1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // * Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34
35 // Primary authors:
36 // Florian Kainz <kainz@ilm.com>
37 // Rod Bogart <rgb@ilm.com>
38
39
40 //---------------------------------------------------------------------------
41 //
42 // class half --
43 // implementation of non-inline members
44 //
45 //---------------------------------------------------------------------------
46
47 #include <assert.h>
48 #include "half.h"
49
50 using namespace std;
51
52 //-------------------------------------------------------------
53 // Lookup tables for half-to-float and float-to-half conversion
54 //-------------------------------------------------------------
55
56 HALF_EXPORT_CONST half::uif half::_toFloat[1 << 16] =
57 #include "toFloat.h"
58 HALF_EXPORT_CONST unsigned short half::_eLut[1 << 9] =
59 #include "eLut.h"
60
61
62 //-----------------------------------------------
63 // Overflow handler for float-to-half conversion;
64 // generates a hardware floating-point overflow,
65 // which may be trapped by the operating system.
66 //-----------------------------------------------
67
68 float
69 half::overflow ()
70 {
71 volatile float f = 1e10;
72
73 for (int i = 0; i < 10; i++)
74 f *= f; // this will overflow before
75 // the for�loop terminates
76 return f;
77 }
78
79
80 //-----------------------------------------------------
81 // Float-to-half conversion -- general case, including
82 // zeroes, denormalized numbers and exponent overflows.
83 //-----------------------------------------------------
84
85 short
convert(int i)86 half::convert (int i)
87 {
88 //
89 // Our floating point number, f, is represented by the bit
90 // pattern in integer i. Disassemble that bit pattern into
91 // the sign, s, the exponent, e, and the significand, m.
92 // Shift s into the position where it will go in in the
93 // resulting half number.
94 // Adjust e, accounting for the different exponent bias
95 // of float and half (127 versus 15).
96 //
97
98 register int s = (i >> 16) & 0x00008000;
99 register int e = ((i >> 23) & 0x000000ff) - (127 - 15);
100 register int m = i & 0x007fffff;
101
102 //
103 // Now reassemble s, e and m into a half:
104 //
105
106 if (e <= 0)
107 {
108 if (e < -10)
109 {
110 //
111 // E is less than -10. The absolute value of f is
112 // less than HALF_MIN (f may be a small normalized
113 // float, a denormalized float or a zero).
114 //
115 // We convert f to a half zero with the same sign as f.
116 //
117
118 return s;
119 }
120
121 //
122 // E is between -10 and 0. F is a normalized float
123 // whose magnitude is less than HALF_NRM_MIN.
124 //
125 // We convert f to a denormalized half.
126 //
127
128 //
129 // Add an explicit leading 1 to the significand.
130 //
131
132 m = m | 0x00800000;
133
134 //
135 // Round to m to the nearest (10+e)-bit value (with e between
136 // -10 and 0); in case of a tie, round to the nearest even value.
137 //
138 // Rounding may cause the significand to overflow and make
139 // our number normalized. Because of the way a half's bits
140 // are laid out, we don't have to treat this case separately;
141 // the code below will handle it correctly.
142 //
143
144 int t = 14 - e;
145 int a = (1 << (t - 1)) - 1;
146 int b = (m >> t) & 1;
147
148 m = (m + a + b) >> t;
149
150 //
151 // Assemble the half from s, e (zero) and m.
152 //
153
154 return s | m;
155 }
156 else if (e == 0xff - (127 - 15))
157 {
158 if (m == 0)
159 {
160 //
161 // F is an infinity; convert f to a half
162 // infinity with the same sign as f.
163 //
164
165 return s | 0x7c00;
166 }
167 else
168 {
169 //
170 // F is a NAN; we produce a half NAN that preserves
171 // the sign bit and the 10 leftmost bits of the
172 // significand of f, with one exception: If the 10
173 // leftmost bits are all zero, the NAN would turn
174 // into an infinity, so we have to set at least one
175 // bit in the significand.
176 //
177
178 m >>= 13;
179 return s | 0x7c00 | m | (m == 0);
180 }
181 }
182 else
183 {
184 //
185 // E is greater than zero. F is a normalized float.
186 // We try to convert f to a normalized half.
187 //
188
189 //
190 // Round to m to the nearest 10-bit value. In case of
191 // a tie, round to the nearest even value.
192 //
193
194 m = m + 0x00000fff + ((m >> 13) & 1);
195
196 if (m & 0x00800000)
197 {
198 m = 0; // overflow in significand,
199 e += 1; // adjust exponent
200 }
201
202 //
203 // Handle exponent overflow
204 //
205
206 if (e > 30)
207 {
208 overflow (); // Cause a hardware floating point overflow;
209 return s | 0x7c00; // if this returns, the half becomes an
210 } // infinity with the same sign as f.
211
212 //
213 // Assemble the half from s, e and m.
214 //
215
216 return s | (e << 10) | (m >> 13);
217 }
218 }
219
220
221 //---------------------
222 // Stream I/O operators
223 //---------------------
224
225 ostream &
operator <<(ostream & os,half h)226 operator << (ostream &os, half h)
227 {
228 os << float (h);
229 return os;
230 }
231
232
233 istream &
operator >>(istream & is,half & h)234 operator >> (istream &is, half &h)
235 {
236 float f;
237 is >> f;
238 h = half (f);
239 return is;
240 }
241
242
243 //---------------------------------------
244 // Functions to print the bit-layout of
245 // floats and halfs, mostly for debugging
246 //---------------------------------------
247
248 void
printBits(ostream & os,half h)249 printBits (ostream &os, half h)
250 {
251 unsigned short b = h.bits();
252
253 for (int i = 15; i >= 0; i--)
254 {
255 os << (((b >> i) & 1)? '1': '0');
256
257 if (i == 15 || i == 10)
258 os << ' ';
259 }
260 }
261
262
263 void
printBits(ostream & os,float f)264 printBits (ostream &os, float f)
265 {
266 half::uif x;
267 x.f = f;
268
269 for (int i = 31; i >= 0; i--)
270 {
271 os << (((x.i >> i) & 1)? '1': '0');
272
273 if (i == 31 || i == 23)
274 os << ' ';
275 }
276 }
277
278
279 void
printBits(char c[19],half h)280 printBits (char c[19], half h)
281 {
282 unsigned short b = h.bits();
283
284 for (int i = 15, j = 0; i >= 0; i--, j++)
285 {
286 c[j] = (((b >> i) & 1)? '1': '0');
287
288 if (i == 15 || i == 10)
289 c[++j] = ' ';
290 }
291
292 c[18] = 0;
293 }
294
295
296 void
printBits(char c[35],float f)297 printBits (char c[35], float f)
298 {
299 half::uif x;
300 x.f = f;
301
302 for (int i = 31, j = 0; i >= 0; i--, j++)
303 {
304 c[j] = (((x.i >> i) & 1)? '1': '0');
305
306 if (i == 31 || i == 23)
307 c[++j] = ' ';
308 }
309
310 c[34] = 0;
311 }
312