1
2 ///////////////////////////////////////////////////////////////////////////
3 //
4 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
5 // Digital Ltd. LLC
6 //
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 // * Redistributions in binary form must reproduce the above
15 // copyright notice, this list of conditions and the following disclaimer
16 // in the documentation and/or other materials provided with the
17 // distribution.
18 // * Neither the name of Industrial Light & Magic nor the names of
19 // its contributors may be used to endorse or promote products derived
20 // from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 //
34 ///////////////////////////////////////////////////////////////////////////
35
36 //-----------------------------------------------------------------------------
37 //
38 // Routines that generate pseudo-random numbers compatible
39 // with the standard erand48(), nrand48(), etc. functions.
40 //
41 //-----------------------------------------------------------------------------
42
43 #include "ImathRandom.h"
44 #include "ImathInt64.h"
45
46 namespace Imath {
47 namespace {
48
49 //
50 // Static state used by Imath::drand48(), Imath::lrand48() and Imath::srand48()
51 //
52
53 unsigned short staticState[3] = {0, 0, 0};
54
55
56 void
rand48Next(unsigned short state[3])57 rand48Next (unsigned short state[3])
58 {
59 //
60 // drand48() and friends are all based on a linear congruential
61 // sequence,
62 //
63 // x[n+1] = (a * x[n] + c) % m,
64 //
65 // where a and c are as specified below, and m == (1 << 48)
66 //
67
68 static const Int64 a = Int64 (0x5deece66dLL);
69 static const Int64 c = Int64 (0xbLL);
70
71 //
72 // Assemble the 48-bit value x[n] from the
73 // three 16-bit values stored in state.
74 //
75
76 Int64 x = (Int64 (state[2]) << 32) |
77 (Int64 (state[1]) << 16) |
78 Int64 (state[0]);
79
80 //
81 // Compute x[n+1], except for the "modulo m" part.
82 //
83
84 x = a * x + c;
85
86 //
87 // Disassemble the 48 least significant bits of x[n+1] into
88 // three 16-bit values. Discard the 16 most significant bits;
89 // this takes care of the "modulo m" operation.
90 //
91 // We assume that sizeof (unsigned short) == 2.
92 //
93
94 state[2] = (unsigned short)(x >> 32);
95 state[1] = (unsigned short)(x >> 16);
96 state[0] = (unsigned short)(x);
97 }
98
99 } // namespace
100
101
102 double
erand48(unsigned short state[3])103 erand48 (unsigned short state[3])
104 {
105 //
106 // Generate double-precision floating-point values between 0.0 and 1.0:
107 //
108 // The exponent is set to 0x3ff, which indicates a value greater
109 // than or equal to 1.0, and less than 2.0. The 48 most significant
110 // bits of the significand (mantissa) are filled with pseudo-random
111 // bits generated by rand48Next(). The remaining 4 bits are a copy
112 // of the 4 most significant bits of the significand. This results
113 // in bit patterns between 0x3ff0000000000000 and 0x3fffffffffffffff,
114 // which correspond to uniformly distributed floating-point values
115 // between 1.0 and 1.99999999999999978. Subtracting 1.0 from those
116 // values produces numbers between 0.0 and 0.99999999999999978, that
117 // is, between 0.0 and 1.0-DBL_EPSILON.
118 //
119
120 rand48Next (state);
121
122 union {double d; Int64 i;} u;
123
124 u.i = (Int64 (0x3ff) << 52) | // sign and exponent
125 (Int64 (state[2]) << 36) | // significand
126 (Int64 (state[1]) << 20) |
127 (Int64 (state[0]) << 4) |
128 (Int64 (state[2]) >> 12);
129
130 return u.d - 1;
131 }
132
133
134 double
drand48()135 drand48 ()
136 {
137 return Imath::erand48 (staticState);
138 }
139
140
141 long int
nrand48(unsigned short state[3])142 nrand48 (unsigned short state[3])
143 {
144 //
145 // Generate uniformly distributed integers between 0 and 0x7fffffff.
146 //
147
148 rand48Next (state);
149
150 return ((long int) (state[2]) << 15) |
151 ((long int) (state[1]) >> 1);
152 }
153
154
155 long int
lrand48()156 lrand48 ()
157 {
158 return Imath::nrand48 (staticState);
159 }
160
161
162 void
srand48(long int seed)163 srand48 (long int seed)
164 {
165 staticState[2] = (unsigned short)(seed >> 16);
166 staticState[1] = (unsigned short)(seed);
167 staticState[0] = 0x330e;
168 }
169
170
171 float
nextf()172 Rand32::nextf ()
173 {
174 //
175 // Generate single-precision floating-point values between 0.0 and 1.0:
176 //
177 // The exponent is set to 0x7f, which indicates a value greater than
178 // or equal to 1.0, and less than 2.0. The 23 bits of the significand
179 // (mantissa) are filled with pseudo-random bits generated by
180 // Rand32::next(). This results in in bit patterns between 0x3f800000
181 // and 0x3fffffff, which correspond to uniformly distributed floating-
182 // point values between 1.0 and 1.99999988. Subtracting 1.0 from
183 // those values produces numbers between 0.0 and 0.99999988, that is,
184 // between 0.0 and 1.0-FLT_EPSILON.
185 //
186
187 next ();
188
189 union {float f; unsigned int i;} u;
190
191 u.i = 0x3f800000 | (_state & 0x7fffff);
192 return u.f - 1;
193 }
194
195 } // namespace Imath
196