1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // * Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34
35 // Primary authors:
36 // Florian Kainz <kainz@ilm.com>
37 // Rod Bogart <rgb@ilm.com>
38
39 //---------------------------------------------------------------------------
40 //
41 // half -- a 16-bit floating point number class:
42 //
43 // Type half can represent positive and negative numbers whose
44 // magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
45 // error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
46 // with an absolute error of 6.0e-8. All integers from -2048 to
47 // +2048 can be represented exactly.
48 //
49 // Type half behaves (almost) like the built-in C++ floating point
50 // types. In arithmetic expressions, half, float and double can be
51 // mixed freely. Here are a few examples:
52 //
53 // half a (3.5);
54 // float b (a + sqrt (a));
55 // a += b;
56 // b += a;
57 // b = a + 7;
58 //
59 // Conversions from half to float are lossless; all half numbers
60 // are exactly representable as floats.
61 //
62 // Conversions from float to half may not preserve a float's value
63 // exactly. If a float is not representable as a half, then the
64 // float value is rounded to the nearest representable half. If a
65 // float value is exactly in the middle between the two closest
66 // representable half values, then the float value is rounded to
67 // the closest half whose least significant bit is zero.
68 //
69 // Overflows during float-to-half conversions cause arithmetic
70 // exceptions. An overflow occurs when the float value to be
71 // converted is too large to be represented as a half, or if the
72 // float value is an infinity or a NAN.
73 //
74 // The implementation of type half makes the following assumptions
75 // about the implementation of the built-in C++ types:
76 //
77 // float is an IEEE 754 single-precision number
78 // sizeof (float) == 4
79 // sizeof (unsigned int) == sizeof (float)
80 // alignof (unsigned int) == alignof (float)
81 // sizeof (unsigned short) == 2
82 //
83 //---------------------------------------------------------------------------
84
85 #ifndef _HALF_H_
86 #define _HALF_H_
87
88 #include <iostream>
89
90 #if defined(OPENEXR_DLL)
91 #if defined(HALF_EXPORTS)
92 #define HALF_EXPORT __declspec(dllexport)
93 #else
94 #define HALF_EXPORT __declspec(dllimport)
95 #endif
96 #define HALF_EXPORT_CONST
97 #else
98 #define HALF_EXPORT
99 #define HALF_EXPORT_CONST const
100 #endif
101
102 class HALF_EXPORT half
103 {
104 public:
105
106 //-------------
107 // Constructors
108 //-------------
109
110 half (); // no initialization
111 half (float f);
112
113
114 //--------------------
115 // Conversion to float
116 //--------------------
117
118 operator float () const;
119
120
121 //------------
122 // Unary minus
123 //------------
124
125 half operator - () const;
126
127
128 //-----------
129 // Assignment
130 //-----------
131
132 half & operator = (half h);
133 half & operator = (float f);
134
135 half & operator += (half h);
136 half & operator += (float f);
137
138 half & operator -= (half h);
139 half & operator -= (float f);
140
141 half & operator *= (half h);
142 half & operator *= (float f);
143
144 half & operator /= (half h);
145 half & operator /= (float f);
146
147
148 //---------------------------------------------------------
149 // Round to n-bit precision (n should be between 0 and 10).
150 // After rounding, the significand's 10-n least significant
151 // bits will be zero.
152 //---------------------------------------------------------
153
154 half round (unsigned int n) const;
155
156
157 //--------------------------------------------------------------------
158 // Classification:
159 //
160 // h.isFinite() returns true if h is a normalized number,
161 // a denormalized number or zero
162 //
163 // h.isNormalized() returns true if h is a normalized number
164 //
165 // h.isDenormalized() returns true if h is a denormalized number
166 //
167 // h.isZero() returns true if h is zero
168 //
169 // h.isNan() returns true if h is a NAN
170 //
171 // h.isInfinity() returns true if h is a positive
172 // or a negative infinity
173 //
174 // h.isNegative() returns true if the sign bit of h
175 // is set (negative)
176 //--------------------------------------------------------------------
177
178 bool isFinite () const;
179 bool isNormalized () const;
180 bool isDenormalized () const;
181 bool isZero () const;
182 bool isNan () const;
183 bool isInfinity () const;
184 bool isNegative () const;
185
186
187 //--------------------------------------------
188 // Special values
189 //
190 // posInf() returns +infinity
191 //
192 // negInf() returns -infinity
193 //
194 // qNan() returns a NAN with the bit
195 // pattern 0111111111111111
196 //
197 // sNan() returns a NAN with the bit
198 // pattern 0111110111111111
199 //--------------------------------------------
200
201 static half posInf ();
202 static half negInf ();
203 static half qNan ();
204 static half sNan ();
205
206
207 //--------------------------------------
208 // Access to the internal representation
209 //--------------------------------------
210
211 unsigned short bits () const;
212 void setBits (unsigned short bits);
213
214
215 public:
216
217 union uif
218 {
219 unsigned int i;
220 float f;
221 };
222
223 private:
224
225 static short convert (int i);
226 static float overflow ();
227
228 unsigned short _h;
229
230 static HALF_EXPORT_CONST uif _toFloat[1 << 16];
231 static HALF_EXPORT_CONST unsigned short _eLut[1 << 9];
232 };
233
234 //-----------
235 // Stream I/O
236 //-----------
237
238 HALF_EXPORT std::ostream & operator << (std::ostream &os, half h);
239 HALF_EXPORT std::istream & operator >> (std::istream &is, half &h);
240
241
242 //----------
243 // Debugging
244 //----------
245
246 HALF_EXPORT void printBits (std::ostream &os, half h);
247 HALF_EXPORT void printBits (std::ostream &os, float f);
248 HALF_EXPORT void printBits (char c[19], half h);
249 HALF_EXPORT void printBits (char c[35], float f);
250
251
252 //-------------------------------------------------------------------------
253 // Limits
254 //
255 // Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
256 // constants, but at least one other compiler (gcc 2.96) produces incorrect
257 // results if they are.
258 //-------------------------------------------------------------------------
259
260 #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
261
262 #define HALF_MIN 5.96046448e-08f // Smallest positive half
263
264 #define HALF_NRM_MIN 6.10351562e-05f // Smallest positive normalized half
265
266 #define HALF_MAX 65504.0f // Largest positive half
267
268 #define HALF_EPSILON 0.00097656f // Smallest positive e for which
269 // half (1.0 + e) != half (1.0)
270 #else
271
272 #define HALF_MIN 5.96046448e-08 // Smallest positive half
273
274 #define HALF_NRM_MIN 6.10351562e-05 // Smallest positive normalized half
275
276 #define HALF_MAX 65504.0 // Largest positive half
277
278 #define HALF_EPSILON 0.00097656 // Smallest positive e for which
279 // half (1.0 + e) != half (1.0)
280 #endif
281
282
283 #define HALF_MANT_DIG 11 // Number of digits in mantissa
284 // (significand + hidden leading 1)
285
286 #define HALF_DIG 2 // Number of base 10 digits that
287 // can be represented without change
288
289 #define HALF_RADIX 2 // Base of the exponent
290
291 #define HALF_MIN_EXP -13 // Minimum negative integer such that
292 // HALF_RADIX raised to the power of
293 // one less than that integer is a
294 // normalized half
295
296 #define HALF_MAX_EXP 16 // Maximum positive integer such that
297 // HALF_RADIX raised to the power of
298 // one less than that integer is a
299 // normalized half
300
301 #define HALF_MIN_10_EXP -4 // Minimum positive integer such
302 // that 10 raised to that power is
303 // a normalized half
304
305 #define HALF_MAX_10_EXP 4 // Maximum positive integer such
306 // that 10 raised to that power is
307 // a normalized half
308
309
310 //---------------------------------------------------------------------------
311 //
312 // Implementation --
313 //
314 // Representation of a float:
315 //
316 // We assume that a float, f, is an IEEE 754 single-precision
317 // floating point number, whose bits are arranged as follows:
318 //
319 // 31 (msb)
320 // |
321 // | 30 23
322 // | | |
323 // | | | 22 0 (lsb)
324 // | | | | |
325 // X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
326 //
327 // s e m
328 //
329 // S is the sign-bit, e is the exponent and m is the significand.
330 //
331 // If e is between 1 and 254, f is a normalized number:
332 //
333 // s e-127
334 // f = (-1) * 2 * 1.m
335 //
336 // If e is 0, and m is not zero, f is a denormalized number:
337 //
338 // s -126
339 // f = (-1) * 2 * 0.m
340 //
341 // If e and m are both zero, f is zero:
342 //
343 // f = 0.0
344 //
345 // If e is 255, f is an "infinity" or "not a number" (NAN),
346 // depending on whether m is zero or not.
347 //
348 // Examples:
349 //
350 // 0 00000000 00000000000000000000000 = 0.0
351 // 0 01111110 00000000000000000000000 = 0.5
352 // 0 01111111 00000000000000000000000 = 1.0
353 // 0 10000000 00000000000000000000000 = 2.0
354 // 0 10000000 10000000000000000000000 = 3.0
355 // 1 10000101 11110000010000000000000 = -124.0625
356 // 0 11111111 00000000000000000000000 = +infinity
357 // 1 11111111 00000000000000000000000 = -infinity
358 // 0 11111111 10000000000000000000000 = NAN
359 // 1 11111111 11111111111111111111111 = NAN
360 //
361 // Representation of a half:
362 //
363 // Here is the bit-layout for a half number, h:
364 //
365 // 15 (msb)
366 // |
367 // | 14 10
368 // | | |
369 // | | | 9 0 (lsb)
370 // | | | | |
371 // X XXXXX XXXXXXXXXX
372 //
373 // s e m
374 //
375 // S is the sign-bit, e is the exponent and m is the significand.
376 //
377 // If e is between 1 and 30, h is a normalized number:
378 //
379 // s e-15
380 // h = (-1) * 2 * 1.m
381 //
382 // If e is 0, and m is not zero, h is a denormalized number:
383 //
384 // S -14
385 // h = (-1) * 2 * 0.m
386 //
387 // If e and m are both zero, h is zero:
388 //
389 // h = 0.0
390 //
391 // If e is 31, h is an "infinity" or "not a number" (NAN),
392 // depending on whether m is zero or not.
393 //
394 // Examples:
395 //
396 // 0 00000 0000000000 = 0.0
397 // 0 01110 0000000000 = 0.5
398 // 0 01111 0000000000 = 1.0
399 // 0 10000 0000000000 = 2.0
400 // 0 10000 1000000000 = 3.0
401 // 1 10101 1111000001 = -124.0625
402 // 0 11111 0000000000 = +infinity
403 // 1 11111 0000000000 = -infinity
404 // 0 11111 1000000000 = NAN
405 // 1 11111 1111111111 = NAN
406 //
407 // Conversion:
408 //
409 // Converting from a float to a half requires some non-trivial bit
410 // manipulations. In some cases, this makes conversion relatively
411 // slow, but the most common case is accelerated via table lookups.
412 //
413 // Converting back from a half to a float is easier because we don't
414 // have to do any rounding. In addition, there are only 65536
415 // different half numbers; we can convert each of those numbers once
416 // and store the results in a table. Later, all conversions can be
417 // done using only simple table lookups.
418 //
419 //---------------------------------------------------------------------------
420
421
422 //--------------------
423 // Simple constructors
424 //--------------------
425
426 inline
half()427 half::half ()
428 {
429 // no initialization
430 }
431
432
433 //----------------------------
434 // Half-from-float constructor
435 //----------------------------
436
437 inline
half(float f)438 half::half (float f)
439 {
440 uif x;
441
442 x.f = f;
443
444 if (f == 0)
445 {
446 //
447 // Common special case - zero.
448 // Preserve the zero's sign bit.
449 //
450
451 _h = (x.i >> 16);
452 }
453 else
454 {
455 //
456 // We extract the combined sign and exponent, e, from our
457 // floating-point number, f. Then we convert e to the sign
458 // and exponent of the half number via a table lookup.
459 //
460 // For the most common case, where a normalized half is produced,
461 // the table lookup returns a non-zero value; in this case, all
462 // we have to do is round f's significand to 10 bits and combine
463 // the result with e.
464 //
465 // For all other cases (overflow, zeroes, denormalized numbers
466 // resulting from underflow, infinities and NANs), the table
467 // lookup returns zero, and we call a longer, non-inline function
468 // to do the float-to-half conversion.
469 //
470
471 register int e = (x.i >> 23) & 0x000001ff;
472
473 e = _eLut[e];
474
475 if (e)
476 {
477 //
478 // Simple case - round the significand, m, to 10
479 // bits and combine it with the sign and exponent.
480 //
481
482 register int m = x.i & 0x007fffff;
483 _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
484 }
485 else
486 {
487 //
488 // Difficult case - call a function.
489 //
490
491 _h = convert (x.i);
492 }
493 }
494 }
495
496
497 //------------------------------------------
498 // Half-to-float conversion via table lookup
499 //------------------------------------------
500
501 inline
502 half::operator float () const
503 {
504 return _toFloat[_h].f;
505 }
506
507
508 //-------------------------
509 // Round to n-bit precision
510 //-------------------------
511
512 inline half
round(unsigned int n)513 half::round (unsigned int n) const
514 {
515 //
516 // Parameter check.
517 //
518
519 if (n >= 10)
520 return *this;
521
522 //
523 // Disassemble h into the sign, s,
524 // and the combined exponent and significand, e.
525 //
526
527 unsigned short s = _h & 0x8000;
528 unsigned short e = _h & 0x7fff;
529
530 //
531 // Round the exponent and significand to the nearest value
532 // where ones occur only in the (10-n) most significant bits.
533 // Note that the exponent adjusts automatically if rounding
534 // up causes the significand to overflow.
535 //
536
537 e >>= 9 - n;
538 e += e & 1;
539 e <<= 9 - n;
540
541 //
542 // Check for exponent overflow.
543 //
544
545 if (e >= 0x7c00)
546 {
547 //
548 // Overflow occurred -- truncate instead of rounding.
549 //
550
551 e = _h;
552 e >>= 10 - n;
553 e <<= 10 - n;
554 }
555
556 //
557 // Put the original sign bit back.
558 //
559
560 half h;
561 h._h = s | e;
562
563 return h;
564 }
565
566
567 //-----------------------
568 // Other inline functions
569 //-----------------------
570
571 inline half
572 half::operator - () const
573 {
574 half h;
575 h._h = _h ^ 0x8000;
576 return h;
577 }
578
579
580 inline half &
581 half::operator = (half h)
582 {
583 _h = h._h;
584 return *this;
585 }
586
587
588 inline half &
589 half::operator = (float f)
590 {
591 *this = half (f);
592 return *this;
593 }
594
595
596 inline half &
597 half::operator += (half h)
598 {
599 *this = half (float (*this) + float (h));
600 return *this;
601 }
602
603
604 inline half &
605 half::operator += (float f)
606 {
607 *this = half (float (*this) + f);
608 return *this;
609 }
610
611
612 inline half &
613 half::operator -= (half h)
614 {
615 *this = half (float (*this) - float (h));
616 return *this;
617 }
618
619
620 inline half &
621 half::operator -= (float f)
622 {
623 *this = half (float (*this) - f);
624 return *this;
625 }
626
627
628 inline half &
629 half::operator *= (half h)
630 {
631 *this = half (float (*this) * float (h));
632 return *this;
633 }
634
635
636 inline half &
637 half::operator *= (float f)
638 {
639 *this = half (float (*this) * f);
640 return *this;
641 }
642
643
644 inline half &
645 half::operator /= (half h)
646 {
647 *this = half (float (*this) / float (h));
648 return *this;
649 }
650
651
652 inline half &
653 half::operator /= (float f)
654 {
655 *this = half (float (*this) / f);
656 return *this;
657 }
658
659
660 inline bool
isFinite()661 half::isFinite () const
662 {
663 unsigned short e = (_h >> 10) & 0x001f;
664 return e < 31;
665 }
666
667
668 inline bool
isNormalized()669 half::isNormalized () const
670 {
671 unsigned short e = (_h >> 10) & 0x001f;
672 return e > 0 && e < 31;
673 }
674
675
676 inline bool
isDenormalized()677 half::isDenormalized () const
678 {
679 unsigned short e = (_h >> 10) & 0x001f;
680 unsigned short m = _h & 0x3ff;
681 return e == 0 && m != 0;
682 }
683
684
685 inline bool
isZero()686 half::isZero () const
687 {
688 return (_h & 0x7fff) == 0;
689 }
690
691
692 inline bool
isNan()693 half::isNan () const
694 {
695 unsigned short e = (_h >> 10) & 0x001f;
696 unsigned short m = _h & 0x3ff;
697 return e == 31 && m != 0;
698 }
699
700
701 inline bool
isInfinity()702 half::isInfinity () const
703 {
704 unsigned short e = (_h >> 10) & 0x001f;
705 unsigned short m = _h & 0x3ff;
706 return e == 31 && m == 0;
707 }
708
709
710 inline bool
isNegative()711 half::isNegative () const
712 {
713 return (_h & 0x8000) != 0;
714 }
715
716
717 inline half
posInf()718 half::posInf ()
719 {
720 half h;
721 h._h = 0x7c00;
722 return h;
723 }
724
725
726 inline half
negInf()727 half::negInf ()
728 {
729 half h;
730 h._h = 0xfc00;
731 return h;
732 }
733
734
735 inline half
qNan()736 half::qNan ()
737 {
738 half h;
739 h._h = 0x7fff;
740 return h;
741 }
742
743
744 inline half
sNan()745 half::sNan ()
746 {
747 half h;
748 h._h = 0x7dff;
749 return h;
750 }
751
752
753 inline unsigned short
bits()754 half::bits () const
755 {
756 return _h;
757 }
758
759
760 inline void
setBits(unsigned short bits)761 half::setBits (unsigned short bits)
762 {
763 _h = bits;
764 }
765
766 #endif
767