• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 ///////////////////////////////////////////////////////////////////////////
3 //
4 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
5 // Digital Ltd. LLC
6 //
7 // All rights reserved.
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
12 // *       Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 // *       Redistributions in binary form must reproduce the above
15 // copyright notice, this list of conditions and the following disclaimer
16 // in the documentation and/or other materials provided with the
17 // distribution.
18 // *       Neither the name of Industrial Light & Magic nor the names of
19 // its contributors may be used to endorse or promote products derived
20 // from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 //
34 ///////////////////////////////////////////////////////////////////////////
35 
36 //-----------------------------------------------------------------------------
37 //
38 //	Routines that generate pseudo-random numbers compatible
39 //	with the standard erand48(), nrand48(), etc. functions.
40 //
41 //-----------------------------------------------------------------------------
42 
43 #include "ImathRandom.h"
44 #include "ImathInt64.h"
45 
46 namespace Imath {
47 namespace {
48 
49 //
50 // Static state used by Imath::drand48(), Imath::lrand48() and Imath::srand48()
51 //
52 
53 unsigned short staticState[3] = {0, 0, 0};
54 
55 
56 void
rand48Next(unsigned short state[3])57 rand48Next (unsigned short state[3])
58 {
59     //
60     // drand48() and friends are all based on a linear congruential
61     // sequence,
62     //
63     //   x[n+1] = (a * x[n] + c) % m,
64     //
65     // where a and c are as specified below, and m == (1 << 48)
66     //
67 
68     static const Int64 a = Int64 (0x5deece66dLL);
69     static const Int64 c = Int64 (0xbLL);
70 
71     //
72     // Assemble the 48-bit value x[n] from the
73     // three 16-bit values stored in state.
74     //
75 
76     Int64 x = (Int64 (state[2]) << 32) |
77           (Int64 (state[1]) << 16) |
78            Int64 (state[0]);
79 
80     //
81     // Compute x[n+1], except for the "modulo m" part.
82     //
83 
84     x = a * x + c;
85 
86     //
87     // Disassemble the 48 least significant bits of x[n+1] into
88     // three 16-bit values.  Discard the 16 most significant bits;
89     // this takes care of the "modulo m" operation.
90     //
91     // We assume that sizeof (unsigned short) == 2.
92     //
93 
94     state[2] = (unsigned short)(x >> 32);
95     state[1] = (unsigned short)(x >> 16);
96     state[0] = (unsigned short)(x);
97 }
98 
99 } // namespace
100 
101 
102 double
erand48(unsigned short state[3])103 erand48 (unsigned short state[3])
104 {
105     //
106     // Generate double-precision floating-point values between 0.0 and 1.0:
107     //
108     // The exponent is set to 0x3ff, which indicates a value greater
109     // than or equal to 1.0, and less than 2.0.  The 48 most significant
110     // bits of the significand (mantissa) are filled with pseudo-random
111     // bits generated by rand48Next().  The remaining 4 bits are a copy
112     // of the 4 most significant bits of the significand.  This results
113     // in bit patterns between 0x3ff0000000000000 and 0x3fffffffffffffff,
114     // which correspond to uniformly distributed floating-point values
115     // between 1.0 and 1.99999999999999978.  Subtracting 1.0 from those
116     // values produces numbers between 0.0 and 0.99999999999999978, that
117     // is, between 0.0 and 1.0-DBL_EPSILON.
118     //
119 
120     rand48Next (state);
121 
122     union {double d; Int64 i;} u;
123 
124     u.i = (Int64 (0x3ff)    << 52) |	// sign and exponent
125       (Int64 (state[2]) << 36) |	// significand
126       (Int64 (state[1]) << 20) |
127       (Int64 (state[0]) <<  4) |
128       (Int64 (state[2]) >> 12);
129 
130     return u.d - 1;
131 }
132 
133 
134 double
drand48()135 drand48 ()
136 {
137     return Imath::erand48 (staticState);
138 }
139 
140 
141 long int
nrand48(unsigned short state[3])142 nrand48 (unsigned short state[3])
143 {
144     //
145     // Generate uniformly distributed integers between 0 and 0x7fffffff.
146     //
147 
148     rand48Next (state);
149 
150     return ((long int) (state[2]) << 15) |
151        ((long int) (state[1]) >>  1);
152 }
153 
154 
155 long int
lrand48()156 lrand48 ()
157 {
158     return Imath::nrand48 (staticState);
159 }
160 
161 
162 void
srand48(long int seed)163 srand48 (long int seed)
164 {
165     staticState[2] = (unsigned short)(seed >> 16);
166     staticState[1] = (unsigned short)(seed);
167     staticState[0] = 0x330e;
168 }
169 
170 
171 float
nextf()172 Rand32::nextf ()
173 {
174     //
175     // Generate single-precision floating-point values between 0.0 and 1.0:
176     //
177     // The exponent is set to 0x7f, which indicates a value greater than
178     // or equal to 1.0, and less than 2.0.  The 23 bits of the significand
179     // (mantissa) are filled with pseudo-random bits generated by
180     // Rand32::next().  This results in in bit patterns between 0x3f800000
181     // and 0x3fffffff, which correspond to uniformly distributed floating-
182     // point values between 1.0 and 1.99999988.  Subtracting 1.0 from
183     // those values produces numbers between 0.0 and 0.99999988, that is,
184     // between 0.0 and 1.0-FLT_EPSILON.
185     //
186 
187     next ();
188 
189     union {float f; unsigned int i;} u;
190 
191     u.i = 0x3f800000 | (_state & 0x7fffff);
192     return u.f - 1;
193 }
194 
195 } // namespace Imath
196