idiv"))
492             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
493         if (has_list_item(cpuFeatures, "iwmmxt"))
494             hwcaps |= HWCAP_IWMMXT;
495 
496         free(cpuFeatures);
497     }
498     return hwcaps;
499 #endif
500 }
501 #endif  /* __arm__ */
502 
503 /* Return the number of cpus present on a given device.
504  *
505  * To handle all weird kernel configurations, we need to compute the
506  * intersection of the 'present' and 'possible' CPU lists and count
507  * the result.
508  */
509 static int
get_cpu_count(void)510 get_cpu_count(void)
511 {
512     CpuList cpus_present[1];
513     CpuList cpus_possible[1];
514 
515     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
516     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
517 
518     /* Compute the intersection of both sets to get the actual number of
519      * CPU cores that can be used on this device by the kernel.
520      */
521     cpulist_and(cpus_present, cpus_possible);
522 
523     return cpulist_count(cpus_present);
524 }
525 
526 static void
android_cpuInitFamily(void)527 android_cpuInitFamily(void)
528 {
529 #if defined(__ARM_ARCH__)
530     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
531 #elif defined(__i386__)
532     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
533 #elif defined(_MIPS_ARCH)
534     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
535 #else
536     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
537 #endif
538 }
539 
540 static void
android_cpuInit(void)541 android_cpuInit(void)
542 {
543     char* cpuinfo = NULL;
544     int   cpuinfo_len;
545 
546     android_cpuInitFamily();
547 
548     g_cpuFeatures = 0;
549     g_cpuCount    = 1;
550     g_inited      = 1;
551 
552     cpuinfo_len = get_file_size("/proc/cpuinfo");
553     if (cpuinfo_len < 0) {
554       D("cpuinfo_len cannot be computed!");
555       return;
556     }
557     cpuinfo = malloc(cpuinfo_len);
558     if (cpuinfo == NULL) {
559       D("cpuinfo buffer could not be allocated");
560       return;
561     }
562     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
563     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
564       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
565 
566     if (cpuinfo_len < 0)  /* should not happen */ {
567         free(cpuinfo);
568         return;
569     }
570 
571     /* Count the CPU cores, the value may be 0 for single-core CPUs */
572     g_cpuCount = get_cpu_count();
573     if (g_cpuCount == 0) {
574         g_cpuCount = 1;
575     }
576 
577     D("found cpuCount = %d\n", g_cpuCount);
578 
579 #ifdef __ARM_ARCH__
580     {
581         char*  features = NULL;
582         char*  architecture = NULL;
583 
584         /* Extract architecture from the "CPU Architecture" field.
585          * The list is well-known, unlike the the output of
586          * the 'Processor' field which can vary greatly.
587          *
588          * See the definition of the 'proc_arch' array in
589          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
590          * same file.
591          */
592         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
593 
594         if (cpuArch != NULL) {
595             char*  end;
596             long   archNumber;
597             int    hasARMv7 = 0;
598 
599             D("found cpuArch = '%s'\n", cpuArch);
600 
601             /* read the initial decimal number, ignore the rest */
602             archNumber = strtol(cpuArch, &end, 10);
603 
604             /* Here we assume that ARMv8 will be upwards compatible with v7
605              * in the future. Unfortunately, there is no 'Features' field to
606              * indicate that Thumb-2 is supported.
607              */
608             if (end > cpuArch && archNumber >= 7) {
609                 hasARMv7 = 1;
610             }
611 
612             /* Unfortunately, it seems that certain ARMv6-based CPUs
613              * report an incorrect architecture number of 7!
614              *
615              * See http://code.google.com/p/android/issues/detail?id=10812
616              *
617              * We try to correct this by looking at the 'elf_format'
618              * field reported by the 'Processor' field, which is of the
619              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
620              * an ARMv6-one.
621              */
622             if (hasARMv7) {
623                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
624                                                       "Processor");
625                 if (cpuProc != NULL) {
626                     D("found cpuProc = '%s'\n", cpuProc);
627                     if (has_list_item(cpuProc, "(v6l)")) {
628                         D("CPU processor and architecture mismatch!!\n");
629                         hasARMv7 = 0;
630                     }
631                     free(cpuProc);
632                 }
633             }
634 
635             if (hasARMv7) {
636                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
637             }
638 
639             /* The LDREX / STREX instructions are available from ARMv6 */
640             if (archNumber >= 6) {
641                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
642             }
643 
644             free(cpuArch);
645         }
646 
647         /* Extract the list of CPU features from ELF hwcaps */
648         uint32_t hwcaps = get_elf_hwcap(cpuinfo, cpuinfo_len);
649 
650         if (hwcaps != 0) {
651             int has_vfp = (hwcaps & HWCAP_VFP);
652             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
653             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
654             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
655             int has_neon = (hwcaps & HWCAP_NEON);
656             int has_idiva = (hwcaps & HWCAP_IDIVA);
657             int has_idivt = (hwcaps & HWCAP_IDIVT);
658             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
659 
660             // The kernel does a poor job at ensuring consistency when
661             // describing CPU features. So lots of guessing is needed.
662 
663             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
664             if (has_vfpv4)
665                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
666                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
667                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
668 
669             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
670             // a value of 'vfpv3' doesn't necessarily mean that the D32
671             // feature is present, so be conservative. All CPUs in the
672             // field that support D32 also support NEON, so this should
673             // not be a problem in practice.
674             if (has_vfpv3 || has_vfpv3d16)
675                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
676 
677             // 'vfp' is super ambiguous. Depending on the kernel, it can
678             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
679             if (has_vfp) {
680               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
681                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
682               else
683                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
684             }
685 
686             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
687             if (has_neon) {
688                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
689                                  ANDROID_CPU_ARM_FEATURE_NEON |
690                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
691               if (has_vfpv4)
692                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
693             }
694 
695             // VFPv3 implies VFPv2 and ARMv7
696             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
697                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
698                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
699 
700             // Note that some buggy kernels do not report these even when
701             // the CPU actually support the division instructions. However,
702             // assume that if 'vfpv4' is detected, then the CPU supports
703             // sdiv/udiv properly.
704             if (has_idiva || has_vfpv4)
705                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
706             if (has_idivt || has_vfpv4)
707                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
708 
709             if (has_iwmmxt)
710                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
711         }
712     }
713 #endif /* __ARM_ARCH__ */
714 
715 #ifdef __i386__
716     int regs[4];
717 
718 /* According to http://en.wikipedia.org/wiki/CPUID */
719 #define VENDOR_INTEL_b  0x756e6547
720 #define VENDOR_INTEL_c  0x6c65746e
721 #define VENDOR_INTEL_d  0x49656e69
722 
723     x86_cpuid(0, regs);
724     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
725                          regs[2] == VENDOR_INTEL_c &&
726                          regs[3] == VENDOR_INTEL_d);
727 
728     x86_cpuid(1, regs);
729     if ((regs[2] & (1 << 9)) != 0) {
730         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
731     }
732     if ((regs[2] & (1 << 23)) != 0) {
733         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
734     }
735     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
736         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
737     }
738 #endif
739 
740     free(cpuinfo);
741 }
742 
743 
744 AndroidCpuFamily
android_getCpuFamily(void)745 android_getCpuFamily(void)
746 {
747     pthread_once(&g_once, android_cpuInit);
748     return g_cpuFamily;
749 }
750 
751 
752 uint64_t
android_getCpuFeatures(void)753 android_getCpuFeatures(void)
754 {
755     pthread_once(&g_once, android_cpuInit);
756     return g_cpuFeatures;
757 }
758 
759 
760 int
android_getCpuCount(void)761 android_getCpuCount(void)
762 {
763     pthread_once(&g_once, android_cpuInit);
764     return g_cpuCount;
765 }
766 
767 static void
android_cpuInitDummy(void)768 android_cpuInitDummy(void)
769 {
770     g_inited = 1;
771 }
772 
773 int
android_setCpu(int cpu_count,uint64_t cpu_features)774 android_setCpu(int cpu_count, uint64_t cpu_features)
775 {
776     /* Fail if the library was already initialized. */
777     if (g_inited)
778         return 0;
779 
780     android_cpuInitFamily();
781     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
782     g_cpuFeatures = cpu_features;
783     pthread_once(&g_once, android_cpuInitDummy);
784 
785     return 1;
786 }
787 
788 /*
789  * Technical note: Making sense of ARM's FPU architecture versions.
790  *
791  * FPA was ARM's first attempt at an FPU architecture. There is no Android
792  * device that actually uses it since this technology was already obsolete
793  * when the project started. If you see references to FPA instructions
794  * somewhere, you can be sure that this doesn't apply to Android at all.
795  *
796  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
797  * new versions / additions to it. ARM considers this obsolete right now,
798  * and no known Android device implements it either.
799  *
800  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
801  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
802  * supporting the 'armeabi' ABI doesn't necessarily support these.
803  *
804  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
805  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
806  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
807  * that it provides 16 double-precision FPU registers (d0-d15) and 32
808  * single-precision ones (s0-s31) which happen to be mapped to the same
809  * register banks.
810  *
811  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
812  * additional double precision registers (d16-d31). Note that there are
813  * still only 32 single precision registers.
814  *
815  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
816  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
817  * are not supported by Android. Note that it is not compatible with VFPv2.
818  *
819  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
820  *       depending on context. For example GCC uses it for VFPv3-D32, but
821  *       the Linux kernel code uses it for VFPv3-D16 (especially in
822  *       /proc/cpuinfo). Always try to use the full designation when
823  *       possible.
824  *
825  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
826  * instructions to perform parallel computations on vectors of 8, 16,
827  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
828  * NEON registers are also mapped to the same register banks.
829  *
830  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
831  * perform fused multiply-accumulate on VFP registers, as well as
832  * half-precision (16-bit) conversion operations.
833  *
834  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
835  * registers.
836  *
837  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
838  * multiply-accumulate instructions that work on the NEON registers.
839  *
840  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
841  *       depending on context.
842  *
843  * The following information was determined by scanning the binutils-2.22
844  * sources:
845  *
846  * Basic VFP instruction subsets:
847  *
848  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
849  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
850  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
851  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
852  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
853  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
854  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
855  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
856  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
857  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
858  *
859  * FPU types (excluding NEON)
860  *
861  * FPU_VFP_V1xD (EXT_V1xD)
862  *    |
863  *    +--------------------------+
864  *    |                          |
865  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
866  *    |                          |
867  *    |                          |
868  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
869  *    |
870  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
871  *    |
872  *    +--------------------------+
873  *    |                          |
874  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
875  *    |                          |
876  *    |                      FPU_VFP_V4 (+EXT_D32)
877  *    |
878  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
879  *
880  * VFP architectures:
881  *
882  * ARCH_VFP_V1xD  (EXT_V1xD)
883  *   |
884  *   +------------------+
885  *   |                  |
886  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
887  *   |                  |
888  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
889  *   |                  |
890  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
891  *   |
892  * ARCH_VFP_V1 (+EXT_V1)
893  *   |
894  * ARCH_VFP_V2 (+EXT_V2)
895  *   |
896  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
897  *   |
898  *   +-------------------+
899  *   |                   |
900  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
901  *   |
902  *   +-------------------+
903  *   |                   |
904  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
905  *   |                   |
906  *   |         ARCH_VFP_V4 (+EXT_D32)
907  *   |                   |
908  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
909  *   |
910  * ARCH_VFP_V3 (+EXT_D32)
911  *   |
912  *   +-------------------+
913  *   |                   |
914  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
915  *   |
916  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
917  *   |
918  * ARCH_NEON_FP16 (+EXT_FP16)
919  *
920  * -fpu=<name> values and their correspondance with FPU architectures above:
921  *
922  *   {"vfp",               FPU_ARCH_VFP_V2},
923  *   {"vfp9",              FPU_ARCH_VFP_V2},
924  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
925  *   {"vfp10",             FPU_ARCH_VFP_V2},
926  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
927  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
928  *   {"vfpv2",             FPU_ARCH_VFP_V2},
929  *   {"vfpv3",             FPU_ARCH_VFP_V3},
930  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
931  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
932  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
933  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
934  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
935  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
936  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
937  *   {"vfpv4",             FPU_ARCH_VFP_V4},
938  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
939  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
940  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
941  *
942  *
943  * Simplified diagram that only includes FPUs supported by Android:
944  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
945  * all others are optional and must be probed at runtime.
946  *
947  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
948  *   |
949  *   +-------------------+
950  *   |                   |
951  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
952  *   |
953  *   +-------------------+
954  *   |                   |
955  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
956  *   |                   |
957  *   |         ARCH_VFP_V4 (+EXT_D32)
958  *   |                   |
959  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
960  *   |
961  * ARCH_VFP_V3 (+EXT_D32)
962  *   |
963  *   +-------------------+
964  *   |                   |
965  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
966  *   |
967  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
968  *   |
969  * ARCH_NEON_FP16 (+EXT_FP16)
970  *
971  */
972