1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: somnath@google.com (Somnath Banerjee)
13 // cduvivier@google.com (Christian Duvivier)
14
15 #include "./dsp.h"
16
17 #if defined(__cplusplus) || defined(c_plusplus)
18 extern "C" {
19 #endif
20
21 #if defined(WEBP_USE_SSE2)
22
23 #include <emmintrin.h>
24 #include "../dec/vp8i.h"
25
26 //------------------------------------------------------------------------------
27 // Transforms (Paragraph 14.4)
28
TransformSSE2(const int16_t * in,uint8_t * dst,int do_two)29 static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
30 // This implementation makes use of 16-bit fixed point versions of two
31 // multiply constants:
32 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
33 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
34 //
35 // To be able to use signed 16-bit integers, we use the following trick to
36 // have constants within range:
37 // - Associated constants are obtained by subtracting the 16-bit fixed point
38 // version of one:
39 // k = K - (1 << 16) => K = k + (1 << 16)
40 // K1 = 85267 => k1 = 20091
41 // K2 = 35468 => k2 = -30068
42 // - The multiplication of a variable by a constant become the sum of the
43 // variable and the multiplication of that variable by the associated
44 // constant:
45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46 const __m128i k1 = _mm_set1_epi16(20091);
47 const __m128i k2 = _mm_set1_epi16(-30068);
48 __m128i T0, T1, T2, T3;
49
50 // Load and concatenate the transform coefficients (we'll do two transforms
51 // in parallel). In the case of only one transform, the second half of the
52 // vectors will just contain random value we'll never use nor store.
53 __m128i in0, in1, in2, in3;
54 {
55 in0 = _mm_loadl_epi64((__m128i*)&in[0]);
56 in1 = _mm_loadl_epi64((__m128i*)&in[4]);
57 in2 = _mm_loadl_epi64((__m128i*)&in[8]);
58 in3 = _mm_loadl_epi64((__m128i*)&in[12]);
59 // a00 a10 a20 a30 x x x x
60 // a01 a11 a21 a31 x x x x
61 // a02 a12 a22 a32 x x x x
62 // a03 a13 a23 a33 x x x x
63 if (do_two) {
64 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
65 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
66 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
67 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
68 in0 = _mm_unpacklo_epi64(in0, inB0);
69 in1 = _mm_unpacklo_epi64(in1, inB1);
70 in2 = _mm_unpacklo_epi64(in2, inB2);
71 in3 = _mm_unpacklo_epi64(in3, inB3);
72 // a00 a10 a20 a30 b00 b10 b20 b30
73 // a01 a11 a21 a31 b01 b11 b21 b31
74 // a02 a12 a22 a32 b02 b12 b22 b32
75 // a03 a13 a23 a33 b03 b13 b23 b33
76 }
77 }
78
79 // Vertical pass and subsequent transpose.
80 {
81 // First pass, c and d calculations are longer because of the "trick"
82 // multiplications.
83 const __m128i a = _mm_add_epi16(in0, in2);
84 const __m128i b = _mm_sub_epi16(in0, in2);
85 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
86 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
87 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
88 const __m128i c3 = _mm_sub_epi16(in1, in3);
89 const __m128i c4 = _mm_sub_epi16(c1, c2);
90 const __m128i c = _mm_add_epi16(c3, c4);
91 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
92 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
93 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
94 const __m128i d3 = _mm_add_epi16(in1, in3);
95 const __m128i d4 = _mm_add_epi16(d1, d2);
96 const __m128i d = _mm_add_epi16(d3, d4);
97
98 // Second pass.
99 const __m128i tmp0 = _mm_add_epi16(a, d);
100 const __m128i tmp1 = _mm_add_epi16(b, c);
101 const __m128i tmp2 = _mm_sub_epi16(b, c);
102 const __m128i tmp3 = _mm_sub_epi16(a, d);
103
104 // Transpose the two 4x4.
105 // a00 a01 a02 a03 b00 b01 b02 b03
106 // a10 a11 a12 a13 b10 b11 b12 b13
107 // a20 a21 a22 a23 b20 b21 b22 b23
108 // a30 a31 a32 a33 b30 b31 b32 b33
109 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
110 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
111 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
112 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
113 // a00 a10 a01 a11 a02 a12 a03 a13
114 // a20 a30 a21 a31 a22 a32 a23 a33
115 // b00 b10 b01 b11 b02 b12 b03 b13
116 // b20 b30 b21 b31 b22 b32 b23 b33
117 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
118 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
119 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
120 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
121 // a00 a10 a20 a30 a01 a11 a21 a31
122 // b00 b10 b20 b30 b01 b11 b21 b31
123 // a02 a12 a22 a32 a03 a13 a23 a33
124 // b02 b12 a22 b32 b03 b13 b23 b33
125 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
126 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
127 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
128 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
129 // a00 a10 a20 a30 b00 b10 b20 b30
130 // a01 a11 a21 a31 b01 b11 b21 b31
131 // a02 a12 a22 a32 b02 b12 b22 b32
132 // a03 a13 a23 a33 b03 b13 b23 b33
133 }
134
135 // Horizontal pass and subsequent transpose.
136 {
137 // First pass, c and d calculations are longer because of the "trick"
138 // multiplications.
139 const __m128i four = _mm_set1_epi16(4);
140 const __m128i dc = _mm_add_epi16(T0, four);
141 const __m128i a = _mm_add_epi16(dc, T2);
142 const __m128i b = _mm_sub_epi16(dc, T2);
143 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
144 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
145 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
146 const __m128i c3 = _mm_sub_epi16(T1, T3);
147 const __m128i c4 = _mm_sub_epi16(c1, c2);
148 const __m128i c = _mm_add_epi16(c3, c4);
149 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
150 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
151 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
152 const __m128i d3 = _mm_add_epi16(T1, T3);
153 const __m128i d4 = _mm_add_epi16(d1, d2);
154 const __m128i d = _mm_add_epi16(d3, d4);
155
156 // Second pass.
157 const __m128i tmp0 = _mm_add_epi16(a, d);
158 const __m128i tmp1 = _mm_add_epi16(b, c);
159 const __m128i tmp2 = _mm_sub_epi16(b, c);
160 const __m128i tmp3 = _mm_sub_epi16(a, d);
161 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
162 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
163 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
164 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
165
166 // Transpose the two 4x4.
167 // a00 a01 a02 a03 b00 b01 b02 b03
168 // a10 a11 a12 a13 b10 b11 b12 b13
169 // a20 a21 a22 a23 b20 b21 b22 b23
170 // a30 a31 a32 a33 b30 b31 b32 b33
171 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
172 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
173 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
174 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
175 // a00 a10 a01 a11 a02 a12 a03 a13
176 // a20 a30 a21 a31 a22 a32 a23 a33
177 // b00 b10 b01 b11 b02 b12 b03 b13
178 // b20 b30 b21 b31 b22 b32 b23 b33
179 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
180 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
181 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
182 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
183 // a00 a10 a20 a30 a01 a11 a21 a31
184 // b00 b10 b20 b30 b01 b11 b21 b31
185 // a02 a12 a22 a32 a03 a13 a23 a33
186 // b02 b12 a22 b32 b03 b13 b23 b33
187 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
188 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
189 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
190 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
191 // a00 a10 a20 a30 b00 b10 b20 b30
192 // a01 a11 a21 a31 b01 b11 b21 b31
193 // a02 a12 a22 a32 b02 b12 b22 b32
194 // a03 a13 a23 a33 b03 b13 b23 b33
195 }
196
197 // Add inverse transform to 'dst' and store.
198 {
199 const __m128i zero = _mm_setzero_si128();
200 // Load the reference(s).
201 __m128i dst0, dst1, dst2, dst3;
202 if (do_two) {
203 // Load eight bytes/pixels per line.
204 dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
205 dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
206 dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
207 dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
208 } else {
209 // Load four bytes/pixels per line.
210 dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
211 dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
212 dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
213 dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
214 }
215 // Convert to 16b.
216 dst0 = _mm_unpacklo_epi8(dst0, zero);
217 dst1 = _mm_unpacklo_epi8(dst1, zero);
218 dst2 = _mm_unpacklo_epi8(dst2, zero);
219 dst3 = _mm_unpacklo_epi8(dst3, zero);
220 // Add the inverse transform(s).
221 dst0 = _mm_add_epi16(dst0, T0);
222 dst1 = _mm_add_epi16(dst1, T1);
223 dst2 = _mm_add_epi16(dst2, T2);
224 dst3 = _mm_add_epi16(dst3, T3);
225 // Unsigned saturate to 8b.
226 dst0 = _mm_packus_epi16(dst0, dst0);
227 dst1 = _mm_packus_epi16(dst1, dst1);
228 dst2 = _mm_packus_epi16(dst2, dst2);
229 dst3 = _mm_packus_epi16(dst3, dst3);
230 // Store the results.
231 if (do_two) {
232 // Store eight bytes/pixels per line.
233 _mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
234 _mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
235 _mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
236 _mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
237 } else {
238 // Store four bytes/pixels per line.
239 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
240 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
241 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
242 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
243 }
244 }
245 }
246
247 //------------------------------------------------------------------------------
248 // Loop Filter (Paragraph 15)
249
250 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
251 #define MM_ABS(p, q) _mm_or_si128( \
252 _mm_subs_epu8((q), (p)), \
253 _mm_subs_epu8((p), (q)))
254
255 // Shift each byte of "a" by N bits while preserving by the sign bit.
256 //
257 // It first shifts the lower bytes of the words and then the upper bytes and
258 // then merges the results together.
259 #define SIGNED_SHIFT_N(a, N) { \
260 __m128i t = a; \
261 t = _mm_slli_epi16(t, 8); \
262 t = _mm_srai_epi16(t, N); \
263 t = _mm_srli_epi16(t, 8); \
264 \
265 a = _mm_srai_epi16(a, N + 8); \
266 a = _mm_slli_epi16(a, 8); \
267 \
268 a = _mm_or_si128(t, a); \
269 }
270
271 #define FLIP_SIGN_BIT2(a, b) { \
272 a = _mm_xor_si128(a, sign_bit); \
273 b = _mm_xor_si128(b, sign_bit); \
274 }
275
276 #define FLIP_SIGN_BIT4(a, b, c, d) { \
277 FLIP_SIGN_BIT2(a, b); \
278 FLIP_SIGN_BIT2(c, d); \
279 }
280
281 #define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \
282 const __m128i zero = _mm_setzero_si128(); \
283 const __m128i t_1 = MM_ABS(p1, p0); \
284 const __m128i t_2 = MM_ABS(q1, q0); \
285 \
286 const __m128i h = _mm_set1_epi8(hev_thresh); \
287 const __m128i t_3 = _mm_subs_epu8(t_1, h); /* abs(p1 - p0) - hev_tresh */ \
288 const __m128i t_4 = _mm_subs_epu8(t_2, h); /* abs(q1 - q0) - hev_tresh */ \
289 \
290 not_hev = _mm_or_si128(t_3, t_4); \
291 not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
292 }
293
294 #define GET_BASE_DELTA(p1, p0, q0, q1, o) { \
295 const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \
296 o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \
297 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \
298 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \
299 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \
300 }
301
302 #define DO_SIMPLE_FILTER(p0, q0, fl) { \
303 const __m128i three = _mm_set1_epi8(3); \
304 const __m128i four = _mm_set1_epi8(4); \
305 __m128i v3 = _mm_adds_epi8(fl, three); \
306 __m128i v4 = _mm_adds_epi8(fl, four); \
307 \
308 /* Do +4 side */ \
309 SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \
310 q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \
311 \
312 /* Now do +3 side */ \
313 SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \
314 p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \
315 }
316
317 // Updates values of 2 pixels at MB edge during complex filtering.
318 // Update operations:
319 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
320 #define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \
321 const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \
322 const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \
323 const __m128i delta = _mm_packs_epi16(a_lo7, a_hi7); \
324 pi = _mm_adds_epi8(pi, delta); \
325 qi = _mm_subs_epi8(qi, delta); \
326 }
327
NeedsFilter(const __m128i * p1,const __m128i * p0,const __m128i * q0,const __m128i * q1,int thresh,__m128i * mask)328 static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
329 const __m128i* q1, int thresh, __m128i *mask) {
330 __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
331 *mask = _mm_set1_epi8(0xFE);
332 t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero
333 t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2
334
335 *mask = MM_ABS(*p0, *q0); // abs(p0 - q0)
336 *mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2
337 *mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2
338
339 t1 = _mm_set1_epi8(thresh);
340 *mask = _mm_subs_epu8(*mask, t1); // mask <= thresh
341 *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
342 }
343
344 //------------------------------------------------------------------------------
345 // Edge filtering functions
346
347 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(const __m128i * p1,__m128i * p0,__m128i * q0,const __m128i * q1,int thresh)348 static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
349 const __m128i* q1, int thresh) {
350 __m128i a, mask;
351 const __m128i sign_bit = _mm_set1_epi8(0x80);
352 const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
353 const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
354
355 NeedsFilter(p1, p0, q0, q1, thresh, &mask);
356
357 // convert to signed values
358 FLIP_SIGN_BIT2(*p0, *q0);
359
360 GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
361 a = _mm_and_si128(a, mask); // mask filter values we don't care about
362 DO_SIMPLE_FILTER(*p0, *q0, a);
363
364 // unoffset
365 FLIP_SIGN_BIT2(*p0, *q0);
366 }
367
368 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1,const __m128i * mask,int hev_thresh)369 static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0,
370 __m128i* q0, __m128i* q1,
371 const __m128i* mask, int hev_thresh) {
372 __m128i not_hev;
373 __m128i t1, t2, t3;
374 const __m128i sign_bit = _mm_set1_epi8(0x80);
375
376 // compute hev mask
377 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
378
379 // convert to signed values
380 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
381
382 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
383 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
384 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
385 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
386 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
387 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
388 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
389
390 // Do +4 side
391 t2 = _mm_set1_epi8(4);
392 t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4
393 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
394 t3 = t2; // save t2
395 *q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2
396
397 // Now do +3 side
398 t2 = _mm_set1_epi8(3);
399 t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4
400 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
401 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
402
403 t2 = _mm_set1_epi8(1);
404 t3 = _mm_adds_epi8(t3, t2);
405 SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4
406
407 t3 = _mm_and_si128(not_hev, t3); // if !hev
408 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
409 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
410
411 // unoffset
412 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
413 }
414
415 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * p2,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1,__m128i * q2,const __m128i * mask,int hev_thresh)416 static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
417 __m128i* q0, __m128i* q1, __m128i *q2,
418 const __m128i* mask, int hev_thresh) {
419 __m128i a, not_hev;
420 const __m128i sign_bit = _mm_set1_epi8(0x80);
421
422 // compute hev mask
423 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);
424
425 // convert to signed values
426 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
427 FLIP_SIGN_BIT2(*p2, *q2);
428
429 GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);
430
431 { // do simple filter on pixels with hev
432 const __m128i m = _mm_andnot_si128(not_hev, *mask);
433 const __m128i f = _mm_and_si128(a, m);
434 DO_SIMPLE_FILTER(*p0, *q0, f);
435 }
436 { // do strong filter on pixels with not hev
437 const __m128i zero = _mm_setzero_si128();
438 const __m128i nine = _mm_set1_epi16(0x0900);
439 const __m128i sixty_three = _mm_set1_epi16(63);
440
441 const __m128i m = _mm_and_si128(not_hev, *mask);
442 const __m128i f = _mm_and_si128(a, m);
443 const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
444 const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
445
446 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9
447 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9
448 const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18
449 const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18
450
451 const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63
452 const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63
453
454 const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63
455 const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63
456
457 const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63
458 const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63
459
460 UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
461 UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
462 UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
463 }
464
465 // unoffset
466 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
467 FLIP_SIGN_BIT2(*p2, *q2);
468 }
469
470 // reads 8 rows across a vertical edge.
471 //
472 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
473 // two Load4x4() to avoid code duplication.
Load8x4(const uint8_t * b,int stride,__m128i * p,__m128i * q)474 static WEBP_INLINE void Load8x4(const uint8_t* b, int stride,
475 __m128i* p, __m128i* q) {
476 __m128i t1, t2;
477
478 // Load 0th, 1st, 4th and 5th rows
479 __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00
480 __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10
481 __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40
482 __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50
483
484 r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00
485 r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10
486
487 // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
488 t1 = _mm_unpacklo_epi8(r0, r1);
489
490 // Load 2nd, 3rd, 6th and 7th rows
491 r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22
492 r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30
493 r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60
494 r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70
495
496 r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20
497 r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30
498
499 // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
500 t2 = _mm_unpacklo_epi8(r0, r1);
501
502 // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
503 // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
504 r0 = t1;
505 t1 = _mm_unpacklo_epi16(t1, t2);
506 t2 = _mm_unpackhi_epi16(r0, t2);
507
508 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
509 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
510 *p = _mm_unpacklo_epi32(t1, t2);
511 *q = _mm_unpackhi_epi32(t1, t2);
512 }
513
Load16x4(const uint8_t * r0,const uint8_t * r8,int stride,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1)514 static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8,
515 int stride,
516 __m128i* p1, __m128i* p0,
517 __m128i* q0, __m128i* q1) {
518 __m128i t1, t2;
519 // Assume the pixels around the edge (|) are numbered as follows
520 // 00 01 | 02 03
521 // 10 11 | 12 13
522 // ... | ...
523 // e0 e1 | e2 e3
524 // f0 f1 | f2 f3
525 //
526 // r0 is pointing to the 0th row (00)
527 // r8 is pointing to the 8th row (80)
528
529 // Load
530 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
531 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
532 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
533 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
534 Load8x4(r0, stride, p1, q0);
535 Load8x4(r8, stride, p0, q1);
536
537 t1 = *p1;
538 t2 = *q0;
539 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
540 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
541 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
542 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
543 *p1 = _mm_unpacklo_epi64(t1, *p0);
544 *p0 = _mm_unpackhi_epi64(t1, *p0);
545 *q0 = _mm_unpacklo_epi64(t2, *q1);
546 *q1 = _mm_unpackhi_epi64(t2, *q1);
547 }
548
Store4x4(__m128i * x,uint8_t * dst,int stride)549 static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) {
550 int i;
551 for (i = 0; i < 4; ++i, dst += stride) {
552 *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
553 *x = _mm_srli_si128(*x, 4);
554 }
555 }
556
557 // Transpose back and store
Store16x4(uint8_t * r0,uint8_t * r8,int stride,__m128i * p1,__m128i * p0,__m128i * q0,__m128i * q1)558 static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride,
559 __m128i* p1, __m128i* p0,
560 __m128i* q0, __m128i* q1) {
561 __m128i t1;
562
563 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
564 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
565 t1 = *p0;
566 *p0 = _mm_unpacklo_epi8(*p1, t1);
567 *p1 = _mm_unpackhi_epi8(*p1, t1);
568
569 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
570 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
571 t1 = *q0;
572 *q0 = _mm_unpacklo_epi8(t1, *q1);
573 *q1 = _mm_unpackhi_epi8(t1, *q1);
574
575 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
576 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
577 t1 = *p0;
578 *p0 = _mm_unpacklo_epi16(t1, *q0);
579 *q0 = _mm_unpackhi_epi16(t1, *q0);
580
581 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
582 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
583 t1 = *p1;
584 *p1 = _mm_unpacklo_epi16(t1, *q1);
585 *q1 = _mm_unpackhi_epi16(t1, *q1);
586
587 Store4x4(p0, r0, stride);
588 r0 += 4 * stride;
589 Store4x4(q0, r0, stride);
590
591 Store4x4(p1, r8, stride);
592 r8 += 4 * stride;
593 Store4x4(q1, r8, stride);
594 }
595
596 //------------------------------------------------------------------------------
597 // Simple In-loop filtering (Paragraph 15.2)
598
SimpleVFilter16SSE2(uint8_t * p,int stride,int thresh)599 static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
600 // Load
601 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
602 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
603 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
604 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
605
606 DoFilter2(&p1, &p0, &q0, &q1, thresh);
607
608 // Store
609 _mm_storeu_si128((__m128i*)&p[-stride], p0);
610 _mm_storeu_si128((__m128i*)p, q0);
611 }
612
SimpleHFilter16SSE2(uint8_t * p,int stride,int thresh)613 static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
614 __m128i p1, p0, q0, q1;
615
616 p -= 2; // beginning of p1
617
618 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
619 DoFilter2(&p1, &p0, &q0, &q1, thresh);
620 Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
621 }
622
SimpleVFilter16iSSE2(uint8_t * p,int stride,int thresh)623 static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
624 int k;
625 for (k = 3; k > 0; --k) {
626 p += 4 * stride;
627 SimpleVFilter16SSE2(p, stride, thresh);
628 }
629 }
630
SimpleHFilter16iSSE2(uint8_t * p,int stride,int thresh)631 static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
632 int k;
633 for (k = 3; k > 0; --k) {
634 p += 4;
635 SimpleHFilter16SSE2(p, stride, thresh);
636 }
637 }
638
639 //------------------------------------------------------------------------------
640 // Complex In-loop filtering (Paragraph 15.3)
641
642 #define MAX_DIFF1(p3, p2, p1, p0, m) { \
643 m = MM_ABS(p3, p2); \
644 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
645 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
646 }
647
648 #define MAX_DIFF2(p3, p2, p1, p0, m) { \
649 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
650 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
651 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
652 }
653
654 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
655 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \
656 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \
657 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \
658 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \
659 }
660
661 #define LOADUV_H_EDGE(p, u, v, stride) { \
662 p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
663 p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \
664 }
665
666 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
667 LOADUV_H_EDGE(e1, u, v, 0 * stride); \
668 LOADUV_H_EDGE(e2, u, v, 1 * stride); \
669 LOADUV_H_EDGE(e3, u, v, 2 * stride); \
670 LOADUV_H_EDGE(e4, u, v, 3 * stride); \
671 }
672
673 #define STOREUV(p, u, v, stride) { \
674 _mm_storel_epi64((__m128i*)&u[(stride)], p); \
675 p = _mm_srli_si128(p, 8); \
676 _mm_storel_epi64((__m128i*)&v[(stride)], p); \
677 }
678
679 #define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \
680 __m128i fl_yes; \
681 const __m128i it = _mm_set1_epi8(ithresh); \
682 mask = _mm_subs_epu8(mask, it); \
683 mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \
684 NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \
685 mask = _mm_and_si128(mask, fl_yes); \
686 }
687
688 // on macroblock edges
VFilter16SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)689 static void VFilter16SSE2(uint8_t* p, int stride,
690 int thresh, int ithresh, int hev_thresh) {
691 __m128i t1;
692 __m128i mask;
693 __m128i p2, p1, p0, q0, q1, q2;
694
695 // Load p3, p2, p1, p0
696 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
697 MAX_DIFF1(t1, p2, p1, p0, mask);
698
699 // Load q0, q1, q2, q3
700 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
701 MAX_DIFF2(t1, q2, q1, q0, mask);
702
703 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
704 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
705
706 // Store
707 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
708 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
709 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
710 _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
711 _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
712 _mm_storeu_si128((__m128i*)&p[2 * stride], q2);
713 }
714
HFilter16SSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)715 static void HFilter16SSE2(uint8_t* p, int stride,
716 int thresh, int ithresh, int hev_thresh) {
717 __m128i mask;
718 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
719
720 uint8_t* const b = p - 4;
721 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
722 MAX_DIFF1(p3, p2, p1, p0, mask);
723
724 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
725 MAX_DIFF2(q3, q2, q1, q0, mask);
726
727 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
728 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
729
730 Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
731 Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
732 }
733
734 // on three inner edges
VFilter16iSSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)735 static void VFilter16iSSE2(uint8_t* p, int stride,
736 int thresh, int ithresh, int hev_thresh) {
737 int k;
738 __m128i mask;
739 __m128i t1, t2, p1, p0, q0, q1;
740
741 for (k = 3; k > 0; --k) {
742 // Load p3, p2, p1, p0
743 LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
744 MAX_DIFF1(t2, t1, p1, p0, mask);
745
746 p += 4 * stride;
747
748 // Load q0, q1, q2, q3
749 LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
750 MAX_DIFF2(t2, t1, q1, q0, mask);
751
752 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
753 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
754
755 // Store
756 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
757 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
758 _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
759 _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
760 }
761 }
762
HFilter16iSSE2(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)763 static void HFilter16iSSE2(uint8_t* p, int stride,
764 int thresh, int ithresh, int hev_thresh) {
765 int k;
766 uint8_t* b;
767 __m128i mask;
768 __m128i t1, t2, p1, p0, q0, q1;
769
770 for (k = 3; k > 0; --k) {
771 b = p;
772 Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
773 MAX_DIFF1(t2, t1, p1, p0, mask);
774
775 b += 4; // beginning of q0
776 Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
777 MAX_DIFF2(t2, t1, q1, q0, mask);
778
779 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
780 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
781
782 b -= 2; // beginning of p1
783 Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);
784
785 p += 4;
786 }
787 }
788
789 // 8-pixels wide variant, for chroma filtering
VFilter8SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)790 static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
791 int thresh, int ithresh, int hev_thresh) {
792 __m128i mask;
793 __m128i t1, p2, p1, p0, q0, q1, q2;
794
795 // Load p3, p2, p1, p0
796 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
797 MAX_DIFF1(t1, p2, p1, p0, mask);
798
799 // Load q0, q1, q2, q3
800 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
801 MAX_DIFF2(t1, q2, q1, q0, mask);
802
803 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
804 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
805
806 // Store
807 STOREUV(p2, u, v, -3 * stride);
808 STOREUV(p1, u, v, -2 * stride);
809 STOREUV(p0, u, v, -1 * stride);
810 STOREUV(q0, u, v, 0 * stride);
811 STOREUV(q1, u, v, 1 * stride);
812 STOREUV(q2, u, v, 2 * stride);
813 }
814
HFilter8SSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)815 static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
816 int thresh, int ithresh, int hev_thresh) {
817 __m128i mask;
818 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
819
820 uint8_t* const tu = u - 4;
821 uint8_t* const tv = v - 4;
822 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
823 MAX_DIFF1(p3, p2, p1, p0, mask);
824
825 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
826 MAX_DIFF2(q3, q2, q1, q0, mask);
827
828 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
829 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
830
831 Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
832 Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
833 }
834
VFilter8iSSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)835 static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
836 int thresh, int ithresh, int hev_thresh) {
837 __m128i mask;
838 __m128i t1, t2, p1, p0, q0, q1;
839
840 // Load p3, p2, p1, p0
841 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
842 MAX_DIFF1(t2, t1, p1, p0, mask);
843
844 u += 4 * stride;
845 v += 4 * stride;
846
847 // Load q0, q1, q2, q3
848 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
849 MAX_DIFF2(t2, t1, q1, q0, mask);
850
851 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
852 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
853
854 // Store
855 STOREUV(p1, u, v, -2 * stride);
856 STOREUV(p0, u, v, -1 * stride);
857 STOREUV(q0, u, v, 0 * stride);
858 STOREUV(q1, u, v, 1 * stride);
859 }
860
HFilter8iSSE2(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)861 static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
862 int thresh, int ithresh, int hev_thresh) {
863 __m128i mask;
864 __m128i t1, t2, p1, p0, q0, q1;
865 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
866 MAX_DIFF1(t2, t1, p1, p0, mask);
867
868 u += 4; // beginning of q0
869 v += 4;
870 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
871 MAX_DIFF2(t2, t1, q1, q0, mask);
872
873 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
874 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
875
876 u -= 2; // beginning of p1
877 v -= 2;
878 Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
879 }
880
881 #endif // WEBP_USE_SSE2
882
883 //------------------------------------------------------------------------------
884 // Entry point
885
886 extern void VP8DspInitSSE2(void);
887
VP8DspInitSSE2(void)888 void VP8DspInitSSE2(void) {
889 #if defined(WEBP_USE_SSE2)
890 VP8Transform = TransformSSE2;
891
892 VP8VFilter16 = VFilter16SSE2;
893 VP8HFilter16 = HFilter16SSE2;
894 VP8VFilter8 = VFilter8SSE2;
895 VP8HFilter8 = HFilter8SSE2;
896 VP8VFilter16i = VFilter16iSSE2;
897 VP8HFilter16i = HFilter16iSSE2;
898 VP8VFilter8i = VFilter8iSSE2;
899 VP8HFilter8i = HFilter8iSSE2;
900
901 VP8SimpleVFilter16 = SimpleVFilter16SSE2;
902 VP8SimpleHFilter16 = SimpleHFilter16SSE2;
903 VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
904 VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
905 #endif // WEBP_USE_SSE2
906 }
907
908 #if defined(__cplusplus) || defined(c_plusplus)
909 } // extern "C"
910 #endif
911