1<?xml version="1.0"?> 2<!- 3 22x18 upperbody detector (see the detailed description below). 4 5////////////////////////////////////////////////////////////////////////// 6| Contributors License Agreement 7| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 8| By downloading, copying, installing or using the software you agree 9| to this license. 10| If you do not agree to this license, do not download, install, 11| copy or use the software. 12| 13| Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland). 14| All rights reserved. 15| 16| Redistribution and use in source and binary forms, with or without 17| modification, are permitted provided that the following conditions are 18| met: 19| 20| * Redistributions of source code must retain the above copyright 21| notice, this list of conditions and the following disclaimer. 22| * Redistributions in binary form must reproduce the above 23| copyright notice, this list of conditions and the following 24| disclaimer in the documentation and/or other materials provided 25| with the distribution. 26| * The name of Contributor may not used to endorse or promote products 27| derived from this software without specific prior written permission. 28| 29| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 33| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 34| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 35| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 36| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 37| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 38| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 39| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to 40| Top 41////////////////////////////////////////////////////////////////////////// 42 43"Haar"-based Detectors For Pedestrian Detection 44=============================================== 45by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland 46 47This archive provides the following three detectors: 48- upper body detector (most fun, useful in many scenarios!) 49- lower body detector 50- full body detector 51 52These detectors have been successfully applied to pedestrian detection 53in still images. They can be directly passed as parameters to the 54program HaarFaceDetect. 55NOTE: These detectors deal with frontal and backside views but not 56with side views (also see "Known limitations" below). 57 58RESEARCHERS: 59If you are using any of the detectors or involved ideas please cite 60this paper (available at www.vision.ethz.ch/publications/): 61 62@InProceedings{Kruppa03-bmvc, 63 author = "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele", 64 title = "Fast and Robust Face Finding via Local Context." 65 booktitle = "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance" 66 year = "2003", 67 month = "October" 68} 69 70COMMERCIAL: 71If you have any commercial interest in this work please contact 72hkruppa@inf.ethz.cz 73 74 75ADDITIONAL INFORMATION 76====================== 77Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player 78that can play back .mpg movies. 79Under Linux that's: 80> ffplay demo.mpg 81or: 82> mplayer demo.mpg 83 84The movie shows a person walking towards the camera in a realistic 85indoor setting. Using ffplay or mplayer you can pause and continue the 86movie by pressing the space bar. 87 88Detections coming from the different detectors are visualized using 89different line styles: 90upper body : dotted line 91lower body : dashed line 92full body : solid line 93 94You will notice that successful detections containing the target do 95not sit tightly on the body but also include some of the background 96left and right. This is not a bug but accurately reflects the 97employed training data which also includes portions of the background 98to ensure proper silhouette representation. If you want to get a 99feeling for the training data check out the CBCL data set: 100http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html 101 102There is also a small number of false alarms in this sequence. 103NOTE: This is per frame detection, not tracking (which is also one of 104the reasons why it is not mislead by the person's shadow on the back 105wall). 106 107On an Intel Xeon 1.7GHz machine the detectors operate at something 108between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the 109detector. The detectors work as well on much lower image resolutions 110which is always an interesting possibility for speed-ups or 111"coarse-to-fine" search strategies. 112 113Additional information e.g. on training parameters, detector 114combination, detecting other types of objects (e.g. cars) etc. is 115available in my PhD thesis report (available end of June). Check out 116www.vision.ethz.ch/kruppa/ 117 118 119KNOWN LIMITATIONS 120================== 1211) the detectors only support frontal and back views but not sideviews. 122 Sideviews are trickier and it makes a lot of sense to include additional 123 modalities for their detection, e.g. motion information. I recommend 124 Viola and Jones' ICCV 2003 paper if this further interests you. 125 1262) dont expect these detectors to be as accurate as a frontal face detector. 127 A frontal face as a pattern is pretty distinct with respect to other 128 patterns occuring in the world (i.e. image "background"). This is not so 129 for upper, lower and especially full bodies, because they have to rely 130 on fragile silhouette information rather than internal (facial) features. 131 Still, we found especially the upper body detector to perform amazingly well. 132 In contrast to a face detector these detectors will also work at very low 133 image resolutions 134 135Acknowledgements 136================ 137Thanks to Martin Spengler, ETH Zurich, for providing the demo movie. 138--> 139<opencv_storage> 140<haarcascade_upperbody type_id="opencv-haar-classifier"> 141 <size>22 18</size> 142 <stages> 143 <_> 144 <!-- stage 0 --> 145 <trees> 146 <_> 147 <!-- tree 0 --> 148 <_> 149 <!-- root node --> 150 <feature> 151 <rects> 152 <_>5 5 12 6 -1.</_> 153 <_>9 5 4 6 3.</_></rects> 154 <tilted>0</tilted></feature> 155 <threshold>-0.0136960297822952</threshold> 156 <left_val>0.4507646858692169</left_val> 157 <right_val>-0.4217903017997742</right_val></_></_> 158 <_> 159 <!-- tree 1 --> 160 <_> 161 <!-- root node --> 162 <feature> 163 <rects> 164 <_>7 13 10 4 -1.</_> 165 <_>7 15 10 2 2.</_></rects> 166 <tilted>0</tilted></feature> 167 <threshold>0.0124414497986436</threshold> 168 <left_val>0.1649325042963028</left_val> 169 <right_val>-0.7479348778724670</right_val></_></_> 170 <_> 171 <!-- tree 2 --> 172 <_> 173 <!-- root node --> 174 <feature> 175 <rects> 176 <_>3 14 9 4 -1.</_> 177 <_>6 14 3 4 3.</_></rects> 178 <tilted>0</tilted></feature> 179 <threshold>-2.7094660326838493e-003</threshold> 180 <left_val>0.3100470006465912</left_val> 181 <right_val>-0.3761714100837708</right_val></_></_> 182 <_> 183 <!-- tree 3 --> 184 <_> 185 <!-- root node --> 186 <feature> 187 <rects> 188 <_>15 6 5 6 -1.</_> 189 <_>15 6 5 3 2.</_></rects> 190 <tilted>1</tilted></feature> 191 <threshold>-0.1000801026821137</threshold> 192 <left_val>0.7618219852447510</left_val> 193 <right_val>-0.0745569765567780</right_val></_></_> 194 <_> 195 <!-- tree 4 --> 196 <_> 197 <!-- root node --> 198 <feature> 199 <rects> 200 <_>0 1 22 14 -1.</_> 201 <_>11 1 11 14 2.</_></rects> 202 <tilted>0</tilted></feature> 203 <threshold>-0.2511411905288696</threshold> 204 <left_val>-0.6415402889251709</left_val> 205 <right_val>0.1513922065496445</right_val></_></_> 206 <_> 207 <!-- tree 5 --> 208 <_> 209 <!-- root node --> 210 <feature> 211 <rects> 212 <_>1 11 20 4 -1.</_> 213 <_>6 11 10 4 2.</_></rects> 214 <tilted>0</tilted></feature> 215 <threshold>-0.1051065027713776</threshold> 216 <left_val>0.7145937085151672</left_val> 217 <right_val>-0.1449857950210571</right_val></_></_> 218 <_> 219 <!-- tree 6 --> 220 <_> 221 <!-- root node --> 222 <feature> 223 <rects> 224 <_>7 6 6 5 -1.</_> 225 <_>7 6 3 5 2.</_></rects> 226 <tilted>1</tilted></feature> 227 <threshold>-0.0884480178356171</threshold> 228 <left_val>0.7577317953109741</left_val> 229 <right_val>-0.0685868933796883</right_val></_></_> 230 <_> 231 <!-- tree 7 --> 232 <_> 233 <!-- root node --> 234 <feature> 235 <rects> 236 <_>5 13 12 4 -1.</_> 237 <_>11 13 6 2 2.</_> 238 <_>5 15 6 2 2.</_></rects> 239 <tilted>0</tilted></feature> 240 <threshold>0.0108749102801085</threshold> 241 <left_val>0.1461060941219330</left_val> 242 <right_val>-0.5426371097564697</right_val></_></_> 243 <_> 244 <!-- tree 8 --> 245 <_> 246 <!-- root node --> 247 <feature> 248 <rects> 249 <_>7 12 8 6 -1.</_> 250 <_>7 12 4 3 2.</_> 251 <_>11 15 4 3 2.</_></rects> 252 <tilted>0</tilted></feature> 253 <threshold>0.0126905702054501</threshold> 254 <left_val>0.1167458966374397</left_val> 255 <right_val>-0.4964945912361145</right_val></_></_> 256 <_> 257 <!-- tree 9 --> 258 <_> 259 <!-- root node --> 260 <feature> 261 <rects> 262 <_>20 0 2 18 -1.</_> 263 <_>20 9 2 9 2.</_></rects> 264 <tilted>0</tilted></feature> 265 <threshold>-0.0321983993053436</threshold> 266 <left_val>-0.3852939009666443</left_val> 267 <right_val>0.0984379723668098</right_val></_></_> 268 <_> 269 <!-- tree 10 --> 270 <_> 271 <!-- root node --> 272 <feature> 273 <rects> 274 <_>8 6 6 12 -1.</_> 275 <_>10 6 2 12 3.</_></rects> 276 <tilted>0</tilted></feature> 277 <threshold>-3.4077179152518511e-003</threshold> 278 <left_val>0.2520087063312531</left_val> 279 <right_val>-0.2238254994153976</right_val></_></_> 280 <_> 281 <!-- tree 11 --> 282 <_> 283 <!-- root node --> 284 <feature> 285 <rects> 286 <_>8 5 6 6 -1.</_> 287 <_>10 5 2 6 3.</_></rects> 288 <tilted>0</tilted></feature> 289 <threshold>0.0303243901580572</threshold> 290 <left_val>-0.1053444966673851</left_val> 291 <right_val>0.6573541760444641</right_val></_></_> 292 <_> 293 <!-- tree 12 --> 294 <_> 295 <!-- root node --> 296 <feature> 297 <rects> 298 <_>5 15 12 2 -1.</_> 299 <_>5 16 12 1 2.</_></rects> 300 <tilted>0</tilted></feature> 301 <threshold>4.1930507868528366e-003</threshold> 302 <left_val>0.1287239938974381</left_val> 303 <right_val>-0.5316066145896912</right_val></_></_> 304 <_> 305 <!-- tree 13 --> 306 <_> 307 <!-- root node --> 308 <feature> 309 <rects> 310 <_>20 0 2 18 -1.</_> 311 <_>20 9 2 9 2.</_></rects> 312 <tilted>0</tilted></feature> 313 <threshold>0.0805014073848724</threshold> 314 <left_val>0.0416966602206230</left_val> 315 <right_val>-0.7212303280830383</right_val></_></_> 316 <_> 317 <!-- tree 14 --> 318 <_> 319 <!-- root node --> 320 <feature> 321 <rects> 322 <_>0 0 2 18 -1.</_> 323 <_>0 9 2 9 2.</_></rects> 324 <tilted>0</tilted></feature> 325 <threshold>-0.0348220802843571</threshold> 326 <left_val>-0.4975110888481140</left_val> 327 <right_val>0.1395993977785111</right_val></_></_> 328 <_> 329 <!-- tree 15 --> 330 <_> 331 <!-- root node --> 332 <feature> 333 <rects> 334 <_>13 7 6 4 -1.</_> 335 <_>13 7 6 2 2.</_></rects> 336 <tilted>1</tilted></feature> 337 <threshold>7.5519368983805180e-003</threshold> 338 <left_val>-0.0921476781368256</left_val> 339 <right_val>0.1129434034228325</right_val></_></_> 340 <_> 341 <!-- tree 16 --> 342 <_> 343 <!-- root node --> 344 <feature> 345 <rects> 346 <_>2 14 7 4 -1.</_> 347 <_>2 16 7 2 2.</_></rects> 348 <tilted>0</tilted></feature> 349 <threshold>-0.0175721403211355</threshold> 350 <left_val>-0.5678442716598511</left_val> 351 <right_val>0.0935728102922440</right_val></_></_> 352 <_> 353 <!-- tree 17 --> 354 <_> 355 <!-- root node --> 356 <feature> 357 <rects> 358 <_>13 7 7 4 -1.</_> 359 <_>13 7 7 2 2.</_></rects> 360 <tilted>1</tilted></feature> 361 <threshold>5.2012042142450809e-003</threshold> 362 <left_val>-0.0792380794882774</left_val> 363 <right_val>0.0618789605796337</right_val></_></_> 364 <_> 365 <!-- tree 18 --> 366 <_> 367 <!-- root node --> 368 <feature> 369 <rects> 370 <_>4 6 4 12 -1.</_> 371 <_>4 10 4 4 3.</_></rects> 372 <tilted>0</tilted></feature> 373 <threshold>-0.0307989194989204</threshold> 374 <left_val>-0.5665851235389710</left_val> 375 <right_val>0.0952714905142784</right_val></_></_> 376 <_> 377 <!-- tree 19 --> 378 <_> 379 <!-- root node --> 380 <feature> 381 <rects> 382 <_>8 4 6 10 -1.</_> 383 <_>11 4 3 5 2.</_> 384 <_>8 9 3 5 2.</_></rects> 385 <tilted>0</tilted></feature> 386 <threshold>-1.3465429656207561e-003</threshold> 387 <left_val>0.2401147037744522</left_val> 388 <right_val>-0.2602663934230804</right_val></_></_></trees> 389 <stage_threshold>-1.1264339685440063</stage_threshold> 390 <parent>-1</parent> 391 <next>-1</next></_> 392 <_> 393 <!-- stage 1 --> 394 <trees> 395 <_> 396 <!-- tree 0 --> 397 <_> 398 <!-- root node --> 399 <feature> 400 <rects> 401 <_>6 8 6 10 -1.</_> 402 <_>6 8 3 5 2.</_> 403 <_>9 13 3 5 2.</_></rects> 404 <tilted>0</tilted></feature> 405 <threshold>1.9108939450234175e-003</threshold> 406 <left_val>-0.4624095857143402</left_val> 407 <right_val>0.3061217069625855</right_val></_></_> 408 <_> 409 <!-- tree 1 --> 410 <_> 411 <!-- root node --> 412 <feature> 413 <rects> 414 <_>11 12 6 6 -1.</_> 415 <_>11 15 6 3 2.</_></rects> 416 <tilted>0</tilted></feature> 417 <threshold>9.5464065670967102e-003</threshold> 418 <left_val>0.0919561386108398</left_val> 419 <right_val>-0.5350117087364197</right_val></_></_> 420 <_> 421 <!-- tree 2 --> 422 <_> 423 <!-- root node --> 424 <feature> 425 <rects> 426 <_>1 15 8 3 -1.</_> 427 <_>5 15 4 3 2.</_></rects> 428 <tilted>0</tilted></feature> 429 <threshold>-0.0434028096497059</threshold> 430 <left_val>0.5681784152984619</left_val> 431 <right_val>-0.1128493025898933</right_val></_></_> 432 <_> 433 <!-- tree 3 --> 434 <_> 435 <!-- root node --> 436 <feature> 437 <rects> 438 <_>6 9 10 4 -1.</_> 439 <_>6 11 10 2 2.</_></rects> 440 <tilted>0</tilted></feature> 441 <threshold>0.0503860302269459</threshold> 442 <left_val>-0.0803169310092926</left_val> 443 <right_val>0.7352185845375061</right_val></_></_> 444 <_> 445 <!-- tree 4 --> 446 <_> 447 <!-- root node --> 448 <feature> 449 <rects> 450 <_>11 5 8 3 -1.</_> 451 <_>10 6 8 1 3.</_></rects> 452 <tilted>1</tilted></feature> 453 <threshold>-6.8480317713692784e-004</threshold> 454 <left_val>0.2579864859580994</left_val> 455 <right_val>-0.2804940938949585</right_val></_></_> 456 <_> 457 <!-- tree 5 --> 458 <_> 459 <!-- root node --> 460 <feature> 461 <rects> 462 <_>0 13 22 5 -1.</_> 463 <_>0 13 11 5 2.</_></rects> 464 <tilted>0</tilted></feature> 465 <threshold>0.1154804974794388</threshold> 466 <left_val>0.0920655727386475</left_val> 467 <right_val>-0.7555689215660095</right_val></_></_> 468 <_> 469 <!-- tree 6 --> 470 <_> 471 <!-- root node --> 472 <feature> 473 <rects> 474 <_>2 13 14 3 -1.</_> 475 <_>9 13 7 3 2.</_></rects> 476 <tilted>0</tilted></feature> 477 <threshold>-1.9348369678482413e-003</threshold> 478 <left_val>0.2944079041481018</left_val> 479 <right_val>-0.2410271018743515</right_val></_></_> 480 <_> 481 <!-- tree 7 --> 482 <_> 483 <!-- root node --> 484 <feature> 485 <rects> 486 <_>11 5 2 10 -1.</_> 487 <_>11 5 1 10 2.</_></rects> 488 <tilted>1</tilted></feature> 489 <threshold>-0.0435288101434708</threshold> 490 <left_val>0.4920296967029572</left_val> 491 <right_val>-0.0396501012146473</right_val></_></_> 492 <_> 493 <!-- tree 8 --> 494 <_> 495 <!-- root node --> 496 <feature> 497 <rects> 498 <_>11 5 10 2 -1.</_> 499 <_>11 5 10 1 2.</_></rects> 500 <tilted>1</tilted></feature> 501 <threshold>-0.0302181504666805</threshold> 502 <left_val>0.7722792029380798</left_val> 503 <right_val>-0.0867865234613419</right_val></_></_> 504 <_> 505 <!-- tree 9 --> 506 <_> 507 <!-- root node --> 508 <feature> 509 <rects> 510 <_>14 0 8 8 -1.</_> 511 <_>18 0 4 4 2.</_> 512 <_>14 4 4 4 2.</_></rects> 513 <tilted>0</tilted></feature> 514 <threshold>0.0245365891605616</threshold> 515 <left_val>0.0959448218345642</left_val> 516 <right_val>-0.4864296913146973</right_val></_></_> 517 <_> 518 <!-- tree 10 --> 519 <_> 520 <!-- root node --> 521 <feature> 522 <rects> 523 <_>5 0 3 10 -1.</_> 524 <_>5 5 3 5 2.</_></rects> 525 <tilted>0</tilted></feature> 526 <threshold>0.0239589903503656</threshold> 527 <left_val>0.1043784022331238</left_val> 528 <right_val>-0.5121983885765076</right_val></_></_> 529 <_> 530 <!-- tree 11 --> 531 <_> 532 <!-- root node --> 533 <feature> 534 <rects> 535 <_>16 0 3 12 -1.</_> 536 <_>16 6 3 6 2.</_></rects> 537 <tilted>0</tilted></feature> 538 <threshold>-0.0253708306699991</threshold> 539 <left_val>-0.3198154866695404</left_val> 540 <right_val>0.0914865732192993</right_val></_></_> 541 <_> 542 <!-- tree 12 --> 543 <_> 544 <!-- root node --> 545 <feature> 546 <rects> 547 <_>3 3 12 4 -1.</_> 548 <_>3 3 6 2 2.</_> 549 <_>9 5 6 2 2.</_></rects> 550 <tilted>0</tilted></feature> 551 <threshold>-1.8606419907882810e-003</threshold> 552 <left_val>0.2278396934270859</left_val> 553 <right_val>-0.2430797070264816</right_val></_></_> 554 <_> 555 <!-- tree 13 --> 556 <_> 557 <!-- root node --> 558 <feature> 559 <rects> 560 <_>2 2 20 3 -1.</_> 561 <_>7 2 10 3 2.</_></rects> 562 <tilted>0</tilted></feature> 563 <threshold>0.0225508008152246</threshold> 564 <left_val>0.0692075565457344</left_val> 565 <right_val>-0.3005428016185761</right_val></_></_> 566 <_> 567 <!-- tree 14 --> 568 <_> 569 <!-- root node --> 570 <feature> 571 <rects> 572 <_>11 7 3 8 -1.</_> 573 <_>11 7 3 4 2.</_></rects> 574 <tilted>1</tilted></feature> 575 <threshold>-0.0497520901262760</threshold> 576 <left_val>-0.6107804775238037</left_val> 577 <right_val>0.0944727733731270</right_val></_></_> 578 <_> 579 <!-- tree 15 --> 580 <_> 581 <!-- root node --> 582 <feature> 583 <rects> 584 <_>4 9 18 3 -1.</_> 585 <_>4 10 18 1 3.</_></rects> 586 <tilted>0</tilted></feature> 587 <threshold>-0.0266023892909288</threshold> 588 <left_val>0.5958176851272583</left_val> 589 <right_val>-0.0920460522174835</right_val></_></_> 590 <_> 591 <!-- tree 16 --> 592 <_> 593 <!-- root node --> 594 <feature> 595 <rects> 596 <_>3 3 16 14 -1.</_> 597 <_>3 3 8 7 2.</_> 598 <_>11 10 8 7 2.</_></rects> 599 <tilted>0</tilted></feature> 600 <threshold>0.1076000034809113</threshold> 601 <left_val>0.1027851998806000</left_val> 602 <right_val>-0.5430337190628052</right_val></_></_> 603 <_> 604 <!-- tree 17 --> 605 <_> 606 <!-- root node --> 607 <feature> 608 <rects> 609 <_>7 14 8 4 -1.</_> 610 <_>7 14 4 4 2.</_></rects> 611 <tilted>0</tilted></feature> 612 <threshold>0.0176906995475292</threshold> 613 <left_val>0.0660571381449699</left_val> 614 <right_val>-0.6321390867233276</right_val></_></_> 615 <_> 616 <!-- tree 18 --> 617 <_> 618 <!-- root node --> 619 <feature> 620 <rects> 621 <_>10 7 4 7 -1.</_> 622 <_>10 7 2 7 2.</_></rects> 623 <tilted>1</tilted></feature> 624 <threshold>-0.0624099187552929</threshold> 625 <left_val>0.6872419714927673</left_val> 626 <right_val>-0.0670705586671829</right_val></_></_> 627 <_> 628 <!-- tree 19 --> 629 <_> 630 <!-- root node --> 631 <feature> 632 <rects> 633 <_>11 9 6 5 -1.</_> 634 <_>11 9 3 5 2.</_></rects> 635 <tilted>0</tilted></feature> 636 <threshold>-1.9801619928330183e-003</threshold> 637 <left_val>0.0944115519523621</left_val> 638 <right_val>-0.0878194868564606</right_val></_></_> 639 <_> 640 <!-- tree 20 --> 641 <_> 642 <!-- root node --> 643 <feature> 644 <rects> 645 <_>0 6 22 4 -1.</_> 646 <_>11 6 11 4 2.</_></rects> 647 <tilted>0</tilted></feature> 648 <threshold>0.0636684298515320</threshold> 649 <left_val>0.1153173968195915</left_val> 650 <right_val>-0.4812976121902466</right_val></_></_> 651 <_> 652 <!-- tree 21 --> 653 <_> 654 <!-- root node --> 655 <feature> 656 <rects> 657 <_>14 6 6 12 -1.</_> 658 <_>17 6 3 6 2.</_> 659 <_>14 12 3 6 2.</_></rects> 660 <tilted>0</tilted></feature> 661 <threshold>-0.0307978298515081</threshold> 662 <left_val>0.3585476875305176</left_val> 663 <right_val>-0.1259379982948303</right_val></_></_> 664 <_> 665 <!-- tree 22 --> 666 <_> 667 <!-- root node --> 668 <feature> 669 <rects> 670 <_>4 14 6 4 -1.</_> 671 <_>4 16 6 2 2.</_></rects> 672 <tilted>0</tilted></feature> 673 <threshold>-1.8353419727645814e-004</threshold> 674 <left_val>0.1478839963674545</left_val> 675 <right_val>-0.2854681015014648</right_val></_></_> 676 <_> 677 <!-- tree 23 --> 678 <_> 679 <!-- root node --> 680 <feature> 681 <rects> 682 <_>12 14 6 4 -1.</_> 683 <_>12 16 6 2 2.</_></rects> 684 <tilted>0</tilted></feature> 685 <threshold>1.7074620118364692e-003</threshold> 686 <left_val>0.0799296572804451</left_val> 687 <right_val>-0.2523337006568909</right_val></_></_> 688 <_> 689 <!-- tree 24 --> 690 <_> 691 <!-- root node --> 692 <feature> 693 <rects> 694 <_>4 14 6 4 -1.</_> 695 <_>4 16 6 2 2.</_></rects> 696 <tilted>0</tilted></feature> 697 <threshold>-0.0153251998126507</threshold> 698 <left_val>-0.5771185755729675</left_val> 699 <right_val>0.0989083275198936</right_val></_></_> 700 <_> 701 <!-- tree 25 --> 702 <_> 703 <!-- root node --> 704 <feature> 705 <rects> 706 <_>10 6 6 6 -1.</_> 707 <_>12 6 2 6 3.</_></rects> 708 <tilted>0</tilted></feature> 709 <threshold>0.0413891896605492</threshold> 710 <left_val>-0.0655507966876030</left_val> 711 <right_val>0.5736380219459534</right_val></_></_> 712 <_> 713 <!-- tree 26 --> 714 <_> 715 <!-- root node --> 716 <feature> 717 <rects> 718 <_>9 0 11 3 -1.</_> 719 <_>8 1 11 1 3.</_></rects> 720 <tilted>1</tilted></feature> 721 <threshold>-4.5577771379612386e-004</threshold> 722 <left_val>0.2259308993816376</left_val> 723 <right_val>-0.1910558044910431</right_val></_></_> 724 <_> 725 <!-- tree 27 --> 726 <_> 727 <!-- root node --> 728 <feature> 729 <rects> 730 <_>7 0 12 4 -1.</_> 731 <_>13 0 6 2 2.</_> 732 <_>7 2 6 2 2.</_></rects> 733 <tilted>0</tilted></feature> 734 <threshold>-0.0134556898847222</threshold> 735 <left_val>-0.4023393094539642</left_val> 736 <right_val>0.0864776223897934</right_val></_></_> 737 <_> 738 <!-- tree 28 --> 739 <_> 740 <!-- root node --> 741 <feature> 742 <rects> 743 <_>6 6 6 6 -1.</_> 744 <_>8 6 2 6 3.</_></rects> 745 <tilted>0</tilted></feature> 746 <threshold>-0.0379783995449543</threshold> 747 <left_val>0.5525758862495422</left_val> 748 <right_val>-0.0815410166978836</right_val></_></_> 749 <_> 750 <!-- tree 29 --> 751 <_> 752 <!-- root node --> 753 <feature> 754 <rects> 755 <_>15 5 3 8 -1.</_> 756 <_>15 9 3 4 2.</_></rects> 757 <tilted>0</tilted></feature> 758 <threshold>-0.0171975009143353</threshold> 759 <left_val>-0.1836300939321518</left_val> 760 <right_val>0.0519998706877232</right_val></_></_> 761 <_> 762 <!-- tree 30 --> 763 <_> 764 <!-- root node --> 765 <feature> 766 <rects> 767 <_>5 2 12 7 -1.</_> 768 <_>9 2 4 7 3.</_></rects> 769 <tilted>0</tilted></feature> 770 <threshold>-1.2581580085679889e-003</threshold> 771 <left_val>0.1883004009723663</left_val> 772 <right_val>-0.2572666108608246</right_val></_></_> 773 <_> 774 <!-- tree 31 --> 775 <_> 776 <!-- root node --> 777 <feature> 778 <rects> 779 <_>5 5 12 4 -1.</_> 780 <_>9 5 4 4 3.</_></rects> 781 <tilted>0</tilted></feature> 782 <threshold>0.0677251070737839</threshold> 783 <left_val>-0.0809564515948296</left_val> 784 <right_val>0.7180324196815491</right_val></_></_> 785 <_> 786 <!-- tree 32 --> 787 <_> 788 <!-- root node --> 789 <feature> 790 <rects> 791 <_>7 3 4 7 -1.</_> 792 <_>7 3 2 7 2.</_></rects> 793 <tilted>1</tilted></feature> 794 <threshold>0.0354894287884235</threshold> 795 <left_val>0.1006807014346123</left_val> 796 <right_val>-0.5377414226531982</right_val></_></_></trees> 797 <stage_threshold>-1.1226719617843628</stage_threshold> 798 <parent>0</parent> 799 <next>-1</next></_> 800 <_> 801 <!-- stage 2 --> 802 <trees> 803 <_> 804 <!-- tree 0 --> 805 <_> 806 <!-- root node --> 807 <feature> 808 <rects> 809 <_>2 14 6 4 -1.</_> 810 <_>5 14 3 4 2.</_></rects> 811 <tilted>0</tilted></feature> 812 <threshold>-5.3695798851549625e-003</threshold> 813 <left_val>0.2747949957847595</left_val> 814 <right_val>-0.3417896032333374</right_val></_></_> 815 <_> 816 <!-- tree 1 --> 817 <_> 818 <!-- root node --> 819 <feature> 820 <rects> 821 <_>11 4 6 6 -1.</_> 822 <_>13 4 2 6 3.</_></rects> 823 <tilted>0</tilted></feature> 824 <threshold>6.2695867381989956e-004</threshold> 825 <left_val>-0.0986466333270073</left_val> 826 <right_val>0.1072842031717300</right_val></_></_> 827 <_> 828 <!-- tree 2 --> 829 <_> 830 <!-- root node --> 831 <feature> 832 <rects> 833 <_>5 14 12 4 -1.</_> 834 <_>5 14 6 2 2.</_> 835 <_>11 16 6 2 2.</_></rects> 836 <tilted>0</tilted></feature> 837 <threshold>-0.0164842698723078</threshold> 838 <left_val>-0.6497290730476379</left_val> 839 <right_val>0.0960377529263496</right_val></_></_> 840 <_> 841 <!-- tree 3 --> 842 <_> 843 <!-- root node --> 844 <feature> 845 <rects> 846 <_>3 12 16 6 -1.</_> 847 <_>11 12 8 3 2.</_> 848 <_>3 15 8 3 2.</_></rects> 849 <tilted>0</tilted></feature> 850 <threshold>-0.0221040993928909</threshold> 851 <left_val>-0.4598448872566223</left_val> 852 <right_val>0.1630463004112244</right_val></_></_> 853 <_> 854 <!-- tree 4 --> 855 <_> 856 <!-- root node --> 857 <feature> 858 <rects> 859 <_>1 11 20 4 -1.</_> 860 <_>6 11 10 4 2.</_></rects> 861 <tilted>0</tilted></feature> 862 <threshold>0.1190413981676102</threshold> 863 <left_val>-0.0996003970503807</left_val> 864 <right_val>0.7372975945472717</right_val></_></_> 865 <_> 866 <!-- tree 5 --> 867 <_> 868 <!-- root node --> 869 <feature> 870 <rects> 871 <_>9 0 10 10 -1.</_> 872 <_>14 0 5 5 2.</_> 873 <_>9 5 5 5 2.</_></rects> 874 <tilted>0</tilted></feature> 875 <threshold>-2.0222070161253214e-003</threshold> 876 <left_val>0.2102926969528198</left_val> 877 <right_val>-0.2457713037729263</right_val></_></_> 878 <_> 879 <!-- tree 6 --> 880 <_> 881 <!-- root node --> 882 <feature> 883 <rects> 884 <_>8 8 4 6 -1.</_> 885 <_>8 8 2 6 2.</_></rects> 886 <tilted>1</tilted></feature> 887 <threshold>0.0675003528594971</threshold> 888 <left_val>-0.1246778964996338</left_val> 889 <right_val>0.5765423178672791</right_val></_></_> 890 <_> 891 <!-- tree 7 --> 892 <_> 893 <!-- root node --> 894 <feature> 895 <rects> 896 <_>1 7 20 11 -1.</_> 897 <_>1 7 10 11 2.</_></rects> 898 <tilted>0</tilted></feature> 899 <threshold>-0.1965593993663788</threshold> 900 <left_val>-0.6089174747467041</left_val> 901 <right_val>0.0996720567345619</right_val></_></_> 902 <_> 903 <!-- tree 8 --> 904 <_> 905 <!-- root node --> 906 <feature> 907 <rects> 908 <_>9 0 12 3 -1.</_> 909 <_>9 0 6 3 2.</_></rects> 910 <tilted>1</tilted></feature> 911 <threshold>0.0494311712682247</threshold> 912 <left_val>0.1375274956226349</left_val> 913 <right_val>-0.4558086991310120</right_val></_></_> 914 <_> 915 <!-- tree 9 --> 916 <_> 917 <!-- root node --> 918 <feature> 919 <rects> 920 <_>13 0 6 6 -1.</_> 921 <_>13 0 3 6 2.</_></rects> 922 <tilted>0</tilted></feature> 923 <threshold>0.0233800895512104</threshold> 924 <left_val>0.0471418909728527</left_val> 925 <right_val>-0.3502770960330963</right_val></_></_> 926 <_> 927 <!-- tree 10 --> 928 <_> 929 <!-- root node --> 930 <feature> 931 <rects> 932 <_>5 0 12 8 -1.</_> 933 <_>5 2 12 4 2.</_></rects> 934 <tilted>0</tilted></feature> 935 <threshold>1.3998650247231126e-003</threshold> 936 <left_val>-0.2064304947853088</left_val> 937 <right_val>0.2432229965925217</right_val></_></_> 938 <_> 939 <!-- tree 11 --> 940 <_> 941 <!-- root node --> 942 <feature> 943 <rects> 944 <_>14 0 8 6 -1.</_> 945 <_>18 0 4 3 2.</_> 946 <_>14 3 4 3 2.</_></rects> 947 <tilted>0</tilted></feature> 948 <threshold>0.0114326896145940</threshold> 949 <left_val>0.0551873706281185</left_val> 950 <right_val>-0.3261989951133728</right_val></_></_> 951 <_> 952 <!-- tree 12 --> 953 <_> 954 <!-- root node --> 955 <feature> 956 <rects> 957 <_>7 6 8 6 -1.</_> 958 <_>9 6 4 6 2.</_></rects> 959 <tilted>0</tilted></feature> 960 <threshold>0.0487750694155693</threshold> 961 <left_val>-0.0689925104379654</left_val> 962 <right_val>0.7117180824279785</right_val></_></_> 963 <_> 964 <!-- tree 13 --> 965 <_> 966 <!-- root node --> 967 <feature> 968 <rects> 969 <_>11 3 6 6 -1.</_> 970 <_>13 3 2 6 3.</_></rects> 971 <tilted>0</tilted></feature> 972 <threshold>0.0652840211987495</threshold> 973 <left_val>3.7155740428715944e-003</left_val> 974 <right_val>0.5931897163391113</right_val></_></_> 975 <_> 976 <!-- tree 14 --> 977 <_> 978 <!-- root node --> 979 <feature> 980 <rects> 981 <_>5 3 6 6 -1.</_> 982 <_>7 3 2 6 3.</_></rects> 983 <tilted>0</tilted></feature> 984 <threshold>6.1603228095918894e-004</threshold> 985 <left_val>-0.2327252030372620</left_val> 986 <right_val>0.2044153064489365</right_val></_></_> 987 <_> 988 <!-- tree 15 --> 989 <_> 990 <!-- root node --> 991 <feature> 992 <rects> 993 <_>13 0 8 6 -1.</_> 994 <_>17 0 4 3 2.</_> 995 <_>13 3 4 3 2.</_></rects> 996 <tilted>0</tilted></feature> 997 <threshold>-0.0105274999514222</threshold> 998 <left_val>-0.3177379071712494</left_val> 999 <right_val>0.1017130985856056</right_val></_></_> 1000 <_> 1001 <!-- tree 16 --> 1002 <_> 1003 <!-- root node --> 1004 <feature> 1005 <rects> 1006 <_>0 0 8 6 -1.</_> 1007 <_>0 0 4 3 2.</_> 1008 <_>4 3 4 3 2.</_></rects> 1009 <tilted>0</tilted></feature> 1010 <threshold>0.0162313394248486</threshold> 1011 <left_val>0.0917341932654381</left_val> 1012 <right_val>-0.4714300930500031</right_val></_></_> 1013 <_> 1014 <!-- tree 17 --> 1015 <_> 1016 <!-- root node --> 1017 <feature> 1018 <rects> 1019 <_>7 0 10 6 -1.</_> 1020 <_>12 0 5 3 2.</_> 1021 <_>7 3 5 3 2.</_></rects> 1022 <tilted>0</tilted></feature> 1023 <threshold>3.8958500954322517e-004</threshold> 1024 <left_val>-0.1299754977226257</left_val> 1025 <right_val>0.1347548961639404</right_val></_></_> 1026 <_> 1027 <!-- tree 18 --> 1028 <_> 1029 <!-- root node --> 1030 <feature> 1031 <rects> 1032 <_>0 15 22 2 -1.</_> 1033 <_>11 15 11 2 2.</_></rects> 1034 <tilted>0</tilted></feature> 1035 <threshold>-0.0441656894981861</threshold> 1036 <left_val>-0.6033102869987488</left_val> 1037 <right_val>0.0647668763995171</right_val></_></_> 1038 <_> 1039 <!-- tree 19 --> 1040 <_> 1041 <!-- root node --> 1042 <feature> 1043 <rects> 1044 <_>5 14 12 4 -1.</_> 1045 <_>5 15 12 2 2.</_></rects> 1046 <tilted>0</tilted></feature> 1047 <threshold>-0.0136632099747658</threshold> 1048 <left_val>-0.5276284217834473</left_val> 1049 <right_val>0.0634857416152954</right_val></_></_> 1050 <_> 1051 <!-- tree 20 --> 1052 <_> 1053 <!-- root node --> 1054 <feature> 1055 <rects> 1056 <_>5 13 6 4 -1.</_> 1057 <_>5 15 6 2 2.</_></rects> 1058 <tilted>0</tilted></feature> 1059 <threshold>-8.8231859263032675e-004</threshold> 1060 <left_val>0.1451025009155273</left_val> 1061 <right_val>-0.2784520089626312</right_val></_></_> 1062 <_> 1063 <!-- tree 21 --> 1064 <_> 1065 <!-- root node --> 1066 <feature> 1067 <rects> 1068 <_>3 9 17 3 -1.</_> 1069 <_>3 10 17 1 3.</_></rects> 1070 <tilted>0</tilted></feature> 1071 <threshold>-0.0278191901743412</threshold> 1072 <left_val>0.4364086985588074</left_val> 1073 <right_val>-0.0851918607950211</right_val></_></_> 1074 <_> 1075 <!-- tree 22 --> 1076 <_> 1077 <!-- root node --> 1078 <feature> 1079 <rects> 1080 <_>3 8 16 10 -1.</_> 1081 <_>3 8 8 5 2.</_> 1082 <_>11 13 8 5 2.</_></rects> 1083 <tilted>0</tilted></feature> 1084 <threshold>0.0625609904527664</threshold> 1085 <left_val>0.1002788990736008</left_val> 1086 <right_val>-0.4223591983318329</right_val></_></_> 1087 <_> 1088 <!-- tree 23 --> 1089 <_> 1090 <!-- root node --> 1091 <feature> 1092 <rects> 1093 <_>9 0 10 6 -1.</_> 1094 <_>14 0 5 3 2.</_> 1095 <_>9 3 5 3 2.</_></rects> 1096 <tilted>0</tilted></feature> 1097 <threshold>-4.4808178790844977e-004</threshold> 1098 <left_val>0.1485148966312408</left_val> 1099 <right_val>-0.1773128956556320</right_val></_></_> 1100 <_> 1101 <!-- tree 24 --> 1102 <_> 1103 <!-- root node --> 1104 <feature> 1105 <rects> 1106 <_>3 0 12 4 -1.</_> 1107 <_>3 0 6 2 2.</_> 1108 <_>9 2 6 2 2.</_></rects> 1109 <tilted>0</tilted></feature> 1110 <threshold>-0.0213631801307201</threshold> 1111 <left_val>-0.6133446097373962</left_val> 1112 <right_val>0.0605393983423710</right_val></_></_> 1113 <_> 1114 <!-- tree 25 --> 1115 <_> 1116 <!-- root node --> 1117 <feature> 1118 <rects> 1119 <_>4 10 14 3 -1.</_> 1120 <_>4 10 7 3 2.</_></rects> 1121 <tilted>0</tilted></feature> 1122 <threshold>-0.0691223293542862</threshold> 1123 <left_val>-0.8684576153755188</left_val> 1124 <right_val>0.0393477492034435</right_val></_></_> 1125 <_> 1126 <!-- tree 26 --> 1127 <_> 1128 <!-- root node --> 1129 <feature> 1130 <rects> 1131 <_>1 14 11 4 -1.</_> 1132 <_>1 16 11 2 2.</_></rects> 1133 <tilted>0</tilted></feature> 1134 <threshold>-0.0305428393185139</threshold> 1135 <left_val>-0.6402171850204468</left_val> 1136 <right_val>0.0495938211679459</right_val></_></_> 1137 <_> 1138 <!-- tree 27 --> 1139 <_> 1140 <!-- root node --> 1141 <feature> 1142 <rects> 1143 <_>7 0 12 6 -1.</_> 1144 <_>13 0 6 3 2.</_> 1145 <_>7 3 6 3 2.</_></rects> 1146 <tilted>0</tilted></feature> 1147 <threshold>-0.0101011600345373</threshold> 1148 <left_val>-0.1619915068149567</left_val> 1149 <right_val>0.0572568997740746</right_val></_></_> 1150 <_> 1151 <!-- tree 28 --> 1152 <_> 1153 <!-- root node --> 1154 <feature> 1155 <rects> 1156 <_>3 0 10 6 -1.</_> 1157 <_>3 0 5 3 2.</_> 1158 <_>8 3 5 3 2.</_></rects> 1159 <tilted>0</tilted></feature> 1160 <threshold>-2.2010109387338161e-004</threshold> 1161 <left_val>0.2135093063116074</left_val> 1162 <right_val>-0.2019899934530258</right_val></_></_></trees> 1163 <stage_threshold>-1.0127470493316650</stage_threshold> 1164 <parent>1</parent> 1165 <next>-1</next></_> 1166 <_> 1167 <!-- stage 3 --> 1168 <trees> 1169 <_> 1170 <!-- tree 0 --> 1171 <_> 1172 <!-- root node --> 1173 <feature> 1174 <rects> 1175 <_>6 0 10 3 -1.</_> 1176 <_>6 0 5 3 2.</_></rects> 1177 <tilted>1</tilted></feature> 1178 <threshold>5.7967850007116795e-003</threshold> 1179 <left_val>-0.3384417891502380</left_val> 1180 <right_val>0.2506627142429352</right_val></_></_> 1181 <_> 1182 <!-- tree 1 --> 1183 <_> 1184 <!-- root node --> 1185 <feature> 1186 <rects> 1187 <_>14 8 6 4 -1.</_> 1188 <_>14 8 6 2 2.</_></rects> 1189 <tilted>1</tilted></feature> 1190 <threshold>0.0637951791286469</threshold> 1191 <left_val>-0.0421116203069687</left_val> 1192 <right_val>0.3574657142162323</right_val></_></_> 1193 <_> 1194 <!-- tree 2 --> 1195 <_> 1196 <!-- root node --> 1197 <feature> 1198 <rects> 1199 <_>0 2 5 16 -1.</_> 1200 <_>0 10 5 8 2.</_></rects> 1201 <tilted>0</tilted></feature> 1202 <threshold>-0.0643320381641388</threshold> 1203 <left_val>-0.5066078901290894</left_val> 1204 <right_val>0.1171773970127106</right_val></_></_> 1205 <_> 1206 <!-- tree 3 --> 1207 <_> 1208 <!-- root node --> 1209 <feature> 1210 <rects> 1211 <_>0 3 22 5 -1.</_> 1212 <_>0 3 11 5 2.</_></rects> 1213 <tilted>0</tilted></feature> 1214 <threshold>-0.1157428994774818</threshold> 1215 <left_val>-0.5667849779129028</left_val> 1216 <right_val>0.0958809033036232</right_val></_></_> 1217 <_> 1218 <!-- tree 4 --> 1219 <_> 1220 <!-- root node --> 1221 <feature> 1222 <rects> 1223 <_>6 15 8 3 -1.</_> 1224 <_>10 15 4 3 2.</_></rects> 1225 <tilted>0</tilted></feature> 1226 <threshold>-3.9005130529403687e-003</threshold> 1227 <left_val>-0.4149822890758514</left_val> 1228 <right_val>0.1485832035541534</right_val></_></_> 1229 <_> 1230 <!-- tree 5 --> 1231 <_> 1232 <!-- root node --> 1233 <feature> 1234 <rects> 1235 <_>15 0 2 14 -1.</_> 1236 <_>15 0 1 14 2.</_></rects> 1237 <tilted>1</tilted></feature> 1238 <threshold>0.0125129297375679</threshold> 1239 <left_val>0.0536966696381569</left_val> 1240 <right_val>-0.1416396051645279</right_val></_></_> 1241 <_> 1242 <!-- tree 6 --> 1243 <_> 1244 <!-- root node --> 1245 <feature> 1246 <rects> 1247 <_>7 0 14 2 -1.</_> 1248 <_>7 0 14 1 2.</_></rects> 1249 <tilted>1</tilted></feature> 1250 <threshold>1.5871099894866347e-003</threshold> 1251 <left_val>-0.2596234083175659</left_val> 1252 <right_val>0.1941833049058914</right_val></_></_> 1253 <_> 1254 <!-- tree 7 --> 1255 <_> 1256 <!-- root node --> 1257 <feature> 1258 <rects> 1259 <_>1 11 20 5 -1.</_> 1260 <_>6 11 10 5 2.</_></rects> 1261 <tilted>0</tilted></feature> 1262 <threshold>0.1629112064838409</threshold> 1263 <left_val>-0.0612437687814236</left_val> 1264 <right_val>0.7856721282005310</right_val></_></_> 1265 <_> 1266 <!-- tree 8 --> 1267 <_> 1268 <!-- root node --> 1269 <feature> 1270 <rects> 1271 <_>5 3 12 9 -1.</_> 1272 <_>9 6 4 3 9.</_></rects> 1273 <tilted>0</tilted></feature> 1274 <threshold>-0.3325822055339813</threshold> 1275 <left_val>0.7802013158798218</left_val> 1276 <right_val>-0.0440364591777325</right_val></_></_> 1277 <_> 1278 <!-- tree 9 --> 1279 <_> 1280 <!-- root node --> 1281 <feature> 1282 <rects> 1283 <_>10 1 12 3 -1.</_> 1284 <_>14 1 4 3 3.</_></rects> 1285 <tilted>0</tilted></feature> 1286 <threshold>-0.0102888997644186</threshold> 1287 <left_val>-0.1528968065977097</left_val> 1288 <right_val>0.0620962306857109</right_val></_></_> 1289 <_> 1290 <!-- tree 10 --> 1291 <_> 1292 <!-- root node --> 1293 <feature> 1294 <rects> 1295 <_>0 1 12 3 -1.</_> 1296 <_>4 1 4 3 3.</_></rects> 1297 <tilted>0</tilted></feature> 1298 <threshold>0.0289560295641422</threshold> 1299 <left_val>0.0847077965736389</left_val> 1300 <right_val>-0.4782071113586426</right_val></_></_> 1301 <_> 1302 <!-- tree 11 --> 1303 <_> 1304 <!-- root node --> 1305 <feature> 1306 <rects> 1307 <_>14 12 4 6 -1.</_> 1308 <_>14 12 2 6 2.</_></rects> 1309 <tilted>0</tilted></feature> 1310 <threshold>-3.2221511355601251e-004</threshold> 1311 <left_val>0.1395125985145569</left_val> 1312 <right_val>-0.1881939023733139</right_val></_></_> 1313 <_> 1314 <!-- tree 12 --> 1315 <_> 1316 <!-- root node --> 1317 <feature> 1318 <rects> 1319 <_>0 10 22 7 -1.</_> 1320 <_>11 10 11 7 2.</_></rects> 1321 <tilted>0</tilted></feature> 1322 <threshold>0.1583528965711594</threshold> 1323 <left_val>0.0666678100824356</left_val> 1324 <right_val>-0.5457236170768738</right_val></_></_> 1325 <_> 1326 <!-- tree 13 --> 1327 <_> 1328 <!-- root node --> 1329 <feature> 1330 <rects> 1331 <_>11 2 4 11 -1.</_> 1332 <_>11 2 2 11 2.</_></rects> 1333 <tilted>1</tilted></feature> 1334 <threshold>-0.0425843112170696</threshold> 1335 <left_val>0.2704033851623535</left_val> 1336 <right_val>-0.0566545091569424</right_val></_></_> 1337 <_> 1338 <!-- tree 14 --> 1339 <_> 1340 <!-- root node --> 1341 <feature> 1342 <rects> 1343 <_>3 14 16 4 -1.</_> 1344 <_>3 14 8 2 2.</_> 1345 <_>11 16 8 2 2.</_></rects> 1346 <tilted>0</tilted></feature> 1347 <threshold>0.0275051407516003</threshold> 1348 <left_val>0.0492711588740349</left_val> 1349 <right_val>-0.7315763831138611</right_val></_></_> 1350 <_> 1351 <!-- tree 15 --> 1352 <_> 1353 <!-- root node --> 1354 <feature> 1355 <rects> 1356 <_>12 12 6 6 -1.</_> 1357 <_>14 12 2 6 3.</_></rects> 1358 <tilted>0</tilted></feature> 1359 <threshold>0.0868797004222870</threshold> 1360 <left_val>-0.0175324007868767</left_val> 1361 <right_val>0.8678265213966370</right_val></_></_> 1362 <_> 1363 <!-- tree 16 --> 1364 <_> 1365 <!-- root node --> 1366 <feature> 1367 <rects> 1368 <_>4 12 6 6 -1.</_> 1369 <_>6 12 2 6 3.</_></rects> 1370 <tilted>0</tilted></feature> 1371 <threshold>-2.0130439661443233e-003</threshold> 1372 <left_val>0.1659394055604935</left_val> 1373 <right_val>-0.2526623010635376</right_val></_></_> 1374 <_> 1375 <!-- tree 17 --> 1376 <_> 1377 <!-- root node --> 1378 <feature> 1379 <rects> 1380 <_>11 14 6 4 -1.</_> 1381 <_>11 16 6 2 2.</_></rects> 1382 <tilted>0</tilted></feature> 1383 <threshold>4.2330170981585979e-004</threshold> 1384 <left_val>0.0942235514521599</left_val> 1385 <right_val>-0.2462970018386841</right_val></_></_> 1386 <_> 1387 <!-- tree 18 --> 1388 <_> 1389 <!-- root node --> 1390 <feature> 1391 <rects> 1392 <_>0 0 12 4 -1.</_> 1393 <_>0 0 6 2 2.</_> 1394 <_>6 2 6 2 2.</_></rects> 1395 <tilted>0</tilted></feature> 1396 <threshold>0.0151944998651743</threshold> 1397 <left_val>0.0736956372857094</left_val> 1398 <right_val>-0.5006862282752991</right_val></_></_> 1399 <_> 1400 <!-- tree 19 --> 1401 <_> 1402 <!-- root node --> 1403 <feature> 1404 <rects> 1405 <_>15 11 4 6 -1.</_> 1406 <_>15 11 2 6 2.</_></rects> 1407 <tilted>0</tilted></feature> 1408 <threshold>-6.1203669756650925e-003</threshold> 1409 <left_val>0.2138189971446991</left_val> 1410 <right_val>-0.1673810034990311</right_val></_></_> 1411 <_> 1412 <!-- tree 20 --> 1413 <_> 1414 <!-- root node --> 1415 <feature> 1416 <rects> 1417 <_>3 11 4 6 -1.</_> 1418 <_>5 11 2 6 2.</_></rects> 1419 <tilted>0</tilted></feature> 1420 <threshold>0.0206602402031422</threshold> 1421 <left_val>-0.0806361585855484</left_val> 1422 <right_val>0.5782834887504578</right_val></_></_> 1423 <_> 1424 <!-- tree 21 --> 1425 <_> 1426 <!-- root node --> 1427 <feature> 1428 <rects> 1429 <_>18 5 4 7 -1.</_> 1430 <_>18 5 2 7 2.</_></rects> 1431 <tilted>1</tilted></feature> 1432 <threshold>-0.0603982508182526</threshold> 1433 <left_val>-0.6341177225112915</left_val> 1434 <right_val>0.0508990101516247</right_val></_></_> 1435 <_> 1436 <!-- tree 22 --> 1437 <_> 1438 <!-- root node --> 1439 <feature> 1440 <rects> 1441 <_>4 5 7 4 -1.</_> 1442 <_>4 5 7 2 2.</_></rects> 1443 <tilted>1</tilted></feature> 1444 <threshold>0.0353864803910255</threshold> 1445 <left_val>0.0731911510229111</left_val> 1446 <right_val>-0.5642666220664978</right_val></_></_> 1447 <_> 1448 <!-- tree 23 --> 1449 <_> 1450 <!-- root node --> 1451 <feature> 1452 <rects> 1453 <_>9 6 12 3 -1.</_> 1454 <_>13 6 4 3 3.</_></rects> 1455 <tilted>0</tilted></feature> 1456 <threshold>-0.0659978389739990</threshold> 1457 <left_val>0.3283380866050720</left_val> 1458 <right_val>-0.0263102594763041</right_val></_></_> 1459 <_> 1460 <!-- tree 24 --> 1461 <_> 1462 <!-- root node --> 1463 <feature> 1464 <rects> 1465 <_>1 6 12 3 -1.</_> 1466 <_>5 6 4 3 3.</_></rects> 1467 <tilted>0</tilted></feature> 1468 <threshold>1.1004590196534991e-003</threshold> 1469 <left_val>-0.2311460971832275</left_val> 1470 <right_val>0.2020651996135712</right_val></_></_> 1471 <_> 1472 <!-- tree 25 --> 1473 <_> 1474 <!-- root node --> 1475 <feature> 1476 <rects> 1477 <_>0 0 22 10 -1.</_> 1478 <_>11 0 11 5 2.</_> 1479 <_>0 5 11 5 2.</_></rects> 1480 <tilted>0</tilted></feature> 1481 <threshold>0.0844881534576416</threshold> 1482 <left_val>0.0745898410677910</left_val> 1483 <right_val>-0.4371033906936646</right_val></_></_> 1484 <_> 1485 <!-- tree 26 --> 1486 <_> 1487 <!-- root node --> 1488 <feature> 1489 <rects> 1490 <_>2 4 14 3 -1.</_> 1491 <_>2 5 14 1 3.</_></rects> 1492 <tilted>0</tilted></feature> 1493 <threshold>-0.0292359907180071</threshold> 1494 <left_val>0.6506476998329163</left_val> 1495 <right_val>-0.0545318387448788</right_val></_></_> 1496 <_> 1497 <!-- tree 27 --> 1498 <_> 1499 <!-- root node --> 1500 <feature> 1501 <rects> 1502 <_>13 3 8 6 -1.</_> 1503 <_>17 3 4 3 2.</_> 1504 <_>13 6 4 3 2.</_></rects> 1505 <tilted>0</tilted></feature> 1506 <threshold>-0.0339169502258301</threshold> 1507 <left_val>-0.2880434989929199</left_val> 1508 <right_val>0.0321728810667992</right_val></_></_> 1509 <_> 1510 <!-- tree 28 --> 1511 <_> 1512 <!-- root node --> 1513 <feature> 1514 <rects> 1515 <_>4 14 14 4 -1.</_> 1516 <_>4 14 7 2 2.</_> 1517 <_>11 16 7 2 2.</_></rects> 1518 <tilted>0</tilted></feature> 1519 <threshold>-7.9108700156211853e-003</threshold> 1520 <left_val>-0.3366037905216217</left_val> 1521 <right_val>0.1010069027543068</right_val></_></_> 1522 <_> 1523 <!-- tree 29 --> 1524 <_> 1525 <!-- root node --> 1526 <feature> 1527 <rects> 1528 <_>11 2 4 11 -1.</_> 1529 <_>11 2 2 11 2.</_></rects> 1530 <tilted>1</tilted></feature> 1531 <threshold>0.0519304312765598</threshold> 1532 <left_val>0.0329209603369236</left_val> 1533 <right_val>-0.1317653059959412</right_val></_></_> 1534 <_> 1535 <!-- tree 30 --> 1536 <_> 1537 <!-- root node --> 1538 <feature> 1539 <rects> 1540 <_>11 2 11 4 -1.</_> 1541 <_>11 2 11 2 2.</_></rects> 1542 <tilted>1</tilted></feature> 1543 <threshold>-0.0685861036181450</threshold> 1544 <left_val>0.5215355753898621</left_val> 1545 <right_val>-0.0667185783386230</right_val></_></_> 1546 <_> 1547 <!-- tree 31 --> 1548 <_> 1549 <!-- root node --> 1550 <feature> 1551 <rects> 1552 <_>10 7 12 3 -1.</_> 1553 <_>10 7 6 3 2.</_></rects> 1554 <tilted>0</tilted></feature> 1555 <threshold>-1.9451669650152326e-003</threshold> 1556 <left_val>0.1539679020643234</left_val> 1557 <right_val>-0.1989576071500778</right_val></_></_> 1558 <_> 1559 <!-- tree 32 --> 1560 <_> 1561 <!-- root node --> 1562 <feature> 1563 <rects> 1564 <_>9 7 4 6 -1.</_> 1565 <_>9 7 2 6 2.</_></rects> 1566 <tilted>1</tilted></feature> 1567 <threshold>0.0713662281632423</threshold> 1568 <left_val>-0.0829271599650383</left_val> 1569 <right_val>0.4529233872890472</right_val></_></_> 1570 <_> 1571 <!-- tree 33 --> 1572 <_> 1573 <!-- root node --> 1574 <feature> 1575 <rects> 1576 <_>3 11 16 6 -1.</_> 1577 <_>11 11 8 3 2.</_> 1578 <_>3 14 8 3 2.</_></rects> 1579 <tilted>0</tilted></feature> 1580 <threshold>-0.0266242399811745</threshold> 1581 <left_val>-0.4400973916053772</left_val> 1582 <right_val>0.1026711985468864</right_val></_></_> 1583 <_> 1584 <!-- tree 34 --> 1585 <_> 1586 <!-- root node --> 1587 <feature> 1588 <rects> 1589 <_>1 3 8 6 -1.</_> 1590 <_>1 3 4 3 2.</_> 1591 <_>5 6 4 3 2.</_></rects> 1592 <tilted>0</tilted></feature> 1593 <threshold>0.0252660606056452</threshold> 1594 <left_val>0.0557992011308670</left_val> 1595 <right_val>-0.5556933879852295</right_val></_></_> 1596 <_> 1597 <!-- tree 35 --> 1598 <_> 1599 <!-- root node --> 1600 <feature> 1601 <rects> 1602 <_>5 4 12 3 -1.</_> 1603 <_>5 5 12 1 3.</_></rects> 1604 <tilted>0</tilted></feature> 1605 <threshold>5.5255689658224583e-003</threshold> 1606 <left_val>-0.1364029943943024</left_val> 1607 <right_val>0.2825520038604736</right_val></_></_> 1608 <_> 1609 <!-- tree 36 --> 1610 <_> 1611 <!-- root node --> 1612 <feature> 1613 <rects> 1614 <_>7 14 8 4 -1.</_> 1615 <_>11 14 4 4 2.</_></rects> 1616 <tilted>0</tilted></feature> 1617 <threshold>-2.9929999727755785e-003</threshold> 1618 <left_val>-0.3242157101631165</left_val> 1619 <right_val>0.1212206035852432</right_val></_></_> 1620 <_> 1621 <!-- tree 37 --> 1622 <_> 1623 <!-- root node --> 1624 <feature> 1625 <rects> 1626 <_>7 3 15 3 -1.</_> 1627 <_>7 4 15 1 3.</_></rects> 1628 <tilted>0</tilted></feature> 1629 <threshold>0.0221921093761921</threshold> 1630 <left_val>-0.0607410185039043</left_val> 1631 <right_val>0.4347316026687622</right_val></_></_> 1632 <_> 1633 <!-- tree 38 --> 1634 <_> 1635 <!-- root node --> 1636 <feature> 1637 <rects> 1638 <_>6 8 6 4 -1.</_> 1639 <_>6 8 6 2 2.</_></rects> 1640 <tilted>1</tilted></feature> 1641 <threshold>-9.4268741086125374e-003</threshold> 1642 <left_val>-0.3345840871334076</left_val> 1643 <right_val>0.1002969965338707</right_val></_></_> 1644 <_> 1645 <!-- tree 39 --> 1646 <_> 1647 <!-- root node --> 1648 <feature> 1649 <rects> 1650 <_>10 7 12 3 -1.</_> 1651 <_>10 7 6 3 2.</_></rects> 1652 <tilted>0</tilted></feature> 1653 <threshold>3.4395330585539341e-003</threshold> 1654 <left_val>-0.0838299095630646</left_val> 1655 <right_val>0.1792594045400620</right_val></_></_> 1656 <_> 1657 <!-- tree 40 --> 1658 <_> 1659 <!-- root node --> 1660 <feature> 1661 <rects> 1662 <_>0 7 12 3 -1.</_> 1663 <_>6 7 6 3 2.</_></rects> 1664 <tilted>0</tilted></feature> 1665 <threshold>-3.2996390946209431e-003</threshold> 1666 <left_val>0.1999042928218842</left_val> 1667 <right_val>-0.2106847018003464</right_val></_></_> 1668 <_> 1669 <!-- tree 41 --> 1670 <_> 1671 <!-- root node --> 1672 <feature> 1673 <rects> 1674 <_>7 7 9 4 -1.</_> 1675 <_>10 7 3 4 3.</_></rects> 1676 <tilted>0</tilted></feature> 1677 <threshold>0.0261521507054567</threshold> 1678 <left_val>-0.0806674063205719</left_val> 1679 <right_val>0.3558126986026764</right_val></_></_></trees> 1680 <stage_threshold>-1.0684469938278198</stage_threshold> 1681 <parent>2</parent> 1682 <next>-1</next></_> 1683 <_> 1684 <!-- stage 4 --> 1685 <trees> 1686 <_> 1687 <!-- tree 0 --> 1688 <_> 1689 <!-- root node --> 1690 <feature> 1691 <rects> 1692 <_>6 2 4 16 -1.</_> 1693 <_>6 10 4 8 2.</_></rects> 1694 <tilted>0</tilted></feature> 1695 <threshold>-0.0227926503866911</threshold> 1696 <left_val>0.4072526097297669</left_val> 1697 <right_val>-0.3360992074012756</right_val></_></_> 1698 <_> 1699 <!-- tree 1 --> 1700 <_> 1701 <!-- root node --> 1702 <feature> 1703 <rects> 1704 <_>8 4 6 6 -1.</_> 1705 <_>10 4 2 6 3.</_></rects> 1706 <tilted>0</tilted></feature> 1707 <threshold>-5.7334620505571365e-003</threshold> 1708 <left_val>0.2688218951225281</left_val> 1709 <right_val>-0.2277535051107407</right_val></_></_> 1710 <_> 1711 <!-- tree 2 --> 1712 <_> 1713 <!-- root node --> 1714 <feature> 1715 <rects> 1716 <_>1 11 20 3 -1.</_> 1717 <_>6 11 10 3 2.</_></rects> 1718 <tilted>0</tilted></feature> 1719 <threshold>0.0969412028789520</threshold> 1720 <left_val>-0.0809050127863884</left_val> 1721 <right_val>0.7432873845100403</right_val></_></_> 1722 <_> 1723 <!-- tree 3 --> 1724 <_> 1725 <!-- root node --> 1726 <feature> 1727 <rects> 1728 <_>14 9 6 8 -1.</_> 1729 <_>17 9 3 4 2.</_> 1730 <_>14 13 3 4 2.</_></rects> 1731 <tilted>0</tilted></feature> 1732 <threshold>-0.0282889995723963</threshold> 1733 <left_val>0.4561010897159576</left_val> 1734 <right_val>-0.0610963404178619</right_val></_></_> 1735 <_> 1736 <!-- tree 4 --> 1737 <_> 1738 <!-- root node --> 1739 <feature> 1740 <rects> 1741 <_>11 0 9 4 -1.</_> 1742 <_>11 0 9 2 2.</_></rects> 1743 <tilted>1</tilted></feature> 1744 <threshold>3.8522849790751934e-003</threshold> 1745 <left_val>-0.2524180114269257</left_val> 1746 <right_val>0.2090710997581482</right_val></_></_> 1747 <_> 1748 <!-- tree 5 --> 1749 <_> 1750 <!-- root node --> 1751 <feature> 1752 <rects> 1753 <_>11 10 6 8 -1.</_> 1754 <_>14 10 3 4 2.</_> 1755 <_>11 14 3 4 2.</_></rects> 1756 <tilted>0</tilted></feature> 1757 <threshold>2.3100129328668118e-003</threshold> 1758 <left_val>-0.1471340060234070</left_val> 1759 <right_val>0.1546038985252380</right_val></_></_> 1760 <_> 1761 <!-- tree 6 --> 1762 <_> 1763 <!-- root node --> 1764 <feature> 1765 <rects> 1766 <_>5 16 12 2 -1.</_> 1767 <_>5 17 12 1 2.</_></rects> 1768 <tilted>0</tilted></feature> 1769 <threshold>1.1361920041963458e-003</threshold> 1770 <left_val>0.1768047958612442</left_val> 1771 <right_val>-0.3053728938102722</right_val></_></_> 1772 <_> 1773 <!-- tree 7 --> 1774 <_> 1775 <!-- root node --> 1776 <feature> 1777 <rects> 1778 <_>5 9 14 4 -1.</_> 1779 <_>5 11 14 2 2.</_></rects> 1780 <tilted>0</tilted></feature> 1781 <threshold>0.0249628908932209</threshold> 1782 <left_val>-0.1265290975570679</left_val> 1783 <right_val>0.3744265139102936</right_val></_></_> 1784 <_> 1785 <!-- tree 8 --> 1786 <_> 1787 <!-- root node --> 1788 <feature> 1789 <rects> 1790 <_>2 9 6 8 -1.</_> 1791 <_>2 9 3 4 2.</_> 1792 <_>5 13 3 4 2.</_></rects> 1793 <tilted>0</tilted></feature> 1794 <threshold>-5.8984099887311459e-003</threshold> 1795 <left_val>0.2673898935317993</left_val> 1796 <right_val>-0.1776257008314133</right_val></_></_> 1797 <_> 1798 <!-- tree 9 --> 1799 <_> 1800 <!-- root node --> 1801 <feature> 1802 <rects> 1803 <_>15 8 6 4 -1.</_> 1804 <_>15 8 3 4 2.</_></rects> 1805 <tilted>0</tilted></feature> 1806 <threshold>0.0118049001321197</threshold> 1807 <left_val>0.0660779774188995</left_val> 1808 <right_val>-0.3348213136196137</right_val></_></_> 1809 <_> 1810 <!-- tree 10 --> 1811 <_> 1812 <!-- root node --> 1813 <feature> 1814 <rects> 1815 <_>1 8 6 4 -1.</_> 1816 <_>4 8 3 4 2.</_></rects> 1817 <tilted>0</tilted></feature> 1818 <threshold>6.4400159753859043e-003</threshold> 1819 <left_val>0.1099480018019676</left_val> 1820 <right_val>-0.3630348145961762</right_val></_></_> 1821 <_> 1822 <!-- tree 11 --> 1823 <_> 1824 <!-- root node --> 1825 <feature> 1826 <rects> 1827 <_>13 5 8 5 -1.</_> 1828 <_>13 5 4 5 2.</_></rects> 1829 <tilted>1</tilted></feature> 1830 <threshold>-0.0894073694944382</threshold> 1831 <left_val>-0.4358046054840088</left_val> 1832 <right_val>0.0149443103000522</right_val></_></_> 1833 <_> 1834 <!-- tree 12 --> 1835 <_> 1836 <!-- root node --> 1837 <feature> 1838 <rects> 1839 <_>11 5 9 2 -1.</_> 1840 <_>11 5 9 1 2.</_></rects> 1841 <tilted>1</tilted></feature> 1842 <threshold>-0.0314042307436466</threshold> 1843 <left_val>0.6952344775199890</left_val> 1844 <right_val>-0.0548542886972427</right_val></_></_> 1845 <_> 1846 <!-- tree 13 --> 1847 <_> 1848 <!-- root node --> 1849 <feature> 1850 <rects> 1851 <_>12 6 9 12 -1.</_> 1852 <_>15 10 3 4 9.</_></rects> 1853 <tilted>0</tilted></feature> 1854 <threshold>-0.1460794955492020</threshold> 1855 <left_val>-0.2565006017684937</left_val> 1856 <right_val>0.0569565407931805</right_val></_></_> 1857 <_> 1858 <!-- tree 14 --> 1859 <_> 1860 <!-- root node --> 1861 <feature> 1862 <rects> 1863 <_>5 10 6 8 -1.</_> 1864 <_>5 10 3 4 2.</_> 1865 <_>8 14 3 4 2.</_></rects> 1866 <tilted>0</tilted></feature> 1867 <threshold>2.1142649929970503e-003</threshold> 1868 <left_val>-0.2498755007982254</left_val> 1869 <right_val>0.1679255962371826</right_val></_></_> 1870 <_> 1871 <!-- tree 15 --> 1872 <_> 1873 <!-- root node --> 1874 <feature> 1875 <rects> 1876 <_>9 5 5 12 -1.</_> 1877 <_>9 8 5 6 2.</_></rects> 1878 <tilted>0</tilted></feature> 1879 <threshold>-0.0151193598285317</threshold> 1880 <left_val>-0.3017987012863159</left_val> 1881 <right_val>0.1039358973503113</right_val></_></_> 1882 <_> 1883 <!-- tree 16 --> 1884 <_> 1885 <!-- root node --> 1886 <feature> 1887 <rects> 1888 <_>11 5 9 2 -1.</_> 1889 <_>11 5 9 1 2.</_></rects> 1890 <tilted>1</tilted></feature> 1891 <threshold>0.0256209596991539</threshold> 1892 <left_val>-0.0748213008046150</left_val> 1893 <right_val>0.5360078215599060</right_val></_></_> 1894 <_> 1895 <!-- tree 17 --> 1896 <_> 1897 <!-- root node --> 1898 <feature> 1899 <rects> 1900 <_>5 0 15 12 -1.</_> 1901 <_>10 4 5 4 9.</_></rects> 1902 <tilted>0</tilted></feature> 1903 <threshold>-0.1441780030727387</threshold> 1904 <left_val>-0.2049089968204498</left_val> 1905 <right_val>0.0744577869772911</right_val></_></_> 1906 <_> 1907 <!-- tree 18 --> 1908 <_> 1909 <!-- root node --> 1910 <feature> 1911 <rects> 1912 <_>1 13 8 5 -1.</_> 1913 <_>5 13 4 5 2.</_></rects> 1914 <tilted>0</tilted></feature> 1915 <threshold>0.0259547792375088</threshold> 1916 <left_val>-0.0905748680233955</left_val> 1917 <right_val>0.4844220876693726</right_val></_></_> 1918 <_> 1919 <!-- tree 19 --> 1920 <_> 1921 <!-- root node --> 1922 <feature> 1923 <rects> 1924 <_>14 8 6 4 -1.</_> 1925 <_>14 8 3 4 2.</_></rects> 1926 <tilted>1</tilted></feature> 1927 <threshold>-0.0211307201534510</threshold> 1928 <left_val>-0.2268981039524078</left_val> 1929 <right_val>0.0648760572075844</right_val></_></_> 1930 <_> 1931 <!-- tree 20 --> 1932 <_> 1933 <!-- root node --> 1934 <feature> 1935 <rects> 1936 <_>8 8 4 6 -1.</_> 1937 <_>8 8 4 3 2.</_></rects> 1938 <tilted>1</tilted></feature> 1939 <threshold>0.0164744593203068</threshold> 1940 <left_val>0.1076800003647804</left_val> 1941 <right_val>-0.3657059967517853</right_val></_></_> 1942 <_> 1943 <!-- tree 21 --> 1944 <_> 1945 <!-- root node --> 1946 <feature> 1947 <rects> 1948 <_>7 0 12 9 -1.</_> 1949 <_>11 3 4 3 9.</_></rects> 1950 <tilted>0</tilted></feature> 1951 <threshold>0.1092215031385422</threshold> 1952 <left_val>0.0568273514509201</left_val> 1953 <right_val>-0.3472855985164642</right_val></_></_> 1954 <_> 1955 <!-- tree 22 --> 1956 <_> 1957 <!-- root node --> 1958 <feature> 1959 <rects> 1960 <_>7 13 6 4 -1.</_> 1961 <_>7 15 6 2 2.</_></rects> 1962 <tilted>0</tilted></feature> 1963 <threshold>-7.4581061198841780e-005</threshold> 1964 <left_val>0.1390427052974701</left_val> 1965 <right_val>-0.2594260871410370</right_val></_></_> 1966 <_> 1967 <!-- tree 23 --> 1968 <_> 1969 <!-- root node --> 1970 <feature> 1971 <rects> 1972 <_>10 7 6 10 -1.</_> 1973 <_>13 7 3 5 2.</_> 1974 <_>10 12 3 5 2.</_></rects> 1975 <tilted>0</tilted></feature> 1976 <threshold>-0.0277536008507013</threshold> 1977 <left_val>0.3811129927635193</left_val> 1978 <right_val>-0.0428961291909218</right_val></_></_> 1979 <_> 1980 <!-- tree 24 --> 1981 <_> 1982 <!-- root node --> 1983 <feature> 1984 <rects> 1985 <_>6 7 6 10 -1.</_> 1986 <_>6 7 3 5 2.</_> 1987 <_>9 12 3 5 2.</_></rects> 1988 <tilted>0</tilted></feature> 1989 <threshold>0.0327214300632477</threshold> 1990 <left_val>-0.0908721536397934</left_val> 1991 <right_val>0.3928917944431305</right_val></_></_> 1992 <_> 1993 <!-- tree 25 --> 1994 <_> 1995 <!-- root node --> 1996 <feature> 1997 <rects> 1998 <_>7 0 12 2 -1.</_> 1999 <_>7 0 6 2 2.</_></rects> 2000 <tilted>0</tilted></feature> 2001 <threshold>5.5606258101761341e-003</threshold> 2002 <left_val>0.0840022489428520</left_val> 2003 <right_val>-0.1939603984355927</right_val></_></_> 2004 <_> 2005 <!-- tree 26 --> 2006 <_> 2007 <!-- root node --> 2008 <feature> 2009 <rects> 2010 <_>2 0 18 9 -1.</_> 2011 <_>2 3 18 3 3.</_></rects> 2012 <tilted>0</tilted></feature> 2013 <threshold>-0.1071029007434845</threshold> 2014 <left_val>-0.5898147225379944</left_val> 2015 <right_val>0.0568627603352070</right_val></_></_> 2016 <_> 2017 <!-- tree 27 --> 2018 <_> 2019 <!-- root node --> 2020 <feature> 2021 <rects> 2022 <_>12 2 6 15 -1.</_> 2023 <_>12 2 3 15 2.</_></rects> 2024 <tilted>0</tilted></feature> 2025 <threshold>-8.0517623573541641e-003</threshold> 2026 <left_val>0.1179059967398644</left_val> 2027 <right_val>-0.1159565970301628</right_val></_></_> 2028 <_> 2029 <!-- tree 28 --> 2030 <_> 2031 <!-- root node --> 2032 <feature> 2033 <rects> 2034 <_>4 2 6 15 -1.</_> 2035 <_>7 2 3 15 2.</_></rects> 2036 <tilted>0</tilted></feature> 2037 <threshold>-0.1385001987218857</threshold> 2038 <left_val>-0.9080532193183899</left_val> 2039 <right_val>0.0414113588631153</right_val></_></_> 2040 <_> 2041 <!-- tree 29 --> 2042 <_> 2043 <!-- root node --> 2044 <feature> 2045 <rects> 2046 <_>7 12 12 4 -1.</_> 2047 <_>7 13 12 2 2.</_></rects> 2048 <tilted>0</tilted></feature> 2049 <threshold>0.0286209192126989</threshold> 2050 <left_val>0.0199285894632339</left_val> 2051 <right_val>-0.7369766235351563</right_val></_></_> 2052 <_> 2053 <!-- tree 30 --> 2054 <_> 2055 <!-- root node --> 2056 <feature> 2057 <rects> 2058 <_>4 4 4 14 -1.</_> 2059 <_>4 4 2 7 2.</_> 2060 <_>6 11 2 7 2.</_></rects> 2061 <tilted>0</tilted></feature> 2062 <threshold>0.0262089706957340</threshold> 2063 <left_val>-0.0615775510668755</left_val> 2064 <right_val>0.6089993119239807</right_val></_></_> 2065 <_> 2066 <!-- tree 31 --> 2067 <_> 2068 <!-- root node --> 2069 <feature> 2070 <rects> 2071 <_>12 6 9 12 -1.</_> 2072 <_>15 10 3 4 9.</_></rects> 2073 <tilted>0</tilted></feature> 2074 <threshold>0.0265270397067070</threshold> 2075 <left_val>0.0571938604116440</left_val> 2076 <right_val>-0.0629923269152641</right_val></_></_> 2077 <_> 2078 <!-- tree 32 --> 2079 <_> 2080 <!-- root node --> 2081 <feature> 2082 <rects> 2083 <_>1 6 9 12 -1.</_> 2084 <_>4 10 3 4 9.</_></rects> 2085 <tilted>0</tilted></feature> 2086 <threshold>-0.0446224883198738</threshold> 2087 <left_val>-0.3331815004348755</left_val> 2088 <right_val>0.0932145714759827</right_val></_></_> 2089 <_> 2090 <!-- tree 33 --> 2091 <_> 2092 <!-- root node --> 2093 <feature> 2094 <rects> 2095 <_>13 6 8 12 -1.</_> 2096 <_>17 6 4 6 2.</_> 2097 <_>13 12 4 6 2.</_></rects> 2098 <tilted>0</tilted></feature> 2099 <threshold>-0.0142831197008491</threshold> 2100 <left_val>0.1912523061037064</left_val> 2101 <right_val>-0.1153056994080544</right_val></_></_> 2102 <_> 2103 <!-- tree 34 --> 2104 <_> 2105 <!-- root node --> 2106 <feature> 2107 <rects> 2108 <_>7 14 8 3 -1.</_> 2109 <_>11 14 4 3 2.</_></rects> 2110 <tilted>0</tilted></feature> 2111 <threshold>-1.9681209232658148e-003</threshold> 2112 <left_val>-0.3129512071609497</left_val> 2113 <right_val>0.0996828079223633</right_val></_></_> 2114 <_> 2115 <!-- tree 35 --> 2116 <_> 2117 <!-- root node --> 2118 <feature> 2119 <rects> 2120 <_>5 5 12 3 -1.</_> 2121 <_>9 5 4 3 3.</_></rects> 2122 <tilted>0</tilted></feature> 2123 <threshold>0.0528510808944702</threshold> 2124 <left_val>-0.0589195489883423</left_val> 2125 <right_val>0.5788791179656982</right_val></_></_> 2126 <_> 2127 <!-- tree 36 --> 2128 <_> 2129 <!-- root node --> 2130 <feature> 2131 <rects> 2132 <_>10 0 2 18 -1.</_> 2133 <_>10 6 2 6 3.</_></rects> 2134 <tilted>0</tilted></feature> 2135 <threshold>-6.3711861148476601e-003</threshold> 2136 <left_val>0.1918219029903412</left_val> 2137 <right_val>-0.1909454017877579</right_val></_></_> 2138 <_> 2139 <!-- tree 37 --> 2140 <_> 2141 <!-- root node --> 2142 <feature> 2143 <rects> 2144 <_>4 14 14 2 -1.</_> 2145 <_>4 14 7 2 2.</_></rects> 2146 <tilted>0</tilted></feature> 2147 <threshold>-6.4727910794317722e-003</threshold> 2148 <left_val>-0.2472103983163834</left_val> 2149 <right_val>0.1225292980670929</right_val></_></_> 2150 <_> 2151 <!-- tree 38 --> 2152 <_> 2153 <!-- root node --> 2154 <feature> 2155 <rects> 2156 <_>3 0 6 4 -1.</_> 2157 <_>6 0 3 4 2.</_></rects> 2158 <tilted>0</tilted></feature> 2159 <threshold>-0.0166909899562597</threshold> 2160 <left_val>-0.4917466044425964</left_val> 2161 <right_val>0.0503151006996632</right_val></_></_> 2162 <_> 2163 <!-- tree 39 --> 2164 <_> 2165 <!-- root node --> 2166 <feature> 2167 <rects> 2168 <_>13 12 6 4 -1.</_> 2169 <_>13 12 3 4 2.</_></rects> 2170 <tilted>0</tilted></feature> 2171 <threshold>-0.0148824099451303</threshold> 2172 <left_val>0.1964661031961441</left_val> 2173 <right_val>-0.0582503899931908</right_val></_></_> 2174 <_> 2175 <!-- tree 40 --> 2176 <_> 2177 <!-- root node --> 2178 <feature> 2179 <rects> 2180 <_>1 0 8 4 -1.</_> 2181 <_>5 0 4 4 2.</_></rects> 2182 <tilted>0</tilted></feature> 2183 <threshold>0.0175297092646360</threshold> 2184 <left_val>0.0763574987649918</left_val> 2185 <right_val>-0.3655926883220673</right_val></_></_> 2186 <_> 2187 <!-- tree 41 --> 2188 <_> 2189 <!-- root node --> 2190 <feature> 2191 <rects> 2192 <_>7 9 14 4 -1.</_> 2193 <_>14 9 7 2 2.</_> 2194 <_>7 11 7 2 2.</_></rects> 2195 <tilted>0</tilted></feature> 2196 <threshold>0.0422213897109032</threshold> 2197 <left_val>-0.0315604917705059</left_val> 2198 <right_val>0.3601126968860626</right_val></_></_> 2199 <_> 2200 <!-- tree 42 --> 2201 <_> 2202 <!-- root node --> 2203 <feature> 2204 <rects> 2205 <_>1 0 8 18 -1.</_> 2206 <_>1 0 4 9 2.</_> 2207 <_>5 9 4 9 2.</_></rects> 2208 <tilted>0</tilted></feature> 2209 <threshold>-0.0655817463994026</threshold> 2210 <left_val>0.3433471024036408</left_val> 2211 <right_val>-0.0885569602251053</right_val></_></_> 2212 <_> 2213 <!-- tree 43 --> 2214 <_> 2215 <!-- root node --> 2216 <feature> 2217 <rects> 2218 <_>13 8 6 4 -1.</_> 2219 <_>13 8 3 4 2.</_></rects> 2220 <tilted>1</tilted></feature> 2221 <threshold>0.0167032107710838</threshold> 2222 <left_val>0.0482100397348404</left_val> 2223 <right_val>-0.1527362018823624</right_val></_></_> 2224 <_> 2225 <!-- tree 44 --> 2226 <_> 2227 <!-- root node --> 2228 <feature> 2229 <rects> 2230 <_>9 8 4 6 -1.</_> 2231 <_>9 8 4 3 2.</_></rects> 2232 <tilted>1</tilted></feature> 2233 <threshold>-6.9328742101788521e-003</threshold> 2234 <left_val>-0.3057363927364349</left_val> 2235 <right_val>0.1182114034891129</right_val></_></_></trees> 2236 <stage_threshold>-1.1520069837570190</stage_threshold> 2237 <parent>3</parent> 2238 <next>-1</next></_> 2239 <_> 2240 <!-- stage 5 --> 2241 <trees> 2242 <_> 2243 <!-- tree 0 --> 2244 <_> 2245 <!-- root node --> 2246 <feature> 2247 <rects> 2248 <_>3 13 6 4 -1.</_> 2249 <_>6 13 3 4 2.</_></rects> 2250 <tilted>0</tilted></feature> 2251 <threshold>-6.3434438779950142e-003</threshold> 2252 <left_val>0.3384028077125549</left_val> 2253 <right_val>-0.3347485065460205</right_val></_></_> 2254 <_> 2255 <!-- tree 1 --> 2256 <_> 2257 <!-- root node --> 2258 <feature> 2259 <rects> 2260 <_>11 4 6 7 -1.</_> 2261 <_>13 4 2 7 3.</_></rects> 2262 <tilted>0</tilted></feature> 2263 <threshold>5.2472548559308052e-003</threshold> 2264 <left_val>-0.0935965329408646</left_val> 2265 <right_val>0.1679117977619171</right_val></_></_> 2266 <_> 2267 <!-- tree 2 --> 2268 <_> 2269 <!-- root node --> 2270 <feature> 2271 <rects> 2272 <_>6 8 6 4 -1.</_> 2273 <_>6 8 3 4 2.</_></rects> 2274 <tilted>1</tilted></feature> 2275 <threshold>-0.0365850888192654</threshold> 2276 <left_val>0.5367609858512878</left_val> 2277 <right_val>-0.0854335278272629</right_val></_></_> 2278 <_> 2279 <!-- tree 3 --> 2280 <_> 2281 <!-- root node --> 2282 <feature> 2283 <rects> 2284 <_>10 7 12 5 -1.</_> 2285 <_>13 7 6 5 2.</_></rects> 2286 <tilted>0</tilted></feature> 2287 <threshold>5.3153699263930321e-003</threshold> 2288 <left_val>-0.1280411928892136</left_val> 2289 <right_val>0.1444391012191773</right_val></_></_> 2290 <_> 2291 <!-- tree 4 --> 2292 <_> 2293 <!-- root node --> 2294 <feature> 2295 <rects> 2296 <_>3 5 12 3 -1.</_> 2297 <_>9 5 6 3 2.</_></rects> 2298 <tilted>0</tilted></feature> 2299 <threshold>-3.9569609798491001e-003</threshold> 2300 <left_val>0.1860544979572296</left_val> 2301 <right_val>-0.2231141030788422</right_val></_></_> 2302 <_> 2303 <!-- tree 5 --> 2304 <_> 2305 <!-- root node --> 2306 <feature> 2307 <rects> 2308 <_>13 5 4 6 -1.</_> 2309 <_>13 8 4 3 2.</_></rects> 2310 <tilted>0</tilted></feature> 2311 <threshold>0.0339654199779034</threshold> 2312 <left_val>0.0278357099741697</left_val> 2313 <right_val>-0.5120338797569275</right_val></_></_> 2314 <_> 2315 <!-- tree 6 --> 2316 <_> 2317 <!-- root node --> 2318 <feature> 2319 <rects> 2320 <_>5 5 4 6 -1.</_> 2321 <_>5 8 4 3 2.</_></rects> 2322 <tilted>0</tilted></feature> 2323 <threshold>-0.0148528795689344</threshold> 2324 <left_val>-0.4681495130062103</left_val> 2325 <right_val>0.1135156005620956</right_val></_></_> 2326 <_> 2327 <!-- tree 7 --> 2328 <_> 2329 <!-- root node --> 2330 <feature> 2331 <rects> 2332 <_>13 12 6 6 -1.</_> 2333 <_>15 12 2 6 3.</_></rects> 2334 <tilted>0</tilted></feature> 2335 <threshold>-2.9641329310834408e-003</threshold> 2336 <left_val>0.2659179866313934</left_val> 2337 <right_val>-0.2818377017974854</right_val></_></_> 2338 <_> 2339 <!-- tree 8 --> 2340 <_> 2341 <!-- root node --> 2342 <feature> 2343 <rects> 2344 <_>10 2 4 10 -1.</_> 2345 <_>10 2 4 5 2.</_></rects> 2346 <tilted>1</tilted></feature> 2347 <threshold>-0.1079559028148651</threshold> 2348 <left_val>-0.5752769708633423</left_val> 2349 <right_val>0.1099163964390755</right_val></_></_> 2350 <_> 2351 <!-- tree 9 --> 2352 <_> 2353 <!-- root node --> 2354 <feature> 2355 <rects> 2356 <_>13 12 6 6 -1.</_> 2357 <_>15 12 2 6 3.</_></rects> 2358 <tilted>0</tilted></feature> 2359 <threshold>0.0212376005947590</threshold> 2360 <left_val>-0.1045159026980400</left_val> 2361 <right_val>0.4661377072334290</right_val></_></_> 2362 <_> 2363 <!-- tree 10 --> 2364 <_> 2365 <!-- root node --> 2366 <feature> 2367 <rects> 2368 <_>3 12 6 6 -1.</_> 2369 <_>5 12 2 6 3.</_></rects> 2370 <tilted>0</tilted></feature> 2371 <threshold>-0.0261896401643753</threshold> 2372 <left_val>0.4254482090473175</left_val> 2373 <right_val>-0.0922789126634598</right_val></_></_> 2374 <_> 2375 <!-- tree 11 --> 2376 <_> 2377 <!-- root node --> 2378 <feature> 2379 <rects> 2380 <_>11 12 6 6 -1.</_> 2381 <_>11 14 6 2 3.</_></rects> 2382 <tilted>0</tilted></feature> 2383 <threshold>-0.0350105613470078</threshold> 2384 <left_val>-0.7180119752883911</left_val> 2385 <right_val>0.0728772506117821</right_val></_></_> 2386 <_> 2387 <!-- tree 12 --> 2388 <_> 2389 <!-- root node --> 2390 <feature> 2391 <rects> 2392 <_>5 12 8 6 -1.</_> 2393 <_>5 12 4 3 2.</_> 2394 <_>9 15 4 3 2.</_></rects> 2395 <tilted>0</tilted></feature> 2396 <threshold>1.5026619621494319e-005</threshold> 2397 <left_val>-0.2719976007938385</left_val> 2398 <right_val>0.1068215966224670</right_val></_></_> 2399 <_> 2400 <!-- tree 13 --> 2401 <_> 2402 <!-- root node --> 2403 <feature> 2404 <rects> 2405 <_>5 11 12 6 -1.</_> 2406 <_>11 11 6 3 2.</_> 2407 <_>5 14 6 3 2.</_></rects> 2408 <tilted>0</tilted></feature> 2409 <threshold>-0.0277602504938841</threshold> 2410 <left_val>-0.5018569231033325</left_val> 2411 <right_val>0.1011821031570435</right_val></_></_> 2412 <_> 2413 <!-- tree 14 --> 2414 <_> 2415 <!-- root node --> 2416 <feature> 2417 <rects> 2418 <_>0 9 22 8 -1.</_> 2419 <_>0 9 11 4 2.</_> 2420 <_>11 13 11 4 2.</_></rects> 2421 <tilted>0</tilted></feature> 2422 <threshold>-0.0374391786754131</threshold> 2423 <left_val>-0.3714151978492737</left_val> 2424 <right_val>0.0837090387940407</right_val></_></_> 2425 <_> 2426 <!-- tree 15 --> 2427 <_> 2428 <!-- root node --> 2429 <feature> 2430 <rects> 2431 <_>6 9 13 3 -1.</_> 2432 <_>6 10 13 1 3.</_></rects> 2433 <tilted>0</tilted></feature> 2434 <threshold>-0.0141522595658898</threshold> 2435 <left_val>0.3098280131816864</left_val> 2436 <right_val>-0.0737676620483398</right_val></_></_> 2437 <_> 2438 <!-- tree 16 --> 2439 <_> 2440 <!-- root node --> 2441 <feature> 2442 <rects> 2443 <_>0 2 8 6 -1.</_> 2444 <_>0 2 4 3 2.</_> 2445 <_>4 5 4 3 2.</_></rects> 2446 <tilted>0</tilted></feature> 2447 <threshold>-0.0123310796916485</threshold> 2448 <left_val>-0.3950768113136292</left_val> 2449 <right_val>0.0832151770591736</right_val></_></_> 2450 <_> 2451 <!-- tree 17 --> 2452 <_> 2453 <!-- root node --> 2454 <feature> 2455 <rects> 2456 <_>4 9 16 3 -1.</_> 2457 <_>4 10 16 1 3.</_></rects> 2458 <tilted>0</tilted></feature> 2459 <threshold>2.6666349731385708e-003</threshold> 2460 <left_val>-0.1377612948417664</left_val> 2461 <right_val>0.2424568980932236</right_val></_></_> 2462 <_> 2463 <!-- tree 18 --> 2464 <_> 2465 <!-- root node --> 2466 <feature> 2467 <rects> 2468 <_>4 9 12 3 -1.</_> 2469 <_>4 10 12 1 3.</_></rects> 2470 <tilted>0</tilted></feature> 2471 <threshold>-2.9443199746310711e-003</threshold> 2472 <left_val>0.2446078062057495</left_val> 2473 <right_val>-0.1393789052963257</right_val></_></_> 2474 <_> 2475 <!-- tree 19 --> 2476 <_> 2477 <!-- root node --> 2478 <feature> 2479 <rects> 2480 <_>16 2 5 16 -1.</_> 2481 <_>16 10 5 8 2.</_></rects> 2482 <tilted>0</tilted></feature> 2483 <threshold>-0.1578892022371292</threshold> 2484 <left_val>-0.5683224201202393</left_val> 2485 <right_val>0.0361407212913036</right_val></_></_> 2486 <_> 2487 <!-- tree 20 --> 2488 <_> 2489 <!-- root node --> 2490 <feature> 2491 <rects> 2492 <_>6 13 7 4 -1.</_> 2493 <_>6 15 7 2 2.</_></rects> 2494 <tilted>0</tilted></feature> 2495 <threshold>2.1553030237555504e-003</threshold> 2496 <left_val>0.0836605578660965</left_val> 2497 <right_val>-0.4138025939464569</right_val></_></_> 2498 <_> 2499 <!-- tree 21 --> 2500 <_> 2501 <!-- root node --> 2502 <feature> 2503 <rects> 2504 <_>1 7 20 8 -1.</_> 2505 <_>11 7 10 4 2.</_> 2506 <_>1 11 10 4 2.</_></rects> 2507 <tilted>0</tilted></feature> 2508 <threshold>-0.0853670910000801</threshold> 2509 <left_val>-0.5705329179763794</left_val> 2510 <right_val>0.0529956594109535</right_val></_></_> 2511 <_> 2512 <!-- tree 22 --> 2513 <_> 2514 <!-- root node --> 2515 <feature> 2516 <rects> 2517 <_>5 2 12 3 -1.</_> 2518 <_>5 3 12 1 3.</_></rects> 2519 <tilted>0</tilted></feature> 2520 <threshold>3.4761740826070309e-003</threshold> 2521 <left_val>-0.1218981966376305</left_val> 2522 <right_val>0.2655329108238220</right_val></_></_> 2523 <_> 2524 <!-- tree 23 --> 2525 <_> 2526 <!-- root node --> 2527 <feature> 2528 <rects> 2529 <_>13 13 6 4 -1.</_> 2530 <_>13 15 6 2 2.</_></rects> 2531 <tilted>0</tilted></feature> 2532 <threshold>-0.0241042207926512</threshold> 2533 <left_val>-0.5231543779373169</left_val> 2534 <right_val>0.0255056601017714</right_val></_></_> 2535 <_> 2536 <!-- tree 24 --> 2537 <_> 2538 <!-- root node --> 2539 <feature> 2540 <rects> 2541 <_>1 0 5 8 -1.</_> 2542 <_>1 4 5 4 2.</_></rects> 2543 <tilted>0</tilted></feature> 2544 <threshold>-0.0307291503995657</threshold> 2545 <left_val>-0.4673540890216827</left_val> 2546 <right_val>0.0708444267511368</right_val></_></_> 2547 <_> 2548 <!-- tree 25 --> 2549 <_> 2550 <!-- root node --> 2551 <feature> 2552 <rects> 2553 <_>5 0 13 8 -1.</_> 2554 <_>5 4 13 4 2.</_></rects> 2555 <tilted>0</tilted></feature> 2556 <threshold>-1.1937420349568129e-003</threshold> 2557 <left_val>0.1459686011075974</left_val> 2558 <right_val>-0.2308627068996429</right_val></_></_> 2559 <_> 2560 <!-- tree 26 --> 2561 <_> 2562 <!-- root node --> 2563 <feature> 2564 <rects> 2565 <_>9 1 4 8 -1.</_> 2566 <_>9 5 4 4 2.</_></rects> 2567 <tilted>0</tilted></feature> 2568 <threshold>0.0323041006922722</threshold> 2569 <left_val>-0.0653509274125099</left_val> 2570 <right_val>0.5509138107299805</right_val></_></_> 2571 <_> 2572 <!-- tree 27 --> 2573 <_> 2574 <!-- root node --> 2575 <feature> 2576 <rects> 2577 <_>11 2 8 8 -1.</_> 2578 <_>9 4 8 4 2.</_></rects> 2579 <tilted>1</tilted></feature> 2580 <threshold>0.1495549976825714</threshold> 2581 <left_val>0.0150020895525813</left_val> 2582 <right_val>-0.8940045237541199</right_val></_></_> 2583 <_> 2584 <!-- tree 28 --> 2585 <_> 2586 <!-- root node --> 2587 <feature> 2588 <rects> 2589 <_>11 2 8 8 -1.</_> 2590 <_>13 4 4 8 2.</_></rects> 2591 <tilted>1</tilted></feature> 2592 <threshold>-4.7254669480025768e-003</threshold> 2593 <left_val>0.1485746055841446</left_val> 2594 <right_val>-0.2101994007825851</right_val></_></_> 2595 <_> 2596 <!-- tree 29 --> 2597 <_> 2598 <!-- root node --> 2599 <feature> 2600 <rects> 2601 <_>8 0 14 4 -1.</_> 2602 <_>15 0 7 2 2.</_> 2603 <_>8 2 7 2 2.</_></rects> 2604 <tilted>0</tilted></feature> 2605 <threshold>0.0363607183098793</threshold> 2606 <left_val>0.0285479500889778</left_val> 2607 <right_val>-0.6366893053054810</right_val></_></_> 2608 <_> 2609 <!-- tree 30 --> 2610 <_> 2611 <!-- root node --> 2612 <feature> 2613 <rects> 2614 <_>0 10 12 4 -1.</_> 2615 <_>0 10 6 2 2.</_> 2616 <_>6 12 6 2 2.</_></rects> 2617 <tilted>0</tilted></feature> 2618 <threshold>-0.0271099992096424</threshold> 2619 <left_val>0.4966191053390503</left_val> 2620 <right_val>-0.0736615732312202</right_val></_></_> 2621 <_> 2622 <!-- tree 31 --> 2623 <_> 2624 <!-- root node --> 2625 <feature> 2626 <rects> 2627 <_>8 0 14 4 -1.</_> 2628 <_>15 0 7 2 2.</_> 2629 <_>8 2 7 2 2.</_></rects> 2630 <tilted>0</tilted></feature> 2631 <threshold>-9.5398407429456711e-003</threshold> 2632 <left_val>-0.1938468068838120</left_val> 2633 <right_val>0.0585070811212063</right_val></_></_> 2634 <_> 2635 <!-- tree 32 --> 2636 <_> 2637 <!-- root node --> 2638 <feature> 2639 <rects> 2640 <_>3 4 16 14 -1.</_> 2641 <_>7 4 8 14 2.</_></rects> 2642 <tilted>0</tilted></feature> 2643 <threshold>0.1054198965430260</threshold> 2644 <left_val>-0.0747857317328453</left_val> 2645 <right_val>0.4378111064434052</right_val></_></_> 2646 <_> 2647 <!-- tree 33 --> 2648 <_> 2649 <!-- root node --> 2650 <feature> 2651 <rects> 2652 <_>13 13 6 4 -1.</_> 2653 <_>13 15 6 2 2.</_></rects> 2654 <tilted>0</tilted></feature> 2655 <threshold>6.3801761716604233e-003</threshold> 2656 <left_val>0.0539715290069580</left_val> 2657 <right_val>-0.3382979035377502</right_val></_></_> 2658 <_> 2659 <!-- tree 34 --> 2660 <_> 2661 <!-- root node --> 2662 <feature> 2663 <rects> 2664 <_>3 13 6 4 -1.</_> 2665 <_>3 15 6 2 2.</_></rects> 2666 <tilted>0</tilted></feature> 2667 <threshold>-0.0227598492056131</threshold> 2668 <left_val>-0.5937489867210388</left_val> 2669 <right_val>0.0480465292930603</right_val></_></_> 2670 <_> 2671 <!-- tree 35 --> 2672 <_> 2673 <!-- root node --> 2674 <feature> 2675 <rects> 2676 <_>11 5 2 10 -1.</_> 2677 <_>11 5 1 10 2.</_></rects> 2678 <tilted>1</tilted></feature> 2679 <threshold>-0.0173237491399050</threshold> 2680 <left_val>-0.1603469997644424</left_val> 2681 <right_val>0.0151871601119637</right_val></_></_> 2682 <_> 2683 <!-- tree 36 --> 2684 <_> 2685 <!-- root node --> 2686 <feature> 2687 <rects> 2688 <_>11 5 10 2 -1.</_> 2689 <_>11 5 10 1 2.</_></rects> 2690 <tilted>1</tilted></feature> 2691 <threshold>0.0298544093966484</threshold> 2692 <left_val>-0.0656982436776161</left_val> 2693 <right_val>0.4505734145641327</right_val></_></_> 2694 <_> 2695 <!-- tree 37 --> 2696 <_> 2697 <!-- root node --> 2698 <feature> 2699 <rects> 2700 <_>4 0 18 4 -1.</_> 2701 <_>13 0 9 2 2.</_> 2702 <_>4 2 9 2 2.</_></rects> 2703 <tilted>0</tilted></feature> 2704 <threshold>0.0232698395848274</threshold> 2705 <left_val>0.0388054996728897</left_val> 2706 <right_val>-0.3535487949848175</right_val></_></_> 2707 <_> 2708 <!-- tree 38 --> 2709 <_> 2710 <!-- root node --> 2711 <feature> 2712 <rects> 2713 <_>6 5 4 6 -1.</_> 2714 <_>6 5 2 6 2.</_></rects> 2715 <tilted>1</tilted></feature> 2716 <threshold>0.0408338718116283</threshold> 2717 <left_val>0.0494048409163952</left_val> 2718 <right_val>-0.5622245073318481</right_val></_></_> 2719 <_> 2720 <!-- tree 39 --> 2721 <_> 2722 <!-- root node --> 2723 <feature> 2724 <rects> 2725 <_>16 6 6 6 -1.</_> 2726 <_>14 8 6 2 3.</_></rects> 2727 <tilted>1</tilted></feature> 2728 <threshold>-0.1249888986349106</threshold> 2729 <left_val>0.6776366829872131</left_val> 2730 <right_val>-0.0154849402606487</right_val></_></_> 2731 <_> 2732 <!-- tree 40 --> 2733 <_> 2734 <!-- root node --> 2735 <feature> 2736 <rects> 2737 <_>6 6 6 6 -1.</_> 2738 <_>8 8 2 6 3.</_></rects> 2739 <tilted>1</tilted></feature> 2740 <threshold>-0.0655793771147728</threshold> 2741 <left_val>0.6736323237419128</left_val> 2742 <right_val>-0.0452696904540062</right_val></_></_> 2743 <_> 2744 <!-- tree 41 --> 2745 <_> 2746 <!-- root node --> 2747 <feature> 2748 <rects> 2749 <_>4 0 18 12 -1.</_> 2750 <_>4 0 9 12 2.</_></rects> 2751 <tilted>0</tilted></feature> 2752 <threshold>-0.3790175914764404</threshold> 2753 <left_val>-0.4985372126102448</left_val> 2754 <right_val>0.0239552296698093</right_val></_></_> 2755 <_> 2756 <!-- tree 42 --> 2757 <_> 2758 <!-- root node --> 2759 <feature> 2760 <rects> 2761 <_>0 12 8 6 -1.</_> 2762 <_>2 12 4 6 2.</_></rects> 2763 <tilted>0</tilted></feature> 2764 <threshold>2.9792459681630135e-003</threshold> 2765 <left_val>-0.1843641996383667</left_val> 2766 <right_val>0.1626583039760590</right_val></_></_> 2767 <_> 2768 <!-- tree 43 --> 2769 <_> 2770 <!-- root node --> 2771 <feature> 2772 <rects> 2773 <_>7 12 8 6 -1.</_> 2774 <_>7 12 4 6 2.</_></rects> 2775 <tilted>0</tilted></feature> 2776 <threshold>0.0138036599382758</threshold> 2777 <left_val>0.0636982172727585</left_val> 2778 <right_val>-0.4338980019092560</right_val></_></_> 2779 <_> 2780 <!-- tree 44 --> 2781 <_> 2782 <!-- root node --> 2783 <feature> 2784 <rects> 2785 <_>7 6 3 12 -1.</_> 2786 <_>8 6 1 12 3.</_></rects> 2787 <tilted>0</tilted></feature> 2788 <threshold>3.5606899764388800e-003</threshold> 2789 <left_val>-0.1145507022738457</left_val> 2790 <right_val>0.2361861020326614</right_val></_></_> 2791 <_> 2792 <!-- tree 45 --> 2793 <_> 2794 <!-- root node --> 2795 <feature> 2796 <rects> 2797 <_>15 5 6 6 -1.</_> 2798 <_>15 5 3 6 2.</_></rects> 2799 <tilted>1</tilted></feature> 2800 <threshold>8.8772783055901527e-003</threshold> 2801 <left_val>0.0864168405532837</left_val> 2802 <right_val>-0.1759098023176193</right_val></_></_></trees> 2803 <stage_threshold>-1.0648390054702759</stage_threshold> 2804 <parent>4</parent> 2805 <next>-1</next></_> 2806 <_> 2807 <!-- stage 6 --> 2808 <trees> 2809 <_> 2810 <!-- tree 0 --> 2811 <_> 2812 <!-- root node --> 2813 <feature> 2814 <rects> 2815 <_>2 12 8 3 -1.</_> 2816 <_>6 12 4 3 2.</_></rects> 2817 <tilted>0</tilted></feature> 2818 <threshold>-6.7344820126891136e-003</threshold> 2819 <left_val>0.3075858950614929</left_val> 2820 <right_val>-0.2976179122924805</right_val></_></_> 2821 <_> 2822 <!-- tree 1 --> 2823 <_> 2824 <!-- root node --> 2825 <feature> 2826 <rects> 2827 <_>2 6 18 3 -1.</_> 2828 <_>8 6 6 3 3.</_></rects> 2829 <tilted>0</tilted></feature> 2830 <threshold>-0.0139028802514076</threshold> 2831 <left_val>0.2040069997310638</left_val> 2832 <right_val>-0.2296725064516068</right_val></_></_> 2833 <_> 2834 <!-- tree 2 --> 2835 <_> 2836 <!-- root node --> 2837 <feature> 2838 <rects> 2839 <_>0 11 22 2 -1.</_> 2840 <_>11 11 11 2 2.</_></rects> 2841 <tilted>0</tilted></feature> 2842 <threshold>-0.0419635511934757</threshold> 2843 <left_val>-0.5657541155815125</left_val> 2844 <right_val>0.0867454931139946</right_val></_></_> 2845 <_> 2846 <!-- tree 3 --> 2847 <_> 2848 <!-- root node --> 2849 <feature> 2850 <rects> 2851 <_>10 14 6 4 -1.</_> 2852 <_>10 16 6 2 2.</_></rects> 2853 <tilted>0</tilted></feature> 2854 <threshold>-5.9794791013700888e-005</threshold> 2855 <left_val>0.1583261042833328</left_val> 2856 <right_val>-0.2310905009508133</right_val></_></_> 2857 <_> 2858 <!-- tree 4 --> 2859 <_> 2860 <!-- root node --> 2861 <feature> 2862 <rects> 2863 <_>3 12 6 4 -1.</_> 2864 <_>6 12 3 4 2.</_></rects> 2865 <tilted>0</tilted></feature> 2866 <threshold>8.4739532321691513e-003</threshold> 2867 <left_val>-0.1150123029947281</left_val> 2868 <right_val>0.3975858986377716</right_val></_></_> 2869 <_> 2870 <!-- tree 5 --> 2871 <_> 2872 <!-- root node --> 2873 <feature> 2874 <rects> 2875 <_>14 0 4 12 -1.</_> 2876 <_>14 0 4 6 2.</_></rects> 2877 <tilted>1</tilted></feature> 2878 <threshold>-0.0653170570731163</threshold> 2879 <left_val>-0.2388727962970734</left_val> 2880 <right_val>0.1139170974493027</right_val></_></_> 2881 <_> 2882 <!-- tree 6 --> 2883 <_> 2884 <!-- root node --> 2885 <feature> 2886 <rects> 2887 <_>5 10 6 4 -1.</_> 2888 <_>8 10 3 4 2.</_></rects> 2889 <tilted>0</tilted></feature> 2890 <threshold>-4.2358501814305782e-003</threshold> 2891 <left_val>0.2233722060918808</left_val> 2892 <right_val>-0.2421883940696716</right_val></_></_> 2893 <_> 2894 <!-- tree 7 --> 2895 <_> 2896 <!-- root node --> 2897 <feature> 2898 <rects> 2899 <_>1 12 20 6 -1.</_> 2900 <_>11 12 10 3 2.</_> 2901 <_>1 15 10 3 2.</_></rects> 2902 <tilted>0</tilted></feature> 2903 <threshold>0.0462292991578579</threshold> 2904 <left_val>0.0968374013900757</left_val> 2905 <right_val>-0.5342770218849182</right_val></_></_> 2906 <_> 2907 <!-- tree 8 --> 2908 <_> 2909 <!-- root node --> 2910 <feature> 2911 <rects> 2912 <_>5 15 12 3 -1.</_> 2913 <_>9 15 4 3 3.</_></rects> 2914 <tilted>0</tilted></feature> 2915 <threshold>5.2246701670810580e-005</threshold> 2916 <left_val>-0.2418936043977737</left_val> 2917 <right_val>0.1593236029148102</right_val></_></_> 2918 <_> 2919 <!-- tree 9 --> 2920 <_> 2921 <!-- root node --> 2922 <feature> 2923 <rects> 2924 <_>13 1 3 10 -1.</_> 2925 <_>13 6 3 5 2.</_></rects> 2926 <tilted>0</tilted></feature> 2927 <threshold>-0.0414200909435749</threshold> 2928 <left_val>-0.3404498100280762</left_val> 2929 <right_val>0.0437124818563461</right_val></_></_> 2930 <_> 2931 <!-- tree 10 --> 2932 <_> 2933 <!-- root node --> 2934 <feature> 2935 <rects> 2936 <_>9 0 10 4 -1.</_> 2937 <_>9 0 5 4 2.</_></rects> 2938 <tilted>1</tilted></feature> 2939 <threshold>-0.0102242799475789</threshold> 2940 <left_val>-0.2475239038467407</left_val> 2941 <right_val>0.1551253050565720</right_val></_></_> 2942 <_> 2943 <!-- tree 11 --> 2944 <_> 2945 <!-- root node --> 2946 <feature> 2947 <rects> 2948 <_>13 1 3 10 -1.</_> 2949 <_>13 6 3 5 2.</_></rects> 2950 <tilted>0</tilted></feature> 2951 <threshold>0.0685812085866928</threshold> 2952 <left_val>9.7173796966671944e-003</left_val> 2953 <right_val>-0.6182122230529785</right_val></_></_> 2954 <_> 2955 <!-- tree 12 --> 2956 <_> 2957 <!-- root node --> 2958 <feature> 2959 <rects> 2960 <_>6 1 3 10 -1.</_> 2961 <_>6 6 3 5 2.</_></rects> 2962 <tilted>0</tilted></feature> 2963 <threshold>-0.0407003015279770</threshold> 2964 <left_val>-0.6028478741645813</left_val> 2965 <right_val>0.0709630697965622</right_val></_></_> 2966 <_> 2967 <!-- tree 13 --> 2968 <_> 2969 <!-- root node --> 2970 <feature> 2971 <rects> 2972 <_>11 4 10 4 -1.</_> 2973 <_>11 4 10 2 2.</_></rects> 2974 <tilted>1</tilted></feature> 2975 <threshold>-0.0899986997246742</threshold> 2976 <left_val>0.4666472077369690</left_val> 2977 <right_val>-0.0485498905181885</right_val></_></_> 2978 <_> 2979 <!-- tree 14 --> 2980 <_> 2981 <!-- root node --> 2982 <feature> 2983 <rects> 2984 <_>0 10 20 8 -1.</_> 2985 <_>0 10 10 4 2.</_> 2986 <_>10 14 10 4 2.</_></rects> 2987 <tilted>0</tilted></feature> 2988 <threshold>0.0153073603287339</threshold> 2989 <left_val>0.1478367000818253</left_val> 2990 <right_val>-0.2711460888385773</right_val></_></_> 2991 <_> 2992 <!-- tree 15 --> 2993 <_> 2994 <!-- root node --> 2995 <feature> 2996 <rects> 2997 <_>15 11 6 7 -1.</_> 2998 <_>17 11 2 7 3.</_></rects> 2999 <tilted>0</tilted></feature> 3000 <threshold>3.7016849964857101e-003</threshold> 3001 <left_val>-0.1515340954065323</left_val> 3002 <right_val>0.2093140929937363</right_val></_></_> 3003 <_> 3004 <!-- tree 16 --> 3005 <_> 3006 <!-- root node --> 3007 <feature> 3008 <rects> 3009 <_>4 14 9 4 -1.</_> 3010 <_>4 16 9 2 2.</_></rects> 3011 <tilted>0</tilted></feature> 3012 <threshold>-0.0319370999932289</threshold> 3013 <left_val>-0.7233225703239441</left_val> 3014 <right_val>0.0374201610684395</right_val></_></_> 3015 <_> 3016 <!-- tree 17 --> 3017 <_> 3018 <!-- root node --> 3019 <feature> 3020 <rects> 3021 <_>15 0 6 8 -1.</_> 3022 <_>15 4 6 4 2.</_></rects> 3023 <tilted>0</tilted></feature> 3024 <threshold>0.0474939085543156</threshold> 3025 <left_val>0.0490000918507576</left_val> 3026 <right_val>-0.4830318987369537</right_val></_></_> 3027 <_> 3028 <!-- tree 18 --> 3029 <_> 3030 <!-- root node --> 3031 <feature> 3032 <rects> 3033 <_>1 11 6 7 -1.</_> 3034 <_>3 11 2 7 3.</_></rects> 3035 <tilted>0</tilted></feature> 3036 <threshold>4.4620381668210030e-003</threshold> 3037 <left_val>-0.1769831925630570</left_val> 3038 <right_val>0.1982091069221497</right_val></_></_> 3039 <_> 3040 <!-- tree 19 --> 3041 <_> 3042 <!-- root node --> 3043 <feature> 3044 <rects> 3045 <_>12 6 8 4 -1.</_> 3046 <_>12 6 8 2 2.</_></rects> 3047 <tilted>1</tilted></feature> 3048 <threshold>-8.1284176558256149e-003</threshold> 3049 <left_val>0.1122218966484070</left_val> 3050 <right_val>-0.0508055202662945</right_val></_></_> 3051 <_> 3052 <!-- tree 20 --> 3053 <_> 3054 <!-- root node --> 3055 <feature> 3056 <rects> 3057 <_>11 2 6 2 -1.</_> 3058 <_>11 2 6 1 2.</_></rects> 3059 <tilted>1</tilted></feature> 3060 <threshold>-0.0125960195437074</threshold> 3061 <left_val>0.4388906061649323</left_val> 3062 <right_val>-0.0828989520668983</right_val></_></_> 3063 <_> 3064 <!-- tree 21 --> 3065 <_> 3066 <!-- root node --> 3067 <feature> 3068 <rects> 3069 <_>11 0 11 8 -1.</_> 3070 <_>11 4 11 4 2.</_></rects> 3071 <tilted>0</tilted></feature> 3072 <threshold>-1.0689930059015751e-003</threshold> 3073 <left_val>0.0687660872936249</left_val> 3074 <right_val>-0.0826670080423355</right_val></_></_> 3075 <_> 3076 <!-- tree 22 --> 3077 <_> 3078 <!-- root node --> 3079 <feature> 3080 <rects> 3081 <_>0 1 22 6 -1.</_> 3082 <_>0 1 11 3 2.</_> 3083 <_>11 4 11 3 2.</_></rects> 3084 <tilted>0</tilted></feature> 3085 <threshold>-0.0482130907475948</threshold> 3086 <left_val>-0.4667134881019592</left_val> 3087 <right_val>0.0743107125163078</right_val></_></_> 3088 <_> 3089 <!-- tree 23 --> 3090 <_> 3091 <!-- root node --> 3092 <feature> 3093 <rects> 3094 <_>11 6 3 12 -1.</_> 3095 <_>12 6 1 12 3.</_></rects> 3096 <tilted>0</tilted></feature> 3097 <threshold>-2.3418650380335748e-004</threshold> 3098 <left_val>0.0887251421809196</left_val> 3099 <right_val>-0.1091964021325111</right_val></_></_> 3100 <_> 3101 <!-- tree 24 --> 3102 <_> 3103 <!-- root node --> 3104 <feature> 3105 <rects> 3106 <_>0 1 14 7 -1.</_> 3107 <_>7 1 7 7 2.</_></rects> 3108 <tilted>0</tilted></feature> 3109 <threshold>0.1009500026702881</threshold> 3110 <left_val>0.0554442703723907</left_val> 3111 <right_val>-0.5520536899566650</right_val></_></_> 3112 <_> 3113 <!-- tree 25 --> 3114 <_> 3115 <!-- root node --> 3116 <feature> 3117 <rects> 3118 <_>16 8 4 6 -1.</_> 3119 <_>16 8 2 6 2.</_></rects> 3120 <tilted>1</tilted></feature> 3121 <threshold>0.0323404110968113</threshold> 3122 <left_val>0.0497627407312393</left_val> 3123 <right_val>-0.3663640022277832</right_val></_></_> 3124 <_> 3125 <!-- tree 26 --> 3126 <_> 3127 <!-- root node --> 3128 <feature> 3129 <rects> 3130 <_>1 11 20 7 -1.</_> 3131 <_>6 11 10 7 2.</_></rects> 3132 <tilted>0</tilted></feature> 3133 <threshold>0.1769921034574509</threshold> 3134 <left_val>-0.0737656429409981</left_val> 3135 <right_val>0.5430079102516174</right_val></_></_> 3136 <_> 3137 <!-- tree 27 --> 3138 <_> 3139 <!-- root node --> 3140 <feature> 3141 <rects> 3142 <_>13 12 4 6 -1.</_> 3143 <_>13 15 4 3 2.</_></rects> 3144 <tilted>0</tilted></feature> 3145 <threshold>-1.8634319712873548e-004</threshold> 3146 <left_val>0.0957186669111252</left_val> 3147 <right_val>-0.1821410953998566</right_val></_></_> 3148 <_> 3149 <!-- tree 28 --> 3150 <_> 3151 <!-- root node --> 3152 <feature> 3153 <rects> 3154 <_>0 3 13 3 -1.</_> 3155 <_>0 4 13 1 3.</_></rects> 3156 <tilted>0</tilted></feature> 3157 <threshold>6.6473139449954033e-003</threshold> 3158 <left_val>-0.1217313036322594</left_val> 3159 <right_val>0.3033103942871094</right_val></_></_> 3160 <_> 3161 <!-- tree 29 --> 3162 <_> 3163 <!-- root node --> 3164 <feature> 3165 <rects> 3166 <_>6 3 12 3 -1.</_> 3167 <_>6 4 12 1 3.</_></rects> 3168 <tilted>0</tilted></feature> 3169 <threshold>-9.9276658147573471e-003</threshold> 3170 <left_val>0.3263852000236511</left_val> 3171 <right_val>-0.0885337069630623</right_val></_></_> 3172 <_> 3173 <!-- tree 30 --> 3174 <_> 3175 <!-- root node --> 3176 <feature> 3177 <rects> 3178 <_>0 4 22 10 -1.</_> 3179 <_>0 4 11 5 2.</_> 3180 <_>11 9 11 5 2.</_></rects> 3181 <tilted>0</tilted></feature> 3182 <threshold>0.0525870993733406</threshold> 3183 <left_val>0.1130395010113716</left_val> 3184 <right_val>-0.3343687057495117</right_val></_></_> 3185 <_> 3186 <!-- tree 31 --> 3187 <_> 3188 <!-- root node --> 3189 <feature> 3190 <rects> 3191 <_>14 3 8 4 -1.</_> 3192 <_>14 3 8 2 2.</_></rects> 3193 <tilted>1</tilted></feature> 3194 <threshold>4.9553681164979935e-003</threshold> 3195 <left_val>-0.1318328976631165</left_val> 3196 <right_val>0.0976148098707199</right_val></_></_> 3197 <_> 3198 <!-- tree 32 --> 3199 <_> 3200 <!-- root node --> 3201 <feature> 3202 <rects> 3203 <_>5 5 12 6 -1.</_> 3204 <_>5 5 6 3 2.</_> 3205 <_>11 8 6 3 2.</_></rects> 3206 <tilted>0</tilted></feature> 3207 <threshold>-0.0238176602870226</threshold> 3208 <left_val>-0.4102765023708344</left_val> 3209 <right_val>0.0848498120903969</right_val></_></_> 3210 <_> 3211 <!-- tree 33 --> 3212 <_> 3213 <!-- root node --> 3214 <feature> 3215 <rects> 3216 <_>11 6 6 6 -1.</_> 3217 <_>13 6 2 6 3.</_></rects> 3218 <tilted>0</tilted></feature> 3219 <threshold>-0.0113637801259756</threshold> 3220 <left_val>0.1887442022562027</left_val> 3221 <right_val>-0.0835364162921906</right_val></_></_> 3222 <_> 3223 <!-- tree 34 --> 3224 <_> 3225 <!-- root node --> 3226 <feature> 3227 <rects> 3228 <_>9 4 4 13 -1.</_> 3229 <_>10 4 2 13 2.</_></rects> 3230 <tilted>0</tilted></feature> 3231 <threshold>-1.9515539752319455e-003</threshold> 3232 <left_val>0.1898508965969086</left_val> 3233 <right_val>-0.1777677983045578</right_val></_></_> 3234 <_> 3235 <!-- tree 35 --> 3236 <_> 3237 <!-- root node --> 3238 <feature> 3239 <rects> 3240 <_>11 3 3 13 -1.</_> 3241 <_>12 3 1 13 3.</_></rects> 3242 <tilted>0</tilted></feature> 3243 <threshold>-0.0135766696184874</threshold> 3244 <left_val>0.2097575962543488</left_val> 3245 <right_val>-0.0371154509484768</right_val></_></_> 3246 <_> 3247 <!-- tree 36 --> 3248 <_> 3249 <!-- root node --> 3250 <feature> 3251 <rects> 3252 <_>9 5 4 6 -1.</_> 3253 <_>11 5 2 6 2.</_></rects> 3254 <tilted>0</tilted></feature> 3255 <threshold>0.0164668206125498</threshold> 3256 <left_val>-0.0823494121432304</left_val> 3257 <right_val>0.3804722130298615</right_val></_></_> 3258 <_> 3259 <!-- tree 37 --> 3260 <_> 3261 <!-- root node --> 3262 <feature> 3263 <rects> 3264 <_>7 2 12 15 -1.</_> 3265 <_>11 7 4 5 9.</_></rects> 3266 <tilted>0</tilted></feature> 3267 <threshold>-0.1013626009225845</threshold> 3268 <left_val>-0.1163323000073433</left_val> 3269 <right_val>0.0678049102425575</right_val></_></_> 3270 <_> 3271 <!-- tree 38 --> 3272 <_> 3273 <!-- root node --> 3274 <feature> 3275 <rects> 3276 <_>3 2 12 15 -1.</_> 3277 <_>7 7 4 5 9.</_></rects> 3278 <tilted>0</tilted></feature> 3279 <threshold>-0.1024843007326126</threshold> 3280 <left_val>-0.2885020971298218</left_val> 3281 <right_val>0.1213968023657799</right_val></_></_> 3282 <_> 3283 <!-- tree 39 --> 3284 <_> 3285 <!-- root node --> 3286 <feature> 3287 <rects> 3288 <_>5 2 12 12 -1.</_> 3289 <_>9 6 4 4 9.</_></rects> 3290 <tilted>0</tilted></feature> 3291 <threshold>-0.2871756851673126</threshold> 3292 <left_val>0.4693514108657837</left_val> 3293 <right_val>-0.0829543098807335</right_val></_></_> 3294 <_> 3295 <!-- tree 40 --> 3296 <_> 3297 <!-- root node --> 3298 <feature> 3299 <rects> 3300 <_>8 5 4 12 -1.</_> 3301 <_>8 8 4 6 2.</_></rects> 3302 <tilted>0</tilted></feature> 3303 <threshold>0.0508129782974720</threshold> 3304 <left_val>0.0553938783705235</left_val> 3305 <right_val>-0.6238328218460083</right_val></_></_> 3306 <_> 3307 <!-- tree 41 --> 3308 <_> 3309 <!-- root node --> 3310 <feature> 3311 <rects> 3312 <_>8 9 8 7 -1.</_> 3313 <_>10 9 4 7 2.</_></rects> 3314 <tilted>0</tilted></feature> 3315 <threshold>0.0910634174942970</threshold> 3316 <left_val>-0.0233795605599880</left_val> 3317 <right_val>0.4715529978275299</right_val></_></_> 3318 <_> 3319 <!-- tree 42 --> 3320 <_> 3321 <!-- root node --> 3322 <feature> 3323 <rects> 3324 <_>6 9 8 7 -1.</_> 3325 <_>8 9 4 7 2.</_></rects> 3326 <tilted>0</tilted></feature> 3327 <threshold>-0.0518453381955624</threshold> 3328 <left_val>-0.6903154253959656</left_val> 3329 <right_val>0.0454541184008121</right_val></_></_> 3330 <_> 3331 <!-- tree 43 --> 3332 <_> 3333 <!-- root node --> 3334 <feature> 3335 <rects> 3336 <_>0 4 22 14 -1.</_> 3337 <_>11 4 11 7 2.</_> 3338 <_>0 11 11 7 2.</_></rects> 3339 <tilted>0</tilted></feature> 3340 <threshold>0.1503123939037323</threshold> 3341 <left_val>0.0459067113697529</left_val> 3342 <right_val>-0.5206773877143860</right_val></_></_> 3343 <_> 3344 <!-- tree 44 --> 3345 <_> 3346 <!-- root node --> 3347 <feature> 3348 <rects> 3349 <_>2 12 18 6 -1.</_> 3350 <_>2 14 18 2 3.</_></rects> 3351 <tilted>0</tilted></feature> 3352 <threshold>0.0415963195264339</threshold> 3353 <left_val>0.0537062995135784</left_val> 3354 <right_val>-0.4878216981887817</right_val></_></_></trees> 3355 <stage_threshold>-0.9506993293762207</stage_threshold> 3356 <parent>5</parent> 3357 <next>-1</next></_> 3358 <_> 3359 <!-- stage 7 --> 3360 <trees> 3361 <_> 3362 <!-- tree 0 --> 3363 <_> 3364 <!-- root node --> 3365 <feature> 3366 <rects> 3367 <_>6 5 6 5 -1.</_> 3368 <_>9 5 3 5 2.</_></rects> 3369 <tilted>0</tilted></feature> 3370 <threshold>-5.9847710654139519e-003</threshold> 3371 <left_val>0.2785896062850952</left_val> 3372 <right_val>-0.3092339038848877</right_val></_></_> 3373 <_> 3374 <!-- tree 1 --> 3375 <_> 3376 <!-- root node --> 3377 <feature> 3378 <rects> 3379 <_>11 14 9 4 -1.</_> 3380 <_>14 14 3 4 3.</_></rects> 3381 <tilted>0</tilted></feature> 3382 <threshold>-3.9032639469951391e-003</threshold> 3383 <left_val>0.2225704938173294</left_val> 3384 <right_val>-0.2892822921276093</right_val></_></_> 3385 <_> 3386 <!-- tree 2 --> 3387 <_> 3388 <!-- root node --> 3389 <feature> 3390 <rects> 3391 <_>6 14 6 4 -1.</_> 3392 <_>6 16 6 2 2.</_></rects> 3393 <tilted>0</tilted></feature> 3394 <threshold>-2.2362179151969030e-005</threshold> 3395 <left_val>0.1408437043428421</left_val> 3396 <right_val>-0.3014316856861115</right_val></_></_> 3397 <_> 3398 <!-- tree 3 --> 3399 <_> 3400 <!-- root node --> 3401 <feature> 3402 <rects> 3403 <_>15 6 6 5 -1.</_> 3404 <_>15 6 3 5 2.</_></rects> 3405 <tilted>1</tilted></feature> 3406 <threshold>-0.0911670029163361</threshold> 3407 <left_val>-0.6760801076889038</left_val> 3408 <right_val>0.0560408197343349</right_val></_></_> 3409 <_> 3410 <!-- tree 4 --> 3411 <_> 3412 <!-- root node --> 3413 <feature> 3414 <rects> 3415 <_>7 6 5 6 -1.</_> 3416 <_>7 6 5 3 2.</_></rects> 3417 <tilted>1</tilted></feature> 3418 <threshold>0.0527556389570236</threshold> 3419 <left_val>0.0746887475252151</left_val> 3420 <right_val>-0.6325625777244568</right_val></_></_> 3421 <_> 3422 <!-- tree 5 --> 3423 <_> 3424 <!-- root node --> 3425 <feature> 3426 <rects> 3427 <_>13 12 8 6 -1.</_> 3428 <_>13 12 4 6 2.</_></rects> 3429 <tilted>0</tilted></feature> 3430 <threshold>0.0694585368037224</threshold> 3431 <left_val>-0.1175492033362389</left_val> 3432 <right_val>0.6386364102363586</right_val></_></_> 3433 <_> 3434 <!-- tree 6 --> 3435 <_> 3436 <!-- root node --> 3437 <feature> 3438 <rects> 3439 <_>6 10 10 8 -1.</_> 3440 <_>6 12 10 4 2.</_></rects> 3441 <tilted>0</tilted></feature> 3442 <threshold>-4.8209438100457191e-003</threshold> 3443 <left_val>0.2922593057155609</left_val> 3444 <right_val>-0.1387241035699844</right_val></_></_> 3445 <_> 3446 <!-- tree 7 --> 3447 <_> 3448 <!-- root node --> 3449 <feature> 3450 <rects> 3451 <_>2 13 18 2 -1.</_> 3452 <_>2 13 9 2 2.</_></rects> 3453 <tilted>0</tilted></feature> 3454 <threshold>0.0321567505598068</threshold> 3455 <left_val>0.0755752399563789</left_val> 3456 <right_val>-0.5792791247367859</right_val></_></_> 3457 <_> 3458 <!-- tree 8 --> 3459 <_> 3460 <!-- root node --> 3461 <feature> 3462 <rects> 3463 <_>1 15 8 3 -1.</_> 3464 <_>5 15 4 3 2.</_></rects> 3465 <tilted>0</tilted></feature> 3466 <threshold>-0.0442984700202942</threshold> 3467 <left_val>0.4022681117057800</left_val> 3468 <right_val>-0.1026460975408554</right_val></_></_> 3469 <_> 3470 <!-- tree 9 --> 3471 <_> 3472 <!-- root node --> 3473 <feature> 3474 <rects> 3475 <_>14 7 6 4 -1.</_> 3476 <_>14 7 6 2 2.</_></rects> 3477 <tilted>1</tilted></feature> 3478 <threshold>-7.0452108047902584e-003</threshold> 3479 <left_val>0.1512849926948547</left_val> 3480 <right_val>-0.0567258708178997</right_val></_></_> 3481 <_> 3482 <!-- tree 10 --> 3483 <_> 3484 <!-- root node --> 3485 <feature> 3486 <rects> 3487 <_>10 0 7 2 -1.</_> 3488 <_>10 0 7 1 2.</_></rects> 3489 <tilted>1</tilted></feature> 3490 <threshold>5.1606830675154924e-004</threshold> 3491 <left_val>-0.2302210032939911</left_val> 3492 <right_val>0.1634387969970703</right_val></_></_> 3493 <_> 3494 <!-- tree 11 --> 3495 <_> 3496 <!-- root node --> 3497 <feature> 3498 <rects> 3499 <_>17 8 4 6 -1.</_> 3500 <_>17 8 4 3 2.</_></rects> 3501 <tilted>1</tilted></feature> 3502 <threshold>-0.0615283586084843</threshold> 3503 <left_val>0.2555904090404511</left_val> 3504 <right_val>-0.0467515103518963</right_val></_></_> 3505 <_> 3506 <!-- tree 12 --> 3507 <_> 3508 <!-- root node --> 3509 <feature> 3510 <rects> 3511 <_>2 0 15 9 -1.</_> 3512 <_>7 3 5 3 9.</_></rects> 3513 <tilted>0</tilted></feature> 3514 <threshold>-0.0513678118586540</threshold> 3515 <left_val>-0.2475582957267761</left_val> 3516 <right_val>0.1430545002222061</right_val></_></_> 3517 <_> 3518 <!-- tree 13 --> 3519 <_> 3520 <!-- root node --> 3521 <feature> 3522 <rects> 3523 <_>9 3 4 6 -1.</_> 3524 <_>9 6 4 3 2.</_></rects> 3525 <tilted>0</tilted></feature> 3526 <threshold>9.0107098221778870e-003</threshold> 3527 <left_val>-0.1064876988530159</left_val> 3528 <right_val>0.3127186000347138</right_val></_></_> 3529 <_> 3530 <!-- tree 14 --> 3531 <_> 3532 <!-- root node --> 3533 <feature> 3534 <rects> 3535 <_>3 0 16 12 -1.</_> 3536 <_>3 6 16 6 2.</_></rects> 3537 <tilted>0</tilted></feature> 3538 <threshold>0.0223522596061230</threshold> 3539 <left_val>0.1549421995878220</left_val> 3540 <right_val>-0.3173629045486450</right_val></_></_> 3541 <_> 3542 <!-- tree 15 --> 3543 <_> 3544 <!-- root node --> 3545 <feature> 3546 <rects> 3547 <_>11 0 3 10 -1.</_> 3548 <_>11 0 3 5 2.</_></rects> 3549 <tilted>1</tilted></feature> 3550 <threshold>0.0314938910305500</threshold> 3551 <left_val>0.0720375329256058</left_val> 3552 <right_val>-0.2894667088985443</right_val></_></_> 3553 <_> 3554 <!-- tree 16 --> 3555 <_> 3556 <!-- root node --> 3557 <feature> 3558 <rects> 3559 <_>0 3 22 14 -1.</_> 3560 <_>11 3 11 14 2.</_></rects> 3561 <tilted>0</tilted></feature> 3562 <threshold>-0.0520644597709179</threshold> 3563 <left_val>-0.2708202004432678</left_val> 3564 <right_val>0.1226018965244293</right_val></_></_> 3565 <_> 3566 <!-- tree 17 --> 3567 <_> 3568 <!-- root node --> 3569 <feature> 3570 <rects> 3571 <_>10 3 6 7 -1.</_> 3572 <_>12 3 2 7 3.</_></rects> 3573 <tilted>0</tilted></feature> 3574 <threshold>-6.1549381352961063e-003</threshold> 3575 <left_val>0.1644295006990433</left_val> 3576 <right_val>-0.1065777987241745</right_val></_></_> 3577 <_> 3578 <!-- tree 18 --> 3579 <_> 3580 <!-- root node --> 3581 <feature> 3582 <rects> 3583 <_>11 1 11 4 -1.</_> 3584 <_>10 2 11 2 2.</_></rects> 3585 <tilted>1</tilted></feature> 3586 <threshold>3.0305041000247002e-003</threshold> 3587 <left_val>-0.1523413956165314</left_val> 3588 <right_val>0.2044637948274612</right_val></_></_> 3589 <_> 3590 <!-- tree 19 --> 3591 <_> 3592 <!-- root node --> 3593 <feature> 3594 <rects> 3595 <_>14 7 6 4 -1.</_> 3596 <_>14 7 6 2 2.</_></rects> 3597 <tilted>1</tilted></feature> 3598 <threshold>-6.8027540110051632e-003</threshold> 3599 <left_val>0.0714481472969055</left_val> 3600 <right_val>-0.0414583012461662</right_val></_></_> 3601 <_> 3602 <!-- tree 20 --> 3603 <_> 3604 <!-- root node --> 3605 <feature> 3606 <rects> 3607 <_>5 5 4 12 -1.</_> 3608 <_>5 11 4 6 2.</_></rects> 3609 <tilted>0</tilted></feature> 3610 <threshold>0.0686475336551666</threshold> 3611 <left_val>-0.0528335385024548</left_val> 3612 <right_val>0.5763890147209168</right_val></_></_> 3613 <_> 3614 <!-- tree 21 --> 3615 <_> 3616 <!-- root node --> 3617 <feature> 3618 <rects> 3619 <_>2 6 20 9 -1.</_> 3620 <_>2 6 10 9 2.</_></rects> 3621 <tilted>0</tilted></feature> 3622 <threshold>-0.0928830802440643</threshold> 3623 <left_val>-0.2623670995235443</left_val> 3624 <right_val>0.0824258103966713</right_val></_></_> 3625 <_> 3626 <!-- tree 22 --> 3627 <_> 3628 <!-- root node --> 3629 <feature> 3630 <rects> 3631 <_>1 9 18 3 -1.</_> 3632 <_>7 9 6 3 3.</_></rects> 3633 <tilted>0</tilted></feature> 3634 <threshold>-5.2907038480043411e-003</threshold> 3635 <left_val>0.1409045010805130</left_val> 3636 <right_val>-0.2205065041780472</right_val></_></_> 3637 <_> 3638 <!-- tree 23 --> 3639 <_> 3640 <!-- root node --> 3641 <feature> 3642 <rects> 3643 <_>11 6 6 6 -1.</_> 3644 <_>13 6 2 6 3.</_></rects> 3645 <tilted>0</tilted></feature> 3646 <threshold>1.5640209894627333e-003</threshold> 3647 <left_val>-0.1014354974031448</left_val> 3648 <right_val>0.1302697062492371</right_val></_></_> 3649 <_> 3650 <!-- tree 24 --> 3651 <_> 3652 <!-- root node --> 3653 <feature> 3654 <rects> 3655 <_>8 13 6 4 -1.</_> 3656 <_>11 13 3 4 2.</_></rects> 3657 <tilted>0</tilted></feature> 3658 <threshold>0.0107526201754808</threshold> 3659 <left_val>0.0915153622627258</left_val> 3660 <right_val>-0.3213397860527039</right_val></_></_> 3661 <_> 3662 <!-- tree 25 --> 3663 <_> 3664 <!-- root node --> 3665 <feature> 3666 <rects> 3667 <_>10 14 6 4 -1.</_> 3668 <_>10 14 3 4 2.</_></rects> 3669 <tilted>0</tilted></feature> 3670 <threshold>-0.0211063604801893</threshold> 3671 <left_val>-0.2741023004055023</left_val> 3672 <right_val>9.1773197054862976e-003</right_val></_></_> 3673 <_> 3674 <!-- tree 26 --> 3675 <_> 3676 <!-- root node --> 3677 <feature> 3678 <rects> 3679 <_>5 6 6 6 -1.</_> 3680 <_>7 6 2 6 3.</_></rects> 3681 <tilted>0</tilted></feature> 3682 <threshold>4.8663117922842503e-003</threshold> 3683 <left_val>-0.1525872051715851</left_val> 3684 <right_val>0.1971106976270676</right_val></_></_> 3685 <_> 3686 <!-- tree 27 --> 3687 <_> 3688 <!-- root node --> 3689 <feature> 3690 <rects> 3691 <_>15 0 3 8 -1.</_> 3692 <_>16 1 1 8 3.</_></rects> 3693 <tilted>1</tilted></feature> 3694 <threshold>0.0653964728116989</threshold> 3695 <left_val>6.5921088680624962e-003</left_val> 3696 <right_val>-0.6434308886528015</right_val></_></_> 3697 <_> 3698 <!-- tree 28 --> 3699 <_> 3700 <!-- root node --> 3701 <feature> 3702 <rects> 3703 <_>5 8 12 3 -1.</_> 3704 <_>9 8 4 3 3.</_></rects> 3705 <tilted>0</tilted></feature> 3706 <threshold>4.4902609661221504e-003</threshold> 3707 <left_val>-0.1037724986672401</left_val> 3708 <right_val>0.2800520956516266</right_val></_></_> 3709 <_> 3710 <!-- tree 29 --> 3711 <_> 3712 <!-- root node --> 3713 <feature> 3714 <rects> 3715 <_>2 7 18 4 -1.</_> 3716 <_>2 9 18 2 2.</_></rects> 3717 <tilted>0</tilted></feature> 3718 <threshold>0.0466148406267166</threshold> 3719 <left_val>0.0547158494591713</left_val> 3720 <right_val>-0.5217915177345276</right_val></_></_> 3721 <_> 3722 <!-- tree 30 --> 3723 <_> 3724 <!-- root node --> 3725 <feature> 3726 <rects> 3727 <_>11 1 10 4 -1.</_> 3728 <_>11 1 5 4 2.</_></rects> 3729 <tilted>1</tilted></feature> 3730 <threshold>0.1159745007753372</threshold> 3731 <left_val>0.0396139994263649</left_val> 3732 <right_val>-0.6478490233421326</right_val></_></_> 3733 <_> 3734 <!-- tree 31 --> 3735 <_> 3736 <!-- root node --> 3737 <feature> 3738 <rects> 3739 <_>15 0 3 8 -1.</_> 3740 <_>16 1 1 8 3.</_></rects> 3741 <tilted>1</tilted></feature> 3742 <threshold>5.7222661562263966e-003</threshold> 3743 <left_val>-0.0548381693661213</left_val> 3744 <right_val>0.1282801926136017</right_val></_></_> 3745 <_> 3746 <!-- tree 32 --> 3747 <_> 3748 <!-- root node --> 3749 <feature> 3750 <rects> 3751 <_>7 0 8 3 -1.</_> 3752 <_>6 1 8 1 3.</_></rects> 3753 <tilted>1</tilted></feature> 3754 <threshold>-0.0416332595050335</threshold> 3755 <left_val>-0.8066583871841431</left_val> 3756 <right_val>0.0359422899782658</right_val></_></_> 3757 <_> 3758 <!-- tree 33 --> 3759 <_> 3760 <!-- root node --> 3761 <feature> 3762 <rects> 3763 <_>10 0 12 4 -1.</_> 3764 <_>16 0 6 2 2.</_> 3765 <_>10 2 6 2 2.</_></rects> 3766 <tilted>0</tilted></feature> 3767 <threshold>-0.0472523905336857</threshold> 3768 <left_val>-0.7919319272041321</left_val> 3769 <right_val>0.0127373700961471</right_val></_></_> 3770 <_> 3771 <!-- tree 34 --> 3772 <_> 3773 <!-- root node --> 3774 <feature> 3775 <rects> 3776 <_>5 2 12 3 -1.</_> 3777 <_>5 3 12 1 3.</_></rects> 3778 <tilted>0</tilted></feature> 3779 <threshold>-1.6451090341433883e-003</threshold> 3780 <left_val>0.2037672996520996</left_val> 3781 <right_val>-0.1323063969612122</right_val></_></_> 3782 <_> 3783 <!-- tree 35 --> 3784 <_> 3785 <!-- root node --> 3786 <feature> 3787 <rects> 3788 <_>8 2 14 3 -1.</_> 3789 <_>8 3 14 1 3.</_></rects> 3790 <tilted>0</tilted></feature> 3791 <threshold>2.5758889969438314e-003</threshold> 3792 <left_val>-0.0635034069418907</left_val> 3793 <right_val>0.1353008002042770</right_val></_></_> 3794 <_> 3795 <!-- tree 36 --> 3796 <_> 3797 <!-- root node --> 3798 <feature> 3799 <rects> 3800 <_>0 0 12 4 -1.</_> 3801 <_>0 0 6 2 2.</_> 3802 <_>6 2 6 2 2.</_></rects> 3803 <tilted>0</tilted></feature> 3804 <threshold>0.0207585897296667</threshold> 3805 <left_val>0.0472869798541069</left_val> 3806 <right_val>-0.5821200013160706</right_val></_></_> 3807 <_> 3808 <!-- tree 37 --> 3809 <_> 3810 <!-- root node --> 3811 <feature> 3812 <rects> 3813 <_>8 0 14 4 -1.</_> 3814 <_>15 0 7 2 2.</_> 3815 <_>8 2 7 2 2.</_></rects> 3816 <tilted>0</tilted></feature> 3817 <threshold>-0.0286014806479216</threshold> 3818 <left_val>-0.4122197031974793</left_val> 3819 <right_val>0.0242109801620245</right_val></_></_> 3820 <_> 3821 <!-- tree 38 --> 3822 <_> 3823 <!-- root node --> 3824 <feature> 3825 <rects> 3826 <_>0 5 8 6 -1.</_> 3827 <_>0 5 4 3 2.</_> 3828 <_>4 8 4 3 2.</_></rects> 3829 <tilted>0</tilted></feature> 3830 <threshold>-0.0286915805190802</threshold> 3831 <left_val>-0.5540468096733093</left_val> 3832 <right_val>0.0450686290860176</right_val></_></_> 3833 <_> 3834 <!-- tree 39 --> 3835 <_> 3836 <!-- root node --> 3837 <feature> 3838 <rects> 3839 <_>14 14 6 4 -1.</_> 3840 <_>14 14 3 4 2.</_></rects> 3841 <tilted>0</tilted></feature> 3842 <threshold>-2.6637869887053967e-003</threshold> 3843 <left_val>0.1257023066282272</left_val> 3844 <right_val>-0.1631949990987778</right_val></_></_> 3845 <_> 3846 <!-- tree 40 --> 3847 <_> 3848 <!-- root node --> 3849 <feature> 3850 <rects> 3851 <_>6 12 10 4 -1.</_> 3852 <_>11 12 5 4 2.</_></rects> 3853 <tilted>0</tilted></feature> 3854 <threshold>-4.4750720262527466e-003</threshold> 3855 <left_val>-0.2713806927204132</left_val> 3856 <right_val>0.1029310002923012</right_val></_></_> 3857 <_> 3858 <!-- tree 41 --> 3859 <_> 3860 <!-- root node --> 3861 <feature> 3862 <rects> 3863 <_>14 6 6 6 -1.</_> 3864 <_>12 8 6 2 3.</_></rects> 3865 <tilted>1</tilted></feature> 3866 <threshold>0.0409370996057987</threshold> 3867 <left_val>-0.0320654697716236</left_val> 3868 <right_val>0.1309264004230499</right_val></_></_> 3869 <_> 3870 <!-- tree 42 --> 3871 <_> 3872 <!-- root node --> 3873 <feature> 3874 <rects> 3875 <_>8 6 6 6 -1.</_> 3876 <_>10 8 2 6 3.</_></rects> 3877 <tilted>1</tilted></feature> 3878 <threshold>0.0758271813392639</threshold> 3879 <left_val>-0.0512215197086334</left_val> 3880 <right_val>0.5659629702568054</right_val></_></_></trees> 3881 <stage_threshold>-0.8504595160484314</stage_threshold> 3882 <parent>6</parent> 3883 <next>-1</next></_> 3884 <_> 3885 <!-- stage 8 --> 3886 <trees> 3887 <_> 3888 <!-- tree 0 --> 3889 <_> 3890 <!-- root node --> 3891 <feature> 3892 <rects> 3893 <_>2 8 6 10 -1.</_> 3894 <_>2 8 3 5 2.</_> 3895 <_>5 13 3 5 2.</_></rects> 3896 <tilted>0</tilted></feature> 3897 <threshold>-4.2669968679547310e-003</threshold> 3898 <left_val>0.1770441979169846</left_val> 3899 <right_val>-0.2826541960239410</right_val></_></_> 3900 <_> 3901 <!-- tree 1 --> 3902 <_> 3903 <!-- root node --> 3904 <feature> 3905 <rects> 3906 <_>11 3 4 9 -1.</_> 3907 <_>12 4 2 9 2.</_></rects> 3908 <tilted>1</tilted></feature> 3909 <threshold>-0.0225779395550489</threshold> 3910 <left_val>0.2365795969963074</left_val> 3911 <right_val>-0.0423263683915138</right_val></_></_> 3912 <_> 3913 <!-- tree 2 --> 3914 <_> 3915 <!-- root node --> 3916 <feature> 3917 <rects> 3918 <_>2 0 12 4 -1.</_> 3919 <_>2 0 6 2 2.</_> 3920 <_>8 2 6 2 2.</_></rects> 3921 <tilted>0</tilted></feature> 3922 <threshold>-9.8107997328042984e-003</threshold> 3923 <left_val>-0.3856830894947052</left_val> 3924 <right_val>0.0909823030233383</right_val></_></_> 3925 <_> 3926 <!-- tree 3 --> 3927 <_> 3928 <!-- root node --> 3929 <feature> 3930 <rects> 3931 <_>11 5 3 9 -1.</_> 3932 <_>12 6 1 9 3.</_></rects> 3933 <tilted>1</tilted></feature> 3934 <threshold>3.8510379381477833e-003</threshold> 3935 <left_val>-0.1027040034532547</left_val> 3936 <right_val>0.1926759034395218</right_val></_></_> 3937 <_> 3938 <!-- tree 4 --> 3939 <_> 3940 <!-- root node --> 3941 <feature> 3942 <rects> 3943 <_>11 3 9 4 -1.</_> 3944 <_>10 4 9 2 2.</_></rects> 3945 <tilted>1</tilted></feature> 3946 <threshold>-2.0688450895249844e-003</threshold> 3947 <left_val>0.1665657013654709</left_val> 3948 <right_val>-0.2139438986778259</right_val></_></_> 3949 <_> 3950 <!-- tree 5 --> 3951 <_> 3952 <!-- root node --> 3953 <feature> 3954 <rects> 3955 <_>13 13 8 5 -1.</_> 3956 <_>13 13 4 5 2.</_></rects> 3957 <tilted>0</tilted></feature> 3958 <threshold>-0.0583685003221035</threshold> 3959 <left_val>0.3483357131481171</left_val> 3960 <right_val>-0.0806054621934891</right_val></_></_> 3961 <_> 3962 <!-- tree 6 --> 3963 <_> 3964 <!-- root node --> 3965 <feature> 3966 <rects> 3967 <_>1 13 8 5 -1.</_> 3968 <_>5 13 4 5 2.</_></rects> 3969 <tilted>0</tilted></feature> 3970 <threshold>0.0562909208238125</threshold> 3971 <left_val>-0.0616179890930653</left_val> 3972 <right_val>0.6942182779312134</right_val></_></_> 3973 <_> 3974 <!-- tree 7 --> 3975 <_> 3976 <!-- root node --> 3977 <feature> 3978 <rects> 3979 <_>7 13 8 3 -1.</_> 3980 <_>7 13 4 3 2.</_></rects> 3981 <tilted>0</tilted></feature> 3982 <threshold>5.5776340886950493e-003</threshold> 3983 <left_val>0.0783748626708984</left_val> 3984 <right_val>-0.4076493084430695</right_val></_></_> 3985 <_> 3986 <!-- tree 8 --> 3987 <_> 3988 <!-- root node --> 3989 <feature> 3990 <rects> 3991 <_>8 13 6 4 -1.</_> 3992 <_>11 13 3 4 2.</_></rects> 3993 <tilted>0</tilted></feature> 3994 <threshold>5.0974669866263866e-003</threshold> 3995 <left_val>0.1500179022550583</left_val> 3996 <right_val>-0.2762084901332855</right_val></_></_> 3997 <_> 3998 <!-- tree 9 --> 3999 <_> 4000 <!-- root node --> 4001 <feature> 4002 <rects> 4003 <_>11 7 3 8 -1.</_> 4004 <_>12 8 1 8 3.</_></rects> 4005 <tilted>1</tilted></feature> 4006 <threshold>0.0241340193897486</threshold> 4007 <left_val>-0.0376859717071056</left_val> 4008 <right_val>0.4011130928993225</right_val></_></_> 4009 <_> 4010 <!-- tree 10 --> 4011 <_> 4012 <!-- root node --> 4013 <feature> 4014 <rects> 4015 <_>5 1 6 8 -1.</_> 4016 <_>7 1 2 8 3.</_></rects> 4017 <tilted>0</tilted></feature> 4018 <threshold>2.6251180097460747e-003</threshold> 4019 <left_val>-0.1898688971996307</left_val> 4020 <right_val>0.1666657030582428</right_val></_></_> 4021 <_> 4022 <!-- tree 11 --> 4023 <_> 4024 <!-- root node --> 4025 <feature> 4026 <rects> 4027 <_>14 14 6 4 -1.</_> 4028 <_>14 16 6 2 2.</_></rects> 4029 <tilted>0</tilted></feature> 4030 <threshold>-0.0231797192245722</threshold> 4031 <left_val>-0.6080746054649353</left_val> 4032 <right_val>0.0330169312655926</right_val></_></_> 4033 <_> 4034 <!-- tree 12 --> 4035 <_> 4036 <!-- root node --> 4037 <feature> 4038 <rects> 4039 <_>11 7 8 3 -1.</_> 4040 <_>10 8 8 1 3.</_></rects> 4041 <tilted>1</tilted></feature> 4042 <threshold>-1.7960369586944580e-003</threshold> 4043 <left_val>0.1832838952541351</left_val> 4044 <right_val>-0.1630056053400040</right_val></_></_> 4045 <_> 4046 <!-- tree 13 --> 4047 <_> 4048 <!-- root node --> 4049 <feature> 4050 <rects> 4051 <_>12 3 3 12 -1.</_> 4052 <_>8 7 3 4 3.</_></rects> 4053 <tilted>1</tilted></feature> 4054 <threshold>0.1132725030183792</threshold> 4055 <left_val>0.0163923595100641</left_val> 4056 <right_val>-0.3852145075798035</right_val></_></_> 4057 <_> 4058 <!-- tree 14 --> 4059 <_> 4060 <!-- root node --> 4061 <feature> 4062 <rects> 4063 <_>8 5 5 6 -1.</_> 4064 <_>8 8 5 3 2.</_></rects> 4065 <tilted>0</tilted></feature> 4066 <threshold>-0.0111209303140640</threshold> 4067 <left_val>-0.2678939104080200</left_val> 4068 <right_val>0.1203088015317917</right_val></_></_> 4069 <_> 4070 <!-- tree 15 --> 4071 <_> 4072 <!-- root node --> 4073 <feature> 4074 <rects> 4075 <_>11 3 8 4 -1.</_> 4076 <_>11 3 8 2 2.</_></rects> 4077 <tilted>1</tilted></feature> 4078 <threshold>8.9298561215400696e-003</threshold> 4079 <left_val>-0.0647662431001663</left_val> 4080 <right_val>0.0524467006325722</right_val></_></_> 4081 <_> 4082 <!-- tree 16 --> 4083 <_> 4084 <!-- root node --> 4085 <feature> 4086 <rects> 4087 <_>7 5 8 6 -1.</_> 4088 <_>9 5 4 6 2.</_></rects> 4089 <tilted>0</tilted></feature> 4090 <threshold>0.0302645191550255</threshold> 4091 <left_val>-0.0533437095582485</left_val> 4092 <right_val>0.4917060136795044</right_val></_></_> 4093 <_> 4094 <!-- tree 17 --> 4095 <_> 4096 <!-- root node --> 4097 <feature> 4098 <rects> 4099 <_>11 4 6 6 -1.</_> 4100 <_>9 6 6 2 3.</_></rects> 4101 <tilted>1</tilted></feature> 4102 <threshold>0.1303624063730240</threshold> 4103 <left_val>9.9123492836952209e-003</left_val> 4104 <right_val>-0.8077524900436401</right_val></_></_> 4105 <_> 4106 <!-- tree 18 --> 4107 <_> 4108 <!-- root node --> 4109 <feature> 4110 <rects> 4111 <_>11 4 6 6 -1.</_> 4112 <_>13 6 2 6 3.</_></rects> 4113 <tilted>1</tilted></feature> 4114 <threshold>-4.8941900022327900e-003</threshold> 4115 <left_val>0.1415328979492188</left_val> 4116 <right_val>-0.2422267943620682</right_val></_></_> 4117 <_> 4118 <!-- tree 19 --> 4119 <_> 4120 <!-- root node --> 4121 <feature> 4122 <rects> 4123 <_>12 8 6 4 -1.</_> 4124 <_>12 8 3 4 2.</_></rects> 4125 <tilted>1</tilted></feature> 4126 <threshold>-0.0180093497037888</threshold> 4127 <left_val>-0.1835270971059799</left_val> 4128 <right_val>0.0537842698395252</right_val></_></_> 4129 <_> 4130 <!-- tree 20 --> 4131 <_> 4132 <!-- root node --> 4133 <feature> 4134 <rects> 4135 <_>5 15 8 3 -1.</_> 4136 <_>9 15 4 3 2.</_></rects> 4137 <tilted>0</tilted></feature> 4138 <threshold>6.3028637669049203e-005</threshold> 4139 <left_val>-0.2083622068166733</left_val> 4140 <right_val>0.1386117935180664</right_val></_></_> 4141 <_> 4142 <!-- tree 21 --> 4143 <_> 4144 <!-- root node --> 4145 <feature> 4146 <rects> 4147 <_>0 5 22 13 -1.</_> 4148 <_>0 5 11 13 2.</_></rects> 4149 <tilted>0</tilted></feature> 4150 <threshold>-0.3812729120254517</threshold> 4151 <left_val>-0.7652782201766968</left_val> 4152 <right_val>0.0345780998468399</right_val></_></_> 4153 <_> 4154 <!-- tree 22 --> 4155 <_> 4156 <!-- root node --> 4157 <feature> 4158 <rects> 4159 <_>2 12 9 6 -1.</_> 4160 <_>5 12 3 6 3.</_></rects> 4161 <tilted>0</tilted></feature> 4162 <threshold>0.0161685701459646</threshold> 4163 <left_val>-0.0785770490765572</left_val> 4164 <right_val>0.3608635067939758</right_val></_></_> 4165 <_> 4166 <!-- tree 23 --> 4167 <_> 4168 <!-- root node --> 4169 <feature> 4170 <rects> 4171 <_>19 1 3 10 -1.</_> 4172 <_>19 6 3 5 2.</_></rects> 4173 <tilted>0</tilted></feature> 4174 <threshold>-0.0207253806293011</threshold> 4175 <left_val>-0.3290519118309021</left_val> 4176 <right_val>0.0816933363676071</right_val></_></_> 4177 <_> 4178 <!-- tree 24 --> 4179 <_> 4180 <!-- root node --> 4181 <feature> 4182 <rects> 4183 <_>5 14 12 4 -1.</_> 4184 <_>5 16 12 2 2.</_></rects> 4185 <tilted>0</tilted></feature> 4186 <threshold>-1.4763489889446646e-004</threshold> 4187 <left_val>0.1044917032122612</left_val> 4188 <right_val>-0.2762413918972015</right_val></_></_> 4189 <_> 4190 <!-- tree 25 --> 4191 <_> 4192 <!-- root node --> 4193 <feature> 4194 <rects> 4195 <_>10 14 10 4 -1.</_> 4196 <_>10 16 10 2 2.</_></rects> 4197 <tilted>0</tilted></feature> 4198 <threshold>-0.0169591698795557</threshold> 4199 <left_val>-0.2415079027414322</left_val> 4200 <right_val>0.0545696802437305</right_val></_></_> 4201 <_> 4202 <!-- tree 26 --> 4203 <_> 4204 <!-- root node --> 4205 <feature> 4206 <rects> 4207 <_>1 3 14 3 -1.</_> 4208 <_>1 4 14 1 3.</_></rects> 4209 <tilted>0</tilted></feature> 4210 <threshold>-0.0152211003005505</threshold> 4211 <left_val>0.4103314876556397</left_val> 4212 <right_val>-0.0683332532644272</right_val></_></_> 4213 <_> 4214 <!-- tree 27 --> 4215 <_> 4216 <!-- root node --> 4217 <feature> 4218 <rects> 4219 <_>3 14 16 4 -1.</_> 4220 <_>11 14 8 2 2.</_> 4221 <_>3 16 8 2 2.</_></rects> 4222 <tilted>0</tilted></feature> 4223 <threshold>-9.6041243523359299e-003</threshold> 4224 <left_val>-0.3356964886188507</left_val> 4225 <right_val>0.0862504914402962</right_val></_></_> 4226 <_> 4227 <!-- tree 28 --> 4228 <_> 4229 <!-- root node --> 4230 <feature> 4231 <rects> 4232 <_>0 14 6 4 -1.</_> 4233 <_>3 14 3 4 2.</_></rects> 4234 <tilted>0</tilted></feature> 4235 <threshold>-1.6476860037073493e-003</threshold> 4236 <left_val>0.1623633056879044</left_val> 4237 <right_val>-0.1904449015855789</right_val></_></_> 4238 <_> 4239 <!-- tree 29 --> 4240 <_> 4241 <!-- root node --> 4242 <feature> 4243 <rects> 4244 <_>10 1 11 4 -1.</_> 4245 <_>10 3 11 2 2.</_></rects> 4246 <tilted>0</tilted></feature> 4247 <threshold>-0.1070583984255791</threshold> 4248 <left_val>-0.8676710724830627</left_val> 4249 <right_val>7.3941340669989586e-003</right_val></_></_> 4250 <_> 4251 <!-- tree 30 --> 4252 <_> 4253 <!-- root node --> 4254 <feature> 4255 <rects> 4256 <_>1 1 11 4 -1.</_> 4257 <_>1 3 11 2 2.</_></rects> 4258 <tilted>0</tilted></feature> 4259 <threshold>-0.0188181605190039</threshold> 4260 <left_val>-0.3687911033630371</left_val> 4261 <right_val>0.0688466429710388</right_val></_></_> 4262 <_> 4263 <!-- tree 31 --> 4264 <_> 4265 <!-- root node --> 4266 <feature> 4267 <rects> 4268 <_>9 3 6 6 -1.</_> 4269 <_>9 5 6 2 3.</_></rects> 4270 <tilted>0</tilted></feature> 4271 <threshold>-5.6142187677323818e-003</threshold> 4272 <left_val>0.1732203960418701</left_val> 4273 <right_val>-0.1251447051763535</right_val></_></_> 4274 <_> 4275 <!-- tree 32 --> 4276 <_> 4277 <!-- root node --> 4278 <feature> 4279 <rects> 4280 <_>4 5 12 3 -1.</_> 4281 <_>4 6 12 1 3.</_></rects> 4282 <tilted>0</tilted></feature> 4283 <threshold>7.3969298973679543e-003</threshold> 4284 <left_val>-0.0854673683643341</left_val> 4285 <right_val>0.3202716112136841</right_val></_></_> 4286 <_> 4287 <!-- tree 33 --> 4288 <_> 4289 <!-- root node --> 4290 <feature> 4291 <rects> 4292 <_>12 0 7 6 -1.</_> 4293 <_>12 3 7 3 2.</_></rects> 4294 <tilted>0</tilted></feature> 4295 <threshold>9.4870915636420250e-003</threshold> 4296 <left_val>0.0631684064865112</left_val> 4297 <right_val>-0.2091891020536423</right_val></_></_> 4298 <_> 4299 <!-- tree 34 --> 4300 <_> 4301 <!-- root node --> 4302 <feature> 4303 <rects> 4304 <_>1 3 16 4 -1.</_> 4305 <_>1 4 16 2 2.</_></rects> 4306 <tilted>0</tilted></feature> 4307 <threshold>1.8458140548318624e-003</threshold> 4308 <left_val>-0.1543627977371216</left_val> 4309 <right_val>0.1851702034473419</right_val></_></_> 4310 <_> 4311 <!-- tree 35 --> 4312 <_> 4313 <!-- root node --> 4314 <feature> 4315 <rects> 4316 <_>4 9 15 3 -1.</_> 4317 <_>4 10 15 1 3.</_></rects> 4318 <tilted>0</tilted></feature> 4319 <threshold>-0.0197473596781492</threshold> 4320 <left_val>0.3307111859321594</left_val> 4321 <right_val>-0.0767758488655090</right_val></_></_> 4322 <_> 4323 <!-- tree 36 --> 4324 <_> 4325 <!-- root node --> 4326 <feature> 4327 <rects> 4328 <_>2 4 18 6 -1.</_> 4329 <_>2 4 9 3 2.</_> 4330 <_>11 7 9 3 2.</_></rects> 4331 <tilted>0</tilted></feature> 4332 <threshold>0.0324211604893208</threshold> 4333 <left_val>0.0820211321115494</left_val> 4334 <right_val>-0.4014750123023987</right_val></_></_> 4335 <_> 4336 <!-- tree 37 --> 4337 <_> 4338 <!-- root node --> 4339 <feature> 4340 <rects> 4341 <_>13 5 4 13 -1.</_> 4342 <_>14 5 2 13 2.</_></rects> 4343 <tilted>0</tilted></feature> 4344 <threshold>2.9075390193611383e-003</threshold> 4345 <left_val>-0.0771740376949310</left_val> 4346 <right_val>0.1062069982290268</right_val></_></_> 4347 <_> 4348 <!-- tree 38 --> 4349 <_> 4350 <!-- root node --> 4351 <feature> 4352 <rects> 4353 <_>4 6 6 4 -1.</_> 4354 <_>4 8 6 2 2.</_></rects> 4355 <tilted>0</tilted></feature> 4356 <threshold>0.0151893598958850</threshold> 4357 <left_val>0.0603638999164104</left_val> 4358 <right_val>-0.4136523902416229</right_val></_></_> 4359 <_> 4360 <!-- tree 39 --> 4361 <_> 4362 <!-- root node --> 4363 <feature> 4364 <rects> 4365 <_>8 7 6 5 -1.</_> 4366 <_>8 7 3 5 2.</_></rects> 4367 <tilted>0</tilted></feature> 4368 <threshold>-0.0306837391108274</threshold> 4369 <left_val>0.4347062110900879</left_val> 4370 <right_val>-0.0593813210725784</right_val></_></_> 4371 <_> 4372 <!-- tree 40 --> 4373 <_> 4374 <!-- root node --> 4375 <feature> 4376 <rects> 4377 <_>10 8 4 6 -1.</_> 4378 <_>10 8 4 3 2.</_></rects> 4379 <tilted>1</tilted></feature> 4380 <threshold>-0.0109734497964382</threshold> 4381 <left_val>-0.2953523099422455</left_val> 4382 <right_val>0.0855164676904678</right_val></_></_> 4383 <_> 4384 <!-- tree 41 --> 4385 <_> 4386 <!-- root node --> 4387 <feature> 4388 <rects> 4389 <_>6 12 12 4 -1.</_> 4390 <_>6 12 6 4 2.</_></rects> 4391 <tilted>0</tilted></feature> 4392 <threshold>-0.0395403616130352</threshold> 4393 <left_val>-0.2876588106155396</left_val> 4394 <right_val>0.0344729684293270</right_val></_></_> 4395 <_> 4396 <!-- tree 42 --> 4397 <_> 4398 <!-- root node --> 4399 <feature> 4400 <rects> 4401 <_>3 11 10 3 -1.</_> 4402 <_>8 11 5 3 2.</_></rects> 4403 <tilted>0</tilted></feature> 4404 <threshold>-0.0379358716309071</threshold> 4405 <left_val>0.3819986879825592</left_val> 4406 <right_val>-0.0853647664189339</right_val></_></_> 4407 <_> 4408 <!-- tree 43 --> 4409 <_> 4410 <!-- root node --> 4411 <feature> 4412 <rects> 4413 <_>12 2 3 12 -1.</_> 4414 <_>12 2 3 6 2.</_></rects> 4415 <tilted>1</tilted></feature> 4416 <threshold>0.0306698102504015</threshold> 4417 <left_val>0.0447380989789963</left_val> 4418 <right_val>-0.1770364046096802</right_val></_></_> 4419 <_> 4420 <!-- tree 44 --> 4421 <_> 4422 <!-- root node --> 4423 <feature> 4424 <rects> 4425 <_>0 2 14 16 -1.</_> 4426 <_>7 2 7 16 2.</_></rects> 4427 <tilted>0</tilted></feature> 4428 <threshold>0.1719450950622559</threshold> 4429 <left_val>-0.0592141784727573</left_val> 4430 <right_val>0.4929103851318359</right_val></_></_> 4431 <_> 4432 <!-- tree 45 --> 4433 <_> 4434 <!-- root node --> 4435 <feature> 4436 <rects> 4437 <_>1 5 20 4 -1.</_> 4438 <_>6 5 10 4 2.</_></rects> 4439 <tilted>0</tilted></feature> 4440 <threshold>-6.7055500112473965e-003</threshold> 4441 <left_val>0.1641025990247726</left_val> 4442 <right_val>-0.2182646989822388</right_val></_></_> 4443 <_> 4444 <!-- tree 46 --> 4445 <_> 4446 <!-- root node --> 4447 <feature> 4448 <rects> 4449 <_>0 1 18 15 -1.</_> 4450 <_>9 1 9 15 2.</_></rects> 4451 <tilted>0</tilted></feature> 4452 <threshold>-0.3857786953449249</threshold> 4453 <left_val>-0.6717677116394043</left_val> 4454 <right_val>0.0423495918512344</right_val></_></_> 4455 <_> 4456 <!-- tree 47 --> 4457 <_> 4458 <!-- root node --> 4459 <feature> 4460 <rects> 4461 <_>15 2 6 8 -1.</_> 4462 <_>15 4 6 4 2.</_></rects> 4463 <tilted>0</tilted></feature> 4464 <threshold>0.0272130407392979</threshold> 4465 <left_val>0.0122661497443914</left_val> 4466 <right_val>-0.2295421063899994</right_val></_></_> 4467 <_> 4468 <!-- tree 48 --> 4469 <_> 4470 <!-- root node --> 4471 <feature> 4472 <rects> 4473 <_>4 14 13 4 -1.</_> 4474 <_>4 15 13 2 2.</_></rects> 4475 <tilted>0</tilted></feature> 4476 <threshold>-0.0192949809134007</threshold> 4477 <left_val>-0.5837343931198120</left_val> 4478 <right_val>0.0383809991180897</right_val></_></_> 4479 <_> 4480 <!-- tree 49 --> 4481 <_> 4482 <!-- root node --> 4483 <feature> 4484 <rects> 4485 <_>11 2 3 12 -1.</_> 4486 <_>12 2 1 12 3.</_></rects> 4487 <tilted>0</tilted></feature> 4488 <threshold>7.6792249456048012e-003</threshold> 4489 <left_val>-0.0474903509020805</left_val> 4490 <right_val>0.1596446037292481</right_val></_></_> 4491 <_> 4492 <!-- tree 50 --> 4493 <_> 4494 <!-- root node --> 4495 <feature> 4496 <rects> 4497 <_>0 16 15 2 -1.</_> 4498 <_>0 17 15 1 2.</_></rects> 4499 <tilted>0</tilted></feature> 4500 <threshold>6.0242269682930782e-005</threshold> 4501 <left_val>-0.1173423975706101</left_val> 4502 <right_val>0.1823665052652359</right_val></_></_> 4503 <_> 4504 <!-- tree 51 --> 4505 <_> 4506 <!-- root node --> 4507 <feature> 4508 <rects> 4509 <_>12 14 6 4 -1.</_> 4510 <_>12 16 6 2 2.</_></rects> 4511 <tilted>0</tilted></feature> 4512 <threshold>-6.6498141677584499e-005</threshold> 4513 <left_val>0.0747451409697533</left_val> 4514 <right_val>-0.1698943972587585</right_val></_></_> 4515 <_> 4516 <!-- tree 52 --> 4517 <_> 4518 <!-- root node --> 4519 <feature> 4520 <rects> 4521 <_>5 13 12 4 -1.</_> 4522 <_>5 14 12 2 2.</_></rects> 4523 <tilted>0</tilted></feature> 4524 <threshold>4.3275849893689156e-003</threshold> 4525 <left_val>0.0737897977232933</left_val> 4526 <right_val>-0.2844434976577759</right_val></_></_> 4527 <_> 4528 <!-- tree 53 --> 4529 <_> 4530 <!-- root node --> 4531 <feature> 4532 <rects> 4533 <_>12 12 6 6 -1.</_> 4534 <_>12 14 6 2 3.</_></rects> 4535 <tilted>0</tilted></feature> 4536 <threshold>-0.0331404693424702</threshold> 4537 <left_val>-0.4060660898685455</left_val> 4538 <right_val>0.0100287301465869</right_val></_></_> 4539 <_> 4540 <!-- tree 54 --> 4541 <_> 4542 <!-- root node --> 4543 <feature> 4544 <rects> 4545 <_>0 9 15 3 -1.</_> 4546 <_>0 10 15 1 3.</_></rects> 4547 <tilted>0</tilted></feature> 4548 <threshold>9.9181402474641800e-003</threshold> 4549 <left_val>-0.0793397873640060</left_val> 4550 <right_val>0.2819001078605652</right_val></_></_> 4551 <_> 4552 <!-- tree 55 --> 4553 <_> 4554 <!-- root node --> 4555 <feature> 4556 <rects> 4557 <_>6 9 14 3 -1.</_> 4558 <_>6 10 14 1 3.</_></rects> 4559 <tilted>0</tilted></feature> 4560 <threshold>-2.3577339015901089e-003</threshold> 4561 <left_val>0.1530122011899948</left_val> 4562 <right_val>-0.1047597974538803</right_val></_></_> 4563 <_> 4564 <!-- tree 56 --> 4565 <_> 4566 <!-- root node --> 4567 <feature> 4568 <rects> 4569 <_>4 12 7 6 -1.</_> 4570 <_>4 14 7 2 3.</_></rects> 4571 <tilted>0</tilted></feature> 4572 <threshold>-0.0262008197605610</threshold> 4573 <left_val>-0.5418503284454346</left_val> 4574 <right_val>0.0443692505359650</right_val></_></_> 4575 <_> 4576 <!-- tree 57 --> 4577 <_> 4578 <!-- root node --> 4579 <feature> 4580 <rects> 4581 <_>6 6 10 6 -1.</_> 4582 <_>11 6 5 3 2.</_> 4583 <_>6 9 5 3 2.</_></rects> 4584 <tilted>0</tilted></feature> 4585 <threshold>0.0473286584019661</threshold> 4586 <left_val>0.0188977494835854</left_val> 4587 <right_val>-0.8266593217849731</right_val></_></_></trees> 4588 <stage_threshold>-0.9125220179557800</stage_threshold> 4589 <parent>7</parent> 4590 <next>-1</next></_> 4591 <_> 4592 <!-- stage 9 --> 4593 <trees> 4594 <_> 4595 <!-- tree 0 --> 4596 <_> 4597 <!-- root node --> 4598 <feature> 4599 <rects> 4600 <_>3 0 16 2 -1.</_> 4601 <_>3 0 8 2 2.</_></rects> 4602 <tilted>1</tilted></feature> 4603 <threshold>0.0299217198044062</threshold> 4604 <left_val>-0.3231500089168549</left_val> 4605 <right_val>0.5109282135963440</right_val></_></_> 4606 <_> 4607 <!-- tree 1 --> 4608 <_> 4609 <!-- root node --> 4610 <feature> 4611 <rects> 4612 <_>5 9 12 9 -1.</_> 4613 <_>5 12 12 3 3.</_></rects> 4614 <tilted>0</tilted></feature> 4615 <threshold>0.0561476089060307</threshold> 4616 <left_val>-0.1257440000772476</left_val> 4617 <right_val>0.6674917936325073</right_val></_></_> 4618 <_> 4619 <!-- tree 2 --> 4620 <_> 4621 <!-- root node --> 4622 <feature> 4623 <rects> 4624 <_>6 9 10 6 -1.</_> 4625 <_>6 12 10 3 2.</_></rects> 4626 <tilted>0</tilted></feature> 4627 <threshold>-0.0137598495930433</threshold> 4628 <left_val>0.4069119095802307</left_val> 4629 <right_val>-0.2107529938220978</right_val></_></_> 4630 <_> 4631 <!-- tree 3 --> 4632 <_> 4633 <!-- root node --> 4634 <feature> 4635 <rects> 4636 <_>7 4 8 6 -1.</_> 4637 <_>7 6 8 2 3.</_></rects> 4638 <tilted>0</tilted></feature> 4639 <threshold>-4.3788701295852661e-003</threshold> 4640 <left_val>0.2794013917446137</left_val> 4641 <right_val>-0.2095545977354050</right_val></_></_> 4642 <_> 4643 <!-- tree 4 --> 4644 <_> 4645 <!-- root node --> 4646 <feature> 4647 <rects> 4648 <_>6 5 3 12 -1.</_> 4649 <_>6 11 3 6 2.</_></rects> 4650 <tilted>0</tilted></feature> 4651 <threshold>0.0192088894546032</threshold> 4652 <left_val>-0.0898006930947304</left_val> 4653 <right_val>0.5093656182289124</right_val></_></_> 4654 <_> 4655 <!-- tree 5 --> 4656 <_> 4657 <!-- root node --> 4658 <feature> 4659 <rects> 4660 <_>12 12 6 6 -1.</_> 4661 <_>14 12 2 6 3.</_></rects> 4662 <tilted>0</tilted></feature> 4663 <threshold>-8.9393591042608023e-004</threshold> 4664 <left_val>0.1070362031459808</left_val> 4665 <right_val>-0.1229420006275177</right_val></_></_> 4666 <_> 4667 <!-- tree 6 --> 4668 <_> 4669 <!-- root node --> 4670 <feature> 4671 <rects> 4672 <_>6 15 8 3 -1.</_> 4673 <_>10 15 4 3 2.</_></rects> 4674 <tilted>0</tilted></feature> 4675 <threshold>-6.2918022740632296e-004</threshold> 4676 <left_val>-0.3784793019294739</left_val> 4677 <right_val>0.1300881952047348</right_val></_></_> 4678 <_> 4679 <!-- tree 7 --> 4680 <_> 4681 <!-- root node --> 4682 <feature> 4683 <rects> 4684 <_>4 13 14 4 -1.</_> 4685 <_>4 15 14 2 2.</_></rects> 4686 <tilted>0</tilted></feature> 4687 <threshold>-1.6248769825324416e-003</threshold> 4688 <left_val>0.1775002032518387</left_val> 4689 <right_val>-0.2781121134757996</right_val></_></_> 4690 <_> 4691 <!-- tree 8 --> 4692 <_> 4693 <!-- root node --> 4694 <feature> 4695 <rects> 4696 <_>10 4 11 3 -1.</_> 4697 <_>9 5 11 1 3.</_></rects> 4698 <tilted>1</tilted></feature> 4699 <threshold>-4.6151960268616676e-003</threshold> 4700 <left_val>0.2407151013612747</left_val> 4701 <right_val>-0.1426901072263718</right_val></_></_> 4702 <_> 4703 <!-- tree 9 --> 4704 <_> 4705 <!-- root node --> 4706 <feature> 4707 <rects> 4708 <_>11 4 4 9 -1.</_> 4709 <_>12 5 2 9 2.</_></rects> 4710 <tilted>1</tilted></feature> 4711 <threshold>0.0571628287434578</threshold> 4712 <left_val>-0.0184748694300652</left_val> 4713 <right_val>0.4508605897426605</right_val></_></_> 4714 <_> 4715 <!-- tree 10 --> 4716 <_> 4717 <!-- root node --> 4718 <feature> 4719 <rects> 4720 <_>0 8 13 3 -1.</_> 4721 <_>0 9 13 1 3.</_></rects> 4722 <tilted>0</tilted></feature> 4723 <threshold>-3.8265369366854429e-003</threshold> 4724 <left_val>0.2595176100730896</left_val> 4725 <right_val>-0.1145515963435173</right_val></_></_> 4726 <_> 4727 <!-- tree 11 --> 4728 <_> 4729 <!-- root node --> 4730 <feature> 4731 <rects> 4732 <_>13 2 6 10 -1.</_> 4733 <_>16 2 3 5 2.</_> 4734 <_>13 7 3 5 2.</_></rects> 4735 <tilted>0</tilted></feature> 4736 <threshold>-0.0452351905405521</threshold> 4737 <left_val>-0.3384900987148285</left_val> 4738 <right_val>0.0345389507710934</right_val></_></_> 4739 <_> 4740 <!-- tree 12 --> 4741 <_> 4742 <!-- root node --> 4743 <feature> 4744 <rects> 4745 <_>3 2 6 10 -1.</_> 4746 <_>3 2 3 5 2.</_> 4747 <_>6 7 3 5 2.</_></rects> 4748 <tilted>0</tilted></feature> 4749 <threshold>3.8135750219225883e-003</threshold> 4750 <left_val>0.1133399978280067</left_val> 4751 <right_val>-0.2762039005756378</right_val></_></_> 4752 <_> 4753 <!-- tree 13 --> 4754 <_> 4755 <!-- root node --> 4756 <feature> 4757 <rects> 4758 <_>11 2 4 11 -1.</_> 4759 <_>11 2 2 11 2.</_></rects> 4760 <tilted>1</tilted></feature> 4761 <threshold>0.0451082587242126</threshold> 4762 <left_val>0.0286020506173372</left_val> 4763 <right_val>-0.1583766937255859</right_val></_></_> 4764 <_> 4765 <!-- tree 14 --> 4766 <_> 4767 <!-- root node --> 4768 <feature> 4769 <rects> 4770 <_>4 2 12 3 -1.</_> 4771 <_>4 3 12 1 3.</_></rects> 4772 <tilted>0</tilted></feature> 4773 <threshold>-2.7794970665127039e-003</threshold> 4774 <left_val>0.2889742851257324</left_val> 4775 <right_val>-0.1082272008061409</right_val></_></_> 4776 <_> 4777 <!-- tree 15 --> 4778 <_> 4779 <!-- root node --> 4780 <feature> 4781 <rects> 4782 <_>12 1 4 12 -1.</_> 4783 <_>12 1 2 12 2.</_></rects> 4784 <tilted>1</tilted></feature> 4785 <threshold>5.6366869248449802e-003</threshold> 4786 <left_val>-0.1018479019403458</left_val> 4787 <right_val>0.0787871032953262</right_val></_></_> 4788 <_> 4789 <!-- tree 16 --> 4790 <_> 4791 <!-- root node --> 4792 <feature> 4793 <rects> 4794 <_>11 2 11 4 -1.</_> 4795 <_>11 2 11 2 2.</_></rects> 4796 <tilted>1</tilted></feature> 4797 <threshold>-0.0529868192970753</threshold> 4798 <left_val>0.5296499729156494</left_val> 4799 <right_val>-0.0655433535575867</right_val></_></_> 4800 <_> 4801 <!-- tree 17 --> 4802 <_> 4803 <!-- root node --> 4804 <feature> 4805 <rects> 4806 <_>11 0 4 9 -1.</_> 4807 <_>11 0 2 9 2.</_></rects> 4808 <tilted>1</tilted></feature> 4809 <threshold>0.0747378915548325</threshold> 4810 <left_val>0.0263206604868174</left_val> 4811 <right_val>-0.3048720955848694</right_val></_></_> 4812 <_> 4813 <!-- tree 18 --> 4814 <_> 4815 <!-- root node --> 4816 <feature> 4817 <rects> 4818 <_>11 0 9 4 -1.</_> 4819 <_>11 0 9 2 2.</_></rects> 4820 <tilted>1</tilted></feature> 4821 <threshold>4.1559520177543163e-003</threshold> 4822 <left_val>-0.2297717034816742</left_val> 4823 <right_val>0.1566217988729477</right_val></_></_> 4824 <_> 4825 <!-- tree 19 --> 4826 <_> 4827 <!-- root node --> 4828 <feature> 4829 <rects> 4830 <_>16 2 6 10 -1.</_> 4831 <_>19 2 3 5 2.</_> 4832 <_>16 7 3 5 2.</_></rects> 4833 <tilted>0</tilted></feature> 4834 <threshold>-2.9388200491666794e-003</threshold> 4835 <left_val>-0.1691641062498093</left_val> 4836 <right_val>0.0969966724514961</right_val></_></_> 4837 <_> 4838 <!-- tree 20 --> 4839 <_> 4840 <!-- root node --> 4841 <feature> 4842 <rects> 4843 <_>11 0 6 3 -1.</_> 4844 <_>10 1 6 1 3.</_></rects> 4845 <tilted>1</tilted></feature> 4846 <threshold>-0.0130655104294419</threshold> 4847 <left_val>0.4025856852531433</left_val> 4848 <right_val>-0.0716143697500229</right_val></_></_> 4849 <_> 4850 <!-- tree 21 --> 4851 <_> 4852 <!-- root node --> 4853 <feature> 4854 <rects> 4855 <_>11 0 3 8 -1.</_> 4856 <_>12 1 1 8 3.</_></rects> 4857 <tilted>1</tilted></feature> 4858 <threshold>-0.0349282510578632</threshold> 4859 <left_val>-0.4944998919963837</left_val> 4860 <right_val>0.0225478205829859</right_val></_></_> 4861 <_> 4862 <!-- tree 22 --> 4863 <_> 4864 <!-- root node --> 4865 <feature> 4866 <rects> 4867 <_>11 0 8 3 -1.</_> 4868 <_>10 1 8 1 3.</_></rects> 4869 <tilted>1</tilted></feature> 4870 <threshold>2.1728971041738987e-003</threshold> 4871 <left_val>-0.1555256992578507</left_val> 4872 <right_val>0.2013621926307678</right_val></_></_> 4873 <_> 4874 <!-- tree 23 --> 4875 <_> 4876 <!-- root node --> 4877 <feature> 4878 <rects> 4879 <_>17 1 4 12 -1.</_> 4880 <_>19 1 2 6 2.</_> 4881 <_>17 7 2 6 2.</_></rects> 4882 <tilted>0</tilted></feature> 4883 <threshold>0.0143873495981097</threshold> 4884 <left_val>0.0363481007516384</left_val> 4885 <right_val>-0.2946861982345581</right_val></_></_> 4886 <_> 4887 <!-- tree 24 --> 4888 <_> 4889 <!-- root node --> 4890 <feature> 4891 <rects> 4892 <_>8 4 6 4 -1.</_> 4893 <_>8 6 6 2 2.</_></rects> 4894 <tilted>0</tilted></feature> 4895 <threshold>6.7830132320523262e-003</threshold> 4896 <left_val>-0.0822483524680138</left_val> 4897 <right_val>0.3385750055313110</right_val></_></_> 4898 <_> 4899 <!-- tree 25 --> 4900 <_> 4901 <!-- root node --> 4902 <feature> 4903 <rects> 4904 <_>8 5 8 5 -1.</_> 4905 <_>8 5 4 5 2.</_></rects> 4906 <tilted>0</tilted></feature> 4907 <threshold>-0.0728838369250298</threshold> 4908 <left_val>-0.3457767069339752</left_val> 4909 <right_val>0.0196013208478689</right_val></_></_> 4910 <_> 4911 <!-- tree 26 --> 4912 <_> 4913 <!-- root node --> 4914 <feature> 4915 <rects> 4916 <_>8 4 6 13 -1.</_> 4917 <_>10 4 2 13 3.</_></rects> 4918 <tilted>0</tilted></feature> 4919 <threshold>-4.5158518478274345e-003</threshold> 4920 <left_val>0.1705949008464813</left_val> 4921 <right_val>-0.1974281966686249</right_val></_></_> 4922 <_> 4923 <!-- tree 27 --> 4924 <_> 4925 <!-- root node --> 4926 <feature> 4927 <rects> 4928 <_>16 3 6 8 -1.</_> 4929 <_>19 3 3 4 2.</_> 4930 <_>16 7 3 4 2.</_></rects> 4931 <tilted>0</tilted></feature> 4932 <threshold>-0.0137420799583197</threshold> 4933 <left_val>-0.2121434956789017</left_val> 4934 <right_val>0.0339536890387535</right_val></_></_> 4935 <_> 4936 <!-- tree 28 --> 4937 <_> 4938 <!-- root node --> 4939 <feature> 4940 <rects> 4941 <_>0 3 6 8 -1.</_> 4942 <_>0 3 3 4 2.</_> 4943 <_>3 7 3 4 2.</_></rects> 4944 <tilted>0</tilted></feature> 4945 <threshold>7.8056701458990574e-003</threshold> 4946 <left_val>0.0714266970753670</left_val> 4947 <right_val>-0.3422398865222931</right_val></_></_> 4948 <_> 4949 <!-- tree 29 --> 4950 <_> 4951 <!-- root node --> 4952 <feature> 4953 <rects> 4954 <_>10 9 12 4 -1.</_> 4955 <_>16 9 6 2 2.</_> 4956 <_>10 11 6 2 2.</_></rects> 4957 <tilted>0</tilted></feature> 4958 <threshold>0.0216499902307987</threshold> 4959 <left_val>-0.0619250498712063</left_val> 4960 <right_val>0.3726766109466553</right_val></_></_> 4961 <_> 4962 <!-- tree 30 --> 4963 <_> 4964 <!-- root node --> 4965 <feature> 4966 <rects> 4967 <_>1 2 9 12 -1.</_> 4968 <_>4 6 3 4 9.</_></rects> 4969 <tilted>0</tilted></feature> 4970 <threshold>-0.0677066370844841</threshold> 4971 <left_val>-0.3030416071414948</left_val> 4972 <right_val>0.0943575873970985</right_val></_></_> 4973 <_> 4974 <!-- tree 31 --> 4975 <_> 4976 <!-- root node --> 4977 <feature> 4978 <rects> 4979 <_>15 12 4 6 -1.</_> 4980 <_>15 12 2 6 2.</_></rects> 4981 <tilted>0</tilted></feature> 4982 <threshold>-2.1855749655514956e-003</threshold> 4983 <left_val>0.1083177030086517</left_val> 4984 <right_val>-0.1553054004907608</right_val></_></_> 4985 <_> 4986 <!-- tree 32 --> 4987 <_> 4988 <!-- root node --> 4989 <feature> 4990 <rects> 4991 <_>5 15 12 3 -1.</_> 4992 <_>11 15 6 3 2.</_></rects> 4993 <tilted>0</tilted></feature> 4994 <threshold>-2.5483060162514448e-003</threshold> 4995 <left_val>-0.2410344034433365</left_val> 4996 <right_val>0.0929162874817848</right_val></_></_> 4997 <_> 4998 <!-- tree 33 --> 4999 <_> 5000 <!-- root node --> 5001 <feature> 5002 <rects> 5003 <_>2 16 20 2 -1.</_> 5004 <_>2 16 10 2 2.</_></rects> 5005 <tilted>0</tilted></feature> 5006 <threshold>-0.0672078132629395</threshold> 5007 <left_val>-0.6625934839248657</left_val> 5008 <right_val>0.0160746499896050</right_val></_></_> 5009 <_> 5010 <!-- tree 34 --> 5011 <_> 5012 <!-- root node --> 5013 <feature> 5014 <rects> 5015 <_>1 8 10 6 -1.</_> 5016 <_>1 8 5 3 2.</_> 5017 <_>6 11 5 3 2.</_></rects> 5018 <tilted>0</tilted></feature> 5019 <threshold>0.0477993711829185</threshold> 5020 <left_val>-0.0444126389920712</left_val> 5021 <right_val>0.6056978702545166</right_val></_></_> 5022 <_> 5023 <!-- tree 35 --> 5024 <_> 5025 <!-- root node --> 5026 <feature> 5027 <rects> 5028 <_>6 3 16 14 -1.</_> 5029 <_>14 3 8 7 2.</_> 5030 <_>6 10 8 7 2.</_></rects> 5031 <tilted>0</tilted></feature> 5032 <threshold>-0.0911784172058105</threshold> 5033 <left_val>0.2476149052381516</left_val> 5034 <right_val>-0.0347624011337757</right_val></_></_> 5035 <_> 5036 <!-- tree 36 --> 5037 <_> 5038 <!-- root node --> 5039 <feature> 5040 <rects> 5041 <_>1 4 6 8 -1.</_> 5042 <_>1 4 3 4 2.</_> 5043 <_>4 8 3 4 2.</_></rects> 5044 <tilted>0</tilted></feature> 5045 <threshold>-3.8592480123043060e-003</threshold> 5046 <left_val>-0.2536674141883850</left_val> 5047 <right_val>0.1019499972462654</right_val></_></_> 5048 <_> 5049 <!-- tree 37 --> 5050 <_> 5051 <!-- root node --> 5052 <feature> 5053 <rects> 5054 <_>7 2 12 4 -1.</_> 5055 <_>7 3 12 2 2.</_></rects> 5056 <tilted>0</tilted></feature> 5057 <threshold>2.4100970476865768e-003</threshold> 5058 <left_val>-0.1213397011160851</left_val> 5059 <right_val>0.1976791024208069</right_val></_></_> 5060 <_> 5061 <!-- tree 38 --> 5062 <_> 5063 <!-- root node --> 5064 <feature> 5065 <rects> 5066 <_>1 9 6 9 -1.</_> 5067 <_>4 9 3 9 2.</_></rects> 5068 <tilted>0</tilted></feature> 5069 <threshold>-5.3831469267606735e-003</threshold> 5070 <left_val>0.1710394024848938</left_val> 5071 <right_val>-0.1618983000516892</right_val></_></_> 5072 <_> 5073 <!-- tree 39 --> 5074 <_> 5075 <!-- root node --> 5076 <feature> 5077 <rects> 5078 <_>12 14 10 4 -1.</_> 5079 <_>12 14 5 4 2.</_></rects> 5080 <tilted>0</tilted></feature> 5081 <threshold>9.1004222631454468e-003</threshold> 5082 <left_val>-0.0609215497970581</left_val> 5083 <right_val>0.1769524961709976</right_val></_></_> 5084 <_> 5085 <!-- tree 40 --> 5086 <_> 5087 <!-- root node --> 5088 <feature> 5089 <rects> 5090 <_>2 12 12 5 -1.</_> 5091 <_>5 12 6 5 2.</_></rects> 5092 <tilted>0</tilted></feature> 5093 <threshold>2.2724110167473555e-003</threshold> 5094 <left_val>-0.0904769673943520</left_val> 5095 <right_val>0.2744063138961792</right_val></_></_> 5096 <_> 5097 <!-- tree 41 --> 5098 <_> 5099 <!-- root node --> 5100 <feature> 5101 <rects> 5102 <_>15 12 6 6 -1.</_> 5103 <_>17 12 2 6 3.</_></rects> 5104 <tilted>0</tilted></feature> 5105 <threshold>-0.0806215628981590</threshold> 5106 <left_val>-0.8804556727409363</left_val> 5107 <right_val>0.0171932391822338</right_val></_></_> 5108 <_> 5109 <!-- tree 42 --> 5110 <_> 5111 <!-- root node --> 5112 <feature> 5113 <rects> 5114 <_>1 12 6 6 -1.</_> 5115 <_>3 12 2 6 3.</_></rects> 5116 <tilted>0</tilted></feature> 5117 <threshold>3.8965709973126650e-003</threshold> 5118 <left_val>-0.1703792065382004</left_val> 5119 <right_val>0.1797958016395569</right_val></_></_> 5120 <_> 5121 <!-- tree 43 --> 5122 <_> 5123 <!-- root node --> 5124 <feature> 5125 <rects> 5126 <_>8 12 6 6 -1.</_> 5127 <_>10 12 2 6 3.</_></rects> 5128 <tilted>0</tilted></feature> 5129 <threshold>-4.3093641288578510e-003</threshold> 5130 <left_val>-0.2938205003738403</left_val> 5131 <right_val>0.0863174721598625</right_val></_></_></trees> 5132 <stage_threshold>-1.1653599739074707</stage_threshold> 5133 <parent>8</parent> 5134 <next>-1</next></_> 5135 <_> 5136 <!-- stage 10 --> 5137 <trees> 5138 <_> 5139 <!-- tree 0 --> 5140 <_> 5141 <!-- root node --> 5142 <feature> 5143 <rects> 5144 <_>5 2 12 16 -1.</_> 5145 <_>5 10 12 8 2.</_></rects> 5146 <tilted>0</tilted></feature> 5147 <threshold>-0.0631161928176880</threshold> 5148 <left_val>0.5551251769065857</left_val> 5149 <right_val>-0.3599770963191986</right_val></_></_> 5150 <_> 5151 <!-- tree 1 --> 5152 <_> 5153 <!-- root node --> 5154 <feature> 5155 <rects> 5156 <_>4 2 18 14 -1.</_> 5157 <_>4 9 18 7 2.</_></rects> 5158 <tilted>0</tilted></feature> 5159 <threshold>0.0843502879142761</threshold> 5160 <left_val>-0.1253127008676529</left_val> 5161 <right_val>0.5356768965721130</right_val></_></_> 5162 <_> 5163 <!-- tree 2 --> 5164 <_> 5165 <!-- root node --> 5166 <feature> 5167 <rects> 5168 <_>5 4 12 14 -1.</_> 5169 <_>5 11 12 7 2.</_></rects> 5170 <tilted>0</tilted></feature> 5171 <threshold>-0.2139073014259338</threshold> 5172 <left_val>0.7515686154365540</left_val> 5173 <right_val>-0.0882708728313446</right_val></_></_> 5174 <_> 5175 <!-- tree 3 --> 5176 <_> 5177 <!-- root node --> 5178 <feature> 5179 <rects> 5180 <_>2 5 20 8 -1.</_> 5181 <_>7 5 10 8 2.</_></rects> 5182 <tilted>0</tilted></feature> 5183 <threshold>-0.0297449808567762</threshold> 5184 <left_val>0.2010620981454849</left_val> 5185 <right_val>-0.1210668981075287</right_val></_></_> 5186 <_> 5187 <!-- tree 4 --> 5188 <_> 5189 <!-- root node --> 5190 <feature> 5191 <rects> 5192 <_>8 0 10 7 -1.</_> 5193 <_>8 0 5 7 2.</_></rects> 5194 <tilted>1</tilted></feature> 5195 <threshold>-0.1198768019676209</threshold> 5196 <left_val>0.6469219923019409</left_val> 5197 <right_val>-0.0777476131916046</right_val></_></_> 5198 <_> 5199 <!-- tree 5 --> 5200 <_> 5201 <!-- root node --> 5202 <feature> 5203 <rects> 5204 <_>12 0 5 8 -1.</_> 5205 <_>12 0 5 4 2.</_></rects> 5206 <tilted>1</tilted></feature> 5207 <threshold>3.0843529384583235e-003</threshold> 5208 <left_val>-0.0630676373839378</left_val> 5209 <right_val>0.0778890773653984</right_val></_></_> 5210 <_> 5211 <!-- tree 6 --> 5212 <_> 5213 <!-- root node --> 5214 <feature> 5215 <rects> 5216 <_>7 4 6 13 -1.</_> 5217 <_>10 4 3 13 2.</_></rects> 5218 <tilted>0</tilted></feature> 5219 <threshold>-4.5560211874544621e-003</threshold> 5220 <left_val>0.1897227019071579</left_val> 5221 <right_val>-0.1992907971143723</right_val></_></_> 5222 <_> 5223 <!-- tree 7 --> 5224 <_> 5225 <!-- root node --> 5226 <feature> 5227 <rects> 5228 <_>7 14 8 4 -1.</_> 5229 <_>7 16 8 2 2.</_></rects> 5230 <tilted>0</tilted></feature> 5231 <threshold>4.4629329931922257e-004</threshold> 5232 <left_val>0.1405158936977387</left_val> 5233 <right_val>-0.3029241859912872</right_val></_></_> 5234 <_> 5235 <!-- tree 8 --> 5236 <_> 5237 <!-- root node --> 5238 <feature> 5239 <rects> 5240 <_>8 0 3 12 -1.</_> 5241 <_>9 0 1 12 3.</_></rects> 5242 <tilted>0</tilted></feature> 5243 <threshold>-6.4954371191561222e-003</threshold> 5244 <left_val>0.3194229006767273</left_val> 5245 <right_val>-0.1107200011610985</right_val></_></_> 5246 <_> 5247 <!-- tree 9 --> 5248 <_> 5249 <!-- root node --> 5250 <feature> 5251 <rects> 5252 <_>11 6 3 12 -1.</_> 5253 <_>12 6 1 12 3.</_></rects> 5254 <tilted>0</tilted></feature> 5255 <threshold>-2.1751760505139828e-003</threshold> 5256 <left_val>0.1647725999355316</left_val> 5257 <right_val>-0.0804247781634331</right_val></_></_> 5258 <_> 5259 <!-- tree 10 --> 5260 <_> 5261 <!-- root node --> 5262 <feature> 5263 <rects> 5264 <_>4 0 3 12 -1.</_> 5265 <_>4 4 3 4 3.</_></rects> 5266 <tilted>0</tilted></feature> 5267 <threshold>6.5875840373337269e-003</threshold> 5268 <left_val>0.1471655070781708</left_val> 5269 <right_val>-0.3019815087318420</right_val></_></_> 5270 <_> 5271 <!-- tree 11 --> 5272 <_> 5273 <!-- root node --> 5274 <feature> 5275 <rects> 5276 <_>11 3 3 15 -1.</_> 5277 <_>12 3 1 15 3.</_></rects> 5278 <tilted>0</tilted></feature> 5279 <threshold>0.0207012090831995</threshold> 5280 <left_val>-0.0429966896772385</left_val> 5281 <right_val>0.4012382030487061</right_val></_></_> 5282 <_> 5283 <!-- tree 12 --> 5284 <_> 5285 <!-- root node --> 5286 <feature> 5287 <rects> 5288 <_>5 12 7 6 -1.</_> 5289 <_>5 14 7 2 3.</_></rects> 5290 <tilted>0</tilted></feature> 5291 <threshold>2.5877119041979313e-003</threshold> 5292 <left_val>0.1263054013252258</left_val> 5293 <right_val>-0.2751812040805817</right_val></_></_> 5294 <_> 5295 <!-- tree 13 --> 5296 <_> 5297 <!-- root node --> 5298 <feature> 5299 <rects> 5300 <_>11 6 3 12 -1.</_> 5301 <_>12 6 1 12 3.</_></rects> 5302 <tilted>0</tilted></feature> 5303 <threshold>-0.0105450795963407</threshold> 5304 <left_val>0.1963762938976288</left_val> 5305 <right_val>-0.0397727787494659</right_val></_></_> 5306 <_> 5307 <!-- tree 14 --> 5308 <_> 5309 <!-- root node --> 5310 <feature> 5311 <rects> 5312 <_>8 6 3 12 -1.</_> 5313 <_>9 6 1 12 3.</_></rects> 5314 <tilted>0</tilted></feature> 5315 <threshold>6.2396968714892864e-003</threshold> 5316 <left_val>-0.0835634097456932</left_val> 5317 <right_val>0.3665548861026764</right_val></_></_> 5318 <_> 5319 <!-- tree 15 --> 5320 <_> 5321 <!-- root node --> 5322 <feature> 5323 <rects> 5324 <_>5 16 12 2 -1.</_> 5325 <_>5 16 6 2 2.</_></rects> 5326 <tilted>0</tilted></feature> 5327 <threshold>0.0144586702808738</threshold> 5328 <left_val>0.0633016973733902</left_val> 5329 <right_val>-0.5849890708923340</right_val></_></_> 5330 <_> 5331 <!-- tree 16 --> 5332 <_> 5333 <!-- root node --> 5334 <feature> 5335 <rects> 5336 <_>1 12 20 6 -1.</_> 5337 <_>6 12 10 6 2.</_></rects> 5338 <tilted>0</tilted></feature> 5339 <threshold>0.0312634408473969</threshold> 5340 <left_val>-0.1067527011036873</left_val> 5341 <right_val>0.3485285937786102</right_val></_></_> 5342 <_> 5343 <!-- tree 17 --> 5344 <_> 5345 <!-- root node --> 5346 <feature> 5347 <rects> 5348 <_>8 11 9 4 -1.</_> 5349 <_>11 11 3 4 3.</_></rects> 5350 <tilted>0</tilted></feature> 5351 <threshold>1.4865349512547255e-003</threshold> 5352 <left_val>0.1370967030525208</left_val> 5353 <right_val>-0.1373165994882584</right_val></_></_> 5354 <_> 5355 <!-- tree 18 --> 5356 <_> 5357 <!-- root node --> 5358 <feature> 5359 <rects> 5360 <_>5 11 9 4 -1.</_> 5361 <_>8 11 3 4 3.</_></rects> 5362 <tilted>0</tilted></feature> 5363 <threshold>-1.7898039368446916e-004</threshold> 5364 <left_val>0.1783964931964874</left_val> 5365 <right_val>-0.2575171887874603</right_val></_></_> 5366 <_> 5367 <!-- tree 19 --> 5368 <_> 5369 <!-- root node --> 5370 <feature> 5371 <rects> 5372 <_>11 6 9 12 -1.</_> 5373 <_>14 10 3 4 9.</_></rects> 5374 <tilted>0</tilted></feature> 5375 <threshold>0.0777144730091095</threshold> 5376 <left_val>0.0570818483829498</left_val> 5377 <right_val>-0.2427340000867844</right_val></_></_> 5378 <_> 5379 <!-- tree 20 --> 5380 <_> 5381 <!-- root node --> 5382 <feature> 5383 <rects> 5384 <_>2 6 9 12 -1.</_> 5385 <_>5 10 3 4 9.</_></rects> 5386 <tilted>0</tilted></feature> 5387 <threshold>0.0222282707691193</threshold> 5388 <left_val>0.1459379047155380</left_val> 5389 <right_val>-0.2099460959434509</right_val></_></_> 5390 <_> 5391 <!-- tree 21 --> 5392 <_> 5393 <!-- root node --> 5394 <feature> 5395 <rects> 5396 <_>5 9 12 2 -1.</_> 5397 <_>5 10 12 1 2.</_></rects> 5398 <tilted>0</tilted></feature> 5399 <threshold>1.6969949938356876e-003</threshold> 5400 <left_val>-0.1441888958215714</left_val> 5401 <right_val>0.2737540900707245</right_val></_></_> 5402 <_> 5403 <!-- tree 22 --> 5404 <_> 5405 <!-- root node --> 5406 <feature> 5407 <rects> 5408 <_>0 3 16 3 -1.</_> 5409 <_>4 3 8 3 2.</_></rects> 5410 <tilted>0</tilted></feature> 5411 <threshold>-0.0200234707444906</threshold> 5412 <left_val>-0.3755624890327454</left_val> 5413 <right_val>0.0816276967525482</right_val></_></_> 5414 <_> 5415 <!-- tree 23 --> 5416 <_> 5417 <!-- root node --> 5418 <feature> 5419 <rects> 5420 <_>11 6 3 12 -1.</_> 5421 <_>12 6 1 12 3.</_></rects> 5422 <tilted>0</tilted></feature> 5423 <threshold>3.8644319865852594e-003</threshold> 5424 <left_val>-0.0644904300570488</left_val> 5425 <right_val>0.1592168956995010</right_val></_></_> 5426 <_> 5427 <!-- tree 24 --> 5428 <_> 5429 <!-- root node --> 5430 <feature> 5431 <rects> 5432 <_>0 2 14 3 -1.</_> 5433 <_>0 3 14 1 3.</_></rects> 5434 <tilted>0</tilted></feature> 5435 <threshold>-3.0527650378644466e-003</threshold> 5436 <left_val>0.2675152122974396</left_val> 5437 <right_val>-0.1053185015916824</right_val></_></_> 5438 <_> 5439 <!-- tree 25 --> 5440 <_> 5441 <!-- root node --> 5442 <feature> 5443 <rects> 5444 <_>10 2 12 3 -1.</_> 5445 <_>10 3 12 1 3.</_></rects> 5446 <tilted>0</tilted></feature> 5447 <threshold>5.6112320162355900e-003</threshold> 5448 <left_val>-0.0685677304863930</left_val> 5449 <right_val>0.2123499065637589</right_val></_></_> 5450 <_> 5451 <!-- tree 26 --> 5452 <_> 5453 <!-- root node --> 5454 <feature> 5455 <rects> 5456 <_>5 14 12 3 -1.</_> 5457 <_>11 14 6 3 2.</_></rects> 5458 <tilted>0</tilted></feature> 5459 <threshold>4.6622268855571747e-003</threshold> 5460 <left_val>0.1425414979457855</left_val> 5461 <right_val>-0.2089271992444992</right_val></_></_> 5462 <_> 5463 <!-- tree 27 --> 5464 <_> 5465 <!-- root node --> 5466 <feature> 5467 <rects> 5468 <_>8 13 8 3 -1.</_> 5469 <_>8 13 4 3 2.</_></rects> 5470 <tilted>0</tilted></feature> 5471 <threshold>2.4710448924452066e-003</threshold> 5472 <left_val>0.0726143866777420</left_val> 5473 <right_val>-0.1883390992879868</right_val></_></_> 5474 <_> 5475 <!-- tree 28 --> 5476 <_> 5477 <!-- root node --> 5478 <feature> 5479 <rects> 5480 <_>9 2 4 8 -1.</_> 5481 <_>9 6 4 4 2.</_></rects> 5482 <tilted>0</tilted></feature> 5483 <threshold>0.0126550002023578</threshold> 5484 <left_val>-0.0836052596569061</left_val> 5485 <right_val>0.4326224029064179</right_val></_></_> 5486 <_> 5487 <!-- tree 29 --> 5488 <_> 5489 <!-- root node --> 5490 <feature> 5491 <rects> 5492 <_>15 1 3 11 -1.</_> 5493 <_>16 2 1 11 3.</_></rects> 5494 <tilted>1</tilted></feature> 5495 <threshold>-0.0177245195955038</threshold> 5496 <left_val>0.1743223071098328</left_val> 5497 <right_val>-0.0284798201173544</right_val></_></_> 5498 <_> 5499 <!-- tree 30 --> 5500 <_> 5501 <!-- root node --> 5502 <feature> 5503 <rects> 5504 <_>8 1 10 4 -1.</_> 5505 <_>7 2 10 2 2.</_></rects> 5506 <tilted>1</tilted></feature> 5507 <threshold>-7.2321272455155849e-004</threshold> 5508 <left_val>0.1534397006034851</left_val> 5509 <right_val>-0.2401217967271805</right_val></_></_> 5510 <_> 5511 <!-- tree 31 --> 5512 <_> 5513 <!-- root node --> 5514 <feature> 5515 <rects> 5516 <_>5 5 15 3 -1.</_> 5517 <_>5 6 15 1 3.</_></rects> 5518 <tilted>0</tilted></feature> 5519 <threshold>-6.2155709601938725e-003</threshold> 5520 <left_val>0.2516668140888214</left_val> 5521 <right_val>-0.0855198875069618</right_val></_></_> 5522 <_> 5523 <!-- tree 32 --> 5524 <_> 5525 <!-- root node --> 5526 <feature> 5527 <rects> 5528 <_>5 1 9 5 -1.</_> 5529 <_>8 1 3 5 3.</_></rects> 5530 <tilted>0</tilted></feature> 5531 <threshold>0.0416327714920044</threshold> 5532 <left_val>0.0505938008427620</left_val> 5533 <right_val>-0.6096544265747070</right_val></_></_> 5534 <_> 5535 <!-- tree 33 --> 5536 <_> 5537 <!-- root node --> 5538 <feature> 5539 <rects> 5540 <_>14 0 4 18 -1.</_> 5541 <_>15 0 2 18 2.</_></rects> 5542 <tilted>0</tilted></feature> 5543 <threshold>0.0239183008670807</threshold> 5544 <left_val>-0.0368096604943275</left_val> 5545 <right_val>0.3905547857284546</right_val></_></_> 5546 <_> 5547 <!-- tree 34 --> 5548 <_> 5549 <!-- root node --> 5550 <feature> 5551 <rects> 5552 <_>6 0 5 16 -1.</_> 5553 <_>6 8 5 8 2.</_></rects> 5554 <tilted>0</tilted></feature> 5555 <threshold>-7.4353138916194439e-003</threshold> 5556 <left_val>0.1501857936382294</left_val> 5557 <right_val>-0.1862781941890717</right_val></_></_> 5558 <_> 5559 <!-- tree 35 --> 5560 <_> 5561 <!-- root node --> 5562 <feature> 5563 <rects> 5564 <_>12 4 4 8 -1.</_> 5565 <_>12 8 4 4 2.</_></rects> 5566 <tilted>0</tilted></feature> 5567 <threshold>-0.0205714497715235</threshold> 5568 <left_val>-0.2857455909252167</left_val> 5569 <right_val>0.0483023785054684</right_val></_></_> 5570 <_> 5571 <!-- tree 36 --> 5572 <_> 5573 <!-- root node --> 5574 <feature> 5575 <rects> 5576 <_>11 4 10 2 -1.</_> 5577 <_>11 4 10 1 2.</_></rects> 5578 <tilted>1</tilted></feature> 5579 <threshold>-7.3831980116665363e-003</threshold> 5580 <left_val>0.3668056130409241</left_val> 5581 <right_val>-0.0960677564144135</right_val></_></_> 5582 <_> 5583 <!-- tree 37 --> 5584 <_> 5585 <!-- root node --> 5586 <feature> 5587 <rects> 5588 <_>10 0 12 3 -1.</_> 5589 <_>14 0 4 3 3.</_></rects> 5590 <tilted>0</tilted></feature> 5591 <threshold>9.7222924232482910e-003</threshold> 5592 <left_val>0.0638980194926262</left_val> 5593 <right_val>-0.1726257950067520</right_val></_></_> 5594 <_> 5595 <!-- tree 38 --> 5596 <_> 5597 <!-- root node --> 5598 <feature> 5599 <rects> 5600 <_>0 2 20 13 -1.</_> 5601 <_>5 2 10 13 2.</_></rects> 5602 <tilted>0</tilted></feature> 5603 <threshold>-0.0218076296150684</threshold> 5604 <left_val>0.1802726984024048</left_val> 5605 <right_val>-0.1910911947488785</right_val></_></_> 5606 <_> 5607 <!-- tree 39 --> 5608 <_> 5609 <!-- root node --> 5610 <feature> 5611 <rects> 5612 <_>12 4 4 8 -1.</_> 5613 <_>12 8 4 4 2.</_></rects> 5614 <tilted>0</tilted></feature> 5615 <threshold>0.0581476688385010</threshold> 5616 <left_val>8.5709961131215096e-003</left_val> 5617 <right_val>-0.4625082910060883</right_val></_></_> 5618 <_> 5619 <!-- tree 40 --> 5620 <_> 5621 <!-- root node --> 5622 <feature> 5623 <rects> 5624 <_>6 4 4 8 -1.</_> 5625 <_>6 8 4 4 2.</_></rects> 5626 <tilted>0</tilted></feature> 5627 <threshold>-9.4539504498243332e-003</threshold> 5628 <left_val>-0.2890872955322266</left_val> 5629 <right_val>0.1142157018184662</right_val></_></_> 5630 <_> 5631 <!-- tree 41 --> 5632 <_> 5633 <!-- root node --> 5634 <feature> 5635 <rects> 5636 <_>11 6 3 12 -1.</_> 5637 <_>12 6 1 12 3.</_></rects> 5638 <tilted>0</tilted></feature> 5639 <threshold>-0.0210807099938393</threshold> 5640 <left_val>0.3757005035877228</left_val> 5641 <right_val>-0.0255910307168961</right_val></_></_> 5642 <_> 5643 <!-- tree 42 --> 5644 <_> 5645 <!-- root node --> 5646 <feature> 5647 <rects> 5648 <_>8 6 3 12 -1.</_> 5649 <_>9 6 1 12 3.</_></rects> 5650 <tilted>0</tilted></feature> 5651 <threshold>-4.0629571303725243e-003</threshold> 5652 <left_val>0.2714667022228241</left_val> 5653 <right_val>-0.1084538027644157</right_val></_></_> 5654 <_> 5655 <!-- tree 43 --> 5656 <_> 5657 <!-- root node --> 5658 <feature> 5659 <rects> 5660 <_>7 1 14 2 -1.</_> 5661 <_>7 1 7 2 2.</_></rects> 5662 <tilted>0</tilted></feature> 5663 <threshold>-0.1282662004232407</threshold> 5664 <left_val>1.</left_val> 5665 <right_val>-1.0962430387735367e-003</right_val></_></_></trees> 5666 <stage_threshold>-0.9428492784500122</stage_threshold> 5667 <parent>9</parent> 5668 <next>-1</next></_> 5669 <_> 5670 <!-- stage 11 --> 5671 <trees> 5672 <_> 5673 <!-- tree 0 --> 5674 <_> 5675 <!-- root node --> 5676 <feature> 5677 <rects> 5678 <_>4 8 14 10 -1.</_> 5679 <_>4 13 14 5 2.</_></rects> 5680 <tilted>0</tilted></feature> 5681 <threshold>-0.1266229003667831</threshold> 5682 <left_val>0.6226822137832642</left_val> 5683 <right_val>-0.1481045931577683</right_val></_></_> 5684 <_> 5685 <!-- tree 1 --> 5686 <_> 5687 <!-- root node --> 5688 <feature> 5689 <rects> 5690 <_>11 14 9 4 -1.</_> 5691 <_>14 14 3 4 3.</_></rects> 5692 <tilted>0</tilted></feature> 5693 <threshold>-7.0846290327608585e-003</threshold> 5694 <left_val>0.2013377994298935</left_val> 5695 <right_val>-0.1772895008325577</right_val></_></_> 5696 <_> 5697 <!-- tree 2 --> 5698 <_> 5699 <!-- root node --> 5700 <feature> 5701 <rects> 5702 <_>1 7 17 8 -1.</_> 5703 <_>1 11 17 4 2.</_></rects> 5704 <tilted>0</tilted></feature> 5705 <threshold>0.1145920008420944</threshold> 5706 <left_val>-0.0889758467674255</left_val> 5707 <right_val>0.5739554166793823</right_val></_></_> 5708 <_> 5709 <!-- tree 3 --> 5710 <_> 5711 <!-- root node --> 5712 <feature> 5713 <rects> 5714 <_>10 12 7 6 -1.</_> 5715 <_>10 15 7 3 2.</_></rects> 5716 <tilted>0</tilted></feature> 5717 <threshold>3.3472150098532438e-003</threshold> 5718 <left_val>0.0757082030177116</left_val> 5719 <right_val>-0.2822217941284180</right_val></_></_> 5720 <_> 5721 <!-- tree 4 --> 5722 <_> 5723 <!-- root node --> 5724 <feature> 5725 <rects> 5726 <_>10 1 8 9 -1.</_> 5727 <_>10 1 4 9 2.</_></rects> 5728 <tilted>1</tilted></feature> 5729 <threshold>0.0519242286682129</threshold> 5730 <left_val>-0.1394848972558975</left_val> 5731 <right_val>0.2568109035491943</right_val></_></_> 5732 <_> 5733 <!-- tree 5 --> 5734 <_> 5735 <!-- root node --> 5736 <feature> 5737 <rects> 5738 <_>11 2 4 11 -1.</_> 5739 <_>11 2 2 11 2.</_></rects> 5740 <tilted>1</tilted></feature> 5741 <threshold>-0.0413439087569714</threshold> 5742 <left_val>0.2241418063640595</left_val> 5743 <right_val>-0.0436536706984043</right_val></_></_> 5744 <_> 5745 <!-- tree 6 --> 5746 <_> 5747 <!-- root node --> 5748 <feature> 5749 <rects> 5750 <_>6 9 4 9 -1.</_> 5751 <_>8 9 2 9 2.</_></rects> 5752 <tilted>0</tilted></feature> 5753 <threshold>-0.0320564694702625</threshold> 5754 <left_val>-0.5940976142883301</left_val> 5755 <right_val>0.0518911592662334</right_val></_></_> 5756 <_> 5757 <!-- tree 7 --> 5758 <_> 5759 <!-- root node --> 5760 <feature> 5761 <rects> 5762 <_>8 3 12 4 -1.</_> 5763 <_>14 3 6 2 2.</_> 5764 <_>8 5 6 2 2.</_></rects> 5765 <tilted>0</tilted></feature> 5766 <threshold>-4.0590870194137096e-003</threshold> 5767 <left_val>0.1640208065509796</left_val> 5768 <right_val>-0.1552838981151581</right_val></_></_> 5769 <_> 5770 <!-- tree 8 --> 5771 <_> 5772 <!-- root node --> 5773 <feature> 5774 <rects> 5775 <_>5 14 7 4 -1.</_> 5776 <_>5 16 7 2 2.</_></rects> 5777 <tilted>0</tilted></feature> 5778 <threshold>-9.1876718215644360e-005</threshold> 5779 <left_val>0.1058787032961845</left_val> 5780 <right_val>-0.2826159894466400</right_val></_></_> 5781 <_> 5782 <!-- tree 9 --> 5783 <_> 5784 <!-- root node --> 5785 <feature> 5786 <rects> 5787 <_>13 0 4 13 -1.</_> 5788 <_>13 0 2 13 2.</_></rects> 5789 <tilted>1</tilted></feature> 5790 <threshold>0.0283582191914320</threshold> 5791 <left_val>0.0573840290307999</left_val> 5792 <right_val>-0.0670941472053528</right_val></_></_> 5793 <_> 5794 <!-- tree 10 --> 5795 <_> 5796 <!-- root node --> 5797 <feature> 5798 <rects> 5799 <_>9 0 13 4 -1.</_> 5800 <_>9 0 13 2 2.</_></rects> 5801 <tilted>1</tilted></feature> 5802 <threshold>-0.0746625214815140</threshold> 5803 <left_val>0.5691670775413513</left_val> 5804 <right_val>-0.0487856417894363</right_val></_></_> 5805 <_> 5806 <!-- tree 11 --> 5807 <_> 5808 <!-- root node --> 5809 <feature> 5810 <rects> 5811 <_>12 9 4 9 -1.</_> 5812 <_>12 12 4 3 3.</_></rects> 5813 <tilted>0</tilted></feature> 5814 <threshold>-3.6556490231305361e-003</threshold> 5815 <left_val>0.2236949056386948</left_val> 5816 <right_val>-0.1220214962959290</right_val></_></_> 5817 <_> 5818 <!-- tree 12 --> 5819 <_> 5820 <!-- root node --> 5821 <feature> 5822 <rects> 5823 <_>7 4 12 2 -1.</_> 5824 <_>7 4 12 1 2.</_></rects> 5825 <tilted>1</tilted></feature> 5826 <threshold>3.1778779812157154e-003</threshold> 5827 <left_val>0.1224031969904900</left_val> 5828 <right_val>-0.2768172919750214</right_val></_></_> 5829 <_> 5830 <!-- tree 13 --> 5831 <_> 5832 <!-- root node --> 5833 <feature> 5834 <rects> 5835 <_>12 5 10 6 -1.</_> 5836 <_>17 5 5 3 2.</_> 5837 <_>12 8 5 3 2.</_></rects> 5838 <tilted>0</tilted></feature> 5839 <threshold>0.0380443409085274</threshold> 5840 <left_val>0.0232164002954960</left_val> 5841 <right_val>-0.5373290181159973</right_val></_></_> 5842 <_> 5843 <!-- tree 14 --> 5844 <_> 5845 <!-- root node --> 5846 <feature> 5847 <rects> 5848 <_>1 0 17 3 -1.</_> 5849 <_>1 1 17 1 3.</_></rects> 5850 <tilted>0</tilted></feature> 5851 <threshold>8.7831392884254456e-003</threshold> 5852 <left_val>-0.0743375569581985</left_val> 5853 <right_val>0.3285123109817505</right_val></_></_> 5854 <_> 5855 <!-- tree 15 --> 5856 <_> 5857 <!-- root node --> 5858 <feature> 5859 <rects> 5860 <_>15 4 6 8 -1.</_> 5861 <_>18 4 3 4 2.</_> 5862 <_>15 8 3 4 2.</_></rects> 5863 <tilted>0</tilted></feature> 5864 <threshold>-5.9818099252879620e-003</threshold> 5865 <left_val>-0.1950477957725525</left_val> 5866 <right_val>0.0669768527150154</right_val></_></_> 5867 <_> 5868 <!-- tree 16 --> 5869 <_> 5870 <!-- root node --> 5871 <feature> 5872 <rects> 5873 <_>3 2 4 14 -1.</_> 5874 <_>3 2 2 7 2.</_> 5875 <_>5 9 2 7 2.</_></rects> 5876 <tilted>0</tilted></feature> 5877 <threshold>-1.6369449440389872e-003</threshold> 5878 <left_val>0.1467480063438416</left_val> 5879 <right_val>-0.1802414953708649</right_val></_></_> 5880 <_> 5881 <!-- tree 17 --> 5882 <_> 5883 <!-- root node --> 5884 <feature> 5885 <rects> 5886 <_>14 8 6 4 -1.</_> 5887 <_>14 8 6 2 2.</_></rects> 5888 <tilted>1</tilted></feature> 5889 <threshold>-0.0991931334137917</threshold> 5890 <left_val>0.6836351752281189</left_val> 5891 <right_val>-0.0296527203172445</right_val></_></_> 5892 <_> 5893 <!-- tree 18 --> 5894 <_> 5895 <!-- root node --> 5896 <feature> 5897 <rects> 5898 <_>8 8 4 6 -1.</_> 5899 <_>8 8 2 6 2.</_></rects> 5900 <tilted>1</tilted></feature> 5901 <threshold>-0.0103520099073648</threshold> 5902 <left_val>0.3422530889511108</left_val> 5903 <right_val>-0.0811415389180183</right_val></_></_> 5904 <_> 5905 <!-- tree 19 --> 5906 <_> 5907 <!-- root node --> 5908 <feature> 5909 <rects> 5910 <_>12 1 4 16 -1.</_> 5911 <_>14 1 2 8 2.</_> 5912 <_>12 9 2 8 2.</_></rects> 5913 <tilted>0</tilted></feature> 5914 <threshold>0.0256379097700119</threshold> 5915 <left_val>0.0514169000089169</left_val> 5916 <right_val>-0.1669799983501434</right_val></_></_> 5917 <_> 5918 <!-- tree 20 --> 5919 <_> 5920 <!-- root node --> 5921 <feature> 5922 <rects> 5923 <_>7 0 6 8 -1.</_> 5924 <_>7 0 3 4 2.</_> 5925 <_>10 4 3 4 2.</_></rects> 5926 <tilted>0</tilted></feature> 5927 <threshold>-1.2416959507390857e-003</threshold> 5928 <left_val>0.1248890012502670</left_val> 5929 <right_val>-0.2134622037410736</right_val></_></_> 5930 <_> 5931 <!-- tree 21 --> 5932 <_> 5933 <!-- root node --> 5934 <feature> 5935 <rects> 5936 <_>8 12 6 5 -1.</_> 5937 <_>8 12 3 5 2.</_></rects> 5938 <tilted>0</tilted></feature> 5939 <threshold>1.5018839621916413e-003</threshold> 5940 <left_val>0.0979343876242638</left_val> 5941 <right_val>-0.2638502120971680</right_val></_></_> 5942 <_> 5943 <!-- tree 22 --> 5944 <_> 5945 <!-- root node --> 5946 <feature> 5947 <rects> 5948 <_>7 5 6 12 -1.</_> 5949 <_>7 5 3 6 2.</_> 5950 <_>10 11 3 6 2.</_></rects> 5951 <tilted>0</tilted></feature> 5952 <threshold>-0.0327036790549755</threshold> 5953 <left_val>0.5750488042831421</left_val> 5954 <right_val>-0.0458754003047943</right_val></_></_> 5955 <_> 5956 <!-- tree 23 --> 5957 <_> 5958 <!-- root node --> 5959 <feature> 5960 <rects> 5961 <_>15 5 6 6 -1.</_> 5962 <_>15 5 3 6 2.</_></rects> 5963 <tilted>1</tilted></feature> 5964 <threshold>0.0212971698492765</threshold> 5965 <left_val>0.0610693804919720</left_val> 5966 <right_val>-0.2248021960258484</right_val></_></_> 5967 <_> 5968 <!-- tree 24 --> 5969 <_> 5970 <!-- root node --> 5971 <feature> 5972 <rects> 5973 <_>6 10 3 8 -1.</_> 5974 <_>6 14 3 4 2.</_></rects> 5975 <tilted>0</tilted></feature> 5976 <threshold>-8.8358018547296524e-004</threshold> 5977 <left_val>0.0956257879734039</left_val> 5978 <right_val>-0.2756459116935730</right_val></_></_> 5979 <_> 5980 <!-- tree 25 --> 5981 <_> 5982 <!-- root node --> 5983 <feature> 5984 <rects> 5985 <_>4 0 14 3 -1.</_> 5986 <_>4 1 14 1 3.</_></rects> 5987 <tilted>0</tilted></feature> 5988 <threshold>-3.6556860432028770e-003</threshold> 5989 <left_val>0.2410708963871002</left_val> 5990 <right_val>-0.1035951972007752</right_val></_></_> 5991 <_> 5992 <!-- tree 26 --> 5993 <_> 5994 <!-- root node --> 5995 <feature> 5996 <rects> 5997 <_>0 9 8 3 -1.</_> 5998 <_>4 9 4 3 2.</_></rects> 5999 <tilted>0</tilted></feature> 6000 <threshold>0.0343004614114761</threshold> 6001 <left_val>0.0390627011656761</left_val> 6002 <right_val>-0.6244534850120544</right_val></_></_> 6003 <_> 6004 <!-- tree 27 --> 6005 <_> 6006 <!-- root node --> 6007 <feature> 6008 <rects> 6009 <_>9 3 4 6 -1.</_> 6010 <_>9 6 4 3 2.</_></rects> 6011 <tilted>0</tilted></feature> 6012 <threshold>0.0114923501387239</threshold> 6013 <left_val>-0.0692460536956787</left_val> 6014 <right_val>0.3825817108154297</right_val></_></_> 6015 <_> 6016 <!-- tree 28 --> 6017 <_> 6018 <!-- root node --> 6019 <feature> 6020 <rects> 6021 <_>3 0 10 10 -1.</_> 6022 <_>3 0 5 5 2.</_> 6023 <_>8 5 5 5 2.</_></rects> 6024 <tilted>0</tilted></feature> 6025 <threshold>-3.1294790096580982e-003</threshold> 6026 <left_val>0.1127336993813515</left_val> 6027 <right_val>-0.2312251031398773</right_val></_></_> 6028 <_> 6029 <!-- tree 29 --> 6030 <_> 6031 <!-- root node --> 6032 <feature> 6033 <rects> 6034 <_>5 13 12 4 -1.</_> 6035 <_>5 13 6 4 2.</_></rects> 6036 <tilted>0</tilted></feature> 6037 <threshold>-4.0945871733129025e-003</threshold> 6038 <left_val>-0.1719598025083542</left_val> 6039 <right_val>0.1311265975236893</right_val></_></_> 6040 <_> 6041 <!-- tree 30 --> 6042 <_> 6043 <!-- root node --> 6044 <feature> 6045 <rects> 6046 <_>6 12 10 3 -1.</_> 6047 <_>11 12 5 3 2.</_></rects> 6048 <tilted>0</tilted></feature> 6049 <threshold>-3.0921408906579018e-003</threshold> 6050 <left_val>-0.2546038925647736</left_val> 6051 <right_val>0.0966591611504555</right_val></_></_> 6052 <_> 6053 <!-- tree 31 --> 6054 <_> 6055 <!-- root node --> 6056 <feature> 6057 <rects> 6058 <_>12 15 10 3 -1.</_> 6059 <_>12 15 5 3 2.</_></rects> 6060 <tilted>0</tilted></feature> 6061 <threshold>-0.0416721291840076</threshold> 6062 <left_val>0.2732776999473572</left_val> 6063 <right_val>-0.0630946233868599</right_val></_></_> 6064 <_> 6065 <!-- tree 32 --> 6066 <_> 6067 <!-- root node --> 6068 <feature> 6069 <rects> 6070 <_>0 15 10 3 -1.</_> 6071 <_>5 15 5 3 2.</_></rects> 6072 <tilted>0</tilted></feature> 6073 <threshold>0.0113844601437449</threshold> 6074 <left_val>-0.0718725174665451</left_val> 6075 <right_val>0.4116039872169495</right_val></_></_> 6076 <_> 6077 <!-- tree 33 --> 6078 <_> 6079 <!-- root node --> 6080 <feature> 6081 <rects> 6082 <_>3 0 17 14 -1.</_> 6083 <_>3 7 17 7 2.</_></rects> 6084 <tilted>0</tilted></feature> 6085 <threshold>-0.0239341501146555</threshold> 6086 <left_val>0.1319234073162079</left_val> 6087 <right_val>-0.1795483976602554</right_val></_></_> 6088 <_> 6089 <!-- tree 34 --> 6090 <_> 6091 <!-- root node --> 6092 <feature> 6093 <rects> 6094 <_>9 0 4 16 -1.</_> 6095 <_>9 0 2 8 2.</_> 6096 <_>11 8 2 8 2.</_></rects> 6097 <tilted>0</tilted></feature> 6098 <threshold>-0.0315541699528694</threshold> 6099 <left_val>-0.5879213213920593</left_val> 6100 <right_val>0.0417828895151615</right_val></_></_> 6101 <_> 6102 <!-- tree 35 --> 6103 <_> 6104 <!-- root node --> 6105 <feature> 6106 <rects> 6107 <_>11 4 6 8 -1.</_> 6108 <_>11 8 6 4 2.</_></rects> 6109 <tilted>0</tilted></feature> 6110 <threshold>-0.0240338593721390</threshold> 6111 <left_val>-0.1553476005792618</left_val> 6112 <right_val>0.0277002602815628</right_val></_></_> 6113 <_> 6114 <!-- tree 36 --> 6115 <_> 6116 <!-- root node --> 6117 <feature> 6118 <rects> 6119 <_>0 9 12 3 -1.</_> 6120 <_>0 10 12 1 3.</_></rects> 6121 <tilted>0</tilted></feature> 6122 <threshold>0.0315894708037376</threshold> 6123 <left_val>-0.0391502790153027</left_val> 6124 <right_val>0.6095172166824341</right_val></_></_> 6125 <_> 6126 <!-- tree 37 --> 6127 <_> 6128 <!-- root node --> 6129 <feature> 6130 <rects> 6131 <_>1 5 20 8 -1.</_> 6132 <_>11 5 10 4 2.</_> 6133 <_>1 9 10 4 2.</_></rects> 6134 <tilted>0</tilted></feature> 6135 <threshold>-0.0242148600518703</threshold> 6136 <left_val>-0.2458761930465698</left_val> 6137 <right_val>0.0911332964897156</right_val></_></_> 6138 <_> 6139 <!-- tree 38 --> 6140 <_> 6141 <!-- root node --> 6142 <feature> 6143 <rects> 6144 <_>1 8 13 3 -1.</_> 6145 <_>1 9 13 1 3.</_></rects> 6146 <tilted>0</tilted></feature> 6147 <threshold>1.9322870066389441e-003</threshold> 6148 <left_val>-0.1164783984422684</left_val> 6149 <right_val>0.1881929039955139</right_val></_></_> 6150 <_> 6151 <!-- tree 39 --> 6152 <_> 6153 <!-- root node --> 6154 <feature> 6155 <rects> 6156 <_>8 8 14 3 -1.</_> 6157 <_>8 9 14 1 3.</_></rects> 6158 <tilted>0</tilted></feature> 6159 <threshold>-3.6017759703099728e-003</threshold> 6160 <left_val>0.0976005122065544</left_val> 6161 <right_val>-0.0489180907607079</right_val></_></_> 6162 <_> 6163 <!-- tree 40 --> 6164 <_> 6165 <!-- root node --> 6166 <feature> 6167 <rects> 6168 <_>4 16 14 2 -1.</_> 6169 <_>4 17 14 1 2.</_></rects> 6170 <tilted>0</tilted></feature> 6171 <threshold>3.1516118906438351e-003</threshold> 6172 <left_val>0.0658088698983192</left_val> 6173 <right_val>-0.3157765865325928</right_val></_></_> 6174 <_> 6175 <!-- tree 41 --> 6176 <_> 6177 <!-- root node --> 6178 <feature> 6179 <rects> 6180 <_>11 1 3 6 -1.</_> 6181 <_>12 2 1 6 3.</_></rects> 6182 <tilted>1</tilted></feature> 6183 <threshold>-0.0636770725250244</threshold> 6184 <left_val>-0.8641548156738281</left_val> 6185 <right_val>-9.9097320344299078e-004</right_val></_></_> 6186 <_> 6187 <!-- tree 42 --> 6188 <_> 6189 <!-- root node --> 6190 <feature> 6191 <rects> 6192 <_>11 1 6 3 -1.</_> 6193 <_>10 2 6 1 3.</_></rects> 6194 <tilted>1</tilted></feature> 6195 <threshold>-3.9085028693079948e-003</threshold> 6196 <left_val>0.2082621008157730</left_val> 6197 <right_val>-0.1056023016571999</right_val></_></_> 6198 <_> 6199 <!-- tree 43 --> 6200 <_> 6201 <!-- root node --> 6202 <feature> 6203 <rects> 6204 <_>13 1 6 10 -1.</_> 6205 <_>16 1 3 5 2.</_> 6206 <_>13 6 3 5 2.</_></rects> 6207 <tilted>0</tilted></feature> 6208 <threshold>-0.0268377196043730</threshold> 6209 <left_val>-0.1837512999773026</left_val> 6210 <right_val>0.0295453295111656</right_val></_></_> 6211 <_> 6212 <!-- tree 44 --> 6213 <_> 6214 <!-- root node --> 6215 <feature> 6216 <rects> 6217 <_>11 0 10 3 -1.</_> 6218 <_>10 1 10 1 3.</_></rects> 6219 <tilted>1</tilted></feature> 6220 <threshold>3.1312298960983753e-003</threshold> 6221 <left_val>-0.1262668967247009</left_val> 6222 <right_val>0.1688859015703201</right_val></_></_> 6223 <_> 6224 <!-- tree 45 --> 6225 <_> 6226 <!-- root node --> 6227 <feature> 6228 <rects> 6229 <_>12 1 3 12 -1.</_> 6230 <_>13 2 1 12 3.</_></rects> 6231 <tilted>1</tilted></feature> 6232 <threshold>-0.0734918713569641</threshold> 6233 <left_val>-1.</left_val> 6234 <right_val>5.6774187833070755e-003</right_val></_></_> 6235 <_> 6236 <!-- tree 46 --> 6237 <_> 6238 <!-- root node --> 6239 <feature> 6240 <rects> 6241 <_>10 1 12 3 -1.</_> 6242 <_>9 2 12 1 3.</_></rects> 6243 <tilted>1</tilted></feature> 6244 <threshold>0.0180348195135593</threshold> 6245 <left_val>-0.0686174109578133</left_val> 6246 <right_val>0.3343813121318817</right_val></_></_> 6247 <_> 6248 <!-- tree 47 --> 6249 <_> 6250 <!-- root node --> 6251 <feature> 6252 <rects> 6253 <_>13 1 6 10 -1.</_> 6254 <_>16 1 3 5 2.</_> 6255 <_>13 6 3 5 2.</_></rects> 6256 <tilted>0</tilted></feature> 6257 <threshold>0.0686559975147247</threshold> 6258 <left_val>4.6462309546768665e-003</left_val> 6259 <right_val>-0.8066462874412537</right_val></_></_> 6260 <_> 6261 <!-- tree 48 --> 6262 <_> 6263 <!-- root node --> 6264 <feature> 6265 <rects> 6266 <_>3 1 6 10 -1.</_> 6267 <_>3 1 3 5 2.</_> 6268 <_>6 6 3 5 2.</_></rects> 6269 <tilted>0</tilted></feature> 6270 <threshold>-4.6970890834927559e-003</threshold> 6271 <left_val>-0.2012176960706711</left_val> 6272 <right_val>0.1158004030585289</right_val></_></_> 6273 <_> 6274 <!-- tree 49 --> 6275 <_> 6276 <!-- root node --> 6277 <feature> 6278 <rects> 6279 <_>14 7 6 10 -1.</_> 6280 <_>17 7 3 5 2.</_> 6281 <_>14 12 3 5 2.</_></rects> 6282 <tilted>0</tilted></feature> 6283 <threshold>0.0467838905751705</threshold> 6284 <left_val>-0.0358026996254921</left_val> 6285 <right_val>0.4162563979625702</right_val></_></_> 6286 <_> 6287 <!-- tree 50 --> 6288 <_> 6289 <!-- root node --> 6290 <feature> 6291 <rects> 6292 <_>3 2 6 8 -1.</_> 6293 <_>3 2 3 4 2.</_> 6294 <_>6 6 3 4 2.</_></rects> 6295 <tilted>0</tilted></feature> 6296 <threshold>4.5946058817207813e-003</threshold> 6297 <left_val>0.0884575769305229</left_val> 6298 <right_val>-0.2689448893070221</right_val></_></_> 6299 <_> 6300 <!-- tree 51 --> 6301 <_> 6302 <!-- root node --> 6303 <feature> 6304 <rects> 6305 <_>11 14 9 4 -1.</_> 6306 <_>14 14 3 4 3.</_></rects> 6307 <tilted>0</tilted></feature> 6308 <threshold>-1.3852829579263926e-003</threshold> 6309 <left_val>0.0813912227749825</left_val> 6310 <right_val>-0.1488042026758194</right_val></_></_> 6311 <_> 6312 <!-- tree 52 --> 6313 <_> 6314 <!-- root node --> 6315 <feature> 6316 <rects> 6317 <_>1 8 15 8 -1.</_> 6318 <_>1 12 15 4 2.</_></rects> 6319 <tilted>0</tilted></feature> 6320 <threshold>0.0217887591570616</threshold> 6321 <left_val>-0.0916404575109482</left_val> 6322 <right_val>0.2126124948263168</right_val></_></_> 6323 <_> 6324 <!-- tree 53 --> 6325 <_> 6326 <!-- root node --> 6327 <feature> 6328 <rects> 6329 <_>9 12 8 4 -1.</_> 6330 <_>9 14 8 2 2.</_></rects> 6331 <tilted>0</tilted></feature> 6332 <threshold>-1.3380090240389109e-004</threshold> 6333 <left_val>0.0964247435331345</left_val> 6334 <right_val>-0.1471737027168274</right_val></_></_> 6335 <_> 6336 <!-- tree 54 --> 6337 <_> 6338 <!-- root node --> 6339 <feature> 6340 <rects> 6341 <_>6 5 7 6 -1.</_> 6342 <_>6 7 7 2 3.</_></rects> 6343 <tilted>0</tilted></feature> 6344 <threshold>-0.0479904115200043</threshold> 6345 <left_val>-0.6198713183403015</left_val> 6346 <right_val>0.0387607105076313</right_val></_></_> 6347 <_> 6348 <!-- tree 55 --> 6349 <_> 6350 <!-- root node --> 6351 <feature> 6352 <rects> 6353 <_>9 5 6 5 -1.</_> 6354 <_>9 5 3 5 2.</_></rects> 6355 <tilted>0</tilted></feature> 6356 <threshold>0.0200260095298290</threshold> 6357 <left_val>-0.0359724201261997</left_val> 6358 <right_val>0.1939342021942139</right_val></_></_> 6359 <_> 6360 <!-- tree 56 --> 6361 <_> 6362 <!-- root node --> 6363 <feature> 6364 <rects> 6365 <_>0 12 8 6 -1.</_> 6366 <_>2 12 4 6 2.</_></rects> 6367 <tilted>0</tilted></feature> 6368 <threshold>1.0723130544647574e-003</threshold> 6369 <left_val>-0.1944749951362610</left_val> 6370 <right_val>0.1206495016813278</right_val></_></_> 6371 <_> 6372 <!-- tree 57 --> 6373 <_> 6374 <!-- root node --> 6375 <feature> 6376 <rects> 6377 <_>14 8 6 4 -1.</_> 6378 <_>14 8 3 4 2.</_></rects> 6379 <tilted>1</tilted></feature> 6380 <threshold>0.0226650908589363</threshold> 6381 <left_val>0.0487194396555424</left_val> 6382 <right_val>-0.2364079952239990</right_val></_></_> 6383 <_> 6384 <!-- tree 58 --> 6385 <_> 6386 <!-- root node --> 6387 <feature> 6388 <rects> 6389 <_>8 8 4 6 -1.</_> 6390 <_>8 8 4 3 2.</_></rects> 6391 <tilted>1</tilted></feature> 6392 <threshold>-0.0110421096906066</threshold> 6393 <left_val>-0.2610734105110169</left_val> 6394 <right_val>0.1007549017667770</right_val></_></_> 6395 <_> 6396 <!-- tree 59 --> 6397 <_> 6398 <!-- root node --> 6399 <feature> 6400 <rects> 6401 <_>9 4 6 8 -1.</_> 6402 <_>11 4 2 8 3.</_></rects> 6403 <tilted>0</tilted></feature> 6404 <threshold>-0.0128110498189926</threshold> 6405 <left_val>0.1519962996244431</left_val> 6406 <right_val>-0.0885529592633247</right_val></_></_> 6407 <_> 6408 <!-- tree 60 --> 6409 <_> 6410 <!-- root node --> 6411 <feature> 6412 <rects> 6413 <_>7 4 6 8 -1.</_> 6414 <_>9 4 2 8 3.</_></rects> 6415 <tilted>0</tilted></feature> 6416 <threshold>-0.0366286486387253</threshold> 6417 <left_val>0.3885886073112488</left_val> 6418 <right_val>-0.0773045495152473</right_val></_></_></trees> 6419 <stage_threshold>-0.9562031030654907</stage_threshold> 6420 <parent>10</parent> 6421 <next>-1</next></_> 6422 <_> 6423 <!-- stage 12 --> 6424 <trees> 6425 <_> 6426 <!-- tree 0 --> 6427 <_> 6428 <!-- root node --> 6429 <feature> 6430 <rects> 6431 <_>0 15 10 3 -1.</_> 6432 <_>5 15 5 3 2.</_></rects> 6433 <tilted>0</tilted></feature> 6434 <threshold>-0.0546066388487816</threshold> 6435 <left_val>0.5580134987831116</left_val> 6436 <right_val>-0.1416888982057571</right_val></_></_> 6437 <_> 6438 <!-- tree 1 --> 6439 <_> 6440 <!-- root node --> 6441 <feature> 6442 <rects> 6443 <_>11 5 3 9 -1.</_> 6444 <_>12 6 1 9 3.</_></rects> 6445 <tilted>1</tilted></feature> 6446 <threshold>0.0335337407886982</threshold> 6447 <left_val>-0.0273862797766924</left_val> 6448 <right_val>0.4438177049160004</right_val></_></_> 6449 <_> 6450 <!-- tree 2 --> 6451 <_> 6452 <!-- root node --> 6453 <feature> 6454 <rects> 6455 <_>11 5 9 3 -1.</_> 6456 <_>10 6 9 1 3.</_></rects> 6457 <tilted>1</tilted></feature> 6458 <threshold>-9.9635301157832146e-003</threshold> 6459 <left_val>0.2519390881061554</left_val> 6460 <right_val>-0.1464754045009613</right_val></_></_> 6461 <_> 6462 <!-- tree 3 --> 6463 <_> 6464 <!-- root node --> 6465 <feature> 6466 <rects> 6467 <_>12 6 8 4 -1.</_> 6468 <_>12 6 8 2 2.</_></rects> 6469 <tilted>1</tilted></feature> 6470 <threshold>1.8188880058005452e-003</threshold> 6471 <left_val>-0.1126412004232407</left_val> 6472 <right_val>0.1152326017618179</right_val></_></_> 6473 <_> 6474 <!-- tree 4 --> 6475 <_> 6476 <!-- root node --> 6477 <feature> 6478 <rects> 6479 <_>10 6 4 8 -1.</_> 6480 <_>10 6 2 8 2.</_></rects> 6481 <tilted>1</tilted></feature> 6482 <threshold>-0.0487938299775124</threshold> 6483 <left_val>0.5131710767745972</left_val> 6484 <right_val>-0.0786650180816650</right_val></_></_> 6485 <_> 6486 <!-- tree 5 --> 6487 <_> 6488 <!-- root node --> 6489 <feature> 6490 <rects> 6491 <_>13 0 5 12 -1.</_> 6492 <_>13 0 5 6 2.</_></rects> 6493 <tilted>1</tilted></feature> 6494 <threshold>-0.0133577696979046</threshold> 6495 <left_val>-0.1419797986745834</left_val> 6496 <right_val>0.1186259984970093</right_val></_></_> 6497 <_> 6498 <!-- tree 6 --> 6499 <_> 6500 <!-- root node --> 6501 <feature> 6502 <rects> 6503 <_>1 3 12 4 -1.</_> 6504 <_>4 3 6 4 2.</_></rects> 6505 <tilted>0</tilted></feature> 6506 <threshold>1.1562240542843938e-003</threshold> 6507 <left_val>-0.2094922065734863</left_val> 6508 <right_val>0.1569304019212723</right_val></_></_> 6509 <_> 6510 <!-- tree 7 --> 6511 <_> 6512 <!-- root node --> 6513 <feature> 6514 <rects> 6515 <_>15 7 6 5 -1.</_> 6516 <_>15 7 3 5 2.</_></rects> 6517 <tilted>0</tilted></feature> 6518 <threshold>-6.2384512275457382e-003</threshold> 6519 <left_val>-0.1433645039796829</left_val> 6520 <right_val>0.1130355000495911</right_val></_></_> 6521 <_> 6522 <!-- tree 8 --> 6523 <_> 6524 <!-- root node --> 6525 <feature> 6526 <rects> 6527 <_>1 7 12 3 -1.</_> 6528 <_>1 8 12 1 3.</_></rects> 6529 <tilted>0</tilted></feature> 6530 <threshold>4.4234818778932095e-003</threshold> 6531 <left_val>-0.1035858020186424</left_val> 6532 <right_val>0.2458948940038681</right_val></_></_> 6533 <_> 6534 <!-- tree 9 --> 6535 <_> 6536 <!-- root node --> 6537 <feature> 6538 <rects> 6539 <_>15 7 6 5 -1.</_> 6540 <_>15 7 3 5 2.</_></rects> 6541 <tilted>0</tilted></feature> 6542 <threshold>0.0529644489288330</threshold> 6543 <left_val>0.0125615503638983</left_val> 6544 <right_val>-0.6255180835723877</right_val></_></_> 6545 <_> 6546 <!-- tree 10 --> 6547 <_> 6548 <!-- root node --> 6549 <feature> 6550 <rects> 6551 <_>1 7 6 5 -1.</_> 6552 <_>4 7 3 5 2.</_></rects> 6553 <tilted>0</tilted></feature> 6554 <threshold>5.5844681337475777e-003</threshold> 6555 <left_val>0.0839678868651390</left_val> 6556 <right_val>-0.2465379983186722</right_val></_></_> 6557 <_> 6558 <!-- tree 11 --> 6559 <_> 6560 <!-- root node --> 6561 <feature> 6562 <rects> 6563 <_>12 13 6 4 -1.</_> 6564 <_>12 15 6 2 2.</_></rects> 6565 <tilted>0</tilted></feature> 6566 <threshold>-4.1809541289694607e-004</threshold> 6567 <left_val>0.0695880725979805</left_val> 6568 <right_val>-0.1355881989002228</right_val></_></_> 6569 <_> 6570 <!-- tree 12 --> 6571 <_> 6572 <!-- root node --> 6573 <feature> 6574 <rects> 6575 <_>5 12 12 6 -1.</_> 6576 <_>5 12 6 3 2.</_> 6577 <_>11 15 6 3 2.</_></rects> 6578 <tilted>0</tilted></feature> 6579 <threshold>-8.9637134224176407e-003</threshold> 6580 <left_val>-0.3044273853302002</left_val> 6581 <right_val>0.0698947235941887</right_val></_></_> 6582 <_> 6583 <!-- tree 13 --> 6584 <_> 6585 <!-- root node --> 6586 <feature> 6587 <rects> 6588 <_>11 5 2 9 -1.</_> 6589 <_>11 5 1 9 2.</_></rects> 6590 <tilted>1</tilted></feature> 6591 <threshold>0.0244790501892567</threshold> 6592 <left_val>-0.0316518284380436</left_val> 6593 <right_val>0.2030878961086273</right_val></_></_> 6594 <_> 6595 <!-- tree 14 --> 6596 <_> 6597 <!-- root node --> 6598 <feature> 6599 <rects> 6600 <_>11 5 9 2 -1.</_> 6601 <_>11 5 9 1 2.</_></rects> 6602 <tilted>1</tilted></feature> 6603 <threshold>-0.0258423294872046</threshold> 6604 <left_val>0.5040106177330017</left_val> 6605 <right_val>-0.0639220625162125</right_val></_></_> 6606 <_> 6607 <!-- tree 15 --> 6608 <_> 6609 <!-- root node --> 6610 <feature> 6611 <rects> 6612 <_>10 12 9 4 -1.</_> 6613 <_>13 12 3 4 3.</_></rects> 6614 <tilted>0</tilted></feature> 6615 <threshold>-2.0785620436072350e-003</threshold> 6616 <left_val>0.1098022013902664</left_val> 6617 <right_val>-0.1183955967426300</right_val></_></_> 6618 <_> 6619 <!-- tree 16 --> 6620 <_> 6621 <!-- root node --> 6622 <feature> 6623 <rects> 6624 <_>8 6 6 6 -1.</_> 6625 <_>8 6 6 3 2.</_></rects> 6626 <tilted>1</tilted></feature> 6627 <threshold>0.0680303424596787</threshold> 6628 <left_val>0.0422907397150993</left_val> 6629 <right_val>-0.5185551047325134</right_val></_></_> 6630 <_> 6631 <!-- tree 17 --> 6632 <_> 6633 <!-- root node --> 6634 <feature> 6635 <rects> 6636 <_>10 14 6 4 -1.</_> 6637 <_>10 14 3 4 2.</_></rects> 6638 <tilted>0</tilted></feature> 6639 <threshold>-7.0639760233461857e-003</threshold> 6640 <left_val>-0.2003110051155090</left_val> 6641 <right_val>0.0249556098133326</right_val></_></_> 6642 <_> 6643 <!-- tree 18 --> 6644 <_> 6645 <!-- root node --> 6646 <feature> 6647 <rects> 6648 <_>0 2 14 3 -1.</_> 6649 <_>0 3 14 1 3.</_></rects> 6650 <tilted>0</tilted></feature> 6651 <threshold>-3.4848200157284737e-003</threshold> 6652 <left_val>0.2313532978296280</left_val> 6653 <right_val>-0.0969895571470261</right_val></_></_> 6654 <_> 6655 <!-- tree 19 --> 6656 <_> 6657 <!-- root node --> 6658 <feature> 6659 <rects> 6660 <_>8 2 12 3 -1.</_> 6661 <_>8 3 12 1 3.</_></rects> 6662 <tilted>0</tilted></feature> 6663 <threshold>0.0131471604108810</threshold> 6664 <left_val>-0.0374509505927563</left_val> 6665 <right_val>0.2584278881549835</right_val></_></_> 6666 <_> 6667 <!-- tree 20 --> 6668 <_> 6669 <!-- root node --> 6670 <feature> 6671 <rects> 6672 <_>8 7 5 6 -1.</_> 6673 <_>8 7 5 3 2.</_></rects> 6674 <tilted>1</tilted></feature> 6675 <threshold>-0.0142716597765684</threshold> 6676 <left_val>-0.3011017143726349</left_val> 6677 <right_val>0.0796723365783691</right_val></_></_> 6678 <_> 6679 <!-- tree 21 --> 6680 <_> 6681 <!-- root node --> 6682 <feature> 6683 <rects> 6684 <_>12 6 8 3 -1.</_> 6685 <_>12 6 4 3 2.</_></rects> 6686 <tilted>1</tilted></feature> 6687 <threshold>0.0126534802839160</threshold> 6688 <left_val>0.0490391403436661</left_val> 6689 <right_val>-0.1498810946941376</right_val></_></_> 6690 <_> 6691 <!-- tree 22 --> 6692 <_> 6693 <!-- root node --> 6694 <feature> 6695 <rects> 6696 <_>4 10 4 6 -1.</_> 6697 <_>6 10 2 6 2.</_></rects> 6698 <tilted>0</tilted></feature> 6699 <threshold>-4.4893440790474415e-003</threshold> 6700 <left_val>0.1720885932445526</left_val> 6701 <right_val>-0.1535564959049225</right_val></_></_> 6702 <_> 6703 <!-- tree 23 --> 6704 <_> 6705 <!-- root node --> 6706 <feature> 6707 <rects> 6708 <_>1 11 20 4 -1.</_> 6709 <_>6 11 10 4 2.</_></rects> 6710 <tilted>0</tilted></feature> 6711 <threshold>0.0323654003441334</threshold> 6712 <left_val>-0.0904931128025055</left_val> 6713 <right_val>0.3577916026115418</right_val></_></_> 6714 <_> 6715 <!-- tree 24 --> 6716 <_> 6717 <!-- root node --> 6718 <feature> 6719 <rects> 6720 <_>6 10 8 7 -1.</_> 6721 <_>8 10 4 7 2.</_></rects> 6722 <tilted>0</tilted></feature> 6723 <threshold>4.6125808730721474e-003</threshold> 6724 <left_val>0.1144519001245499</left_val> 6725 <right_val>-0.2651948928833008</right_val></_></_> 6726 <_> 6727 <!-- tree 25 --> 6728 <_> 6729 <!-- root node --> 6730 <feature> 6731 <rects> 6732 <_>11 3 3 9 -1.</_> 6733 <_>12 4 1 9 3.</_></rects> 6734 <tilted>1</tilted></feature> 6735 <threshold>0.0286459308117628</threshold> 6736 <left_val>-0.0359885394573212</left_val> 6737 <right_val>0.3002552092075348</right_val></_></_> 6738 <_> 6739 <!-- tree 26 --> 6740 <_> 6741 <!-- root node --> 6742 <feature> 6743 <rects> 6744 <_>0 8 22 4 -1.</_> 6745 <_>11 8 11 4 2.</_></rects> 6746 <tilted>0</tilted></feature> 6747 <threshold>-0.0235719792544842</threshold> 6748 <left_val>-0.2487282007932663</left_val> 6749 <right_val>0.0919671207666397</right_val></_></_> 6750 <_> 6751 <!-- tree 27 --> 6752 <_> 6753 <!-- root node --> 6754 <feature> 6755 <rects> 6756 <_>3 10 16 3 -1.</_> 6757 <_>3 10 8 3 2.</_></rects> 6758 <tilted>0</tilted></feature> 6759 <threshold>-0.0107397995889187</threshold> 6760 <left_val>-0.2136776000261307</left_val> 6761 <right_val>0.0964774116873741</right_val></_></_> 6762 <_> 6763 <!-- tree 28 --> 6764 <_> 6765 <!-- root node --> 6766 <feature> 6767 <rects> 6768 <_>11 3 9 3 -1.</_> 6769 <_>10 4 9 1 3.</_></rects> 6770 <tilted>1</tilted></feature> 6771 <threshold>0.0237286593765020</threshold> 6772 <left_val>-0.0709161981940269</left_val> 6773 <right_val>0.4382875859737396</right_val></_></_> 6774 <_> 6775 <!-- tree 29 --> 6776 <_> 6777 <!-- root node --> 6778 <feature> 6779 <rects> 6780 <_>5 3 12 9 -1.</_> 6781 <_>9 6 4 3 9.</_></rects> 6782 <tilted>0</tilted></feature> 6783 <threshold>-0.3280070126056671</threshold> 6784 <left_val>0.5884003043174744</left_val> 6785 <right_val>-0.0317567884922028</right_val></_></_> 6786 <_> 6787 <!-- tree 30 --> 6788 <_> 6789 <!-- root node --> 6790 <feature> 6791 <rects> 6792 <_>7 12 4 6 -1.</_> 6793 <_>9 12 2 6 2.</_></rects> 6794 <tilted>0</tilted></feature> 6795 <threshold>7.5008560997957829e-006</threshold> 6796 <left_val>-0.1828856021165848</left_val> 6797 <right_val>0.1202294006943703</right_val></_></_> 6798 <_> 6799 <!-- tree 31 --> 6800 <_> 6801 <!-- root node --> 6802 <feature> 6803 <rects> 6804 <_>9 12 6 6 -1.</_> 6805 <_>9 12 3 6 2.</_></rects> 6806 <tilted>0</tilted></feature> 6807 <threshold>0.0300714094191790</threshold> 6808 <left_val>0.0278020203113556</left_val> 6809 <right_val>-0.4322428107261658</right_val></_></_> 6810 <_> 6811 <!-- tree 32 --> 6812 <_> 6813 <!-- root node --> 6814 <feature> 6815 <rects> 6816 <_>2 13 16 5 -1.</_> 6817 <_>10 13 8 5 2.</_></rects> 6818 <tilted>0</tilted></feature> 6819 <threshold>-2.1936609409749508e-003</threshold> 6820 <left_val>0.1359242051839829</left_val> 6821 <right_val>-0.1403862982988358</right_val></_></_> 6822 <_> 6823 <!-- tree 33 --> 6824 <_> 6825 <!-- root node --> 6826 <feature> 6827 <rects> 6828 <_>12 12 8 3 -1.</_> 6829 <_>12 12 4 3 2.</_></rects> 6830 <tilted>0</tilted></feature> 6831 <threshold>0.0201743394136429</threshold> 6832 <left_val>-0.0616289190948009</left_val> 6833 <right_val>0.3157976865768433</right_val></_></_> 6834 <_> 6835 <!-- tree 34 --> 6836 <_> 6837 <!-- root node --> 6838 <feature> 6839 <rects> 6840 <_>10 4 12 2 -1.</_> 6841 <_>10 4 6 2 2.</_></rects> 6842 <tilted>1</tilted></feature> 6843 <threshold>9.7460206598043442e-003</threshold> 6844 <left_val>0.0889580324292183</left_val> 6845 <right_val>-0.2259400933980942</right_val></_></_> 6846 <_> 6847 <!-- tree 35 --> 6848 <_> 6849 <!-- root node --> 6850 <feature> 6851 <rects> 6852 <_>11 3 8 4 -1.</_> 6853 <_>11 3 4 4 2.</_></rects> 6854 <tilted>1</tilted></feature> 6855 <threshold>-0.0129583403468132</threshold> 6856 <left_val>-0.1220085024833679</left_val> 6857 <right_val>0.0865180864930153</right_val></_></_> 6858 <_> 6859 <!-- tree 36 --> 6860 <_> 6861 <!-- root node --> 6862 <feature> 6863 <rects> 6864 <_>4 6 10 3 -1.</_> 6865 <_>9 6 5 3 2.</_></rects> 6866 <tilted>0</tilted></feature> 6867 <threshold>0.0114454999566078</threshold> 6868 <left_val>-0.0641823336482048</left_val> 6869 <right_val>0.3027974963188171</right_val></_></_> 6870 <_> 6871 <!-- tree 37 --> 6872 <_> 6873 <!-- root node --> 6874 <feature> 6875 <rects> 6876 <_>10 1 6 8 -1.</_> 6877 <_>13 1 3 4 2.</_> 6878 <_>10 5 3 4 2.</_></rects> 6879 <tilted>0</tilted></feature> 6880 <threshold>-3.3802569378167391e-003</threshold> 6881 <left_val>0.1117767021059990</left_val> 6882 <right_val>-0.1292237937450409</right_val></_></_> 6883 <_> 6884 <!-- tree 38 --> 6885 <_> 6886 <!-- root node --> 6887 <feature> 6888 <rects> 6889 <_>11 1 6 6 -1.</_> 6890 <_>11 1 6 3 2.</_></rects> 6891 <tilted>1</tilted></feature> 6892 <threshold>0.0203662104904652</threshold> 6893 <left_val>0.1010453999042511</left_val> 6894 <right_val>-0.2599115967750549</right_val></_></_> 6895 <_> 6896 <!-- tree 39 --> 6897 <_> 6898 <!-- root node --> 6899 <feature> 6900 <rects> 6901 <_>11 6 6 4 -1.</_> 6902 <_>11 8 6 2 2.</_></rects> 6903 <tilted>0</tilted></feature> 6904 <threshold>0.0380586497485638</threshold> 6905 <left_val>0.0131683498620987</left_val> 6906 <right_val>-0.7558063268661499</right_val></_></_> 6907 <_> 6908 <!-- tree 40 --> 6909 <_> 6910 <!-- root node --> 6911 <feature> 6912 <rects> 6913 <_>2 2 12 3 -1.</_> 6914 <_>2 3 12 1 3.</_></rects> 6915 <tilted>0</tilted></feature> 6916 <threshold>2.3050000891089439e-003</threshold> 6917 <left_val>-0.1076664999127388</left_val> 6918 <right_val>0.1875766962766647</right_val></_></_> 6919 <_> 6920 <!-- tree 41 --> 6921 <_> 6922 <!-- root node --> 6923 <feature> 6924 <rects> 6925 <_>11 3 8 4 -1.</_> 6926 <_>11 3 4 4 2.</_></rects> 6927 <tilted>1</tilted></feature> 6928 <threshold>0.0518471188843250</threshold> 6929 <left_val>-0.0223205294460058</left_val> 6930 <right_val>0.1879583001136780</right_val></_></_> 6931 <_> 6932 <!-- tree 42 --> 6933 <_> 6934 <!-- root node --> 6935 <feature> 6936 <rects> 6937 <_>1 0 8 6 -1.</_> 6938 <_>1 0 4 3 2.</_> 6939 <_>5 3 4 3 2.</_></rects> 6940 <tilted>0</tilted></feature> 6941 <threshold>0.0113830296322703</threshold> 6942 <left_val>0.0602261610329151</left_val> 6943 <right_val>-0.3596178889274597</right_val></_></_> 6944 <_> 6945 <!-- tree 43 --> 6946 <_> 6947 <!-- root node --> 6948 <feature> 6949 <rects> 6950 <_>8 3 14 3 -1.</_> 6951 <_>8 4 14 1 3.</_></rects> 6952 <tilted>0</tilted></feature> 6953 <threshold>8.2553178071975708e-003</threshold> 6954 <left_val>-0.0851313918828964</left_val> 6955 <right_val>0.2349344044923782</right_val></_></_> 6956 <_> 6957 <!-- tree 44 --> 6958 <_> 6959 <!-- root node --> 6960 <feature> 6961 <rects> 6962 <_>11 3 4 8 -1.</_> 6963 <_>11 3 4 4 2.</_></rects> 6964 <tilted>1</tilted></feature> 6965 <threshold>-0.0269843395799398</threshold> 6966 <left_val>-0.2147939950227737</left_val> 6967 <right_val>0.0936567336320877</right_val></_></_> 6968 <_> 6969 <!-- tree 45 --> 6970 <_> 6971 <!-- root node --> 6972 <feature> 6973 <rects> 6974 <_>6 0 12 10 -1.</_> 6975 <_>9 0 6 10 2.</_></rects> 6976 <tilted>0</tilted></feature> 6977 <threshold>-0.0102899800986052</threshold> 6978 <left_val>0.0582548901438713</left_val> 6979 <right_val>-0.0839509293437004</right_val></_></_> 6980 <_> 6981 <!-- tree 46 --> 6982 <_> 6983 <!-- root node --> 6984 <feature> 6985 <rects> 6986 <_>4 16 14 2 -1.</_> 6987 <_>4 17 14 1 2.</_></rects> 6988 <tilted>0</tilted></feature> 6989 <threshold>-1.4419780200114474e-005</threshold> 6990 <left_val>0.1039287000894547</left_val> 6991 <right_val>-0.1731729954481125</right_val></_></_> 6992 <_> 6993 <!-- tree 47 --> 6994 <_> 6995 <!-- root node --> 6996 <feature> 6997 <rects> 6998 <_>10 11 12 3 -1.</_> 6999 <_>10 12 12 1 3.</_></rects> 7000 <tilted>0</tilted></feature> 7001 <threshold>0.0100651402026415</threshold> 7002 <left_val>-0.0413111187517643</left_val> 7003 <right_val>0.1761602014303207</right_val></_></_> 7004 <_> 7005 <!-- tree 48 --> 7006 <_> 7007 <!-- root node --> 7008 <feature> 7009 <rects> 7010 <_>3 0 4 6 -1.</_> 7011 <_>5 0 2 6 2.</_></rects> 7012 <tilted>0</tilted></feature> 7013 <threshold>-1.4870229642838240e-004</threshold> 7014 <left_val>0.1565753966569901</left_val> 7015 <right_val>-0.1203005984425545</right_val></_></_> 7016 <_> 7017 <!-- tree 49 --> 7018 <_> 7019 <!-- root node --> 7020 <feature> 7021 <rects> 7022 <_>16 12 6 4 -1.</_> 7023 <_>16 12 3 4 2.</_></rects> 7024 <tilted>0</tilted></feature> 7025 <threshold>-3.1059589236974716e-003</threshold> 7026 <left_val>0.1167488023638725</left_val> 7027 <right_val>-0.0913724601268768</right_val></_></_> 7028 <_> 7029 <!-- tree 50 --> 7030 <_> 7031 <!-- root node --> 7032 <feature> 7033 <rects> 7034 <_>0 13 10 4 -1.</_> 7035 <_>5 13 5 4 2.</_></rects> 7036 <tilted>0</tilted></feature> 7037 <threshold>0.0107080303132534</threshold> 7038 <left_val>-0.0776082277297974</left_val> 7039 <right_val>0.2791610062122345</right_val></_></_> 7040 <_> 7041 <!-- tree 51 --> 7042 <_> 7043 <!-- root node --> 7044 <feature> 7045 <rects> 7046 <_>3 1 16 4 -1.</_> 7047 <_>11 1 8 2 2.</_> 7048 <_>3 3 8 2 2.</_></rects> 7049 <tilted>0</tilted></feature> 7050 <threshold>-9.7792129963636398e-003</threshold> 7051 <left_val>-0.2906092107295990</left_val> 7052 <right_val>0.0715626403689384</right_val></_></_> 7053 <_> 7054 <!-- tree 52 --> 7055 <_> 7056 <!-- root node --> 7057 <feature> 7058 <rects> 7059 <_>0 1 11 4 -1.</_> 7060 <_>0 3 11 2 2.</_></rects> 7061 <tilted>0</tilted></feature> 7062 <threshold>0.0201219804584980</threshold> 7063 <left_val>0.0439949594438076</left_val> 7064 <right_val>-0.4253950119018555</right_val></_></_> 7065 <_> 7066 <!-- tree 53 --> 7067 <_> 7068 <!-- root node --> 7069 <feature> 7070 <rects> 7071 <_>6 8 11 6 -1.</_> 7072 <_>6 11 11 3 2.</_></rects> 7073 <tilted>0</tilted></feature> 7074 <threshold>-0.0632951632142067</threshold> 7075 <left_val>0.3703423142433167</left_val> 7076 <right_val>-0.0525498092174530</right_val></_></_> 7077 <_> 7078 <!-- tree 54 --> 7079 <_> 7080 <!-- root node --> 7081 <feature> 7082 <rects> 7083 <_>8 5 5 10 -1.</_> 7084 <_>8 10 5 5 2.</_></rects> 7085 <tilted>0</tilted></feature> 7086 <threshold>-0.0872895568609238</threshold> 7087 <left_val>-0.6429927945137024</left_val> 7088 <right_val>0.0319528691470623</right_val></_></_> 7089 <_> 7090 <!-- tree 55 --> 7091 <_> 7092 <!-- root node --> 7093 <feature> 7094 <rects> 7095 <_>9 2 4 6 -1.</_> 7096 <_>9 5 4 3 2.</_></rects> 7097 <tilted>0</tilted></feature> 7098 <threshold>0.0203985404223204</threshold> 7099 <left_val>-0.0459555983543396</left_val> 7100 <right_val>0.4626615941524506</right_val></_></_> 7101 <_> 7102 <!-- tree 56 --> 7103 <_> 7104 <!-- root node --> 7105 <feature> 7106 <rects> 7107 <_>2 3 12 6 -1.</_> 7108 <_>2 3 6 3 2.</_> 7109 <_>8 6 6 3 2.</_></rects> 7110 <tilted>0</tilted></feature> 7111 <threshold>-4.0313000790774822e-003</threshold> 7112 <left_val>0.1384084969758987</left_val> 7113 <right_val>-0.1798083931207657</right_val></_></_> 7114 <_> 7115 <!-- tree 57 --> 7116 <_> 7117 <!-- root node --> 7118 <feature> 7119 <rects> 7120 <_>13 3 7 9 -1.</_> 7121 <_>13 6 7 3 3.</_></rects> 7122 <tilted>0</tilted></feature> 7123 <threshold>-0.0157345198094845</threshold> 7124 <left_val>-0.1847718060016632</left_val> 7125 <right_val>0.0699830800294876</right_val></_></_> 7126 <_> 7127 <!-- tree 58 --> 7128 <_> 7129 <!-- root node --> 7130 <feature> 7131 <rects> 7132 <_>2 3 7 9 -1.</_> 7133 <_>2 6 7 3 3.</_></rects> 7134 <tilted>0</tilted></feature> 7135 <threshold>3.3332880120724440e-003</threshold> 7136 <left_val>0.1127765029668808</left_val> 7137 <right_val>-0.1951379030942917</right_val></_></_> 7138 <_> 7139 <!-- tree 59 --> 7140 <_> 7141 <!-- root node --> 7142 <feature> 7143 <rects> 7144 <_>11 0 3 6 -1.</_> 7145 <_>12 1 1 6 3.</_></rects> 7146 <tilted>1</tilted></feature> 7147 <threshold>0.0436891615390778</threshold> 7148 <left_val>5.9510939754545689e-003</left_val> 7149 <right_val>-0.5542343854904175</right_val></_></_> 7150 <_> 7151 <!-- tree 60 --> 7152 <_> 7153 <!-- root node --> 7154 <feature> 7155 <rects> 7156 <_>3 3 13 3 -1.</_> 7157 <_>3 4 13 1 3.</_></rects> 7158 <tilted>0</tilted></feature> 7159 <threshold>-2.0920610986649990e-003</threshold> 7160 <left_val>0.1916346997022629</left_val> 7161 <right_val>-0.0971361100673676</right_val></_></_> 7162 <_> 7163 <!-- tree 61 --> 7164 <_> 7165 <!-- root node --> 7166 <feature> 7167 <rects> 7168 <_>8 3 14 3 -1.</_> 7169 <_>8 4 14 1 3.</_></rects> 7170 <tilted>0</tilted></feature> 7171 <threshold>2.0574270747601986e-003</threshold> 7172 <left_val>-0.1019743010401726</left_val> 7173 <right_val>0.1408381015062332</right_val></_></_> 7174 <_> 7175 <!-- tree 62 --> 7176 <_> 7177 <!-- root node --> 7178 <feature> 7179 <rects> 7180 <_>3 6 7 12 -1.</_> 7181 <_>3 9 7 6 2.</_></rects> 7182 <tilted>0</tilted></feature> 7183 <threshold>8.8018123060464859e-003</threshold> 7184 <left_val>0.1198780983686447</left_val> 7185 <right_val>-0.1563854962587357</right_val></_></_> 7186 <_> 7187 <!-- tree 63 --> 7188 <_> 7189 <!-- root node --> 7190 <feature> 7191 <rects> 7192 <_>12 13 6 4 -1.</_> 7193 <_>12 15 6 2 2.</_></rects> 7194 <tilted>0</tilted></feature> 7195 <threshold>-0.0168825294822454</threshold> 7196 <left_val>-0.1843809932470322</left_val> 7197 <right_val>0.0194928701967001</right_val></_></_> 7198 <_> 7199 <!-- tree 64 --> 7200 <_> 7201 <!-- root node --> 7202 <feature> 7203 <rects> 7204 <_>4 13 6 4 -1.</_> 7205 <_>4 15 6 2 2.</_></rects> 7206 <tilted>0</tilted></feature> 7207 <threshold>-6.1647890834137797e-004</threshold> 7208 <left_val>0.1066510975360870</left_val> 7209 <right_val>-0.2216400951147080</right_val></_></_> 7210 <_> 7211 <!-- tree 65 --> 7212 <_> 7213 <!-- root node --> 7214 <feature> 7215 <rects> 7216 <_>6 1 15 2 -1.</_> 7217 <_>6 2 15 1 2.</_></rects> 7218 <tilted>0</tilted></feature> 7219 <threshold>1.0317339911125600e-004</threshold> 7220 <left_val>-0.1122889965772629</left_val> 7221 <right_val>0.1385865062475205</right_val></_></_> 7222 <_> 7223 <!-- tree 66 --> 7224 <_> 7225 <!-- root node --> 7226 <feature> 7227 <rects> 7228 <_>4 3 3 12 -1.</_> 7229 <_>5 3 1 12 3.</_></rects> 7230 <tilted>0</tilted></feature> 7231 <threshold>0.0153163298964500</threshold> 7232 <left_val>-0.0506394095718861</left_val> 7233 <right_val>0.4111982882022858</right_val></_></_> 7234 <_> 7235 <!-- tree 67 --> 7236 <_> 7237 <!-- root node --> 7238 <feature> 7239 <rects> 7240 <_>14 4 2 12 -1.</_> 7241 <_>14 4 2 6 2.</_></rects> 7242 <tilted>1</tilted></feature> 7243 <threshold>0.0106606902554631</threshold> 7244 <left_val>0.0588208101689816</left_val> 7245 <right_val>-0.1645466983318329</right_val></_></_> 7246 <_> 7247 <!-- tree 68 --> 7248 <_> 7249 <!-- root node --> 7250 <feature> 7251 <rects> 7252 <_>11 0 6 3 -1.</_> 7253 <_>10 1 6 1 3.</_></rects> 7254 <tilted>1</tilted></feature> 7255 <threshold>-0.0192968696355820</threshold> 7256 <left_val>0.3926095962524414</left_val> 7257 <right_val>-0.0527611896395683</right_val></_></_> 7258 <_> 7259 <!-- tree 69 --> 7260 <_> 7261 <!-- root node --> 7262 <feature> 7263 <rects> 7264 <_>4 9 14 5 -1.</_> 7265 <_>4 9 7 5 2.</_></rects> 7266 <tilted>0</tilted></feature> 7267 <threshold>0.0100181102752686</threshold> 7268 <left_val>0.1006847023963928</left_val> 7269 <right_val>-0.1975626945495606</right_val></_></_> 7270 <_> 7271 <!-- tree 70 --> 7272 <_> 7273 <!-- root node --> 7274 <feature> 7275 <rects> 7276 <_>11 2 10 3 -1.</_> 7277 <_>10 3 10 1 3.</_></rects> 7278 <tilted>1</tilted></feature> 7279 <threshold>-0.0272637903690338</threshold> 7280 <left_val>0.3533208966255188</left_val> 7281 <right_val>-0.0553055517375469</right_val></_></_> 7282 <_> 7283 <!-- tree 71 --> 7284 <_> 7285 <!-- root node --> 7286 <feature> 7287 <rects> 7288 <_>9 12 7 6 -1.</_> 7289 <_>9 14 7 2 3.</_></rects> 7290 <tilted>0</tilted></feature> 7291 <threshold>5.4494310170412064e-003</threshold> 7292 <left_val>0.0672537684440613</left_val> 7293 <right_val>-0.1838447004556656</right_val></_></_></trees> 7294 <stage_threshold>-0.8770840764045715</stage_threshold> 7295 <parent>11</parent> 7296 <next>-1</next></_> 7297 <_> 7298 <!-- stage 13 --> 7299 <trees> 7300 <_> 7301 <!-- tree 0 --> 7302 <_> 7303 <!-- root node --> 7304 <feature> 7305 <rects> 7306 <_>1 8 8 10 -1.</_> 7307 <_>1 8 4 5 2.</_> 7308 <_>5 13 4 5 2.</_></rects> 7309 <tilted>0</tilted></feature> 7310 <threshold>-0.0574348606169224</threshold> 7311 <left_val>0.5058255195617676</left_val> 7312 <right_val>-0.1227457001805306</right_val></_></_> 7313 <_> 7314 <!-- tree 1 --> 7315 <_> 7316 <!-- root node --> 7317 <feature> 7318 <rects> 7319 <_>5 5 12 5 -1.</_> 7320 <_>9 5 4 5 3.</_></rects> 7321 <tilted>0</tilted></feature> 7322 <threshold>-0.1275065988302231</threshold> 7323 <left_val>0.5760596990585327</left_val> 7324 <right_val>-0.0437109284102917</right_val></_></_> 7325 <_> 7326 <!-- tree 2 --> 7327 <_> 7328 <!-- root node --> 7329 <feature> 7330 <rects> 7331 <_>8 8 4 6 -1.</_> 7332 <_>8 8 2 6 2.</_></rects> 7333 <tilted>1</tilted></feature> 7334 <threshold>-0.0636756420135498</threshold> 7335 <left_val>0.5712252259254456</left_val> 7336 <right_val>-0.0499683208763599</right_val></_></_> 7337 <_> 7338 <!-- tree 3 --> 7339 <_> 7340 <!-- root node --> 7341 <feature> 7342 <rects> 7343 <_>7 6 8 10 -1.</_> 7344 <_>7 11 8 5 2.</_></rects> 7345 <tilted>0</tilted></feature> 7346 <threshold>-0.0119284801185131</threshold> 7347 <left_val>0.2164193987846375</left_val> 7348 <right_val>-0.1848026961088181</right_val></_></_> 7349 <_> 7350 <!-- tree 4 --> 7351 <_> 7352 <!-- root node --> 7353 <feature> 7354 <rects> 7355 <_>6 14 6 4 -1.</_> 7356 <_>9 14 3 4 2.</_></rects> 7357 <tilted>0</tilted></feature> 7358 <threshold>1.3247699826024473e-004</threshold> 7359 <left_val>-0.2268567979335785</left_val> 7360 <right_val>0.1064827963709831</right_val></_></_> 7361 <_> 7362 <!-- tree 5 --> 7363 <_> 7364 <!-- root node --> 7365 <feature> 7366 <rects> 7367 <_>5 15 12 2 -1.</_> 7368 <_>5 16 12 1 2.</_></rects> 7369 <tilted>0</tilted></feature> 7370 <threshold>6.4140267204493284e-004</threshold> 7371 <left_val>0.0947516784071922</left_val> 7372 <right_val>-0.2689200937747955</right_val></_></_> 7373 <_> 7374 <!-- tree 6 --> 7375 <_> 7376 <!-- root node --> 7377 <feature> 7378 <rects> 7379 <_>6 4 10 6 -1.</_> 7380 <_>6 6 10 2 3.</_></rects> 7381 <tilted>0</tilted></feature> 7382 <threshold>-2.9463530518114567e-003</threshold> 7383 <left_val>0.1391091048717499</left_val> 7384 <right_val>-0.1709107011556625</right_val></_></_> 7385 <_> 7386 <!-- tree 7 --> 7387 <_> 7388 <!-- root node --> 7389 <feature> 7390 <rects> 7391 <_>9 12 8 6 -1.</_> 7392 <_>9 14 8 2 3.</_></rects> 7393 <tilted>0</tilted></feature> 7394 <threshold>5.3384741768240929e-003</threshold> 7395 <left_val>0.0839692428708076</left_val> 7396 <right_val>-0.0954419896006584</right_val></_></_> 7397 <_> 7398 <!-- tree 8 --> 7399 <_> 7400 <!-- root node --> 7401 <feature> 7402 <rects> 7403 <_>1 11 20 5 -1.</_> 7404 <_>6 11 10 5 2.</_></rects> 7405 <tilted>0</tilted></feature> 7406 <threshold>0.0587031506001949</threshold> 7407 <left_val>-0.0696475207805634</left_val> 7408 <right_val>0.3362944126129150</right_val></_></_> 7409 <_> 7410 <!-- tree 9 --> 7411 <_> 7412 <!-- root node --> 7413 <feature> 7414 <rects> 7415 <_>10 8 8 4 -1.</_> 7416 <_>10 8 4 4 2.</_></rects> 7417 <tilted>0</tilted></feature> 7418 <threshold>-2.5406300555914640e-003</threshold> 7419 <left_val>0.0961760133504868</left_val> 7420 <right_val>-0.1575814038515091</right_val></_></_> 7421 <_> 7422 <!-- tree 10 --> 7423 <_> 7424 <!-- root node --> 7425 <feature> 7426 <rects> 7427 <_>2 4 18 6 -1.</_> 7428 <_>2 6 18 2 3.</_></rects> 7429 <tilted>0</tilted></feature> 7430 <threshold>-0.0318995192646980</threshold> 7431 <left_val>-0.2795648872852325</left_val> 7432 <right_val>0.0703595131635666</right_val></_></_> 7433 <_> 7434 <!-- tree 11 --> 7435 <_> 7436 <!-- root node --> 7437 <feature> 7438 <rects> 7439 <_>8 4 12 11 -1.</_> 7440 <_>8 4 6 11 2.</_></rects> 7441 <tilted>0</tilted></feature> 7442 <threshold>-0.3202270865440369</threshold> 7443 <left_val>-0.9080504775047302</left_val> 7444 <right_val>7.5922380201518536e-003</right_val></_></_> 7445 <_> 7446 <!-- tree 12 --> 7447 <_> 7448 <!-- root node --> 7449 <feature> 7450 <rects> 7451 <_>11 5 11 2 -1.</_> 7452 <_>11 5 11 1 2.</_></rects> 7453 <tilted>1</tilted></feature> 7454 <threshold>0.0357962511479855</threshold> 7455 <left_val>-0.0500707700848579</left_val> 7456 <right_val>0.4210157990455627</right_val></_></_> 7457 <_> 7458 <!-- tree 13 --> 7459 <_> 7460 <!-- root node --> 7461 <feature> 7462 <rects> 7463 <_>3 6 18 9 -1.</_> 7464 <_>9 9 6 3 9.</_></rects> 7465 <tilted>0</tilted></feature> 7466 <threshold>-0.1907916069030762</threshold> 7467 <left_val>-0.2206103056669235</left_val> 7468 <right_val>0.0651847869157791</right_val></_></_> 7469 <_> 7470 <!-- tree 14 --> 7471 <_> 7472 <!-- root node --> 7473 <feature> 7474 <rects> 7475 <_>3 2 10 9 -1.</_> 7476 <_>8 2 5 9 2.</_></rects> 7477 <tilted>0</tilted></feature> 7478 <threshold>-0.0121818296611309</threshold> 7479 <left_val>0.1347943991422653</left_val> 7480 <right_val>-0.1666775047779083</right_val></_></_> 7481 <_> 7482 <!-- tree 15 --> 7483 <_> 7484 <!-- root node --> 7485 <feature> 7486 <rects> 7487 <_>14 5 6 6 -1.</_> 7488 <_>16 5 2 6 3.</_></rects> 7489 <tilted>0</tilted></feature> 7490 <threshold>-0.0321657992899418</threshold> 7491 <left_val>-0.2510541081428528</left_val> 7492 <right_val>0.0193445608019829</right_val></_></_> 7493 <_> 7494 <!-- tree 16 --> 7495 <_> 7496 <!-- root node --> 7497 <feature> 7498 <rects> 7499 <_>5 5 12 6 -1.</_> 7500 <_>8 5 6 6 2.</_></rects> 7501 <tilted>0</tilted></feature> 7502 <threshold>0.0362996309995651</threshold> 7503 <left_val>-0.0594907812774181</left_val> 7504 <right_val>0.4000773131847382</right_val></_></_> 7505 <_> 7506 <!-- tree 17 --> 7507 <_> 7508 <!-- root node --> 7509 <feature> 7510 <rects> 7511 <_>11 3 10 4 -1.</_> 7512 <_>11 3 5 4 2.</_></rects> 7513 <tilted>1</tilted></feature> 7514 <threshold>0.0202245805412531</threshold> 7515 <left_val>0.0564897991716862</left_val> 7516 <right_val>-0.1341823935508728</right_val></_></_> 7517 <_> 7518 <!-- tree 18 --> 7519 <_> 7520 <!-- root node --> 7521 <feature> 7522 <rects> 7523 <_>6 3 8 6 -1.</_> 7524 <_>6 3 4 3 2.</_> 7525 <_>10 6 4 3 2.</_></rects> 7526 <tilted>0</tilted></feature> 7527 <threshold>-0.0253931302577257</threshold> 7528 <left_val>0.3650783896446228</left_val> 7529 <right_val>-0.0660021826624870</right_val></_></_> 7530 <_> 7531 <!-- tree 19 --> 7532 <_> 7533 <!-- root node --> 7534 <feature> 7535 <rects> 7536 <_>16 0 3 15 -1.</_> 7537 <_>16 5 3 5 3.</_></rects> 7538 <tilted>0</tilted></feature> 7539 <threshold>-0.0120223695412278</threshold> 7540 <left_val>-0.1765505969524384</left_val> 7541 <right_val>0.0739976391196251</right_val></_></_> 7542 <_> 7543 <!-- tree 20 --> 7544 <_> 7545 <!-- root node --> 7546 <feature> 7547 <rects> 7548 <_>3 0 3 15 -1.</_> 7549 <_>3 5 3 5 3.</_></rects> 7550 <tilted>0</tilted></feature> 7551 <threshold>0.0479651391506195</threshold> 7552 <left_val>0.0446685589849949</left_val> 7553 <right_val>-0.4458498060703278</right_val></_></_> 7554 <_> 7555 <!-- tree 21 --> 7556 <_> 7557 <!-- root node --> 7558 <feature> 7559 <rects> 7560 <_>5 2 12 16 -1.</_> 7561 <_>8 2 6 16 2.</_></rects> 7562 <tilted>0</tilted></feature> 7563 <threshold>-0.2056401968002319</threshold> 7564 <left_val>-0.7325450181961060</left_val> 7565 <right_val>0.0199552308768034</right_val></_></_> 7566 <_> 7567 <!-- tree 22 --> 7568 <_> 7569 <!-- root node --> 7570 <feature> 7571 <rects> 7572 <_>6 8 4 6 -1.</_> 7573 <_>8 8 2 6 2.</_></rects> 7574 <tilted>0</tilted></feature> 7575 <threshold>-1.6601709648966789e-003</threshold> 7576 <left_val>0.1163327023386955</left_val> 7577 <right_val>-0.1548850983381271</right_val></_></_> 7578 <_> 7579 <!-- tree 23 --> 7580 <_> 7581 <!-- root node --> 7582 <feature> 7583 <rects> 7584 <_>5 9 13 9 -1.</_> 7585 <_>5 12 13 3 3.</_></rects> 7586 <tilted>0</tilted></feature> 7587 <threshold>0.0868996232748032</threshold> 7588 <left_val>-0.0541075505316257</left_val> 7589 <right_val>0.2695240080356598</right_val></_></_> 7590 <_> 7591 <!-- tree 24 --> 7592 <_> 7593 <!-- root node --> 7594 <feature> 7595 <rects> 7596 <_>11 7 8 3 -1.</_> 7597 <_>11 7 4 3 2.</_></rects> 7598 <tilted>1</tilted></feature> 7599 <threshold>-1.1374129680916667e-003</threshold> 7600 <left_val>-0.1431442946195602</left_val> 7601 <right_val>0.1244433000683785</right_val></_></_> 7602 <_> 7603 <!-- tree 25 --> 7604 <_> 7605 <!-- root node --> 7606 <feature> 7607 <rects> 7608 <_>7 0 9 4 -1.</_> 7609 <_>10 0 3 4 3.</_></rects> 7610 <tilted>0</tilted></feature> 7611 <threshold>0.0309763401746750</threshold> 7612 <left_val>0.0298648606985807</left_val> 7613 <right_val>-0.3260793089866638</right_val></_></_> 7614 <_> 7615 <!-- tree 26 --> 7616 <_> 7617 <!-- root node --> 7618 <feature> 7619 <rects> 7620 <_>7 6 6 5 -1.</_> 7621 <_>10 6 3 5 2.</_></rects> 7622 <tilted>0</tilted></feature> 7623 <threshold>0.0269780103117228</threshold> 7624 <left_val>-0.0450982488691807</left_val> 7625 <right_val>0.3612884879112244</right_val></_></_> 7626 <_> 7627 <!-- tree 27 --> 7628 <_> 7629 <!-- root node --> 7630 <feature> 7631 <rects> 7632 <_>2 7 18 6 -1.</_> 7633 <_>8 9 6 2 9.</_></rects> 7634 <tilted>0</tilted></feature> 7635 <threshold>0.1942182034254074</threshold> 7636 <left_val>0.0322551913559437</left_val> 7637 <right_val>-0.6898170113563538</right_val></_></_> 7638 <_> 7639 <!-- tree 28 --> 7640 <_> 7641 <!-- root node --> 7642 <feature> 7643 <rects> 7644 <_>11 4 10 3 -1.</_> 7645 <_>10 5 10 1 3.</_></rects> 7646 <tilted>1</tilted></feature> 7647 <threshold>-0.0204433593899012</threshold> 7648 <left_val>0.2930010855197907</left_val> 7649 <right_val>-0.0644832178950310</right_val></_></_> 7650 <_> 7651 <!-- tree 29 --> 7652 <_> 7653 <!-- root node --> 7654 <feature> 7655 <rects> 7656 <_>13 14 8 4 -1.</_> 7657 <_>13 16 8 2 2.</_></rects> 7658 <tilted>0</tilted></feature> 7659 <threshold>-0.0404204502701759</threshold> 7660 <left_val>-0.7682335972785950</left_val> 7661 <right_val>0.0122819803655148</right_val></_></_> 7662 <_> 7663 <!-- tree 30 --> 7664 <_> 7665 <!-- root node --> 7666 <feature> 7667 <rects> 7668 <_>1 14 8 4 -1.</_> 7669 <_>1 16 8 2 2.</_></rects> 7670 <tilted>0</tilted></feature> 7671 <threshold>-0.0126414299011230</threshold> 7672 <left_val>-0.2757379114627838</left_val> 7673 <right_val>0.0619011186063290</right_val></_></_> 7674 <_> 7675 <!-- tree 31 --> 7676 <_> 7677 <!-- root node --> 7678 <feature> 7679 <rects> 7680 <_>11 4 3 10 -1.</_> 7681 <_>12 5 1 10 3.</_></rects> 7682 <tilted>1</tilted></feature> 7683 <threshold>-0.0396702997386456</threshold> 7684 <left_val>0.3282839059829712</left_val> 7685 <right_val>-0.0203649997711182</right_val></_></_> 7686 <_> 7687 <!-- tree 32 --> 7688 <_> 7689 <!-- root node --> 7690 <feature> 7691 <rects> 7692 <_>11 4 10 3 -1.</_> 7693 <_>10 5 10 1 3.</_></rects> 7694 <tilted>1</tilted></feature> 7695 <threshold>0.0202467292547226</threshold> 7696 <left_val>-0.0583936013281345</left_val> 7697 <right_val>0.3306053876876831</right_val></_></_> 7698 <_> 7699 <!-- tree 33 --> 7700 <_> 7701 <!-- root node --> 7702 <feature> 7703 <rects> 7704 <_>2 12 18 6 -1.</_> 7705 <_>11 12 9 3 2.</_> 7706 <_>2 15 9 3 2.</_></rects> 7707 <tilted>0</tilted></feature> 7708 <threshold>8.9611168950796127e-003</threshold> 7709 <left_val>0.0900963172316551</left_val> 7710 <right_val>-0.2234300971031189</right_val></_></_> 7711 <_> 7712 <!-- tree 34 --> 7713 <_> 7714 <!-- root node --> 7715 <feature> 7716 <rects> 7717 <_>5 2 8 6 -1.</_> 7718 <_>5 2 4 3 2.</_> 7719 <_>9 5 4 3 2.</_></rects> 7720 <tilted>0</tilted></feature> 7721 <threshold>-8.3055719733238220e-003</threshold> 7722 <left_val>0.1417534947395325</left_val> 7723 <right_val>-0.1260726004838944</right_val></_></_> 7724 <_> 7725 <!-- tree 35 --> 7726 <_> 7727 <!-- root node --> 7728 <feature> 7729 <rects> 7730 <_>8 14 6 4 -1.</_> 7731 <_>8 16 6 2 2.</_></rects> 7732 <tilted>0</tilted></feature> 7733 <threshold>-2.8248139642528258e-005</threshold> 7734 <left_val>0.0945169627666473</left_val> 7735 <right_val>-0.2181037068367004</right_val></_></_> 7736 <_> 7737 <!-- tree 36 --> 7738 <_> 7739 <!-- root node --> 7740 <feature> 7741 <rects> 7742 <_>1 10 6 8 -1.</_> 7743 <_>1 10 3 4 2.</_> 7744 <_>4 14 3 4 2.</_></rects> 7745 <tilted>0</tilted></feature> 7746 <threshold>-5.1939398981630802e-003</threshold> 7747 <left_val>0.1330431997776032</left_val> 7748 <right_val>-0.1334158033132553</right_val></_></_> 7749 <_> 7750 <!-- tree 37 --> 7751 <_> 7752 <!-- root node --> 7753 <feature> 7754 <rects> 7755 <_>7 2 15 9 -1.</_> 7756 <_>12 5 5 3 9.</_></rects> 7757 <tilted>0</tilted></feature> 7758 <threshold>0.1177311018109322</threshold> 7759 <left_val>0.0295861996710300</left_val> 7760 <right_val>-0.2402082979679108</right_val></_></_> 7761 <_> 7762 <!-- tree 38 --> 7763 <_> 7764 <!-- root node --> 7765 <feature> 7766 <rects> 7767 <_>0 2 15 9 -1.</_> 7768 <_>5 5 5 3 9.</_></rects> 7769 <tilted>0</tilted></feature> 7770 <threshold>0.0678967013955116</threshold> 7771 <left_val>0.0809137076139450</left_val> 7772 <right_val>-0.2345446050167084</right_val></_></_> 7773 <_> 7774 <!-- tree 39 --> 7775 <_> 7776 <!-- root node --> 7777 <feature> 7778 <rects> 7779 <_>10 5 6 7 -1.</_> 7780 <_>12 5 2 7 3.</_></rects> 7781 <tilted>0</tilted></feature> 7782 <threshold>-0.0266836993396282</threshold> 7783 <left_val>0.3059098124504089</left_val> 7784 <right_val>-0.0641520470380783</right_val></_></_> 7785 <_> 7786 <!-- tree 40 --> 7787 <_> 7788 <!-- root node --> 7789 <feature> 7790 <rects> 7791 <_>5 14 12 4 -1.</_> 7792 <_>5 14 6 2 2.</_> 7793 <_>11 16 6 2 2.</_></rects> 7794 <tilted>0</tilted></feature> 7795 <threshold>3.5058211069554090e-003</threshold> 7796 <left_val>0.0893419682979584</left_val> 7797 <right_val>-0.2277368009090424</right_val></_></_> 7798 <_> 7799 <!-- tree 41 --> 7800 <_> 7801 <!-- root node --> 7802 <feature> 7803 <rects> 7804 <_>10 1 12 3 -1.</_> 7805 <_>10 2 12 1 3.</_></rects> 7806 <tilted>0</tilted></feature> 7807 <threshold>-6.5844372147694230e-004</threshold> 7808 <left_val>0.1245813965797424</left_val> 7809 <right_val>-0.0913524404168129</right_val></_></_> 7810 <_> 7811 <!-- tree 42 --> 7812 <_> 7813 <!-- root node --> 7814 <feature> 7815 <rects> 7816 <_>8 1 3 12 -1.</_> 7817 <_>9 1 1 12 3.</_></rects> 7818 <tilted>0</tilted></feature> 7819 <threshold>7.2530400939285755e-003</threshold> 7820 <left_val>-0.0692851766943932</left_val> 7821 <right_val>0.2548288106918335</right_val></_></_> 7822 <_> 7823 <!-- tree 43 --> 7824 <_> 7825 <!-- root node --> 7826 <feature> 7827 <rects> 7828 <_>14 2 6 7 -1.</_> 7829 <_>14 2 3 7 2.</_></rects> 7830 <tilted>0</tilted></feature> 7831 <threshold>-0.0280561298131943</threshold> 7832 <left_val>-0.2086703926324844</left_val> 7833 <right_val>0.0335395783185959</right_val></_></_> 7834 <_> 7835 <!-- tree 44 --> 7836 <_> 7837 <!-- root node --> 7838 <feature> 7839 <rects> 7840 <_>1 0 12 9 -1.</_> 7841 <_>5 3 4 3 9.</_></rects> 7842 <tilted>0</tilted></feature> 7843 <threshold>-0.0512051805853844</threshold> 7844 <left_val>-0.2410742938518524</left_val> 7845 <right_val>0.0644394084811211</right_val></_></_> 7846 <_> 7847 <!-- tree 45 --> 7848 <_> 7849 <!-- root node --> 7850 <feature> 7851 <rects> 7852 <_>8 3 7 6 -1.</_> 7853 <_>8 6 7 3 2.</_></rects> 7854 <tilted>0</tilted></feature> 7855 <threshold>0.0292346496134996</threshold> 7856 <left_val>-0.0508038401603699</left_val> 7857 <right_val>0.3648504912853241</right_val></_></_> 7858 <_> 7859 <!-- tree 46 --> 7860 <_> 7861 <!-- root node --> 7862 <feature> 7863 <rects> 7864 <_>1 12 20 3 -1.</_> 7865 <_>6 12 10 3 2.</_></rects> 7866 <tilted>0</tilted></feature> 7867 <threshold>-0.1021952033042908</threshold> 7868 <left_val>0.4012348055839539</left_val> 7869 <right_val>-0.0429021194577217</right_val></_></_> 7870 <_> 7871 <!-- tree 47 --> 7872 <_> 7873 <!-- root node --> 7874 <feature> 7875 <rects> 7876 <_>5 2 12 16 -1.</_> 7877 <_>5 6 12 8 2.</_></rects> 7878 <tilted>0</tilted></feature> 7879 <threshold>0.0151049699634314</threshold> 7880 <left_val>0.1048149019479752</left_val> 7881 <right_val>-0.1847243010997772</right_val></_></_> 7882 <_> 7883 <!-- tree 48 --> 7884 <_> 7885 <!-- root node --> 7886 <feature> 7887 <rects> 7888 <_>4 3 7 6 -1.</_> 7889 <_>4 6 7 3 2.</_></rects> 7890 <tilted>0</tilted></feature> 7891 <threshold>-0.0125706503167748</threshold> 7892 <left_val>-0.2054093927145004</left_val> 7893 <right_val>0.0930131971836090</right_val></_></_> 7894 <_> 7895 <!-- tree 49 --> 7896 <_> 7897 <!-- root node --> 7898 <feature> 7899 <rects> 7900 <_>9 5 6 6 -1.</_> 7901 <_>11 5 2 6 3.</_></rects> 7902 <tilted>0</tilted></feature> 7903 <threshold>0.0122530702501535</threshold> 7904 <left_val>-0.0592851005494595</left_val> 7905 <right_val>0.2392731010913849</right_val></_></_> 7906 <_> 7907 <!-- tree 50 --> 7908 <_> 7909 <!-- root node --> 7910 <feature> 7911 <rects> 7912 <_>7 0 8 2 -1.</_> 7913 <_>7 0 8 1 2.</_></rects> 7914 <tilted>1</tilted></feature> 7915 <threshold>-0.0261669903993607</threshold> 7916 <left_val>-0.6996678709983826</left_val> 7917 <right_val>0.0249067097902298</right_val></_></_> 7918 <_> 7919 <!-- tree 51 --> 7920 <_> 7921 <!-- root node --> 7922 <feature> 7923 <rects> 7924 <_>5 14 12 2 -1.</_> 7925 <_>5 15 12 1 2.</_></rects> 7926 <tilted>0</tilted></feature> 7927 <threshold>7.0817661471664906e-003</threshold> 7928 <left_val>0.0241731200367212</left_val> 7929 <right_val>-0.5514479279518127</right_val></_></_> 7930 <_> 7931 <!-- tree 52 --> 7932 <_> 7933 <!-- root node --> 7934 <feature> 7935 <rects> 7936 <_>3 11 16 6 -1.</_> 7937 <_>3 13 16 2 3.</_></rects> 7938 <tilted>0</tilted></feature> 7939 <threshold>0.0214268509298563</threshold> 7940 <left_val>0.0641688406467438</left_val> 7941 <right_val>-0.2599790096282959</right_val></_></_> 7942 <_> 7943 <!-- tree 53 --> 7944 <_> 7945 <!-- root node --> 7946 <feature> 7947 <rects> 7948 <_>11 5 3 8 -1.</_> 7949 <_>11 5 3 4 2.</_></rects> 7950 <tilted>1</tilted></feature> 7951 <threshold>0.0181897096335888</threshold> 7952 <left_val>0.0358382500708103</left_val> 7953 <right_val>-0.1802058070898056</right_val></_></_> 7954 <_> 7955 <!-- tree 54 --> 7956 <_> 7957 <!-- root node --> 7958 <feature> 7959 <rects> 7960 <_>2 15 12 3 -1.</_> 7961 <_>8 15 6 3 2.</_></rects> 7962 <tilted>0</tilted></feature> 7963 <threshold>0.0174157992005348</threshold> 7964 <left_val>-0.0838620364665985</left_val> 7965 <right_val>0.3333852887153626</right_val></_></_> 7966 <_> 7967 <!-- tree 55 --> 7968 <_> 7969 <!-- root node --> 7970 <feature> 7971 <rects> 7972 <_>4 13 15 3 -1.</_> 7973 <_>9 13 5 3 3.</_></rects> 7974 <tilted>0</tilted></feature> 7975 <threshold>-1.4878029469400644e-003</threshold> 7976 <left_val>0.1207885965704918</left_val> 7977 <right_val>-0.1276932060718536</right_val></_></_> 7978 <_> 7979 <!-- tree 56 --> 7980 <_> 7981 <!-- root node --> 7982 <feature> 7983 <rects> 7984 <_>2 3 12 4 -1.</_> 7985 <_>2 3 6 2 2.</_> 7986 <_>8 5 6 2 2.</_></rects> 7987 <tilted>0</tilted></feature> 7988 <threshold>7.5296638533473015e-003</threshold> 7989 <left_val>-0.0700147077441216</left_val> 7990 <right_val>0.3218109011650085</right_val></_></_> 7991 <_> 7992 <!-- tree 57 --> 7993 <_> 7994 <!-- root node --> 7995 <feature> 7996 <rects> 7997 <_>17 5 4 7 -1.</_> 7998 <_>17 5 2 7 2.</_></rects> 7999 <tilted>1</tilted></feature> 8000 <threshold>-0.0614990182220936</threshold> 8001 <left_val>0.4646979868412018</left_val> 8002 <right_val>-0.0100737102329731</right_val></_></_> 8003 <_> 8004 <!-- tree 58 --> 8005 <_> 8006 <!-- root node --> 8007 <feature> 8008 <rects> 8009 <_>5 4 7 4 -1.</_> 8010 <_>5 4 7 2 2.</_></rects> 8011 <tilted>1</tilted></feature> 8012 <threshold>-1.9133290334139019e-004</threshold> 8013 <left_val>-0.1409429013729096</left_val> 8014 <right_val>0.1383011043071747</right_val></_></_> 8015 <_> 8016 <!-- tree 59 --> 8017 <_> 8018 <!-- root node --> 8019 <feature> 8020 <rects> 8021 <_>2 2 18 3 -1.</_> 8022 <_>8 2 6 3 3.</_></rects> 8023 <tilted>0</tilted></feature> 8024 <threshold>-0.0244222898036242</threshold> 8025 <left_val>-0.2529231011867523</left_val> 8026 <right_val>0.0676841735839844</right_val></_></_> 8027 <_> 8028 <!-- tree 60 --> 8029 <_> 8030 <!-- root node --> 8031 <feature> 8032 <rects> 8033 <_>2 2 18 9 -1.</_> 8034 <_>8 5 6 3 9.</_></rects> 8035 <tilted>0</tilted></feature> 8036 <threshold>-0.2613632082939148</threshold> 8037 <left_val>0.3400354087352753</left_val> 8038 <right_val>-0.0584625490009785</right_val></_></_> 8039 <_> 8040 <!-- tree 61 --> 8041 <_> 8042 <!-- root node --> 8043 <feature> 8044 <rects> 8045 <_>15 6 6 4 -1.</_> 8046 <_>15 6 3 4 2.</_></rects> 8047 <tilted>0</tilted></feature> 8048 <threshold>-0.0760467797517776</threshold> 8049 <left_val>-0.7851415872573853</left_val> 8050 <right_val>5.2708541043102741e-003</right_val></_></_> 8051 <_> 8052 <!-- tree 62 --> 8053 <_> 8054 <!-- root node --> 8055 <feature> 8056 <rects> 8057 <_>0 1 12 3 -1.</_> 8058 <_>0 2 12 1 3.</_></rects> 8059 <tilted>0</tilted></feature> 8060 <threshold>-3.0279329512268305e-003</threshold> 8061 <left_val>0.1852705925703049</left_val> 8062 <right_val>-0.0906919613480568</right_val></_></_> 8063 <_> 8064 <!-- tree 63 --> 8065 <_> 8066 <!-- root node --> 8067 <feature> 8068 <rects> 8069 <_>16 2 6 4 -1.</_> 8070 <_>16 2 6 2 2.</_></rects> 8071 <tilted>1</tilted></feature> 8072 <threshold>-8.0219199880957603e-003</threshold> 8073 <left_val>-0.1254058033227921</left_val> 8074 <right_val>0.0305948890745640</right_val></_></_> 8075 <_> 8076 <!-- tree 64 --> 8077 <_> 8078 <!-- root node --> 8079 <feature> 8080 <rects> 8081 <_>0 9 14 6 -1.</_> 8082 <_>7 9 7 6 2.</_></rects> 8083 <tilted>0</tilted></feature> 8084 <threshold>-0.2070596069097519</threshold> 8085 <left_val>-0.7541192173957825</left_val> 8086 <right_val>0.0212011300027370</right_val></_></_> 8087 <_> 8088 <!-- tree 65 --> 8089 <_> 8090 <!-- root node --> 8091 <feature> 8092 <rects> 8093 <_>13 5 8 4 -1.</_> 8094 <_>13 5 4 4 2.</_></rects> 8095 <tilted>1</tilted></feature> 8096 <threshold>-0.0953228175640106</threshold> 8097 <left_val>-0.2962307035923004</left_val> 8098 <right_val>0.0131387095898390</right_val></_></_> 8099 <_> 8100 <!-- tree 66 --> 8101 <_> 8102 <!-- root node --> 8103 <feature> 8104 <rects> 8105 <_>9 5 4 8 -1.</_> 8106 <_>9 5 4 4 2.</_></rects> 8107 <tilted>1</tilted></feature> 8108 <threshold>9.5921624451875687e-003</threshold> 8109 <left_val>0.0843243226408958</left_val> 8110 <right_val>-0.2174658030271530</right_val></_></_> 8111 <_> 8112 <!-- tree 67 --> 8113 <_> 8114 <!-- root node --> 8115 <feature> 8116 <rects> 8117 <_>12 4 3 14 -1.</_> 8118 <_>12 11 3 7 2.</_></rects> 8119 <tilted>0</tilted></feature> 8120 <threshold>-0.0130894696339965</threshold> 8121 <left_val>0.0936075001955032</left_val> 8122 <right_val>-0.0657541304826736</right_val></_></_> 8123 <_> 8124 <!-- tree 68 --> 8125 <_> 8126 <!-- root node --> 8127 <feature> 8128 <rects> 8129 <_>1 13 20 5 -1.</_> 8130 <_>6 13 10 5 2.</_></rects> 8131 <tilted>0</tilted></feature> 8132 <threshold>0.0117328800261021</threshold> 8133 <left_val>-0.0800390467047691</left_val> 8134 <right_val>0.2329193949699402</right_val></_></_> 8135 <_> 8136 <!-- tree 69 --> 8137 <_> 8138 <!-- root node --> 8139 <feature> 8140 <rects> 8141 <_>12 4 3 14 -1.</_> 8142 <_>12 11 3 7 2.</_></rects> 8143 <tilted>0</tilted></feature> 8144 <threshold>0.1523904949426651</threshold> 8145 <left_val>9.9299130961298943e-003</left_val> 8146 <right_val>-0.6519606709480286</right_val></_></_> 8147 <_> 8148 <!-- tree 70 --> 8149 <_> 8150 <!-- root node --> 8151 <feature> 8152 <rects> 8153 <_>7 4 3 14 -1.</_> 8154 <_>7 11 3 7 2.</_></rects> 8155 <tilted>0</tilted></feature> 8156 <threshold>-0.0645915120840073</threshold> 8157 <left_val>0.2837221920490265</left_val> 8158 <right_val>-0.0600588284432888</right_val></_></_> 8159 <_> 8160 <!-- tree 71 --> 8161 <_> 8162 <!-- root node --> 8163 <feature> 8164 <rects> 8165 <_>16 2 6 4 -1.</_> 8166 <_>16 2 6 2 2.</_></rects> 8167 <tilted>1</tilted></feature> 8168 <threshold>-0.0554930306971073</threshold> 8169 <left_val>0.2665910124778748</left_val> 8170 <right_val>-0.0103364195674658</right_val></_></_> 8171 <_> 8172 <!-- tree 72 --> 8173 <_> 8174 <!-- root node --> 8175 <feature> 8176 <rects> 8177 <_>6 2 4 6 -1.</_> 8178 <_>6 2 2 6 2.</_></rects> 8179 <tilted>1</tilted></feature> 8180 <threshold>-0.0502874106168747</threshold> 8181 <left_val>-0.6950147151947022</left_val> 8182 <right_val>0.0278498791158199</right_val></_></_> 8183 <_> 8184 <!-- tree 73 --> 8185 <_> 8186 <!-- root node --> 8187 <feature> 8188 <rects> 8189 <_>7 4 15 14 -1.</_> 8190 <_>7 11 15 7 2.</_></rects> 8191 <tilted>0</tilted></feature> 8192 <threshold>-0.4779424965381622</threshold> 8193 <left_val>-0.9287195205688477</left_val> 8194 <right_val>5.9050112031400204e-003</right_val></_></_> 8195 <_> 8196 <!-- tree 74 --> 8197 <_> 8198 <!-- root node --> 8199 <feature> 8200 <rects> 8201 <_>1 16 16 2 -1.</_> 8202 <_>1 17 16 1 2.</_></rects> 8203 <tilted>0</tilted></feature> 8204 <threshold>-0.0143985198810697</threshold> 8205 <left_val>-0.4554106891155243</left_val> 8206 <right_val>0.0364099815487862</right_val></_></_></trees> 8207 <stage_threshold>-0.8526716828346252</stage_threshold> 8208 <parent>12</parent> 8209 <next>-1</next></_> 8210 <_> 8211 <!-- stage 14 --> 8212 <trees> 8213 <_> 8214 <!-- tree 0 --> 8215 <_> 8216 <!-- root node --> 8217 <feature> 8218 <rects> 8219 <_>0 6 12 4 -1.</_> 8220 <_>3 6 6 4 2.</_></rects> 8221 <tilted>0</tilted></feature> 8222 <threshold>1.9511899445205927e-003</threshold> 8223 <left_val>-0.2493699043989182</left_val> 8224 <right_val>0.1411163955926895</right_val></_></_> 8225 <_> 8226 <!-- tree 1 --> 8227 <_> 8228 <!-- root node --> 8229 <feature> 8230 <rects> 8231 <_>6 9 10 9 -1.</_> 8232 <_>6 12 10 3 3.</_></rects> 8233 <tilted>0</tilted></feature> 8234 <threshold>-0.0466346703469753</threshold> 8235 <left_val>0.3784058988094330</left_val> 8236 <right_val>-0.0784017369151115</right_val></_></_> 8237 <_> 8238 <!-- tree 2 --> 8239 <_> 8240 <!-- root node --> 8241 <feature> 8242 <rects> 8243 <_>0 6 6 5 -1.</_> 8244 <_>3 6 3 5 2.</_></rects> 8245 <tilted>0</tilted></feature> 8246 <threshold>0.0161937493830919</threshold> 8247 <left_val>0.0752133131027222</left_val> 8248 <right_val>-0.4199146926403046</right_val></_></_> 8249 <_> 8250 <!-- tree 3 --> 8251 <_> 8252 <!-- root node --> 8253 <feature> 8254 <rects> 8255 <_>11 14 7 4 -1.</_> 8256 <_>11 16 7 2 2.</_></rects> 8257 <tilted>0</tilted></feature> 8258 <threshold>-1.2459639401640743e-004</threshold> 8259 <left_val>0.0685761868953705</left_val> 8260 <right_val>-0.1793542057275772</right_val></_></_> 8261 <_> 8262 <!-- tree 4 --> 8263 <_> 8264 <!-- root node --> 8265 <feature> 8266 <rects> 8267 <_>7 8 8 2 -1.</_> 8268 <_>7 8 8 1 2.</_></rects> 8269 <tilted>1</tilted></feature> 8270 <threshold>7.3257791809737682e-003</threshold> 8271 <left_val>0.1032209992408752</left_val> 8272 <right_val>-0.2609927952289581</right_val></_></_> 8273 <_> 8274 <!-- tree 5 --> 8275 <_> 8276 <!-- root node --> 8277 <feature> 8278 <rects> 8279 <_>10 13 7 4 -1.</_> 8280 <_>10 15 7 2 2.</_></rects> 8281 <tilted>0</tilted></feature> 8282 <threshold>-1.5020779756014235e-005</threshold> 8283 <left_val>0.0731225982308388</left_val> 8284 <right_val>-0.1671888977289200</right_val></_></_> 8285 <_> 8286 <!-- tree 6 --> 8287 <_> 8288 <!-- root node --> 8289 <feature> 8290 <rects> 8291 <_>1 16 20 2 -1.</_> 8292 <_>11 16 10 2 2.</_></rects> 8293 <tilted>0</tilted></feature> 8294 <threshold>-0.0345220081508160</threshold> 8295 <left_val>-0.3932698965072632</left_val> 8296 <right_val>0.0767271667718887</right_val></_></_> 8297 <_> 8298 <!-- tree 7 --> 8299 <_> 8300 <!-- root node --> 8301 <feature> 8302 <rects> 8303 <_>5 12 14 4 -1.</_> 8304 <_>5 12 7 4 2.</_></rects> 8305 <tilted>0</tilted></feature> 8306 <threshold>-0.0826795101165771</threshold> 8307 <left_val>-0.7467781901359558</left_val> 8308 <right_val>0.0155306002125144</right_val></_></_> 8309 <_> 8310 <!-- tree 8 --> 8311 <_> 8312 <!-- root node --> 8313 <feature> 8314 <rects> 8315 <_>8 8 4 6 -1.</_> 8316 <_>8 8 2 6 2.</_></rects> 8317 <tilted>1</tilted></feature> 8318 <threshold>0.0821624025702477</threshold> 8319 <left_val>-0.0692495033144951</left_val> 8320 <right_val>0.3791460096836090</right_val></_></_> 8321 <_> 8322 <!-- tree 9 --> 8323 <_> 8324 <!-- root node --> 8325 <feature> 8326 <rects> 8327 <_>17 2 2 14 -1.</_> 8328 <_>17 2 2 7 2.</_></rects> 8329 <tilted>1</tilted></feature> 8330 <threshold>0.0341878309845924</threshold> 8331 <left_val>0.0426086597144604</left_val> 8332 <right_val>-0.1542989015579224</right_val></_></_> 8333 <_> 8334 <!-- tree 10 --> 8335 <_> 8336 <!-- root node --> 8337 <feature> 8338 <rects> 8339 <_>7 1 8 4 -1.</_> 8340 <_>11 1 4 4 2.</_></rects> 8341 <tilted>0</tilted></feature> 8342 <threshold>-0.0178913697600365</threshold> 8343 <left_val>-0.3063957095146179</left_val> 8344 <right_val>0.0781183987855911</right_val></_></_> 8345 <_> 8346 <!-- tree 11 --> 8347 <_> 8348 <!-- root node --> 8349 <feature> 8350 <rects> 8351 <_>5 7 12 3 -1.</_> 8352 <_>9 7 4 3 3.</_></rects> 8353 <tilted>0</tilted></feature> 8354 <threshold>0.0331309996545315</threshold> 8355 <left_val>-0.0561838001012802</left_val> 8356 <right_val>0.3740524053573608</right_val></_></_> 8357 <_> 8358 <!-- tree 12 --> 8359 <_> 8360 <!-- root node --> 8361 <feature> 8362 <rects> 8363 <_>2 14 6 4 -1.</_> 8364 <_>5 14 3 4 2.</_></rects> 8365 <tilted>0</tilted></feature> 8366 <threshold>-5.7486710138618946e-003</threshold> 8367 <left_val>0.1249035000801086</left_val> 8368 <right_val>-0.2052786052227020</right_val></_></_> 8369 <_> 8370 <!-- tree 13 --> 8371 <_> 8372 <!-- root node --> 8373 <feature> 8374 <rects> 8375 <_>10 9 12 4 -1.</_> 8376 <_>16 9 6 2 2.</_> 8377 <_>10 11 6 2 2.</_></rects> 8378 <tilted>0</tilted></feature> 8379 <threshold>0.0335368290543556</threshold> 8380 <left_val>-0.0483442209661007</left_val> 8381 <right_val>0.2672440111637116</right_val></_></_> 8382 <_> 8383 <!-- tree 14 --> 8384 <_> 8385 <!-- root node --> 8386 <feature> 8387 <rects> 8388 <_>6 14 9 4 -1.</_> 8389 <_>9 14 3 4 3.</_></rects> 8390 <tilted>0</tilted></feature> 8391 <threshold>0.0247238297015429</threshold> 8392 <left_val>0.0836789682507515</left_val> 8393 <right_val>-0.3373064994812012</right_val></_></_> 8394 <_> 8395 <!-- tree 15 --> 8396 <_> 8397 <!-- root node --> 8398 <feature> 8399 <rects> 8400 <_>11 9 2 6 -1.</_> 8401 <_>11 9 1 6 2.</_></rects> 8402 <tilted>1</tilted></feature> 8403 <threshold>2.2355809342116117e-003</threshold> 8404 <left_val>0.1037459000945091</left_val> 8405 <right_val>-0.1307191997766495</right_val></_></_> 8406 <_> 8407 <!-- tree 16 --> 8408 <_> 8409 <!-- root node --> 8410 <feature> 8411 <rects> 8412 <_>3 9 14 9 -1.</_> 8413 <_>3 12 14 3 3.</_></rects> 8414 <tilted>0</tilted></feature> 8415 <threshold>-2.4322168901562691e-003</threshold> 8416 <left_val>0.1564508974552155</left_val> 8417 <right_val>-0.1328445971012116</right_val></_></_> 8418 <_> 8419 <!-- tree 17 --> 8420 <_> 8421 <!-- root node --> 8422 <feature> 8423 <rects> 8424 <_>5 10 16 6 -1.</_> 8425 <_>5 12 16 2 3.</_></rects> 8426 <tilted>0</tilted></feature> 8427 <threshold>0.0259991195052862</threshold> 8428 <left_val>-0.0803431272506714</left_val> 8429 <right_val>0.2161011993885040</right_val></_></_> 8430 <_> 8431 <!-- tree 18 --> 8432 <_> 8433 <!-- root node --> 8434 <feature> 8435 <rects> 8436 <_>5 12 10 6 -1.</_> 8437 <_>5 12 5 3 2.</_> 8438 <_>10 15 5 3 2.</_></rects> 8439 <tilted>0</tilted></feature> 8440 <threshold>3.6965688195778057e-005</threshold> 8441 <left_val>-0.1787101030349731</left_val> 8442 <right_val>0.1056312024593353</right_val></_></_> 8443 <_> 8444 <!-- tree 19 --> 8445 <_> 8446 <!-- root node --> 8447 <feature> 8448 <rects> 8449 <_>4 13 18 5 -1.</_> 8450 <_>4 13 9 5 2.</_></rects> 8451 <tilted>0</tilted></feature> 8452 <threshold>-0.1629150062799454</threshold> 8453 <left_val>-0.6914169788360596</left_val> 8454 <right_val>0.0223747305572033</right_val></_></_> 8455 <_> 8456 <!-- tree 20 --> 8457 <_> 8458 <!-- root node --> 8459 <feature> 8460 <rects> 8461 <_>0 13 18 5 -1.</_> 8462 <_>9 13 9 5 2.</_></rects> 8463 <tilted>0</tilted></feature> 8464 <threshold>0.1300814002752304</threshold> 8465 <left_val>-0.0427690409123898</left_val> 8466 <right_val>0.4637356996536255</right_val></_></_> 8467 <_> 8468 <!-- tree 21 --> 8469 <_> 8470 <!-- root node --> 8471 <feature> 8472 <rects> 8473 <_>4 9 16 3 -1.</_> 8474 <_>4 10 16 1 3.</_></rects> 8475 <tilted>0</tilted></feature> 8476 <threshold>0.0276585407555103</threshold> 8477 <left_val>-0.0371086001396179</left_val> 8478 <right_val>0.3838658034801483</right_val></_></_> 8479 <_> 8480 <!-- tree 22 --> 8481 <_> 8482 <!-- root node --> 8483 <feature> 8484 <rects> 8485 <_>5 1 15 2 -1.</_> 8486 <_>5 1 15 1 2.</_></rects> 8487 <tilted>1</tilted></feature> 8488 <threshold>-0.0100204199552536</threshold> 8489 <left_val>-0.2632805109024048</left_val> 8490 <right_val>0.0748586803674698</right_val></_></_> 8491 <_> 8492 <!-- tree 23 --> 8493 <_> 8494 <!-- root node --> 8495 <feature> 8496 <rects> 8497 <_>13 5 2 9 -1.</_> 8498 <_>13 5 1 9 2.</_></rects> 8499 <tilted>1</tilted></feature> 8500 <threshold>-0.0304599404335022</threshold> 8501 <left_val>0.3230090141296387</left_val> 8502 <right_val>-0.0258583705872297</right_val></_></_> 8503 <_> 8504 <!-- tree 24 --> 8505 <_> 8506 <!-- root node --> 8507 <feature> 8508 <rects> 8509 <_>9 5 9 2 -1.</_> 8510 <_>9 5 9 1 2.</_></rects> 8511 <tilted>1</tilted></feature> 8512 <threshold>1.3251040363684297e-003</threshold> 8513 <left_val>0.1444766968488693</left_val> 8514 <right_val>-0.2108217030763626</right_val></_></_> 8515 <_> 8516 <!-- tree 25 --> 8517 <_> 8518 <!-- root node --> 8519 <feature> 8520 <rects> 8521 <_>1 11 20 5 -1.</_> 8522 <_>6 11 10 5 2.</_></rects> 8523 <tilted>0</tilted></feature> 8524 <threshold>-0.0279310103505850</threshold> 8525 <left_val>0.1437451988458633</left_val> 8526 <right_val>-0.1616230010986328</right_val></_></_> 8527 <_> 8528 <!-- tree 26 --> 8529 <_> 8530 <!-- root node --> 8531 <feature> 8532 <rects> 8533 <_>3 9 13 3 -1.</_> 8534 <_>3 10 13 1 3.</_></rects> 8535 <tilted>0</tilted></feature> 8536 <threshold>-8.8642723858356476e-003</threshold> 8537 <left_val>0.2300062030553818</left_val> 8538 <right_val>-0.0950950980186462</right_val></_></_> 8539 <_> 8540 <!-- tree 27 --> 8541 <_> 8542 <!-- root node --> 8543 <feature> 8544 <rects> 8545 <_>18 5 4 12 -1.</_> 8546 <_>20 5 2 6 2.</_> 8547 <_>18 11 2 6 2.</_></rects> 8548 <tilted>0</tilted></feature> 8549 <threshold>-0.0122139696031809</threshold> 8550 <left_val>-0.2464639991521835</left_val> 8551 <right_val>0.0655220225453377</right_val></_></_> 8552 <_> 8553 <!-- tree 28 --> 8554 <_> 8555 <!-- root node --> 8556 <feature> 8557 <rects> 8558 <_>4 12 5 6 -1.</_> 8559 <_>4 15 5 3 2.</_></rects> 8560 <tilted>0</tilted></feature> 8561 <threshold>-0.0487375296652317</threshold> 8562 <left_val>-0.7912771105766296</left_val> 8563 <right_val>0.0254164095968008</right_val></_></_> 8564 <_> 8565 <!-- tree 29 --> 8566 <_> 8567 <!-- root node --> 8568 <feature> 8569 <rects> 8570 <_>15 1 2 8 -1.</_> 8571 <_>15 1 1 8 2.</_></rects> 8572 <tilted>1</tilted></feature> 8573 <threshold>0.0611852891743183</threshold> 8574 <left_val>-1.2226430408190936e-004</left_val> 8575 <right_val>-0.9054586887359619</right_val></_></_> 8576 <_> 8577 <!-- tree 30 --> 8578 <_> 8579 <!-- root node --> 8580 <feature> 8581 <rects> 8582 <_>7 1 8 2 -1.</_> 8583 <_>7 1 8 1 2.</_></rects> 8584 <tilted>1</tilted></feature> 8585 <threshold>0.0264536794275045</threshold> 8586 <left_val>0.0265628006309271</left_val> 8587 <right_val>-0.6395434141159058</right_val></_></_> 8588 <_> 8589 <!-- tree 31 --> 8590 <_> 8591 <!-- root node --> 8592 <feature> 8593 <rects> 8594 <_>18 5 4 12 -1.</_> 8595 <_>20 5 2 6 2.</_> 8596 <_>18 11 2 6 2.</_></rects> 8597 <tilted>0</tilted></feature> 8598 <threshold>8.8589917868375778e-003</threshold> 8599 <left_val>0.0541458502411842</left_val> 8600 <right_val>-0.2160128057003021</right_val></_></_> 8601 <_> 8602 <!-- tree 32 --> 8603 <_> 8604 <!-- root node --> 8605 <feature> 8606 <rects> 8607 <_>10 4 10 2 -1.</_> 8608 <_>10 4 10 1 2.</_></rects> 8609 <tilted>1</tilted></feature> 8610 <threshold>0.0348479412496090</threshold> 8611 <left_val>-0.0457493588328362</left_val> 8612 <right_val>0.4393540024757385</right_val></_></_> 8613 <_> 8614 <!-- tree 33 --> 8615 <_> 8616 <!-- root node --> 8617 <feature> 8618 <rects> 8619 <_>2 4 20 4 -1.</_> 8620 <_>7 4 10 4 2.</_></rects> 8621 <tilted>0</tilted></feature> 8622 <threshold>-0.1459821015596390</threshold> 8623 <left_val>-0.5556176900863648</left_val> 8624 <right_val>9.5249973237514496e-003</right_val></_></_> 8625 <_> 8626 <!-- tree 34 --> 8627 <_> 8628 <!-- root node --> 8629 <feature> 8630 <rects> 8631 <_>1 9 8 3 -1.</_> 8632 <_>5 9 4 3 2.</_></rects> 8633 <tilted>0</tilted></feature> 8634 <threshold>-0.0504565685987473</threshold> 8635 <left_val>-0.7528784871101379</left_val> 8636 <right_val>0.0202147103846073</right_val></_></_> 8637 <_> 8638 <!-- tree 35 --> 8639 <_> 8640 <!-- root node --> 8641 <feature> 8642 <rects> 8643 <_>18 5 4 12 -1.</_> 8644 <_>20 5 2 6 2.</_> 8645 <_>18 11 2 6 2.</_></rects> 8646 <tilted>0</tilted></feature> 8647 <threshold>-0.0854437798261642</threshold> 8648 <left_val>-1.</left_val> 8649 <right_val>-1.3681349810212851e-003</right_val></_></_> 8650 <_> 8651 <!-- tree 36 --> 8652 <_> 8653 <!-- root node --> 8654 <feature> 8655 <rects> 8656 <_>0 5 4 12 -1.</_> 8657 <_>0 5 2 6 2.</_> 8658 <_>2 11 2 6 2.</_></rects> 8659 <tilted>0</tilted></feature> 8660 <threshold>0.0132489800453186</threshold> 8661 <left_val>0.0634007006883621</left_val> 8662 <right_val>-0.2541181147098541</right_val></_></_> 8663 <_> 8664 <!-- tree 37 --> 8665 <_> 8666 <!-- root node --> 8667 <feature> 8668 <rects> 8669 <_>6 0 14 18 -1.</_> 8670 <_>6 9 14 9 2.</_></rects> 8671 <tilted>0</tilted></feature> 8672 <threshold>-0.6593561172485352</threshold> 8673 <left_val>-1.</left_val> 8674 <right_val>7.7378489077091217e-003</right_val></_></_> 8675 <_> 8676 <!-- tree 38 --> 8677 <_> 8678 <!-- root node --> 8679 <feature> 8680 <rects> 8681 <_>4 4 12 3 -1.</_> 8682 <_>4 5 12 1 3.</_></rects> 8683 <tilted>0</tilted></feature> 8684 <threshold>5.0879311747848988e-003</threshold> 8685 <left_val>-0.0832077413797379</left_val> 8686 <right_val>0.1887629032135010</right_val></_></_> 8687 <_> 8688 <!-- tree 39 --> 8689 <_> 8690 <!-- root node --> 8691 <feature> 8692 <rects> 8693 <_>8 4 14 3 -1.</_> 8694 <_>8 5 14 1 3.</_></rects> 8695 <tilted>0</tilted></feature> 8696 <threshold>-3.4071630798280239e-003</threshold> 8697 <left_val>0.1457829028367996</left_val> 8698 <right_val>-0.0919603332877159</right_val></_></_> 8699 <_> 8700 <!-- tree 40 --> 8701 <_> 8702 <!-- root node --> 8703 <feature> 8704 <rects> 8705 <_>4 13 14 3 -1.</_> 8706 <_>4 14 14 1 3.</_></rects> 8707 <tilted>0</tilted></feature> 8708 <threshold>-0.0216562692075968</threshold> 8709 <left_val>-0.6536489129066467</left_val> 8710 <right_val>0.0271297506988049</right_val></_></_> 8711 <_> 8712 <!-- tree 41 --> 8713 <_> 8714 <!-- root node --> 8715 <feature> 8716 <rects> 8717 <_>8 2 6 14 -1.</_> 8718 <_>11 2 3 7 2.</_> 8719 <_>8 9 3 7 2.</_></rects> 8720 <tilted>0</tilted></feature> 8721 <threshold>9.4357347115874290e-003</threshold> 8722 <left_val>0.0643601119518280</left_val> 8723 <right_val>-0.2388547956943512</right_val></_></_> 8724 <_> 8725 <!-- tree 42 --> 8726 <_> 8727 <!-- root node --> 8728 <feature> 8729 <rects> 8730 <_>0 13 15 4 -1.</_> 8731 <_>0 14 15 2 2.</_></rects> 8732 <tilted>0</tilted></feature> 8733 <threshold>-7.5177568942308426e-003</threshold> 8734 <left_val>0.2451906055212021</left_val> 8735 <right_val>-0.0682218372821808</right_val></_></_> 8736 <_> 8737 <!-- tree 43 --> 8738 <_> 8739 <!-- root node --> 8740 <feature> 8741 <rects> 8742 <_>11 14 7 4 -1.</_> 8743 <_>11 16 7 2 2.</_></rects> 8744 <tilted>0</tilted></feature> 8745 <threshold>0.0160676296800375</threshold> 8746 <left_val>7.6069780625402927e-003</left_val> 8747 <right_val>-0.3166871964931488</right_val></_></_> 8748 <_> 8749 <!-- tree 44 --> 8750 <_> 8751 <!-- root node --> 8752 <feature> 8753 <rects> 8754 <_>11 7 7 3 -1.</_> 8755 <_>10 8 7 1 3.</_></rects> 8756 <tilted>1</tilted></feature> 8757 <threshold>-1.8057749839499593e-003</threshold> 8758 <left_val>0.1271037012338638</left_val> 8759 <right_val>-0.1214571967720985</right_val></_></_> 8760 <_> 8761 <!-- tree 45 --> 8762 <_> 8763 <!-- root node --> 8764 <feature> 8765 <rects> 8766 <_>10 6 6 6 -1.</_> 8767 <_>10 9 6 3 2.</_></rects> 8768 <tilted>0</tilted></feature> 8769 <threshold>-0.0441549010574818</threshold> 8770 <left_val>-0.4857960939407349</left_val> 8771 <right_val>0.0234448593109846</right_val></_></_> 8772 <_> 8773 <!-- tree 46 --> 8774 <_> 8775 <!-- root node --> 8776 <feature> 8777 <rects> 8778 <_>2 0 4 14 -1.</_> 8779 <_>2 0 2 7 2.</_> 8780 <_>4 7 2 7 2.</_></rects> 8781 <tilted>0</tilted></feature> 8782 <threshold>7.5462698005139828e-003</threshold> 8783 <left_val>0.0684307664632797</left_val> 8784 <right_val>-0.2331652045249939</right_val></_></_> 8785 <_> 8786 <!-- tree 47 --> 8787 <_> 8788 <!-- root node --> 8789 <feature> 8790 <rects> 8791 <_>2 6 18 5 -1.</_> 8792 <_>8 6 6 5 3.</_></rects> 8793 <tilted>0</tilted></feature> 8794 <threshold>0.1086826026439667</threshold> 8795 <left_val>-0.0416639111936092</left_val> 8796 <right_val>0.3945221900939941</right_val></_></_> 8797 <_> 8798 <!-- tree 48 --> 8799 <_> 8800 <!-- root node --> 8801 <feature> 8802 <rects> 8803 <_>2 0 18 18 -1.</_> 8804 <_>8 0 6 18 3.</_></rects> 8805 <tilted>0</tilted></feature> 8806 <threshold>0.6124870181083679</threshold> 8807 <left_val>0.0207021702080965</left_val> 8808 <right_val>-0.9849479198455811</right_val></_></_> 8809 <_> 8810 <!-- tree 49 --> 8811 <_> 8812 <!-- root node --> 8813 <feature> 8814 <rects> 8815 <_>13 1 4 8 -1.</_> 8816 <_>14 2 2 8 2.</_></rects> 8817 <tilted>1</tilted></feature> 8818 <threshold>0.0498282909393311</threshold> 8819 <left_val>2.7304550167173147e-003</left_val> 8820 <right_val>-0.4018169939517975</right_val></_></_> 8821 <_> 8822 <!-- tree 50 --> 8823 <_> 8824 <!-- root node --> 8825 <feature> 8826 <rects> 8827 <_>4 0 12 18 -1.</_> 8828 <_>4 0 6 9 2.</_> 8829 <_>10 9 6 9 2.</_></rects> 8830 <tilted>0</tilted></feature> 8831 <threshold>-0.0727687180042267</threshold> 8832 <left_val>0.3267647922039032</left_val> 8833 <right_val>-0.0491443388164043</right_val></_></_> 8834 <_> 8835 <!-- tree 51 --> 8836 <_> 8837 <!-- root node --> 8838 <feature> 8839 <rects> 8840 <_>12 14 6 4 -1.</_> 8841 <_>12 16 6 2 2.</_></rects> 8842 <tilted>0</tilted></feature> 8843 <threshold>0.0243143104016781</threshold> 8844 <left_val>-7.8135710209608078e-003</left_val> 8845 <right_val>0.5822330117225647</right_val></_></_> 8846 <_> 8847 <!-- tree 52 --> 8848 <_> 8849 <!-- root node --> 8850 <feature> 8851 <rects> 8852 <_>4 14 6 4 -1.</_> 8853 <_>4 16 6 2 2.</_></rects> 8854 <tilted>0</tilted></feature> 8855 <threshold>-1.7177179688587785e-004</threshold> 8856 <left_val>0.0816699117422104</left_val> 8857 <right_val>-0.2037622034549713</right_val></_></_> 8858 <_> 8859 <!-- tree 53 --> 8860 <_> 8861 <!-- root node --> 8862 <feature> 8863 <rects> 8864 <_>11 8 2 6 -1.</_> 8865 <_>11 8 1 6 2.</_></rects> 8866 <tilted>1</tilted></feature> 8867 <threshold>-0.0400952696800232</threshold> 8868 <left_val>0.5468152165412903</left_val> 8869 <right_val>-0.0171795394271612</right_val></_></_> 8870 <_> 8871 <!-- tree 54 --> 8872 <_> 8873 <!-- root node --> 8874 <feature> 8875 <rects> 8876 <_>1 10 20 6 -1.</_> 8877 <_>1 10 10 3 2.</_> 8878 <_>11 13 10 3 2.</_></rects> 8879 <tilted>0</tilted></feature> 8880 <threshold>-0.0896345674991608</threshold> 8881 <left_val>-0.8161401152610779</left_val> 8882 <right_val>0.0212838891893625</right_val></_></_> 8883 <_> 8884 <!-- tree 55 --> 8885 <_> 8886 <!-- root node --> 8887 <feature> 8888 <rects> 8889 <_>13 1 7 9 -1.</_> 8890 <_>10 4 7 3 3.</_></rects> 8891 <tilted>1</tilted></feature> 8892 <threshold>0.1869214028120041</threshold> 8893 <left_val>8.3980746567249298e-003</left_val> 8894 <right_val>-0.6018530130386353</right_val></_></_> 8895 <_> 8896 <!-- tree 56 --> 8897 <_> 8898 <!-- root node --> 8899 <feature> 8900 <rects> 8901 <_>5 3 4 6 -1.</_> 8902 <_>5 6 4 3 2.</_></rects> 8903 <tilted>0</tilted></feature> 8904 <threshold>-0.0430383794009686</threshold> 8905 <left_val>-0.8789898753166199</left_val> 8906 <right_val>0.0149307297542691</right_val></_></_> 8907 <_> 8908 <!-- tree 57 --> 8909 <_> 8910 <!-- root node --> 8911 <feature> 8912 <rects> 8913 <_>13 0 2 12 -1.</_> 8914 <_>13 6 2 6 2.</_></rects> 8915 <tilted>0</tilted></feature> 8916 <threshold>-1.8602630007080734e-004</threshold> 8917 <left_val>0.0401562415063381</left_val> 8918 <right_val>-0.0826044380664825</right_val></_></_> 8919 <_> 8920 <!-- tree 58 --> 8921 <_> 8922 <!-- root node --> 8923 <feature> 8924 <rects> 8925 <_>7 11 8 3 -1.</_> 8926 <_>11 11 4 3 2.</_></rects> 8927 <tilted>0</tilted></feature> 8928 <threshold>-1.4392189914360642e-003</threshold> 8929 <left_val>-0.1710239946842194</left_val> 8930 <right_val>0.0912035405635834</right_val></_></_> 8931 <_> 8932 <!-- tree 59 --> 8933 <_> 8934 <!-- root node --> 8935 <feature> 8936 <rects> 8937 <_>9 6 12 11 -1.</_> 8938 <_>12 6 6 11 2.</_></rects> 8939 <tilted>0</tilted></feature> 8940 <threshold>0.0421606190502644</threshold> 8941 <left_val>-0.0358610190451145</left_val> 8942 <right_val>0.1517430990934372</right_val></_></_> 8943 <_> 8944 <!-- tree 60 --> 8945 <_> 8946 <!-- root node --> 8947 <feature> 8948 <rects> 8949 <_>6 8 10 9 -1.</_> 8950 <_>11 8 5 9 2.</_></rects> 8951 <tilted>0</tilted></feature> 8952 <threshold>7.5991409830749035e-003</threshold> 8953 <left_val>0.1087452992796898</left_val> 8954 <right_val>-0.1614716053009033</right_val></_></_> 8955 <_> 8956 <!-- tree 61 --> 8957 <_> 8958 <!-- root node --> 8959 <feature> 8960 <rects> 8961 <_>11 14 6 4 -1.</_> 8962 <_>11 14 3 4 2.</_></rects> 8963 <tilted>0</tilted></feature> 8964 <threshold>-5.7539329864084721e-003</threshold> 8965 <left_val>-0.2567706108093262</left_val> 8966 <right_val>0.0584571510553360</right_val></_></_> 8967 <_> 8968 <!-- tree 62 --> 8969 <_> 8970 <!-- root node --> 8971 <feature> 8972 <rects> 8973 <_>3 6 12 4 -1.</_> 8974 <_>7 6 4 4 3.</_></rects> 8975 <tilted>0</tilted></feature> 8976 <threshold>-0.0277367495000362</threshold> 8977 <left_val>0.2232517004013062</left_val> 8978 <right_val>-0.0740715116262436</right_val></_></_> 8979 <_> 8980 <!-- tree 63 --> 8981 <_> 8982 <!-- root node --> 8983 <feature> 8984 <rects> 8985 <_>10 5 6 7 -1.</_> 8986 <_>12 5 2 7 3.</_></rects> 8987 <tilted>0</tilted></feature> 8988 <threshold>-0.0256761107593775</threshold> 8989 <left_val>0.1883108019828796</left_val> 8990 <right_val>-0.0538603812456131</right_val></_></_> 8991 <_> 8992 <!-- tree 64 --> 8993 <_> 8994 <!-- root node --> 8995 <feature> 8996 <rects> 8997 <_>8 0 6 4 -1.</_> 8998 <_>11 0 3 4 2.</_></rects> 8999 <tilted>0</tilted></feature> 9000 <threshold>0.0158907305449247</threshold> 9001 <left_val>0.0517095401883125</left_val> 9002 <right_val>-0.3847657144069672</right_val></_></_> 9003 <_> 9004 <!-- tree 65 --> 9005 <_> 9006 <!-- root node --> 9007 <feature> 9008 <rects> 9009 <_>10 6 6 12 -1.</_> 9010 <_>12 6 2 12 3.</_></rects> 9011 <tilted>0</tilted></feature> 9012 <threshold>-0.0863742679357529</threshold> 9013 <left_val>-0.5568069815635681</left_val> 9014 <right_val>9.4922119751572609e-003</right_val></_></_> 9015 <_> 9016 <!-- tree 66 --> 9017 <_> 9018 <!-- root node --> 9019 <feature> 9020 <rects> 9021 <_>6 6 6 12 -1.</_> 9022 <_>8 6 2 12 3.</_></rects> 9023 <tilted>0</tilted></feature> 9024 <threshold>1.9480630289763212e-003</threshold> 9025 <left_val>-0.1080721989274025</left_val> 9026 <right_val>0.1477168053388596</right_val></_></_></trees> 9027 <stage_threshold>-0.7418665885925293</stage_threshold> 9028 <parent>13</parent> 9029 <next>-1</next></_> 9030 <_> 9031 <!-- stage 15 --> 9032 <trees> 9033 <_> 9034 <!-- tree 0 --> 9035 <_> 9036 <!-- root node --> 9037 <feature> 9038 <rects> 9039 <_>6 9 9 6 -1.</_> 9040 <_>6 12 9 3 2.</_></rects> 9041 <tilted>0</tilted></feature> 9042 <threshold>-6.8531660363078117e-003</threshold> 9043 <left_val>0.2893550992012024</left_val> 9044 <right_val>-0.2768914103507996</right_val></_></_> 9045 <_> 9046 <!-- tree 1 --> 9047 <_> 9048 <!-- root node --> 9049 <feature> 9050 <rects> 9051 <_>14 6 6 6 -1.</_> 9052 <_>14 6 6 3 2.</_></rects> 9053 <tilted>1</tilted></feature> 9054 <threshold>-0.0692176371812820</threshold> 9055 <left_val>0.3490979075431824</left_val> 9056 <right_val>-0.0497410893440247</right_val></_></_> 9057 <_> 9058 <!-- tree 2 --> 9059 <_> 9060 <!-- root node --> 9061 <feature> 9062 <rects> 9063 <_>1 13 20 5 -1.</_> 9064 <_>6 13 10 5 2.</_></rects> 9065 <tilted>0</tilted></feature> 9066 <threshold>-0.1309297978878021</threshold> 9067 <left_val>0.4279156029224396</left_val> 9068 <right_val>-0.0961560085415840</right_val></_></_> 9069 <_> 9070 <!-- tree 3 --> 9071 <_> 9072 <!-- root node --> 9073 <feature> 9074 <rects> 9075 <_>8 14 6 4 -1.</_> 9076 <_>8 16 6 2 2.</_></rects> 9077 <tilted>0</tilted></feature> 9078 <threshold>-2.9759139579255134e-005</threshold> 9079 <left_val>0.1167578026652336</left_val> 9080 <right_val>-0.2467838972806931</right_val></_></_> 9081 <_> 9082 <!-- tree 4 --> 9083 <_> 9084 <!-- root node --> 9085 <feature> 9086 <rects> 9087 <_>4 7 8 3 -1.</_> 9088 <_>4 7 4 3 2.</_></rects> 9089 <tilted>1</tilted></feature> 9090 <threshold>-0.0471007898449898</threshold> 9091 <left_val>0.3725911080837250</left_val> 9092 <right_val>-0.0590729191899300</right_val></_></_> 9093 <_> 9094 <!-- tree 5 --> 9095 <_> 9096 <!-- root node --> 9097 <feature> 9098 <rects> 9099 <_>16 0 2 15 -1.</_> 9100 <_>16 0 1 15 2.</_></rects> 9101 <tilted>1</tilted></feature> 9102 <threshold>0.0441245101392269</threshold> 9103 <left_val>0.0789040997624397</left_val> 9104 <right_val>-0.2552854120731354</right_val></_></_> 9105 <_> 9106 <!-- tree 6 --> 9107 <_> 9108 <!-- root node --> 9109 <feature> 9110 <rects> 9111 <_>9 3 12 2 -1.</_> 9112 <_>9 3 12 1 2.</_></rects> 9113 <tilted>1</tilted></feature> 9114 <threshold>4.2540309950709343e-003</threshold> 9115 <left_val>-0.2361238002777100</left_val> 9116 <right_val>0.1285677999258041</right_val></_></_> 9117 <_> 9118 <!-- tree 7 --> 9119 <_> 9120 <!-- root node --> 9121 <feature> 9122 <rects> 9123 <_>7 1 8 6 -1.</_> 9124 <_>9 1 4 6 2.</_></rects> 9125 <tilted>0</tilted></feature> 9126 <threshold>-1.0833570268005133e-003</threshold> 9127 <left_val>0.1434731036424637</left_val> 9128 <right_val>-0.1420363038778305</right_val></_></_> 9129 <_> 9130 <!-- tree 8 --> 9131 <_> 9132 <!-- root node --> 9133 <feature> 9134 <rects> 9135 <_>6 15 8 3 -1.</_> 9136 <_>10 15 4 3 2.</_></rects> 9137 <tilted>0</tilted></feature> 9138 <threshold>5.9925230743829161e-005</threshold> 9139 <left_val>-0.1992727071046829</left_val> 9140 <right_val>0.0885029137134552</right_val></_></_> 9141 <_> 9142 <!-- tree 9 --> 9143 <_> 9144 <!-- root node --> 9145 <feature> 9146 <rects> 9147 <_>8 3 6 6 -1.</_> 9148 <_>10 3 2 6 3.</_></rects> 9149 <tilted>0</tilted></feature> 9150 <threshold>-0.0730214864015579</threshold> 9151 <left_val>-0.8066626191139221</left_val> 9152 <right_val>0.0320418588817120</right_val></_></_> 9153 <_> 9154 <!-- tree 10 --> 9155 <_> 9156 <!-- root node --> 9157 <feature> 9158 <rects> 9159 <_>1 1 16 3 -1.</_> 9160 <_>1 2 16 1 3.</_></rects> 9161 <tilted>0</tilted></feature> 9162 <threshold>7.9495050013065338e-003</threshold> 9163 <left_val>-0.0658784434199333</left_val> 9164 <right_val>0.2707126140594482</right_val></_></_> 9165 <_> 9166 <!-- tree 11 --> 9167 <_> 9168 <!-- root node --> 9169 <feature> 9170 <rects> 9171 <_>9 1 12 3 -1.</_> 9172 <_>9 2 12 1 3.</_></rects> 9173 <tilted>0</tilted></feature> 9174 <threshold>-3.3911041100509465e-004</threshold> 9175 <left_val>0.1349073946475983</left_val> 9176 <right_val>-0.1335476040840149</right_val></_></_> 9177 <_> 9178 <!-- tree 12 --> 9179 <_> 9180 <!-- root node --> 9181 <feature> 9182 <rects> 9183 <_>0 0 22 6 -1.</_> 9184 <_>0 0 11 3 2.</_> 9185 <_>11 3 11 3 2.</_></rects> 9186 <tilted>0</tilted></feature> 9187 <threshold>-0.0260101798921824</threshold> 9188 <left_val>-0.2807458043098450</left_val> 9189 <right_val>0.0779026597738266</right_val></_></_> 9190 <_> 9191 <!-- tree 13 --> 9192 <_> 9193 <!-- root node --> 9194 <feature> 9195 <rects> 9196 <_>10 5 4 6 -1.</_> 9197 <_>10 5 2 6 2.</_></rects> 9198 <tilted>0</tilted></feature> 9199 <threshold>-0.0311530902981758</threshold> 9200 <left_val>0.2702265977859497</left_val> 9201 <right_val>-0.0269943401217461</right_val></_></_> 9202 <_> 9203 <!-- tree 14 --> 9204 <_> 9205 <!-- root node --> 9206 <feature> 9207 <rects> 9208 <_>10 0 8 5 -1.</_> 9209 <_>10 0 4 5 2.</_></rects> 9210 <tilted>1</tilted></feature> 9211 <threshold>0.0109462495893240</threshold> 9212 <left_val>-0.1599372029304504</left_val> 9213 <right_val>0.1035069972276688</right_val></_></_> 9214 <_> 9215 <!-- tree 15 --> 9216 <_> 9217 <!-- root node --> 9218 <feature> 9219 <rects> 9220 <_>12 4 4 10 -1.</_> 9221 <_>13 5 2 10 2.</_></rects> 9222 <tilted>1</tilted></feature> 9223 <threshold>0.0731012076139450</threshold> 9224 <left_val>-4.1365791112184525e-003</left_val> 9225 <right_val>0.5233982801437378</right_val></_></_> 9226 <_> 9227 <!-- tree 16 --> 9228 <_> 9229 <!-- root node --> 9230 <feature> 9231 <rects> 9232 <_>10 4 10 4 -1.</_> 9233 <_>9 5 10 2 2.</_></rects> 9234 <tilted>1</tilted></feature> 9235 <threshold>0.0302071496844292</threshold> 9236 <left_val>-0.0492294207215309</left_val> 9237 <right_val>0.4284898936748505</right_val></_></_> 9238 <_> 9239 <!-- tree 17 --> 9240 <_> 9241 <!-- root node --> 9242 <feature> 9243 <rects> 9244 <_>15 1 2 8 -1.</_> 9245 <_>15 1 1 8 2.</_></rects> 9246 <tilted>1</tilted></feature> 9247 <threshold>0.0649852603673935</threshold> 9248 <left_val>3.9118612185120583e-003</left_val> 9249 <right_val>-1.0003379583358765</right_val></_></_> 9250 <_> 9251 <!-- tree 18 --> 9252 <_> 9253 <!-- root node --> 9254 <feature> 9255 <rects> 9256 <_>7 1 8 2 -1.</_> 9257 <_>7 1 8 1 2.</_></rects> 9258 <tilted>1</tilted></feature> 9259 <threshold>-0.0291192494332790</threshold> 9260 <left_val>-0.7702599167823792</left_val> 9261 <right_val>0.0239308103919029</right_val></_></_> 9262 <_> 9263 <!-- tree 19 --> 9264 <_> 9265 <!-- root node --> 9266 <feature> 9267 <rects> 9268 <_>17 0 3 11 -1.</_> 9269 <_>18 1 1 11 3.</_></rects> 9270 <tilted>1</tilted></feature> 9271 <threshold>0.0504583083093166</threshold> 9272 <left_val>6.9283558987081051e-003</left_val> 9273 <right_val>-0.5185477733612061</right_val></_></_> 9274 <_> 9275 <!-- tree 20 --> 9276 <_> 9277 <!-- root node --> 9278 <feature> 9279 <rects> 9280 <_>9 8 4 6 -1.</_> 9281 <_>9 8 4 3 2.</_></rects> 9282 <tilted>1</tilted></feature> 9283 <threshold>-0.0388901792466640</threshold> 9284 <left_val>-0.4817684888839722</left_val> 9285 <right_val>0.0302702896296978</right_val></_></_> 9286 <_> 9287 <!-- tree 21 --> 9288 <_> 9289 <!-- root node --> 9290 <feature> 9291 <rects> 9292 <_>14 6 6 12 -1.</_> 9293 <_>17 6 3 6 2.</_> 9294 <_>14 12 3 6 2.</_></rects> 9295 <tilted>0</tilted></feature> 9296 <threshold>0.0583193711936474</threshold> 9297 <left_val>-0.0221013892441988</left_val> 9298 <right_val>0.2839350104331970</right_val></_></_> 9299 <_> 9300 <!-- tree 22 --> 9301 <_> 9302 <!-- root node --> 9303 <feature> 9304 <rects> 9305 <_>2 12 18 6 -1.</_> 9306 <_>8 14 6 2 9.</_></rects> 9307 <tilted>0</tilted></feature> 9308 <threshold>-0.0108036901801825</threshold> 9309 <left_val>0.1284206062555313</left_val> 9310 <right_val>-0.1384977996349335</right_val></_></_> 9311 <_> 9312 <!-- tree 23 --> 9313 <_> 9314 <!-- root node --> 9315 <feature> 9316 <rects> 9317 <_>14 7 3 10 -1.</_> 9318 <_>14 12 3 5 2.</_></rects> 9319 <tilted>0</tilted></feature> 9320 <threshold>9.4525264576077461e-003</threshold> 9321 <left_val>-0.0571944192051888</left_val> 9322 <right_val>0.1775905042886734</right_val></_></_> 9323 <_> 9324 <!-- tree 24 --> 9325 <_> 9326 <!-- root node --> 9327 <feature> 9328 <rects> 9329 <_>3 8 16 10 -1.</_> 9330 <_>3 8 8 5 2.</_> 9331 <_>11 13 8 5 2.</_></rects> 9332 <tilted>0</tilted></feature> 9333 <threshold>0.0152291702106595</threshold> 9334 <left_val>0.1050117015838623</left_val> 9335 <right_val>-0.2051838934421539</right_val></_></_> 9336 <_> 9337 <!-- tree 25 --> 9338 <_> 9339 <!-- root node --> 9340 <feature> 9341 <rects> 9342 <_>15 12 4 6 -1.</_> 9343 <_>15 15 4 3 2.</_></rects> 9344 <tilted>0</tilted></feature> 9345 <threshold>-8.9435698464512825e-004</threshold> 9346 <left_val>0.0686682537198067</left_val> 9347 <right_val>-0.1466601043939591</right_val></_></_> 9348 <_> 9349 <!-- tree 26 --> 9350 <_> 9351 <!-- root node --> 9352 <feature> 9353 <rects> 9354 <_>2 8 18 10 -1.</_> 9355 <_>2 8 9 5 2.</_> 9356 <_>11 13 9 5 2.</_></rects> 9357 <tilted>0</tilted></feature> 9358 <threshold>-0.0183224994689226</threshold> 9359 <left_val>-0.2361371964216232</left_val> 9360 <right_val>0.0835383310914040</right_val></_></_> 9361 <_> 9362 <!-- tree 27 --> 9363 <_> 9364 <!-- root node --> 9365 <feature> 9366 <rects> 9367 <_>10 1 12 3 -1.</_> 9368 <_>10 2 12 1 3.</_></rects> 9369 <tilted>0</tilted></feature> 9370 <threshold>2.5474189314991236e-003</threshold> 9371 <left_val>-0.0847315266728401</left_val> 9372 <right_val>0.1721152067184448</right_val></_></_> 9373 <_> 9374 <!-- tree 28 --> 9375 <_> 9376 <!-- root node --> 9377 <feature> 9378 <rects> 9379 <_>1 1 12 3 -1.</_> 9380 <_>1 2 12 1 3.</_></rects> 9381 <tilted>0</tilted></feature> 9382 <threshold>-1.4951790217310190e-003</threshold> 9383 <left_val>0.1864299029111862</left_val> 9384 <right_val>-0.1275333017110825</right_val></_></_> 9385 <_> 9386 <!-- tree 29 --> 9387 <_> 9388 <!-- root node --> 9389 <feature> 9390 <rects> 9391 <_>8 0 14 4 -1.</_> 9392 <_>15 0 7 2 2.</_> 9393 <_>8 2 7 2 2.</_></rects> 9394 <tilted>0</tilted></feature> 9395 <threshold>0.0247961506247520</threshold> 9396 <left_val>0.0329235605895519</left_val> 9397 <right_val>-0.4095472991466522</right_val></_></_> 9398 <_> 9399 <!-- tree 30 --> 9400 <_> 9401 <!-- root node --> 9402 <feature> 9403 <rects> 9404 <_>2 4 14 4 -1.</_> 9405 <_>2 5 14 2 2.</_></rects> 9406 <tilted>0</tilted></feature> 9407 <threshold>-2.8976860921829939e-003</threshold> 9408 <left_val>0.1448003947734833</left_val> 9409 <right_val>-0.1040467992424965</right_val></_></_> 9410 <_> 9411 <!-- tree 31 --> 9412 <_> 9413 <!-- root node --> 9414 <feature> 9415 <rects> 9416 <_>8 4 12 3 -1.</_> 9417 <_>8 5 12 1 3.</_></rects> 9418 <tilted>0</tilted></feature> 9419 <threshold>7.0361169055104256e-003</threshold> 9420 <left_val>-0.0679165571928024</left_val> 9421 <right_val>0.2154435068368912</right_val></_></_> 9422 <_> 9423 <!-- tree 32 --> 9424 <_> 9425 <!-- root node --> 9426 <feature> 9427 <rects> 9428 <_>1 0 8 8 -1.</_> 9429 <_>1 0 4 4 2.</_> 9430 <_>5 4 4 4 2.</_></rects> 9431 <tilted>0</tilted></feature> 9432 <threshold>-0.0118703898042440</threshold> 9433 <left_val>-0.2553744912147522</left_val> 9434 <right_val>0.0744434073567390</right_val></_></_> 9435 <_> 9436 <!-- tree 33 --> 9437 <_> 9438 <!-- root node --> 9439 <feature> 9440 <rects> 9441 <_>13 0 8 6 -1.</_> 9442 <_>17 0 4 3 2.</_> 9443 <_>13 3 4 3 2.</_></rects> 9444 <tilted>0</tilted></feature> 9445 <threshold>2.4765899870544672e-003</threshold> 9446 <left_val>0.0683133676648140</left_val> 9447 <right_val>-0.1611132025718689</right_val></_></_> 9448 <_> 9449 <!-- tree 34 --> 9450 <_> 9451 <!-- root node --> 9452 <feature> 9453 <rects> 9454 <_>1 0 8 6 -1.</_> 9455 <_>1 0 4 3 2.</_> 9456 <_>5 3 4 3 2.</_></rects> 9457 <tilted>0</tilted></feature> 9458 <threshold>0.0212845504283905</threshold> 9459 <left_val>0.0370908714830875</left_val> 9460 <right_val>-0.4691652059555054</right_val></_></_> 9461 <_> 9462 <!-- tree 35 --> 9463 <_> 9464 <!-- root node --> 9465 <feature> 9466 <rects> 9467 <_>9 6 6 5 -1.</_> 9468 <_>9 6 3 5 2.</_></rects> 9469 <tilted>0</tilted></feature> 9470 <threshold>-0.0103694796562195</threshold> 9471 <left_val>0.1080783978104591</left_val> 9472 <right_val>-0.0604898706078529</right_val></_></_> 9473 <_> 9474 <!-- tree 36 --> 9475 <_> 9476 <!-- root node --> 9477 <feature> 9478 <rects> 9479 <_>5 6 8 3 -1.</_> 9480 <_>9 6 4 3 2.</_></rects> 9481 <tilted>0</tilted></feature> 9482 <threshold>0.0107324803248048</threshold> 9483 <left_val>-0.0585823804140091</left_val> 9484 <right_val>0.3195860981941223</right_val></_></_> 9485 <_> 9486 <!-- tree 37 --> 9487 <_> 9488 <!-- root node --> 9489 <feature> 9490 <rects> 9491 <_>13 3 6 9 -1.</_> 9492 <_>10 6 6 3 3.</_></rects> 9493 <tilted>1</tilted></feature> 9494 <threshold>-0.2323516011238098</threshold> 9495 <left_val>-1.</left_val> 9496 <right_val>8.2511743530631065e-003</right_val></_></_> 9497 <_> 9498 <!-- tree 38 --> 9499 <_> 9500 <!-- root node --> 9501 <feature> 9502 <rects> 9503 <_>9 3 9 6 -1.</_> 9504 <_>12 6 3 6 3.</_></rects> 9505 <tilted>1</tilted></feature> 9506 <threshold>-6.0572529037017375e-005</threshold> 9507 <left_val>0.0802017673850060</left_val> 9508 <right_val>-0.2358305007219315</right_val></_></_> 9509 <_> 9510 <!-- tree 39 --> 9511 <_> 9512 <!-- root node --> 9513 <feature> 9514 <rects> 9515 <_>4 11 18 3 -1.</_> 9516 <_>4 12 18 1 3.</_></rects> 9517 <tilted>0</tilted></feature> 9518 <threshold>-2.7367009315639734e-003</threshold> 9519 <left_val>0.1536909043788910</left_val> 9520 <right_val>-0.0788008794188499</right_val></_></_> 9521 <_> 9522 <!-- tree 40 --> 9523 <_> 9524 <!-- root node --> 9525 <feature> 9526 <rects> 9527 <_>0 13 15 4 -1.</_> 9528 <_>5 13 5 4 3.</_></rects> 9529 <tilted>0</tilted></feature> 9530 <threshold>0.0311680100858212</threshold> 9531 <left_val>-0.0418529510498047</left_val> 9532 <right_val>0.3737446963787079</right_val></_></_> 9533 <_> 9534 <!-- tree 41 --> 9535 <_> 9536 <!-- root node --> 9537 <feature> 9538 <rects> 9539 <_>15 12 4 6 -1.</_> 9540 <_>15 15 4 3 2.</_></rects> 9541 <tilted>0</tilted></feature> 9542 <threshold>0.0454151295125484</threshold> 9543 <left_val>6.6594500094652176e-003</left_val> 9544 <right_val>-0.9997528791427612</right_val></_></_> 9545 <_> 9546 <!-- tree 42 --> 9547 <_> 9548 <!-- root node --> 9549 <feature> 9550 <rects> 9551 <_>3 12 4 6 -1.</_> 9552 <_>3 15 4 3 2.</_></rects> 9553 <tilted>0</tilted></feature> 9554 <threshold>-1.3742819428443909e-003</threshold> 9555 <left_val>0.1058785021305084</left_val> 9556 <right_val>-0.1923477947711945</right_val></_></_> 9557 <_> 9558 <!-- tree 43 --> 9559 <_> 9560 <!-- root node --> 9561 <feature> 9562 <rects> 9563 <_>9 12 6 6 -1.</_> 9564 <_>11 12 2 6 3.</_></rects> 9565 <tilted>0</tilted></feature> 9566 <threshold>3.0089360661804676e-003</threshold> 9567 <left_val>0.0940386429429054</left_val> 9568 <right_val>-0.1544273048639298</right_val></_></_> 9569 <_> 9570 <!-- tree 44 --> 9571 <_> 9572 <!-- root node --> 9573 <feature> 9574 <rects> 9575 <_>6 9 9 7 -1.</_> 9576 <_>9 9 3 7 3.</_></rects> 9577 <tilted>0</tilted></feature> 9578 <threshold>-0.0710713863372803</threshold> 9579 <left_val>-0.5495526790618897</left_val> 9580 <right_val>0.0255231298506260</right_val></_></_> 9581 <_> 9582 <!-- tree 45 --> 9583 <_> 9584 <!-- root node --> 9585 <feature> 9586 <rects> 9587 <_>13 10 6 8 -1.</_> 9588 <_>16 10 3 4 2.</_> 9589 <_>13 14 3 4 2.</_></rects> 9590 <tilted>0</tilted></feature> 9591 <threshold>1.0958979837596416e-003</threshold> 9592 <left_val>-0.0613276585936546</left_val> 9593 <right_val>0.0576776191592216</right_val></_></_> 9594 <_> 9595 <!-- tree 46 --> 9596 <_> 9597 <!-- root node --> 9598 <feature> 9599 <rects> 9600 <_>3 10 6 8 -1.</_> 9601 <_>3 10 3 4 2.</_> 9602 <_>6 14 3 4 2.</_></rects> 9603 <tilted>0</tilted></feature> 9604 <threshold>-0.0237067993730307</threshold> 9605 <left_val>0.2948609888553619</left_val> 9606 <right_val>-0.0665534734725952</right_val></_></_> 9607 <_> 9608 <!-- tree 47 --> 9609 <_> 9610 <!-- root node --> 9611 <feature> 9612 <rects> 9613 <_>7 10 8 4 -1.</_> 9614 <_>7 10 4 4 2.</_></rects> 9615 <tilted>0</tilted></feature> 9616 <threshold>6.8882037885487080e-003</threshold> 9617 <left_val>0.0738617032766342</left_val> 9618 <right_val>-0.2572773098945618</right_val></_></_> 9619 <_> 9620 <!-- tree 48 --> 9621 <_> 9622 <!-- root node --> 9623 <feature> 9624 <rects> 9625 <_>7 5 6 11 -1.</_> 9626 <_>10 5 3 11 2.</_></rects> 9627 <tilted>0</tilted></feature> 9628 <threshold>-0.0491580404341221</threshold> 9629 <left_val>0.3240630924701691</left_val> 9630 <right_val>-0.0527858398854733</right_val></_></_> 9631 <_> 9632 <!-- tree 49 --> 9633 <_> 9634 <!-- root node --> 9635 <feature> 9636 <rects> 9637 <_>10 6 6 6 -1.</_> 9638 <_>10 9 6 3 2.</_></rects> 9639 <tilted>0</tilted></feature> 9640 <threshold>0.0713694170117378</threshold> 9641 <left_val>0.0132099203765392</left_val> 9642 <right_val>-0.7482113242149353</right_val></_></_> 9643 <_> 9644 <!-- tree 50 --> 9645 <_> 9646 <!-- root node --> 9647 <feature> 9648 <rects> 9649 <_>6 6 6 6 -1.</_> 9650 <_>6 9 6 3 2.</_></rects> 9651 <tilted>0</tilted></feature> 9652 <threshold>-8.4517486393451691e-003</threshold> 9653 <left_val>-0.2065279930830002</left_val> 9654 <right_val>0.0931395962834358</right_val></_></_> 9655 <_> 9656 <!-- tree 51 --> 9657 <_> 9658 <!-- root node --> 9659 <feature> 9660 <rects> 9661 <_>8 6 12 8 -1.</_> 9662 <_>12 6 4 8 3.</_></rects> 9663 <tilted>0</tilted></feature> 9664 <threshold>-0.1555441021919251</threshold> 9665 <left_val>-0.5073614120483398</left_val> 9666 <right_val>0.0115754203870893</right_val></_></_> 9667 <_> 9668 <!-- tree 52 --> 9669 <_> 9670 <!-- root node --> 9671 <feature> 9672 <rects> 9673 <_>2 11 12 3 -1.</_> 9674 <_>6 11 4 3 3.</_></rects> 9675 <tilted>0</tilted></feature> 9676 <threshold>-0.0459768213331699</threshold> 9677 <left_val>0.3343332111835480</left_val> 9678 <right_val>-0.0565582811832428</right_val></_></_> 9679 <_> 9680 <!-- tree 53 --> 9681 <_> 9682 <!-- root node --> 9683 <feature> 9684 <rects> 9685 <_>14 3 6 8 -1.</_> 9686 <_>17 3 3 4 2.</_> 9687 <_>14 7 3 4 2.</_></rects> 9688 <tilted>0</tilted></feature> 9689 <threshold>0.0179002191871405</threshold> 9690 <left_val>0.0340919904410839</left_val> 9691 <right_val>-0.2856503129005432</right_val></_></_> 9692 <_> 9693 <!-- tree 54 --> 9694 <_> 9695 <!-- root node --> 9696 <feature> 9697 <rects> 9698 <_>0 5 13 3 -1.</_> 9699 <_>0 6 13 1 3.</_></rects> 9700 <tilted>0</tilted></feature> 9701 <threshold>6.7351139150559902e-003</threshold> 9702 <left_val>-0.0665388181805611</left_val> 9703 <right_val>0.2332212030887604</right_val></_></_> 9704 <_> 9705 <!-- tree 55 --> 9706 <_> 9707 <!-- root node --> 9708 <feature> 9709 <rects> 9710 <_>14 0 6 6 -1.</_> 9711 <_>14 2 6 2 3.</_></rects> 9712 <tilted>0</tilted></feature> 9713 <threshold>6.4544100314378738e-003</threshold> 9714 <left_val>0.0472244992852211</left_val> 9715 <right_val>-0.1442237049341202</right_val></_></_> 9716 <_> 9717 <!-- tree 56 --> 9718 <_> 9719 <!-- root node --> 9720 <feature> 9721 <rects> 9722 <_>3 0 6 6 -1.</_> 9723 <_>3 2 6 2 3.</_></rects> 9724 <tilted>0</tilted></feature> 9725 <threshold>-0.0110290497541428</threshold> 9726 <left_val>-0.2644239962100983</left_val> 9727 <right_val>0.0625426918268204</right_val></_></_> 9728 <_> 9729 <!-- tree 57 --> 9730 <_> 9731 <!-- root node --> 9732 <feature> 9733 <rects> 9734 <_>8 8 14 3 -1.</_> 9735 <_>8 9 14 1 3.</_></rects> 9736 <tilted>0</tilted></feature> 9737 <threshold>-3.3727919217199087e-003</threshold> 9738 <left_val>0.1257591992616653</left_val> 9739 <right_val>-0.0683576464653015</right_val></_></_> 9740 <_> 9741 <!-- tree 58 --> 9742 <_> 9743 <!-- root node --> 9744 <feature> 9745 <rects> 9746 <_>7 2 2 15 -1.</_> 9747 <_>8 2 1 15 2.</_></rects> 9748 <tilted>0</tilted></feature> 9749 <threshold>-2.2960419300943613e-003</threshold> 9750 <left_val>-0.1557330936193466</left_val> 9751 <right_val>0.0946819707751274</right_val></_></_> 9752 <_> 9753 <!-- tree 59 --> 9754 <_> 9755 <!-- root node --> 9756 <feature> 9757 <rects> 9758 <_>4 14 16 4 -1.</_> 9759 <_>4 14 8 4 2.</_></rects> 9760 <tilted>0</tilted></feature> 9761 <threshold>-0.0795031636953354</threshold> 9762 <left_val>-0.3824613988399506</left_val> 9763 <right_val>0.0172012597322464</right_val></_></_> 9764 <_> 9765 <!-- tree 60 --> 9766 <_> 9767 <!-- root node --> 9768 <feature> 9769 <rects> 9770 <_>1 6 20 12 -1.</_> 9771 <_>6 6 10 12 2.</_></rects> 9772 <tilted>0</tilted></feature> 9773 <threshold>-0.2524088025093079</threshold> 9774 <left_val>0.3013980984687805</left_val> 9775 <right_val>-0.0589428097009659</right_val></_></_> 9776 <_> 9777 <!-- tree 61 --> 9778 <_> 9779 <!-- root node --> 9780 <feature> 9781 <rects> 9782 <_>5 10 16 6 -1.</_> 9783 <_>13 10 8 3 2.</_> 9784 <_>5 13 8 3 2.</_></rects> 9785 <tilted>0</tilted></feature> 9786 <threshold>0.0363130792975426</threshold> 9787 <left_val>0.0211058706045151</left_val> 9788 <right_val>-0.2081169039011002</right_val></_></_> 9789 <_> 9790 <!-- tree 62 --> 9791 <_> 9792 <!-- root node --> 9793 <feature> 9794 <rects> 9795 <_>1 10 16 6 -1.</_> 9796 <_>1 10 8 3 2.</_> 9797 <_>9 13 8 3 2.</_></rects> 9798 <tilted>0</tilted></feature> 9799 <threshold>0.0687375217676163</threshold> 9800 <left_val>-0.0324002988636494</left_val> 9801 <right_val>0.5134530067443848</right_val></_></_> 9802 <_> 9803 <!-- tree 63 --> 9804 <_> 9805 <!-- root node --> 9806 <feature> 9807 <rects> 9808 <_>8 8 14 6 -1.</_> 9809 <_>8 8 7 6 2.</_></rects> 9810 <tilted>0</tilted></feature> 9811 <threshold>-0.2181455045938492</threshold> 9812 <left_val>-0.7009329199790955</left_val> 9813 <right_val>0.0162609796971083</right_val></_></_> 9814 <_> 9815 <!-- tree 64 --> 9816 <_> 9817 <!-- root node --> 9818 <feature> 9819 <rects> 9820 <_>0 8 14 6 -1.</_> 9821 <_>7 8 7 6 2.</_></rects> 9822 <tilted>0</tilted></feature> 9823 <threshold>-0.1977089941501617</threshold> 9824 <left_val>-0.6781736016273499</left_val> 9825 <right_val>0.0179375503212214</right_val></_></_> 9826 <_> 9827 <!-- tree 65 --> 9828 <_> 9829 <!-- root node --> 9830 <feature> 9831 <rects> 9832 <_>5 6 12 11 -1.</_> 9833 <_>8 6 6 11 2.</_></rects> 9834 <tilted>0</tilted></feature> 9835 <threshold>-0.1013111993670464</threshold> 9836 <left_val>0.3647063076496124</left_val> 9837 <right_val>-0.0499694384634495</right_val></_></_> 9838 <_> 9839 <!-- tree 66 --> 9840 <_> 9841 <!-- root node --> 9842 <feature> 9843 <rects> 9844 <_>1 3 8 6 -1.</_> 9845 <_>1 3 4 3 2.</_> 9846 <_>5 6 4 3 2.</_></rects> 9847 <tilted>0</tilted></feature> 9848 <threshold>5.4146698676049709e-003</threshold> 9849 <left_val>0.0660865902900696</left_val> 9850 <right_val>-0.2332739979028702</right_val></_></_> 9851 <_> 9852 <!-- tree 67 --> 9853 <_> 9854 <!-- root node --> 9855 <feature> 9856 <rects> 9857 <_>13 1 7 6 -1.</_> 9858 <_>13 1 7 3 2.</_></rects> 9859 <tilted>1</tilted></feature> 9860 <threshold>-0.0405901782214642</threshold> 9861 <left_val>0.2146472036838532</left_val> 9862 <right_val>-0.0430333092808723</right_val></_></_> 9863 <_> 9864 <!-- tree 68 --> 9865 <_> 9866 <!-- root node --> 9867 <feature> 9868 <rects> 9869 <_>1 4 5 10 -1.</_> 9870 <_>1 9 5 5 2.</_></rects> 9871 <tilted>0</tilted></feature> 9872 <threshold>-1.3324919855222106e-003</threshold> 9873 <left_val>0.1297567933797836</left_val> 9874 <right_val>-0.1279428005218506</right_val></_></_> 9875 <_> 9876 <!-- tree 69 --> 9877 <_> 9878 <!-- root node --> 9879 <feature> 9880 <rects> 9881 <_>18 6 3 8 -1.</_> 9882 <_>18 10 3 4 2.</_></rects> 9883 <tilted>0</tilted></feature> 9884 <threshold>5.7570589706301689e-003</threshold> 9885 <left_val>0.0434699989855289</left_val> 9886 <right_val>-0.1197730004787445</right_val></_></_> 9887 <_> 9888 <!-- tree 70 --> 9889 <_> 9890 <!-- root node --> 9891 <feature> 9892 <rects> 9893 <_>1 6 3 8 -1.</_> 9894 <_>1 10 3 4 2.</_></rects> 9895 <tilted>0</tilted></feature> 9896 <threshold>-4.0872758254408836e-003</threshold> 9897 <left_val>-0.2018010020256043</left_val> 9898 <right_val>0.0926248729228973</right_val></_></_> 9899 <_> 9900 <!-- tree 71 --> 9901 <_> 9902 <!-- root node --> 9903 <feature> 9904 <rects> 9905 <_>8 5 13 3 -1.</_> 9906 <_>8 6 13 1 3.</_></rects> 9907 <tilted>0</tilted></feature> 9908 <threshold>0.0213452801108360</threshold> 9909 <left_val>-0.0263108704239130</left_val> 9910 <right_val>0.2914252877235413</right_val></_></_> 9911 <_> 9912 <!-- tree 72 --> 9913 <_> 9914 <!-- root node --> 9915 <feature> 9916 <rects> 9917 <_>1 5 13 3 -1.</_> 9918 <_>1 6 13 1 3.</_></rects> 9919 <tilted>0</tilted></feature> 9920 <threshold>-2.4241849314421415e-003</threshold> 9921 <left_val>0.1713156998157501</left_val> 9922 <right_val>-0.1172301024198532</right_val></_></_> 9923 <_> 9924 <!-- tree 73 --> 9925 <_> 9926 <!-- root node --> 9927 <feature> 9928 <rects> 9929 <_>18 0 3 12 -1.</_> 9930 <_>19 0 1 12 3.</_></rects> 9931 <tilted>0</tilted></feature> 9932 <threshold>0.0606775507330894</threshold> 9933 <left_val>-4.8347217962145805e-003</left_val> 9934 <right_val>0.5657712221145630</right_val></_></_> 9935 <_> 9936 <!-- tree 74 --> 9937 <_> 9938 <!-- root node --> 9939 <feature> 9940 <rects> 9941 <_>1 0 3 12 -1.</_> 9942 <_>2 0 1 12 3.</_></rects> 9943 <tilted>0</tilted></feature> 9944 <threshold>3.1573011074215174e-004</threshold> 9945 <left_val>-0.1149955019354820</left_val> 9946 <right_val>0.1309486031532288</right_val></_></_> 9947 <_> 9948 <!-- tree 75 --> 9949 <_> 9950 <!-- root node --> 9951 <feature> 9952 <rects> 9953 <_>4 2 18 2 -1.</_> 9954 <_>4 2 9 2 2.</_></rects> 9955 <tilted>0</tilted></feature> 9956 <threshold>-1.4639530563727021e-003</threshold> 9957 <left_val>0.1070842966437340</left_val> 9958 <right_val>-0.0821887478232384</right_val></_></_> 9959 <_> 9960 <!-- tree 76 --> 9961 <_> 9962 <!-- root node --> 9963 <feature> 9964 <rects> 9965 <_>6 3 6 6 -1.</_> 9966 <_>9 3 3 6 2.</_></rects> 9967 <tilted>0</tilted></feature> 9968 <threshold>-0.0816292762756348</threshold> 9969 <left_val>-0.7009016275405884</left_val> 9970 <right_val>0.0213186405599117</right_val></_></_> 9971 <_> 9972 <!-- tree 77 --> 9973 <_> 9974 <!-- root node --> 9975 <feature> 9976 <rects> 9977 <_>9 5 12 11 -1.</_> 9978 <_>12 5 6 11 2.</_></rects> 9979 <tilted>0</tilted></feature> 9980 <threshold>-2.2923630604054779e-004</threshold> 9981 <left_val>0.0524490103125572</left_val> 9982 <right_val>-0.0572733990848064</right_val></_></_> 9983 <_> 9984 <!-- tree 78 --> 9985 <_> 9986 <!-- root node --> 9987 <feature> 9988 <rects> 9989 <_>1 5 12 11 -1.</_> 9990 <_>4 5 6 11 2.</_></rects> 9991 <tilted>0</tilted></feature> 9992 <threshold>8.6732655763626099e-003</threshold> 9993 <left_val>-0.1094440966844559</left_val> 9994 <right_val>0.1453080028295517</right_val></_></_> 9995 <_> 9996 <!-- tree 79 --> 9997 <_> 9998 <!-- root node --> 9999 <feature> 10000 <rects> 10001 <_>8 4 8 8 -1.</_> 10002 <_>8 4 4 8 2.</_></rects> 10003 <tilted>0</tilted></feature> 10004 <threshold>-9.5603411318734288e-004</threshold> 10005 <left_val>0.0547286607325077</left_val> 10006 <right_val>-0.0766770094633102</right_val></_></_> 10007 <_> 10008 <!-- tree 80 --> 10009 <_> 10010 <!-- root node --> 10011 <feature> 10012 <rects> 10013 <_>0 8 22 4 -1.</_> 10014 <_>0 8 11 2 2.</_> 10015 <_>11 10 11 2 2.</_></rects> 10016 <tilted>0</tilted></feature> 10017 <threshold>-0.0568146891891956</threshold> 10018 <left_val>-0.7249373793601990</left_val> 10019 <right_val>0.0177913308143616</right_val></_></_> 10020 <_> 10021 <!-- tree 81 --> 10022 <_> 10023 <!-- root node --> 10024 <feature> 10025 <rects> 10026 <_>8 6 8 4 -1.</_> 10027 <_>8 6 4 4 2.</_></rects> 10028 <tilted>0</tilted></feature> 10029 <threshold>6.4268838614225388e-003</threshold> 10030 <left_val>-0.0377686992287636</left_val> 10031 <right_val>0.0834547504782677</right_val></_></_> 10032 <_> 10033 <!-- tree 82 --> 10034 <_> 10035 <!-- root node --> 10036 <feature> 10037 <rects> 10038 <_>6 3 8 8 -1.</_> 10039 <_>10 3 4 8 2.</_></rects> 10040 <tilted>0</tilted></feature> 10041 <threshold>5.2451258525252342e-003</threshold> 10042 <left_val>-0.0758067518472672</left_val> 10043 <right_val>0.2154906988143921</right_val></_></_> 10044 <_> 10045 <!-- tree 83 --> 10046 <_> 10047 <!-- root node --> 10048 <feature> 10049 <rects> 10050 <_>3 6 16 4 -1.</_> 10051 <_>11 6 8 2 2.</_> 10052 <_>3 8 8 2 2.</_></rects> 10053 <tilted>0</tilted></feature> 10054 <threshold>6.7577441222965717e-003</threshold> 10055 <left_val>0.0771638676524162</left_val> 10056 <right_val>-0.2495719939470291</right_val></_></_> 10057 <_> 10058 <!-- tree 84 --> 10059 <_> 10060 <!-- root node --> 10061 <feature> 10062 <rects> 10063 <_>2 14 16 4 -1.</_> 10064 <_>10 14 8 4 2.</_></rects> 10065 <tilted>0</tilted></feature> 10066 <threshold>-5.7494179345667362e-003</threshold> 10067 <left_val>0.1424555927515030</left_val> 10068 <right_val>-0.1274092048406601</right_val></_></_> 10069 <_> 10070 <!-- tree 85 --> 10071 <_> 10072 <!-- root node --> 10073 <feature> 10074 <rects> 10075 <_>11 13 6 5 -1.</_> 10076 <_>11 13 3 5 2.</_></rects> 10077 <tilted>0</tilted></feature> 10078 <threshold>-6.7760650999844074e-003</threshold> 10079 <left_val>-0.2331600934267044</left_val> 10080 <right_val>0.0399752110242844</right_val></_></_> 10081 <_> 10082 <!-- tree 86 --> 10083 <_> 10084 <!-- root node --> 10085 <feature> 10086 <rects> 10087 <_>5 13 6 5 -1.</_> 10088 <_>8 13 3 5 2.</_></rects> 10089 <tilted>0</tilted></feature> 10090 <threshold>3.5247279447503388e-004</threshold> 10091 <left_val>-0.1308315992355347</left_val> 10092 <right_val>0.1157741025090218</right_val></_></_> 10093 <_> 10094 <!-- tree 87 --> 10095 <_> 10096 <!-- root node --> 10097 <feature> 10098 <rects> 10099 <_>12 2 2 7 -1.</_> 10100 <_>12 2 1 7 2.</_></rects> 10101 <tilted>1</tilted></feature> 10102 <threshold>1.4523849822580814e-003</threshold> 10103 <left_val>-0.0927244573831558</left_val> 10104 <right_val>0.0654869601130486</right_val></_></_></trees> 10105 <stage_threshold>-0.8364096879959106</stage_threshold> 10106 <parent>14</parent> 10107 <next>-1</next></_> 10108 <_> 10109 <!-- stage 16 --> 10110 <trees> 10111 <_> 10112 <!-- tree 0 --> 10113 <_> 10114 <!-- root node --> 10115 <feature> 10116 <rects> 10117 <_>0 9 21 9 -1.</_> 10118 <_>7 12 7 3 9.</_></rects> 10119 <tilted>0</tilted></feature> 10120 <threshold>-0.3116379976272583</threshold> 10121 <left_val>0.3806200027465820</left_val> 10122 <right_val>-0.1111584007740021</right_val></_></_> 10123 <_> 10124 <!-- tree 1 --> 10125 <_> 10126 <!-- root node --> 10127 <feature> 10128 <rects> 10129 <_>5 3 12 9 -1.</_> 10130 <_>9 6 4 3 9.</_></rects> 10131 <tilted>0</tilted></feature> 10132 <threshold>-0.3033824861049652</threshold> 10133 <left_val>0.5123680830001831</left_val> 10134 <right_val>-0.0504597313702106</right_val></_></_> 10135 <_> 10136 <!-- tree 2 --> 10137 <_> 10138 <!-- root node --> 10139 <feature> 10140 <rects> 10141 <_>3 9 16 8 -1.</_> 10142 <_>3 9 8 4 2.</_> 10143 <_>11 13 8 4 2.</_></rects> 10144 <tilted>0</tilted></feature> 10145 <threshold>-0.0109451701864600</threshold> 10146 <left_val>-0.2229202985763550</left_val> 10147 <right_val>0.1054809987545013</right_val></_></_> 10148 <_> 10149 <!-- tree 3 --> 10150 <_> 10151 <!-- root node --> 10152 <feature> 10153 <rects> 10154 <_>7 0 14 18 -1.</_> 10155 <_>7 0 7 18 2.</_></rects> 10156 <tilted>0</tilted></feature> 10157 <threshold>-0.0280110798776150</threshold> 10158 <left_val>0.0706877931952477</left_val> 10159 <right_val>-0.0864785090088844</right_val></_></_> 10160 <_> 10161 <!-- tree 4 --> 10162 <_> 10163 <!-- root node --> 10164 <feature> 10165 <rects> 10166 <_>5 8 6 4 -1.</_> 10167 <_>5 8 3 4 2.</_></rects> 10168 <tilted>1</tilted></feature> 10169 <threshold>-0.0522561594843864</threshold> 10170 <left_val>0.5785626769065857</left_val> 10171 <right_val>-8.7944902479648590e-003</right_val></_></_> 10172 <_> 10173 <!-- tree 5 --> 10174 <_> 10175 <!-- root node --> 10176 <feature> 10177 <rects> 10178 <_>3 11 16 4 -1.</_> 10179 <_>11 11 8 2 2.</_> 10180 <_>3 13 8 2 2.</_></rects> 10181 <tilted>0</tilted></feature> 10182 <threshold>-5.9455442242324352e-003</threshold> 10183 <left_val>-0.2564198076725006</left_val> 10184 <right_val>0.0945845320820808</right_val></_></_> 10185 <_> 10186 <!-- tree 6 --> 10187 <_> 10188 <!-- root node --> 10189 <feature> 10190 <rects> 10191 <_>6 9 6 8 -1.</_> 10192 <_>6 9 3 4 2.</_> 10193 <_>9 13 3 4 2.</_></rects> 10194 <tilted>0</tilted></feature> 10195 <threshold>2.5594399776309729e-003</threshold> 10196 <left_val>-0.2571848034858704</left_val> 10197 <right_val>0.1288242936134338</right_val></_></_> 10198 <_> 10199 <!-- tree 7 --> 10200 <_> 10201 <!-- root node --> 10202 <feature> 10203 <rects> 10204 <_>7 0 14 18 -1.</_> 10205 <_>7 0 7 18 2.</_></rects> 10206 <tilted>0</tilted></feature> 10207 <threshold>-0.1209926009178162</threshold> 10208 <left_val>-0.1229322031140328</left_val> 10209 <right_val>0.0258294306695461</right_val></_></_> 10210 <_> 10211 <!-- tree 8 --> 10212 <_> 10213 <!-- root node --> 10214 <feature> 10215 <rects> 10216 <_>1 0 14 18 -1.</_> 10217 <_>8 0 7 18 2.</_></rects> 10218 <tilted>0</tilted></feature> 10219 <threshold>-0.4420821964740753</threshold> 10220 <left_val>-0.7454655170440674</left_val> 10221 <right_val>0.0425867103040218</right_val></_></_> 10222 <_> 10223 <!-- tree 9 --> 10224 <_> 10225 <!-- root node --> 10226 <feature> 10227 <rects> 10228 <_>13 14 8 3 -1.</_> 10229 <_>13 14 4 3 2.</_></rects> 10230 <tilted>0</tilted></feature> 10231 <threshold>-6.6842641681432724e-003</threshold> 10232 <left_val>0.1351564973592758</left_val> 10233 <right_val>-0.1640930026769638</right_val></_></_> 10234 <_> 10235 <!-- tree 10 --> 10236 <_> 10237 <!-- root node --> 10238 <feature> 10239 <rects> 10240 <_>8 4 6 4 -1.</_> 10241 <_>8 6 6 2 2.</_></rects> 10242 <tilted>0</tilted></feature> 10243 <threshold>9.8270708695054054e-003</threshold> 10244 <left_val>-0.0803053528070450</left_val> 10245 <right_val>0.2985329926013947</right_val></_></_> 10246 <_> 10247 <!-- tree 11 --> 10248 <_> 10249 <!-- root node --> 10250 <feature> 10251 <rects> 10252 <_>6 6 14 4 -1.</_> 10253 <_>13 6 7 2 2.</_> 10254 <_>6 8 7 2 2.</_></rects> 10255 <tilted>0</tilted></feature> 10256 <threshold>0.0586385987699032</threshold> 10257 <left_val>0.0275564193725586</left_val> 10258 <right_val>-0.8224250078201294</right_val></_></_> 10259 <_> 10260 <!-- tree 12 --> 10261 <_> 10262 <!-- root node --> 10263 <feature> 10264 <rects> 10265 <_>7 3 11 4 -1.</_> 10266 <_>6 4 11 2 2.</_></rects> 10267 <tilted>1</tilted></feature> 10268 <threshold>-3.0546959023922682e-003</threshold> 10269 <left_val>-0.1929274946451187</left_val> 10270 <right_val>0.1108272969722748</right_val></_></_> 10271 <_> 10272 <!-- tree 13 --> 10273 <_> 10274 <!-- root node --> 10275 <feature> 10276 <rects> 10277 <_>7 0 12 4 -1.</_> 10278 <_>13 0 6 2 2.</_> 10279 <_>7 2 6 2 2.</_></rects> 10280 <tilted>0</tilted></feature> 10281 <threshold>-7.3340102098882198e-003</threshold> 10282 <left_val>-0.2430793941020966</left_val> 10283 <right_val>0.0667446032166481</right_val></_></_> 10284 <_> 10285 <!-- tree 14 --> 10286 <_> 10287 <!-- root node --> 10288 <feature> 10289 <rects> 10290 <_>4 0 14 4 -1.</_> 10291 <_>4 0 7 2 2.</_> 10292 <_>11 2 7 2 2.</_></rects> 10293 <tilted>0</tilted></feature> 10294 <threshold>-0.0105262296274304</threshold> 10295 <left_val>-0.3113602101802826</left_val> 10296 <right_val>0.0628508478403091</right_val></_></_> 10297 <_> 10298 <!-- tree 15 --> 10299 <_> 10300 <!-- root node --> 10301 <feature> 10302 <rects> 10303 <_>15 8 6 9 -1.</_> 10304 <_>17 8 2 9 3.</_></rects> 10305 <tilted>0</tilted></feature> 10306 <threshold>0.1048116013407707</threshold> 10307 <left_val>0.0126217203214765</left_val> 10308 <right_val>-0.6737608909606934</right_val></_></_> 10309 <_> 10310 <!-- tree 16 --> 10311 <_> 10312 <!-- root node --> 10313 <feature> 10314 <rects> 10315 <_>1 8 6 9 -1.</_> 10316 <_>3 8 2 9 3.</_></rects> 10317 <tilted>0</tilted></feature> 10318 <threshold>9.4269379042088985e-004</threshold> 10319 <left_val>-0.1707167029380798</left_val> 10320 <right_val>0.1028065010905266</right_val></_></_> 10321 <_> 10322 <!-- tree 17 --> 10323 <_> 10324 <!-- root node --> 10325 <feature> 10326 <rects> 10327 <_>12 5 5 9 -1.</_> 10328 <_>12 8 5 3 3.</_></rects> 10329 <tilted>0</tilted></feature> 10330 <threshold>8.4397383034229279e-003</threshold> 10331 <left_val>-0.0530145689845085</left_val> 10332 <right_val>0.0885990783572197</right_val></_></_> 10333 <_> 10334 <!-- tree 18 --> 10335 <_> 10336 <!-- root node --> 10337 <feature> 10338 <rects> 10339 <_>5 5 5 9 -1.</_> 10340 <_>5 8 5 3 3.</_></rects> 10341 <tilted>0</tilted></feature> 10342 <threshold>-0.0305516701191664</threshold> 10343 <left_val>0.3526489138603210</left_val> 10344 <right_val>-0.0691484734416008</right_val></_></_> 10345 <_> 10346 <!-- tree 19 --> 10347 <_> 10348 <!-- root node --> 10349 <feature> 10350 <rects> 10351 <_>17 9 4 6 -1.</_> 10352 <_>17 9 2 6 2.</_></rects> 10353 <tilted>0</tilted></feature> 10354 <threshold>-0.0491123795509338</threshold> 10355 <left_val>-0.5821937918663025</left_val> 10356 <right_val>0.0140432203188539</right_val></_></_> 10357 <_> 10358 <!-- tree 20 --> 10359 <_> 10360 <!-- root node --> 10361 <feature> 10362 <rects> 10363 <_>1 9 4 6 -1.</_> 10364 <_>3 9 2 6 2.</_></rects> 10365 <tilted>0</tilted></feature> 10366 <threshold>5.8098030276596546e-003</threshold> 10367 <left_val>0.0708724334836006</left_val> 10368 <right_val>-0.2536281943321228</right_val></_></_> 10369 <_> 10370 <!-- tree 21 --> 10371 <_> 10372 <!-- root node --> 10373 <feature> 10374 <rects> 10375 <_>4 3 14 3 -1.</_> 10376 <_>4 4 14 1 3.</_></rects> 10377 <tilted>0</tilted></feature> 10378 <threshold>0.0255410708487034</threshold> 10379 <left_val>-0.0451369397342205</left_val> 10380 <right_val>0.4067445099353790</right_val></_></_> 10381 <_> 10382 <!-- tree 22 --> 10383 <_> 10384 <!-- root node --> 10385 <feature> 10386 <rects> 10387 <_>6 0 10 3 -1.</_> 10388 <_>5 1 10 1 3.</_></rects> 10389 <tilted>1</tilted></feature> 10390 <threshold>-0.0487112887203693</threshold> 10391 <left_val>-0.7024015784263611</left_val> 10392 <right_val>0.0243178699165583</right_val></_></_> 10393 <_> 10394 <!-- tree 23 --> 10395 <_> 10396 <!-- root node --> 10397 <feature> 10398 <rects> 10399 <_>10 4 11 14 -1.</_> 10400 <_>10 11 11 7 2.</_></rects> 10401 <tilted>0</tilted></feature> 10402 <threshold>-0.3262439072132111</threshold> 10403 <left_val>-0.5061904788017273</left_val> 10404 <right_val>5.5445302277803421e-003</right_val></_></_> 10405 <_> 10406 <!-- tree 24 --> 10407 <_> 10408 <!-- root node --> 10409 <feature> 10410 <rects> 10411 <_>2 5 6 6 -1.</_> 10412 <_>2 7 6 2 3.</_></rects> 10413 <tilted>0</tilted></feature> 10414 <threshold>-1.8120040476787835e-004</threshold> 10415 <left_val>0.1313259005546570</left_val> 10416 <right_val>-0.1213954985141754</right_val></_></_> 10417 <_> 10418 <!-- tree 25 --> 10419 <_> 10420 <!-- root node --> 10421 <feature> 10422 <rects> 10423 <_>12 2 5 12 -1.</_> 10424 <_>12 6 5 4 3.</_></rects> 10425 <tilted>0</tilted></feature> 10426 <threshold>-0.1298076957464218</threshold> 10427 <left_val>-0.6820899248123169</left_val> 10428 <right_val>0.0164145492017269</right_val></_></_> 10429 <_> 10430 <!-- tree 26 --> 10431 <_> 10432 <!-- root node --> 10433 <feature> 10434 <rects> 10435 <_>5 16 12 2 -1.</_> 10436 <_>5 17 12 1 2.</_></rects> 10437 <tilted>0</tilted></feature> 10438 <threshold>8.3528067916631699e-003</threshold> 10439 <left_val>0.0300403907895088</left_val> 10440 <right_val>-0.5090913772583008</right_val></_></_> 10441 <_> 10442 <!-- tree 27 --> 10443 <_> 10444 <!-- root node --> 10445 <feature> 10446 <rects> 10447 <_>3 4 18 3 -1.</_> 10448 <_>3 5 18 1 3.</_></rects> 10449 <tilted>0</tilted></feature> 10450 <threshold>5.4547088220715523e-003</threshold> 10451 <left_val>-0.0824020728468895</left_val> 10452 <right_val>0.1800798028707504</right_val></_></_> 10453 <_> 10454 <!-- tree 28 --> 10455 <_> 10456 <!-- root node --> 10457 <feature> 10458 <rects> 10459 <_>1 4 11 14 -1.</_> 10460 <_>1 11 11 7 2.</_></rects> 10461 <tilted>0</tilted></feature> 10462 <threshold>-0.3169954121112824</threshold> 10463 <left_val>-0.8661301136016846</left_val> 10464 <right_val>0.0182291399687529</right_val></_></_> 10465 <_> 10466 <!-- tree 29 --> 10467 <_> 10468 <!-- root node --> 10469 <feature> 10470 <rects> 10471 <_>8 12 11 4 -1.</_> 10472 <_>8 14 11 2 2.</_></rects> 10473 <tilted>0</tilted></feature> 10474 <threshold>5.8424862800166011e-004</threshold> 10475 <left_val>0.0424097292125225</left_val> 10476 <right_val>-0.1311808973550797</right_val></_></_> 10477 <_> 10478 <!-- tree 30 --> 10479 <_> 10480 <!-- root node --> 10481 <feature> 10482 <rects> 10483 <_>7 11 8 7 -1.</_> 10484 <_>11 11 4 7 2.</_></rects> 10485 <tilted>0</tilted></feature> 10486 <threshold>-9.7046848386526108e-003</threshold> 10487 <left_val>-0.2743268907070160</left_val> 10488 <right_val>0.0559204295277596</right_val></_></_> 10489 <_> 10490 <!-- tree 31 --> 10491 <_> 10492 <!-- root node --> 10493 <feature> 10494 <rects> 10495 <_>12 2 4 11 -1.</_> 10496 <_>12 2 2 11 2.</_></rects> 10497 <tilted>1</tilted></feature> 10498 <threshold>0.0168343205004931</threshold> 10499 <left_val>-0.0833064168691635</left_val> 10500 <right_val>0.0677927583456039</right_val></_></_> 10501 <_> 10502 <!-- tree 32 --> 10503 <_> 10504 <!-- root node --> 10505 <feature> 10506 <rects> 10507 <_>10 4 11 2 -1.</_> 10508 <_>10 4 11 1 2.</_></rects> 10509 <tilted>1</tilted></feature> 10510 <threshold>-0.0306853801012039</threshold> 10511 <left_val>0.4212690889835358</left_val> 10512 <right_val>-0.0453393310308456</right_val></_></_> 10513 <_> 10514 <!-- tree 33 --> 10515 <_> 10516 <!-- root node --> 10517 <feature> 10518 <rects> 10519 <_>16 0 2 14 -1.</_> 10520 <_>16 0 1 14 2.</_></rects> 10521 <tilted>1</tilted></feature> 10522 <threshold>0.0413949191570282</threshold> 10523 <left_val>0.0199717506766319</left_val> 10524 <right_val>-0.1972219049930573</right_val></_></_> 10525 <_> 10526 <!-- tree 34 --> 10527 <_> 10528 <!-- root node --> 10529 <feature> 10530 <rects> 10531 <_>6 0 14 2 -1.</_> 10532 <_>6 0 14 1 2.</_></rects> 10533 <tilted>1</tilted></feature> 10534 <threshold>0.0349101498723030</threshold> 10535 <left_val>-0.0538268797099590</left_val> 10536 <right_val>0.3504027128219605</right_val></_></_> 10537 <_> 10538 <!-- tree 35 --> 10539 <_> 10540 <!-- root node --> 10541 <feature> 10542 <rects> 10543 <_>19 4 2 12 -1.</_> 10544 <_>19 4 1 12 2.</_></rects> 10545 <tilted>1</tilted></feature> 10546 <threshold>-5.2495039999485016e-003</threshold> 10547 <left_val>-0.1136389002203941</left_val> 10548 <right_val>0.0550805702805519</right_val></_></_> 10549 <_> 10550 <!-- tree 36 --> 10551 <_> 10552 <!-- root node --> 10553 <feature> 10554 <rects> 10555 <_>8 2 6 10 -1.</_> 10556 <_>8 7 6 5 2.</_></rects> 10557 <tilted>0</tilted></feature> 10558 <threshold>0.1204561963677406</threshold> 10559 <left_val>0.0174515992403030</left_val> 10560 <right_val>-0.9395803213119507</right_val></_></_> 10561 <_> 10562 <!-- tree 37 --> 10563 <_> 10564 <!-- root node --> 10565 <feature> 10566 <rects> 10567 <_>19 4 2 12 -1.</_> 10568 <_>19 4 1 12 2.</_></rects> 10569 <tilted>1</tilted></feature> 10570 <threshold>0.0421304218471050</threshold> 10571 <left_val>-0.0143432803452015</left_val> 10572 <right_val>0.6005985140800476</right_val></_></_> 10573 <_> 10574 <!-- tree 38 --> 10575 <_> 10576 <!-- root node --> 10577 <feature> 10578 <rects> 10579 <_>11 3 6 8 -1.</_> 10580 <_>11 3 6 4 2.</_></rects> 10581 <tilted>1</tilted></feature> 10582 <threshold>0.0191208496689796</threshold> 10583 <left_val>0.0858645066618919</left_val> 10584 <right_val>-0.1858649998903275</right_val></_></_> 10585 <_> 10586 <!-- tree 39 --> 10587 <_> 10588 <!-- root node --> 10589 <feature> 10590 <rects> 10591 <_>11 2 10 6 -1.</_> 10592 <_>11 2 5 6 2.</_></rects> 10593 <tilted>1</tilted></feature> 10594 <threshold>8.4470612928271294e-003</threshold> 10595 <left_val>-0.0694521814584732</left_val> 10596 <right_val>0.0734614208340645</right_val></_></_> 10597 <_> 10598 <!-- tree 40 --> 10599 <_> 10600 <!-- root node --> 10601 <feature> 10602 <rects> 10603 <_>3 5 13 2 -1.</_> 10604 <_>3 6 13 1 2.</_></rects> 10605 <tilted>0</tilted></feature> 10606 <threshold>1.7696130089461803e-003</threshold> 10607 <left_val>-0.0799966603517532</left_val> 10608 <right_val>0.1947980970144272</right_val></_></_> 10609 <_> 10610 <!-- tree 41 --> 10611 <_> 10612 <!-- root node --> 10613 <feature> 10614 <rects> 10615 <_>5 4 12 6 -1.</_> 10616 <_>5 6 12 2 3.</_></rects> 10617 <tilted>0</tilted></feature> 10618 <threshold>0.0579959489405155</threshold> 10619 <left_val>0.0276330001652241</left_val> 10620 <right_val>-0.5409700870513916</right_val></_></_> 10621 <_> 10622 <!-- tree 42 --> 10623 <_> 10624 <!-- root node --> 10625 <feature> 10626 <rects> 10627 <_>6 9 9 9 -1.</_> 10628 <_>9 9 3 9 3.</_></rects> 10629 <tilted>0</tilted></feature> 10630 <threshold>-0.0798840224742889</threshold> 10631 <left_val>-0.5430768132209778</left_val> 10632 <right_val>0.0232198294252157</right_val></_></_> 10633 <_> 10634 <!-- tree 43 --> 10635 <_> 10636 <!-- root node --> 10637 <feature> 10638 <rects> 10639 <_>19 1 3 12 -1.</_> 10640 <_>20 2 1 12 3.</_></rects> 10641 <tilted>1</tilted></feature> 10642 <threshold>0.0665762424468994</threshold> 10643 <left_val>6.8416809663176537e-003</left_val> 10644 <right_val>-0.8122456073760986</right_val></_></_> 10645 <_> 10646 <!-- tree 44 --> 10647 <_> 10648 <!-- root node --> 10649 <feature> 10650 <rects> 10651 <_>2 13 9 5 -1.</_> 10652 <_>5 13 3 5 3.</_></rects> 10653 <tilted>0</tilted></feature> 10654 <threshold>0.0641699433326721</threshold> 10655 <left_val>-0.0248466897755861</left_val> 10656 <right_val>0.6079813241958618</right_val></_></_> 10657 <_> 10658 <!-- tree 45 --> 10659 <_> 10660 <!-- root node --> 10661 <feature> 10662 <rects> 10663 <_>11 2 10 6 -1.</_> 10664 <_>11 2 5 6 2.</_></rects> 10665 <tilted>1</tilted></feature> 10666 <threshold>-0.2940478026866913</threshold> 10667 <left_val>-1.</left_val> 10668 <right_val>4.6440181322395802e-003</right_val></_></_> 10669 <_> 10670 <!-- tree 46 --> 10671 <_> 10672 <!-- root node --> 10673 <feature> 10674 <rects> 10675 <_>11 2 6 10 -1.</_> 10676 <_>11 2 6 5 2.</_></rects> 10677 <tilted>1</tilted></feature> 10678 <threshold>-9.5727723091840744e-003</threshold> 10679 <left_val>-0.1415735930204392</left_val> 10680 <right_val>0.1012165024876595</right_val></_></_> 10681 <_> 10682 <!-- tree 47 --> 10683 <_> 10684 <!-- root node --> 10685 <feature> 10686 <rects> 10687 <_>1 6 21 3 -1.</_> 10688 <_>8 6 7 3 3.</_></rects> 10689 <tilted>0</tilted></feature> 10690 <threshold>-0.0235744491219521</threshold> 10691 <left_val>0.1171545013785362</left_val> 10692 <right_val>-0.1318469047546387</right_val></_></_> 10693 <_> 10694 <!-- tree 48 --> 10695 <_> 10696 <!-- root node --> 10697 <feature> 10698 <rects> 10699 <_>5 5 3 8 -1.</_> 10700 <_>5 9 3 4 2.</_></rects> 10701 <tilted>0</tilted></feature> 10702 <threshold>-5.1256217993795872e-003</threshold> 10703 <left_val>-0.1762325018644333</left_val> 10704 <right_val>0.1017735973000526</right_val></_></_> 10705 <_> 10706 <!-- tree 49 --> 10707 <_> 10708 <!-- root node --> 10709 <feature> 10710 <rects> 10711 <_>10 5 7 6 -1.</_> 10712 <_>10 7 7 2 3.</_></rects> 10713 <tilted>0</tilted></feature> 10714 <threshold>0.0976630598306656</threshold> 10715 <left_val>4.4896239414811134e-003</left_val> 10716 <right_val>-0.8041555285453796</right_val></_></_> 10717 <_> 10718 <!-- tree 50 --> 10719 <_> 10720 <!-- root node --> 10721 <feature> 10722 <rects> 10723 <_>10 0 7 6 -1.</_> 10724 <_>8 2 7 2 3.</_></rects> 10725 <tilted>1</tilted></feature> 10726 <threshold>0.0320886895060539</threshold> 10727 <left_val>-0.0580484308302403</left_val> 10728 <right_val>0.3019489049911499</right_val></_></_> 10729 <_> 10730 <!-- tree 51 --> 10731 <_> 10732 <!-- root node --> 10733 <feature> 10734 <rects> 10735 <_>13 5 6 6 -1.</_> 10736 <_>13 7 6 2 3.</_></rects> 10737 <tilted>0</tilted></feature> 10738 <threshold>-0.0865172073245049</threshold> 10739 <left_val>-0.7552989125251770</left_val> 10740 <right_val>2.8089359402656555e-003</right_val></_></_> 10741 <_> 10742 <!-- tree 52 --> 10743 <_> 10744 <!-- root node --> 10745 <feature> 10746 <rects> 10747 <_>5 5 7 6 -1.</_> 10748 <_>5 7 7 2 3.</_></rects> 10749 <tilted>0</tilted></feature> 10750 <threshold>-0.0285409707576036</threshold> 10751 <left_val>-0.3508501946926117</left_val> 10752 <right_val>0.0440815910696983</right_val></_></_> 10753 <_> 10754 <!-- tree 53 --> 10755 <_> 10756 <!-- root node --> 10757 <feature> 10758 <rects> 10759 <_>9 1 6 8 -1.</_> 10760 <_>12 1 3 4 2.</_> 10761 <_>9 5 3 4 2.</_></rects> 10762 <tilted>0</tilted></feature> 10763 <threshold>-5.3844689391553402e-003</threshold> 10764 <left_val>0.0923489034175873</left_val> 10765 <right_val>-0.0700338482856750</right_val></_></_> 10766 <_> 10767 <!-- tree 54 --> 10768 <_> 10769 <!-- root node --> 10770 <feature> 10771 <rects> 10772 <_>7 1 6 8 -1.</_> 10773 <_>7 1 3 4 2.</_> 10774 <_>10 5 3 4 2.</_></rects> 10775 <tilted>0</tilted></feature> 10776 <threshold>-0.0222804397344589</threshold> 10777 <left_val>0.2494941949844360</left_val> 10778 <right_val>-0.0706586763262749</right_val></_></_> 10779 <_> 10780 <!-- tree 55 --> 10781 <_> 10782 <!-- root node --> 10783 <feature> 10784 <rects> 10785 <_>7 0 9 4 -1.</_> 10786 <_>10 0 3 4 3.</_></rects> 10787 <tilted>0</tilted></feature> 10788 <threshold>5.1025422289967537e-003</threshold> 10789 <left_val>0.0608996897935867</left_val> 10790 <right_val>-0.1547394990921021</right_val></_></_> 10791 <_> 10792 <!-- tree 56 --> 10793 <_> 10794 <!-- root node --> 10795 <feature> 10796 <rects> 10797 <_>1 9 14 3 -1.</_> 10798 <_>1 10 14 1 3.</_></rects> 10799 <tilted>0</tilted></feature> 10800 <threshold>3.7133800797164440e-003</threshold> 10801 <left_val>-0.0871243029832840</left_val> 10802 <right_val>0.1719526052474976</right_val></_></_> 10803 <_> 10804 <!-- tree 57 --> 10805 <_> 10806 <!-- root node --> 10807 <feature> 10808 <rects> 10809 <_>5 9 15 3 -1.</_> 10810 <_>5 10 15 1 3.</_></rects> 10811 <tilted>0</tilted></feature> 10812 <threshold>-4.0405280888080597e-003</threshold> 10813 <left_val>0.1505451947450638</left_val> 10814 <right_val>-0.0996850505471230</right_val></_></_> 10815 <_> 10816 <!-- tree 58 --> 10817 <_> 10818 <!-- root node --> 10819 <feature> 10820 <rects> 10821 <_>3 1 12 3 -1.</_> 10822 <_>2 2 12 1 3.</_></rects> 10823 <tilted>1</tilted></feature> 10824 <threshold>0.0489449016749859</threshold> 10825 <left_val>0.0206377804279327</left_val> 10826 <right_val>-0.7111399769783020</right_val></_></_> 10827 <_> 10828 <!-- tree 59 --> 10829 <_> 10830 <!-- root node --> 10831 <feature> 10832 <rects> 10833 <_>5 12 12 6 -1.</_> 10834 <_>11 12 6 3 2.</_> 10835 <_>5 15 6 3 2.</_></rects> 10836 <tilted>0</tilted></feature> 10837 <threshold>-4.0832208469510078e-003</threshold> 10838 <left_val>-0.1610490977764130</left_val> 10839 <right_val>0.0886750072240829</right_val></_></_> 10840 <_> 10841 <!-- tree 60 --> 10842 <_> 10843 <!-- root node --> 10844 <feature> 10845 <rects> 10846 <_>5 12 12 4 -1.</_> 10847 <_>5 12 6 2 2.</_> 10848 <_>11 14 6 2 2.</_></rects> 10849 <tilted>0</tilted></feature> 10850 <threshold>-2.2145630791783333e-003</threshold> 10851 <left_val>-0.2190154045820236</left_val> 10852 <right_val>0.1004524007439613</right_val></_></_> 10853 <_> 10854 <!-- tree 61 --> 10855 <_> 10856 <!-- root node --> 10857 <feature> 10858 <rects> 10859 <_>15 4 3 9 -1.</_> 10860 <_>16 5 1 9 3.</_></rects> 10861 <tilted>1</tilted></feature> 10862 <threshold>-0.0642574504017830</threshold> 10863 <left_val>-0.5769470930099487</left_val> 10864 <right_val>0.0102538801729679</right_val></_></_> 10865 <_> 10866 <!-- tree 62 --> 10867 <_> 10868 <!-- root node --> 10869 <feature> 10870 <rects> 10871 <_>7 4 9 3 -1.</_> 10872 <_>6 5 9 1 3.</_></rects> 10873 <tilted>1</tilted></feature> 10874 <threshold>0.0118954200297594</threshold> 10875 <left_val>-0.0705605968832970</left_val> 10876 <right_val>0.2614729106426239</right_val></_></_> 10877 <_> 10878 <!-- tree 63 --> 10879 <_> 10880 <!-- root node --> 10881 <feature> 10882 <rects> 10883 <_>13 3 7 4 -1.</_> 10884 <_>13 5 7 2 2.</_></rects> 10885 <tilted>0</tilted></feature> 10886 <threshold>-0.0449882596731186</threshold> 10887 <left_val>-0.6844028234481812</left_val> 10888 <right_val>9.9674779921770096e-003</right_val></_></_> 10889 <_> 10890 <!-- tree 64 --> 10891 <_> 10892 <!-- root node --> 10893 <feature> 10894 <rects> 10895 <_>4 0 9 5 -1.</_> 10896 <_>7 0 3 5 3.</_></rects> 10897 <tilted>0</tilted></feature> 10898 <threshold>6.3484339043498039e-003</threshold> 10899 <left_val>0.0847386568784714</left_val> 10900 <right_val>-0.1629998981952667</right_val></_></_> 10901 <_> 10902 <!-- tree 65 --> 10903 <_> 10904 <!-- root node --> 10905 <feature> 10906 <rects> 10907 <_>10 6 6 6 -1.</_> 10908 <_>12 6 2 6 3.</_></rects> 10909 <tilted>0</tilted></feature> 10910 <threshold>-0.0565874390304089</threshold> 10911 <left_val>0.4896005094051361</left_val> 10912 <right_val>-0.0196411404758692</right_val></_></_> 10913 <_> 10914 <!-- tree 66 --> 10915 <_> 10916 <!-- root node --> 10917 <feature> 10918 <rects> 10919 <_>0 6 12 4 -1.</_> 10920 <_>0 6 6 2 2.</_> 10921 <_>6 8 6 2 2.</_></rects> 10922 <tilted>0</tilted></feature> 10923 <threshold>0.0358534008264542</threshold> 10924 <left_val>0.0196954403072596</left_val> 10925 <right_val>-0.6810833811759949</right_val></_></_> 10926 <_> 10927 <!-- tree 67 --> 10928 <_> 10929 <!-- root node --> 10930 <feature> 10931 <rects> 10932 <_>10 11 9 6 -1.</_> 10933 <_>13 11 3 6 3.</_></rects> 10934 <tilted>0</tilted></feature> 10935 <threshold>-4.5450981706380844e-003</threshold> 10936 <left_val>0.0690726563334465</left_val> 10937 <right_val>-0.0912766382098198</right_val></_></_> 10938 <_> 10939 <!-- tree 68 --> 10940 <_> 10941 <!-- root node --> 10942 <feature> 10943 <rects> 10944 <_>2 6 16 8 -1.</_> 10945 <_>2 10 16 4 2.</_></rects> 10946 <tilted>0</tilted></feature> 10947 <threshold>0.1060857027769089</threshold> 10948 <left_val>-0.0499939918518066</left_val> 10949 <right_val>0.3213947117328644</right_val></_></_> 10950 <_> 10951 <!-- tree 69 --> 10952 <_> 10953 <!-- root node --> 10954 <feature> 10955 <rects> 10956 <_>17 0 2 10 -1.</_> 10957 <_>17 0 1 10 2.</_></rects> 10958 <tilted>1</tilted></feature> 10959 <threshold>-0.0459244102239609</threshold> 10960 <left_val>-0.8274418115615845</left_val> 10961 <right_val>0.0121494196355343</right_val></_></_> 10962 <_> 10963 <!-- tree 70 --> 10964 <_> 10965 <!-- root node --> 10966 <feature> 10967 <rects> 10968 <_>5 0 10 2 -1.</_> 10969 <_>5 0 10 1 2.</_></rects> 10970 <tilted>1</tilted></feature> 10971 <threshold>-0.0122732399031520</threshold> 10972 <left_val>-0.3066928982734680</left_val> 10973 <right_val>0.0516933985054493</right_val></_></_> 10974 <_> 10975 <!-- tree 71 --> 10976 <_> 10977 <!-- root node --> 10978 <feature> 10979 <rects> 10980 <_>9 11 13 3 -1.</_> 10981 <_>9 12 13 1 3.</_></rects> 10982 <tilted>0</tilted></feature> 10983 <threshold>0.0806673914194107</threshold> 10984 <left_val>2.1730009466409683e-003</left_val> 10985 <right_val>-1.0002529621124268</right_val></_></_> 10986 <_> 10987 <!-- tree 72 --> 10988 <_> 10989 <!-- root node --> 10990 <feature> 10991 <rects> 10992 <_>0 11 13 3 -1.</_> 10993 <_>0 12 13 1 3.</_></rects> 10994 <tilted>0</tilted></feature> 10995 <threshold>-0.0230448599904776</threshold> 10996 <left_val>0.4508534967899323</left_val> 10997 <right_val>-0.0362739786505699</right_val></_></_> 10998 <_> 10999 <!-- tree 73 --> 11000 <_> 11001 <!-- root node --> 11002 <feature> 11003 <rects> 11004 <_>18 6 4 12 -1.</_> 11005 <_>18 9 4 6 2.</_></rects> 11006 <tilted>0</tilted></feature> 11007 <threshold>0.0187029093503952</threshold> 11008 <left_val>0.0469454601407051</left_val> 11009 <right_val>-0.2179626971483231</right_val></_></_> 11010 <_> 11011 <!-- tree 74 --> 11012 <_> 11013 <!-- root node --> 11014 <feature> 11015 <rects> 11016 <_>6 4 9 7 -1.</_> 11017 <_>9 4 3 7 3.</_></rects> 11018 <tilted>0</tilted></feature> 11019 <threshold>-0.0968200266361237</threshold> 11020 <left_val>0.4039891064167023</left_val> 11021 <right_val>-0.0378190912306309</right_val></_></_> 11022 <_> 11023 <!-- tree 75 --> 11024 <_> 11025 <!-- root node --> 11026 <feature> 11027 <rects> 11028 <_>11 9 6 7 -1.</_> 11029 <_>13 9 2 7 3.</_></rects> 11030 <tilted>0</tilted></feature> 11031 <threshold>0.0605257898569107</threshold> 11032 <left_val>0.0157271604984999</left_val> 11033 <right_val>-0.4566167891025543</right_val></_></_> 11034 <_> 11035 <!-- tree 76 --> 11036 <_> 11037 <!-- root node --> 11038 <feature> 11039 <rects> 11040 <_>5 9 6 7 -1.</_> 11041 <_>7 9 2 7 3.</_></rects> 11042 <tilted>0</tilted></feature> 11043 <threshold>0.0104185696691275</threshold> 11044 <left_val>0.0627266466617584</left_val> 11045 <right_val>-0.2444117963314056</right_val></_></_> 11046 <_> 11047 <!-- tree 77 --> 11048 <_> 11049 <!-- root node --> 11050 <feature> 11051 <rects> 11052 <_>1 13 20 5 -1.</_> 11053 <_>6 13 10 5 2.</_></rects> 11054 <tilted>0</tilted></feature> 11055 <threshold>0.0107262097299099</threshold> 11056 <left_val>-0.0719688534736633</left_val> 11057 <right_val>0.2209997028112412</right_val></_></_> 11058 <_> 11059 <!-- tree 78 --> 11060 <_> 11061 <!-- root node --> 11062 <feature> 11063 <rects> 11064 <_>7 9 8 6 -1.</_> 11065 <_>9 9 4 6 2.</_></rects> 11066 <tilted>0</tilted></feature> 11067 <threshold>-2.7160700410604477e-003</threshold> 11068 <left_val>0.1288274973630905</left_val> 11069 <right_val>-0.1462963074445725</right_val></_></_> 11070 <_> 11071 <!-- tree 79 --> 11072 <_> 11073 <!-- root node --> 11074 <feature> 11075 <rects> 11076 <_>5 5 12 4 -1.</_> 11077 <_>8 5 6 4 2.</_></rects> 11078 <tilted>0</tilted></feature> 11079 <threshold>8.5867568850517273e-003</threshold> 11080 <left_val>-0.0686456635594368</left_val> 11081 <right_val>0.2584058940410614</right_val></_></_></trees> 11082 <stage_threshold>-0.7232239842414856</stage_threshold> 11083 <parent>15</parent> 11084 <next>-1</next></_> 11085 <_> 11086 <!-- stage 17 --> 11087 <trees> 11088 <_> 11089 <!-- tree 0 --> 11090 <_> 11091 <!-- root node --> 11092 <feature> 11093 <rects> 11094 <_>1 11 20 6 -1.</_> 11095 <_>6 11 10 6 2.</_></rects> 11096 <tilted>0</tilted></feature> 11097 <threshold>-0.0258516706526279</threshold> 11098 <left_val>0.1801179945468903</left_val> 11099 <right_val>-0.2474593073129654</right_val></_></_> 11100 <_> 11101 <!-- tree 1 --> 11102 <_> 11103 <!-- root node --> 11104 <feature> 11105 <rects> 11106 <_>1 8 20 7 -1.</_> 11107 <_>6 8 10 7 2.</_></rects> 11108 <tilted>0</tilted></feature> 11109 <threshold>0.1405462026596069</threshold> 11110 <left_val>-0.0513192899525166</left_val> 11111 <right_val>0.4076690971851349</right_val></_></_> 11112 <_> 11113 <!-- tree 2 --> 11114 <_> 11115 <!-- root node --> 11116 <feature> 11117 <rects> 11118 <_>2 9 18 6 -1.</_> 11119 <_>8 11 6 2 9.</_></rects> 11120 <tilted>0</tilted></feature> 11121 <threshold>-0.2725507915019989</threshold> 11122 <left_val>0.4994125962257385</left_val> 11123 <right_val>-0.0450339317321777</right_val></_></_> 11124 <_> 11125 <!-- tree 3 --> 11126 <_> 11127 <!-- root node --> 11128 <feature> 11129 <rects> 11130 <_>8 13 9 4 -1.</_> 11131 <_>8 15 9 2 2.</_></rects> 11132 <tilted>0</tilted></feature> 11133 <threshold>1.3978329952806234e-003</threshold> 11134 <left_val>0.0536005087196827</left_val> 11135 <right_val>-0.2179338932037354</right_val></_></_> 11136 <_> 11137 <!-- tree 4 --> 11138 <_> 11139 <!-- root node --> 11140 <feature> 11141 <rects> 11142 <_>1 12 9 6 -1.</_> 11143 <_>1 15 9 3 2.</_></rects> 11144 <tilted>0</tilted></feature> 11145 <threshold>-0.0350598804652691</threshold> 11146 <left_val>-0.2994329035282135</left_val> 11147 <right_val>0.0899913236498833</right_val></_></_> 11148 <_> 11149 <!-- tree 5 --> 11150 <_> 11151 <!-- root node --> 11152 <feature> 11153 <rects> 11154 <_>9 2 8 6 -1.</_> 11155 <_>13 2 4 3 2.</_> 11156 <_>9 5 4 3 2.</_></rects> 11157 <tilted>0</tilted></feature> 11158 <threshold>-3.2894399482756853e-003</threshold> 11159 <left_val>0.1026419997215271</left_val> 11160 <right_val>-0.0947112515568733</right_val></_></_> 11161 <_> 11162 <!-- tree 6 --> 11163 <_> 11164 <!-- root node --> 11165 <feature> 11166 <rects> 11167 <_>0 5 22 5 -1.</_> 11168 <_>11 5 11 5 2.</_></rects> 11169 <tilted>0</tilted></feature> 11170 <threshold>0.1824229061603546</threshold> 11171 <left_val>0.0256266705691814</left_val> 11172 <right_val>-0.6876572966575623</right_val></_></_> 11173 <_> 11174 <!-- tree 7 --> 11175 <_> 11176 <!-- root node --> 11177 <feature> 11178 <rects> 11179 <_>2 0 18 18 -1.</_> 11180 <_>2 9 18 9 2.</_></rects> 11181 <tilted>0</tilted></feature> 11182 <threshold>-0.0787410810589790</threshold> 11183 <left_val>0.1081041991710663</left_val> 11184 <right_val>-0.1449752002954483</right_val></_></_> 11185 <_> 11186 <!-- tree 8 --> 11187 <_> 11188 <!-- root node --> 11189 <feature> 11190 <rects> 11191 <_>6 7 3 8 -1.</_> 11192 <_>6 11 3 4 2.</_></rects> 11193 <tilted>0</tilted></feature> 11194 <threshold>0.0139451297000051</threshold> 11195 <left_val>-0.0713719129562378</left_val> 11196 <right_val>0.3131574988365173</right_val></_></_> 11197 <_> 11198 <!-- tree 9 --> 11199 <_> 11200 <!-- root node --> 11201 <feature> 11202 <rects> 11203 <_>11 12 8 6 -1.</_> 11204 <_>13 12 4 6 2.</_></rects> 11205 <tilted>0</tilted></feature> 11206 <threshold>0.0446802787482738</threshold> 11207 <left_val>-0.0304461494088173</left_val> 11208 <right_val>0.3926362991333008</right_val></_></_> 11209 <_> 11210 <!-- tree 10 --> 11211 <_> 11212 <!-- root node --> 11213 <feature> 11214 <rects> 11215 <_>3 8 6 8 -1.</_> 11216 <_>3 8 3 4 2.</_> 11217 <_>6 12 3 4 2.</_></rects> 11218 <tilted>0</tilted></feature> 11219 <threshold>-2.6441770605742931e-003</threshold> 11220 <left_val>0.1159669980406761</left_val> 11221 <right_val>-0.1780045032501221</right_val></_></_> 11222 <_> 11223 <!-- tree 11 --> 11224 <_> 11225 <!-- root node --> 11226 <feature> 11227 <rects> 11228 <_>11 6 7 4 -1.</_> 11229 <_>11 8 7 2 2.</_></rects> 11230 <tilted>0</tilted></feature> 11231 <threshold>-5.1071979105472565e-003</threshold> 11232 <left_val>-0.1173994019627571</left_val> 11233 <right_val>0.0678234472870827</right_val></_></_> 11234 <_> 11235 <!-- tree 12 --> 11236 <_> 11237 <!-- root node --> 11238 <feature> 11239 <rects> 11240 <_>9 2 4 6 -1.</_> 11241 <_>11 2 2 6 2.</_></rects> 11242 <tilted>0</tilted></feature> 11243 <threshold>-0.0325821787118912</threshold> 11244 <left_val>-0.5912901759147644</left_val> 11245 <right_val>0.0333520211279392</right_val></_></_> 11246 <_> 11247 <!-- tree 13 --> 11248 <_> 11249 <!-- root node --> 11250 <feature> 11251 <rects> 11252 <_>3 14 16 4 -1.</_> 11253 <_>11 14 8 2 2.</_> 11254 <_>3 16 8 2 2.</_></rects> 11255 <tilted>0</tilted></feature> 11256 <threshold>-0.0277558397501707</threshold> 11257 <left_val>-0.7064936161041260</left_val> 11258 <right_val>0.0167614892125130</right_val></_></_> 11259 <_> 11260 <!-- tree 14 --> 11261 <_> 11262 <!-- root node --> 11263 <feature> 11264 <rects> 11265 <_>5 14 6 4 -1.</_> 11266 <_>5 16 6 2 2.</_></rects> 11267 <tilted>0</tilted></feature> 11268 <threshold>-6.0038521041860804e-005</threshold> 11269 <left_val>0.0738326683640480</left_val> 11270 <right_val>-0.2293335944414139</right_val></_></_> 11271 <_> 11272 <!-- tree 15 --> 11273 <_> 11274 <!-- root node --> 11275 <feature> 11276 <rects> 11277 <_>9 5 4 6 -1.</_> 11278 <_>9 5 2 6 2.</_></rects> 11279 <tilted>0</tilted></feature> 11280 <threshold>0.0305061805993319</threshold> 11281 <left_val>-0.0380560606718063</left_val> 11282 <right_val>0.4411535859107971</right_val></_></_> 11283 <_> 11284 <!-- tree 16 --> 11285 <_> 11286 <!-- root node --> 11287 <feature> 11288 <rects> 11289 <_>5 12 12 6 -1.</_> 11290 <_>8 12 6 6 2.</_></rects> 11291 <tilted>0</tilted></feature> 11292 <threshold>-6.2056961469352245e-003</threshold> 11293 <left_val>-0.1775723993778229</left_val> 11294 <right_val>0.0937074720859528</right_val></_></_> 11295 <_> 11296 <!-- tree 17 --> 11297 <_> 11298 <!-- root node --> 11299 <feature> 11300 <rects> 11301 <_>7 14 8 4 -1.</_> 11302 <_>7 16 8 2 2.</_></rects> 11303 <tilted>0</tilted></feature> 11304 <threshold>-8.0766230821609497e-003</threshold> 11305 <left_val>-0.2025669962167740</left_val> 11306 <right_val>0.0740596428513527</right_val></_></_> 11307 <_> 11308 <!-- tree 18 --> 11309 <_> 11310 <!-- root node --> 11311 <feature> 11312 <rects> 11313 <_>1 3 18 3 -1.</_> 11314 <_>1 4 18 1 3.</_></rects> 11315 <tilted>0</tilted></feature> 11316 <threshold>-0.0332099087536335</threshold> 11317 <left_val>0.4637222886085510</left_val> 11318 <right_val>-0.0349030084908009</right_val></_></_> 11319 <_> 11320 <!-- tree 19 --> 11321 <_> 11322 <!-- root node --> 11323 <feature> 11324 <rects> 11325 <_>8 3 14 3 -1.</_> 11326 <_>8 4 14 1 3.</_></rects> 11327 <tilted>0</tilted></feature> 11328 <threshold>0.0355306081473827</threshold> 11329 <left_val>-0.0316795185208321</left_val> 11330 <right_val>0.4520249962806702</right_val></_></_> 11331 <_> 11332 <!-- tree 20 --> 11333 <_> 11334 <!-- root node --> 11335 <feature> 11336 <rects> 11337 <_>1 0 14 4 -1.</_> 11338 <_>1 0 7 2 2.</_> 11339 <_>8 2 7 2 2.</_></rects> 11340 <tilted>0</tilted></feature> 11341 <threshold>0.0162976402789354</threshold> 11342 <left_val>0.0441890396177769</left_val> 11343 <right_val>-0.3484537005424500</right_val></_></_> 11344 <_> 11345 <!-- tree 21 --> 11346 <_> 11347 <!-- root node --> 11348 <feature> 11349 <rects> 11350 <_>10 10 12 3 -1.</_> 11351 <_>10 11 12 1 3.</_></rects> 11352 <tilted>0</tilted></feature> 11353 <threshold>9.9985357373952866e-003</threshold> 11354 <left_val>-0.0482553206384182</left_val> 11355 <right_val>0.1607805043458939</right_val></_></_> 11356 <_> 11357 <!-- tree 22 --> 11358 <_> 11359 <!-- root node --> 11360 <feature> 11361 <rects> 11362 <_>1 10 12 3 -1.</_> 11363 <_>1 11 12 1 3.</_></rects> 11364 <tilted>0</tilted></feature> 11365 <threshold>-5.2390778437256813e-003</threshold> 11366 <left_val>0.2323659956455231</left_val> 11367 <right_val>-0.0760327428579330</right_val></_></_> 11368 <_> 11369 <!-- tree 23 --> 11370 <_> 11371 <!-- root node --> 11372 <feature> 11373 <rects> 11374 <_>10 7 8 3 -1.</_> 11375 <_>10 7 4 3 2.</_></rects> 11376 <tilted>0</tilted></feature> 11377 <threshold>-3.2508899457752705e-003</threshold> 11378 <left_val>0.0543693900108337</left_val> 11379 <right_val>-0.0910402536392212</right_val></_></_> 11380 <_> 11381 <!-- tree 24 --> 11382 <_> 11383 <!-- root node --> 11384 <feature> 11385 <rects> 11386 <_>11 0 6 6 -1.</_> 11387 <_>9 2 6 2 3.</_></rects> 11388 <tilted>1</tilted></feature> 11389 <threshold>0.0556407906115055</threshold> 11390 <left_val>-0.0388111285865307</left_val> 11391 <right_val>0.4203402101993561</right_val></_></_> 11392 <_> 11393 <!-- tree 25 --> 11394 <_> 11395 <!-- root node --> 11396 <feature> 11397 <rects> 11398 <_>17 0 2 10 -1.</_> 11399 <_>17 0 1 10 2.</_></rects> 11400 <tilted>1</tilted></feature> 11401 <threshold>0.0339989811182022</threshold> 11402 <left_val>0.0222513303160667</left_val> 11403 <right_val>-0.3561536073684692</right_val></_></_> 11404 <_> 11405 <!-- tree 26 --> 11406 <_> 11407 <!-- root node --> 11408 <feature> 11409 <rects> 11410 <_>4 7 8 3 -1.</_> 11411 <_>8 7 4 3 2.</_></rects> 11412 <tilted>0</tilted></feature> 11413 <threshold>-4.3103890493512154e-003</threshold> 11414 <left_val>0.1128742992877960</left_val> 11415 <right_val>-0.1763073056936264</right_val></_></_> 11416 <_> 11417 <!-- tree 27 --> 11418 <_> 11419 <!-- root node --> 11420 <feature> 11421 <rects> 11422 <_>13 0 8 6 -1.</_> 11423 <_>13 2 8 2 3.</_></rects> 11424 <tilted>0</tilted></feature> 11425 <threshold>-7.9246461391448975e-003</threshold> 11426 <left_val>-0.1099233999848366</left_val> 11427 <right_val>0.0350996293127537</right_val></_></_> 11428 <_> 11429 <!-- tree 28 --> 11430 <_> 11431 <!-- root node --> 11432 <feature> 11433 <rects> 11434 <_>1 0 8 6 -1.</_> 11435 <_>1 2 8 2 3.</_></rects> 11436 <tilted>0</tilted></feature> 11437 <threshold>0.0442733801901340</threshold> 11438 <left_val>0.0280945692211390</left_val> 11439 <right_val>-0.6092141866683960</right_val></_></_> 11440 <_> 11441 <!-- tree 29 --> 11442 <_> 11443 <!-- root node --> 11444 <feature> 11445 <rects> 11446 <_>17 0 2 10 -1.</_> 11447 <_>17 0 1 10 2.</_></rects> 11448 <tilted>1</tilted></feature> 11449 <threshold>0.0599073283374310</threshold> 11450 <left_val>9.7544339951127768e-004</left_val> 11451 <right_val>-0.9052320718765259</right_val></_></_> 11452 <_> 11453 <!-- tree 30 --> 11454 <_> 11455 <!-- root node --> 11456 <feature> 11457 <rects> 11458 <_>5 0 10 2 -1.</_> 11459 <_>5 0 10 1 2.</_></rects> 11460 <tilted>1</tilted></feature> 11461 <threshold>0.0333788692951202</threshold> 11462 <left_val>0.0177232790738344</left_val> 11463 <right_val>-0.8525460958480835</right_val></_></_> 11464 <_> 11465 <!-- tree 31 --> 11466 <_> 11467 <!-- root node --> 11468 <feature> 11469 <rects> 11470 <_>10 6 6 4 -1.</_> 11471 <_>10 6 3 4 2.</_></rects> 11472 <tilted>0</tilted></feature> 11473 <threshold>0.0146941700950265</threshold> 11474 <left_val>-0.0490315109491348</left_val> 11475 <right_val>0.2799833118915558</right_val></_></_> 11476 <_> 11477 <!-- tree 32 --> 11478 <_> 11479 <!-- root node --> 11480 <feature> 11481 <rects> 11482 <_>0 4 14 3 -1.</_> 11483 <_>0 5 14 1 3.</_></rects> 11484 <tilted>0</tilted></feature> 11485 <threshold>-5.3877499885857105e-003</threshold> 11486 <left_val>0.1821904927492142</left_val> 11487 <right_val>-0.0823825225234032</right_val></_></_> 11488 <_> 11489 <!-- tree 33 --> 11490 <_> 11491 <!-- root node --> 11492 <feature> 11493 <rects> 11494 <_>3 3 16 10 -1.</_> 11495 <_>11 3 8 5 2.</_> 11496 <_>3 8 8 5 2.</_></rects> 11497 <tilted>0</tilted></feature> 11498 <threshold>-0.0179768893867731</threshold> 11499 <left_val>-0.1938468962907791</left_val> 11500 <right_val>0.0849847570061684</right_val></_></_> 11501 <_> 11502 <!-- tree 34 --> 11503 <_> 11504 <!-- root node --> 11505 <feature> 11506 <rects> 11507 <_>1 5 12 3 -1.</_> 11508 <_>1 6 12 1 3.</_></rects> 11509 <tilted>0</tilted></feature> 11510 <threshold>-4.4651641510426998e-003</threshold> 11511 <left_val>0.1763291060924530</left_val> 11512 <right_val>-0.0950757712125778</right_val></_></_> 11513 <_> 11514 <!-- tree 35 --> 11515 <_> 11516 <!-- root node --> 11517 <feature> 11518 <rects> 11519 <_>9 6 13 4 -1.</_> 11520 <_>9 8 13 2 2.</_></rects> 11521 <tilted>0</tilted></feature> 11522 <threshold>0.0693722963333130</threshold> 11523 <left_val>3.1770321074873209e-003</left_val> 11524 <right_val>-0.6755440235137940</right_val></_></_> 11525 <_> 11526 <!-- tree 36 --> 11527 <_> 11528 <!-- root node --> 11529 <feature> 11530 <rects> 11531 <_>7 5 8 6 -1.</_> 11532 <_>7 5 4 3 2.</_> 11533 <_>11 8 4 3 2.</_></rects> 11534 <tilted>0</tilted></feature> 11535 <threshold>-0.0170022696256638</threshold> 11536 <left_val>-0.3382794857025147</left_val> 11537 <right_val>0.0447317287325859</right_val></_></_> 11538 <_> 11539 <!-- tree 37 --> 11540 <_> 11541 <!-- root node --> 11542 <feature> 11543 <rects> 11544 <_>13 3 4 11 -1.</_> 11545 <_>14 4 2 11 2.</_></rects> 11546 <tilted>1</tilted></feature> 11547 <threshold>0.0172742400318384</threshold> 11548 <left_val>-0.0247697103768587</left_val> 11549 <right_val>0.1185202971100807</right_val></_></_> 11550 <_> 11551 <!-- tree 38 --> 11552 <_> 11553 <!-- root node --> 11554 <feature> 11555 <rects> 11556 <_>9 2 11 2 -1.</_> 11557 <_>9 2 11 1 2.</_></rects> 11558 <tilted>1</tilted></feature> 11559 <threshold>0.0403887294232845</threshold> 11560 <left_val>-0.0329676792025566</left_val> 11561 <right_val>0.4732314050197601</right_val></_></_> 11562 <_> 11563 <!-- tree 39 --> 11564 <_> 11565 <!-- root node --> 11566 <feature> 11567 <rects> 11568 <_>5 13 12 4 -1.</_> 11569 <_>5 14 12 2 2.</_></rects> 11570 <tilted>0</tilted></feature> 11571 <threshold>0.0142154004424810</threshold> 11572 <left_val>0.0298468600958586</left_val> 11573 <right_val>-0.4415706098079681</right_val></_></_> 11574 <_> 11575 <!-- tree 40 --> 11576 <_> 11577 <!-- root node --> 11578 <feature> 11579 <rects> 11580 <_>0 9 16 4 -1.</_> 11581 <_>0 9 8 2 2.</_> 11582 <_>8 11 8 2 2.</_></rects> 11583 <tilted>0</tilted></feature> 11584 <threshold>0.0416277199983597</threshold> 11585 <left_val>-0.0459539182484150</left_val> 11586 <right_val>0.3297838866710663</right_val></_></_> 11587 <_> 11588 <!-- tree 41 --> 11589 <_> 11590 <!-- root node --> 11591 <feature> 11592 <rects> 11593 <_>7 10 9 7 -1.</_> 11594 <_>10 10 3 7 3.</_></rects> 11595 <tilted>0</tilted></feature> 11596 <threshold>-1.7416840419173241e-003</threshold> 11597 <left_val>0.0872863084077835</left_val> 11598 <right_val>-0.0888622030615807</right_val></_></_> 11599 <_> 11600 <!-- tree 42 --> 11601 <_> 11602 <!-- root node --> 11603 <feature> 11604 <rects> 11605 <_>10 7 5 6 -1.</_> 11606 <_>10 7 5 3 2.</_></rects> 11607 <tilted>1</tilted></feature> 11608 <threshold>-9.8077040165662766e-003</threshold> 11609 <left_val>-0.2102667987346649</left_val> 11610 <right_val>0.0774018764495850</right_val></_></_> 11611 <_> 11612 <!-- tree 43 --> 11613 <_> 11614 <!-- root node --> 11615 <feature> 11616 <rects> 11617 <_>11 5 10 3 -1.</_> 11618 <_>11 5 5 3 2.</_></rects> 11619 <tilted>1</tilted></feature> 11620 <threshold>0.0218366496264935</threshold> 11621 <left_val>0.0432117693126202</left_val> 11622 <right_val>-0.1533042043447495</right_val></_></_> 11623 <_> 11624 <!-- tree 44 --> 11625 <_> 11626 <!-- root node --> 11627 <feature> 11628 <rects> 11629 <_>2 13 12 5 -1.</_> 11630 <_>5 13 6 5 2.</_></rects> 11631 <tilted>0</tilted></feature> 11632 <threshold>-0.0707430988550186</threshold> 11633 <left_val>0.3301903903484345</left_val> 11634 <right_val>-0.0527479499578476</right_val></_></_> 11635 <_> 11636 <!-- tree 45 --> 11637 <_> 11638 <!-- root node --> 11639 <feature> 11640 <rects> 11641 <_>17 9 4 7 -1.</_> 11642 <_>17 9 2 7 2.</_></rects> 11643 <tilted>0</tilted></feature> 11644 <threshold>-0.0111810201779008</threshold> 11645 <left_val>-0.1149393990635872</left_val> 11646 <right_val>0.0278584603220224</right_val></_></_> 11647 <_> 11648 <!-- tree 46 --> 11649 <_> 11650 <!-- root node --> 11651 <feature> 11652 <rects> 11653 <_>0 6 12 3 -1.</_> 11654 <_>0 7 12 1 3.</_></rects> 11655 <tilted>0</tilted></feature> 11656 <threshold>-0.0146235600113869</threshold> 11657 <left_val>0.3232707083225250</left_val> 11658 <right_val>-0.0441660583019257</right_val></_></_> 11659 <_> 11660 <!-- tree 47 --> 11661 <_> 11662 <!-- root node --> 11663 <feature> 11664 <rects> 11665 <_>18 6 2 10 -1.</_> 11666 <_>18 6 1 10 2.</_></rects> 11667 <tilted>1</tilted></feature> 11668 <threshold>-9.6702557057142258e-003</threshold> 11669 <left_val>-0.1815731972455978</left_val> 11670 <right_val>0.0361545309424400</right_val></_></_> 11671 <_> 11672 <!-- tree 48 --> 11673 <_> 11674 <!-- root node --> 11675 <feature> 11676 <rects> 11677 <_>1 14 8 3 -1.</_> 11678 <_>5 14 4 3 2.</_></rects> 11679 <tilted>0</tilted></feature> 11680 <threshold>8.3439601585268974e-003</threshold> 11681 <left_val>-0.0524739101529121</left_val> 11682 <right_val>0.2744483947753906</right_val></_></_> 11683 <_> 11684 <!-- tree 49 --> 11685 <_> 11686 <!-- root node --> 11687 <feature> 11688 <rects> 11689 <_>6 11 12 3 -1.</_> 11690 <_>10 11 4 3 3.</_></rects> 11691 <tilted>0</tilted></feature> 11692 <threshold>0.0229705590754747</threshold> 11693 <left_val>0.0349300503730774</left_val> 11694 <right_val>-0.1577367037534714</right_val></_></_> 11695 <_> 11696 <!-- tree 50 --> 11697 <_> 11698 <!-- root node --> 11699 <feature> 11700 <rects> 11701 <_>0 14 8 3 -1.</_> 11702 <_>4 14 4 3 2.</_></rects> 11703 <tilted>0</tilted></feature> 11704 <threshold>-8.2734245806932449e-003</threshold> 11705 <left_val>0.1161279007792473</left_val> 11706 <right_val>-0.1196577027440071</right_val></_></_> 11707 <_> 11708 <!-- tree 51 --> 11709 <_> 11710 <!-- root node --> 11711 <feature> 11712 <rects> 11713 <_>5 11 16 3 -1.</_> 11714 <_>9 11 8 3 2.</_></rects> 11715 <tilted>0</tilted></feature> 11716 <threshold>8.7074404582381248e-003</threshold> 11717 <left_val>-0.0408297888934612</left_val> 11718 <right_val>0.1048133000731468</right_val></_></_> 11719 <_> 11720 <!-- tree 52 --> 11721 <_> 11722 <!-- root node --> 11723 <feature> 11724 <rects> 11725 <_>1 9 4 7 -1.</_> 11726 <_>3 9 2 7 2.</_></rects> 11727 <tilted>0</tilted></feature> 11728 <threshold>-0.0188258197158575</threshold> 11729 <left_val>-0.3879455029964447</left_val> 11730 <right_val>0.0473507009446621</right_val></_></_> 11731 <_> 11732 <!-- tree 53 --> 11733 <_> 11734 <!-- root node --> 11735 <feature> 11736 <rects> 11737 <_>6 12 10 6 -1.</_> 11738 <_>6 14 10 2 3.</_></rects> 11739 <tilted>0</tilted></feature> 11740 <threshold>-7.2092940099537373e-003</threshold> 11741 <left_val>-0.1988696008920670</left_val> 11742 <right_val>0.0759528502821922</right_val></_></_> 11743 <_> 11744 <!-- tree 54 --> 11745 <_> 11746 <!-- root node --> 11747 <feature> 11748 <rects> 11749 <_>0 16 12 2 -1.</_> 11750 <_>0 17 12 1 2.</_></rects> 11751 <tilted>0</tilted></feature> 11752 <threshold>1.6543369565624744e-004</threshold> 11753 <left_val>-0.1067482978105545</left_val> 11754 <right_val>0.1551059931516647</right_val></_></_> 11755 <_> 11756 <!-- tree 55 --> 11757 <_> 11758 <!-- root node --> 11759 <feature> 11760 <rects> 11761 <_>12 5 4 12 -1.</_> 11762 <_>14 5 2 6 2.</_> 11763 <_>12 11 2 6 2.</_></rects> 11764 <tilted>0</tilted></feature> 11765 <threshold>8.9294537901878357e-003</threshold> 11766 <left_val>-0.0670596435666084</left_val> 11767 <right_val>0.0902067869901657</right_val></_></_> 11768 <_> 11769 <!-- tree 56 --> 11770 <_> 11771 <!-- root node --> 11772 <feature> 11773 <rects> 11774 <_>6 11 6 6 -1.</_> 11775 <_>8 11 2 6 3.</_></rects> 11776 <tilted>0</tilted></feature> 11777 <threshold>3.1991640571504831e-003</threshold> 11778 <left_val>0.0744457468390465</left_val> 11779 <right_val>-0.1968283951282501</right_val></_></_> 11780 <_> 11781 <!-- tree 57 --> 11782 <_> 11783 <!-- root node --> 11784 <feature> 11785 <rects> 11786 <_>4 16 15 2 -1.</_> 11787 <_>4 17 15 1 2.</_></rects> 11788 <tilted>0</tilted></feature> 11789 <threshold>-1.1280879698460922e-004</threshold> 11790 <left_val>0.0797033905982971</left_val> 11791 <right_val>-0.1366118937730789</right_val></_></_> 11792 <_> 11793 <!-- tree 58 --> 11794 <_> 11795 <!-- root node --> 11796 <feature> 11797 <rects> 11798 <_>5 0 12 9 -1.</_> 11799 <_>9 3 4 3 9.</_></rects> 11800 <tilted>0</tilted></feature> 11801 <threshold>-0.0696137994527817</threshold> 11802 <left_val>-0.2101052999496460</left_val> 11803 <right_val>0.0657716169953346</right_val></_></_> 11804 <_> 11805 <!-- tree 59 --> 11806 <_> 11807 <!-- root node --> 11808 <feature> 11809 <rects> 11810 <_>8 0 6 9 -1.</_> 11811 <_>8 3 6 3 3.</_></rects> 11812 <tilted>0</tilted></feature> 11813 <threshold>-0.0260666795074940</threshold> 11814 <left_val>0.2869651019573212</left_val> 11815 <right_val>-0.0574957914650440</right_val></_></_> 11816 <_> 11817 <!-- tree 60 --> 11818 <_> 11819 <!-- root node --> 11820 <feature> 11821 <rects> 11822 <_>1 0 3 13 -1.</_> 11823 <_>2 0 1 13 3.</_></rects> 11824 <tilted>0</tilted></feature> 11825 <threshold>0.0120507404208183</threshold> 11826 <left_val>-0.0468205101788044</left_val> 11827 <right_val>0.2799476981163025</right_val></_></_> 11828 <_> 11829 <!-- tree 61 --> 11830 <_> 11831 <!-- root node --> 11832 <feature> 11833 <rects> 11834 <_>10 1 6 4 -1.</_> 11835 <_>10 1 3 4 2.</_></rects> 11836 <tilted>0</tilted></feature> 11837 <threshold>-0.0396258495748043</threshold> 11838 <left_val>-0.3705450892448425</left_val> 11839 <right_val>0.0114761395379901</right_val></_></_> 11840 <_> 11841 <!-- tree 62 --> 11842 <_> 11843 <!-- root node --> 11844 <feature> 11845 <rects> 11846 <_>8 1 6 9 -1.</_> 11847 <_>10 1 2 9 3.</_></rects> 11848 <tilted>0</tilted></feature> 11849 <threshold>-2.7379901148378849e-003</threshold> 11850 <left_val>0.0943711325526237</left_val> 11851 <right_val>-0.1620323061943054</right_val></_></_> 11852 <_> 11853 <!-- tree 63 --> 11854 <_> 11855 <!-- root node --> 11856 <feature> 11857 <rects> 11858 <_>8 3 6 6 -1.</_> 11859 <_>10 3 2 6 3.</_></rects> 11860 <tilted>0</tilted></feature> 11861 <threshold>-0.0652625635266304</threshold> 11862 <left_val>-0.6780838966369629</left_val> 11863 <right_val>0.0194304697215557</right_val></_></_> 11864 <_> 11865 <!-- tree 64 --> 11866 <_> 11867 <!-- root node --> 11868 <feature> 11869 <rects> 11870 <_>3 5 11 2 -1.</_> 11871 <_>3 5 11 1 2.</_></rects> 11872 <tilted>1</tilted></feature> 11873 <threshold>0.0231916196644306</threshold> 11874 <left_val>0.0261343102902174</left_val> 11875 <right_val>-0.4666424989700317</right_val></_></_> 11876 <_> 11877 <!-- tree 65 --> 11878 <_> 11879 <!-- root node --> 11880 <feature> 11881 <rects> 11882 <_>9 5 6 6 -1.</_> 11883 <_>11 5 2 6 3.</_></rects> 11884 <tilted>0</tilted></feature> 11885 <threshold>0.0477419309318066</threshold> 11886 <left_val>-0.0252911895513535</left_val> 11887 <right_val>0.2909249067306519</right_val></_></_> 11888 <_> 11889 <!-- tree 66 --> 11890 <_> 11891 <!-- root node --> 11892 <feature> 11893 <rects> 11894 <_>6 4 6 10 -1.</_> 11895 <_>6 9 6 5 2.</_></rects> 11896 <tilted>0</tilted></feature> 11897 <threshold>-0.1283002048730850</threshold> 11898 <left_val>-0.8718711733818054</left_val> 11899 <right_val>0.0138835404068232</right_val></_></_> 11900 <_> 11901 <!-- tree 67 --> 11902 <_> 11903 <!-- root node --> 11904 <feature> 11905 <rects> 11906 <_>11 2 3 12 -1.</_> 11907 <_>12 2 1 12 3.</_></rects> 11908 <tilted>0</tilted></feature> 11909 <threshold>-0.0426892600953579</threshold> 11910 <left_val>-0.6764482259750366</left_val> 11911 <right_val>6.8771280348300934e-003</right_val></_></_> 11912 <_> 11913 <!-- tree 68 --> 11914 <_> 11915 <!-- root node --> 11916 <feature> 11917 <rects> 11918 <_>8 2 3 12 -1.</_> 11919 <_>9 2 1 12 3.</_></rects> 11920 <tilted>0</tilted></feature> 11921 <threshold>6.2811248935759068e-003</threshold> 11922 <left_val>-0.0648037493228912</left_val> 11923 <right_val>0.2099442034959793</right_val></_></_> 11924 <_> 11925 <!-- tree 69 --> 11926 <_> 11927 <!-- root node --> 11928 <feature> 11929 <rects> 11930 <_>18 9 4 9 -1.</_> 11931 <_>18 9 2 9 2.</_></rects> 11932 <tilted>0</tilted></feature> 11933 <threshold>0.0275320801883936</threshold> 11934 <left_val>0.0153665402904153</left_val> 11935 <right_val>-0.2145736962556839</right_val></_></_> 11936 <_> 11937 <!-- tree 70 --> 11938 <_> 11939 <!-- root node --> 11940 <feature> 11941 <rects> 11942 <_>1 5 6 6 -1.</_> 11943 <_>1 8 6 3 2.</_></rects> 11944 <tilted>0</tilted></feature> 11945 <threshold>-3.4494648571126163e-004</threshold> 11946 <left_val>0.1182949990034103</left_val> 11947 <right_val>-0.1064111962914467</right_val></_></_> 11948 <_> 11949 <!-- tree 71 --> 11950 <_> 11951 <!-- root node --> 11952 <feature> 11953 <rects> 11954 <_>10 6 6 6 -1.</_> 11955 <_>12 6 2 6 3.</_></rects> 11956 <tilted>0</tilted></feature> 11957 <threshold>-0.0321870110929012</threshold> 11958 <left_val>0.2067631930112839</left_val> 11959 <right_val>-0.0278047490864992</right_val></_></_> 11960 <_> 11961 <!-- tree 72 --> 11962 <_> 11963 <!-- root node --> 11964 <feature> 11965 <rects> 11966 <_>10 2 2 12 -1.</_> 11967 <_>11 2 1 12 2.</_></rects> 11968 <tilted>0</tilted></feature> 11969 <threshold>-2.4451729841530323e-003</threshold> 11970 <left_val>-0.1897021979093552</left_val> 11971 <right_val>0.0766128376126289</right_val></_></_> 11972 <_> 11973 <!-- tree 73 --> 11974 <_> 11975 <!-- root node --> 11976 <feature> 11977 <rects> 11978 <_>11 0 5 6 -1.</_> 11979 <_>11 3 5 3 2.</_></rects> 11980 <tilted>0</tilted></feature> 11981 <threshold>0.0396311208605766</threshold> 11982 <left_val>0.0114572802558541</left_val> 11983 <right_val>-0.4411228001117706</right_val></_></_> 11984 <_> 11985 <!-- tree 74 --> 11986 <_> 11987 <!-- root node --> 11988 <feature> 11989 <rects> 11990 <_>6 0 5 6 -1.</_> 11991 <_>6 3 5 3 2.</_></rects> 11992 <tilted>0</tilted></feature> 11993 <threshold>-9.0082110837101936e-003</threshold> 11994 <left_val>-0.2032909989356995</left_val> 11995 <right_val>0.0719978883862495</right_val></_></_> 11996 <_> 11997 <!-- tree 75 --> 11998 <_> 11999 <!-- root node --> 12000 <feature> 12001 <rects> 12002 <_>13 9 5 8 -1.</_> 12003 <_>13 13 5 4 2.</_></rects> 12004 <tilted>0</tilted></feature> 12005 <threshold>-0.0605949088931084</threshold> 12006 <left_val>0.2583183050155640</left_val> 12007 <right_val>-0.0322740003466606</right_val></_></_> 12008 <_> 12009 <!-- tree 76 --> 12010 <_> 12011 <!-- root node --> 12012 <feature> 12013 <rects> 12014 <_>0 9 20 2 -1.</_> 12015 <_>10 9 10 2 2.</_></rects> 12016 <tilted>0</tilted></feature> 12017 <threshold>0.0336786396801472</threshold> 12018 <left_val>0.0365656390786171</left_val> 12019 <right_val>-0.3323315083980560</right_val></_></_> 12020 <_> 12021 <!-- tree 77 --> 12022 <_> 12023 <!-- root node --> 12024 <feature> 12025 <rects> 12026 <_>14 7 3 10 -1.</_> 12027 <_>14 12 3 5 2.</_></rects> 12028 <tilted>0</tilted></feature> 12029 <threshold>0.0145654100924730</threshold> 12030 <left_val>-0.0492692105472088</left_val> 12031 <right_val>0.1828067004680634</right_val></_></_> 12032 <_> 12033 <!-- tree 78 --> 12034 <_> 12035 <!-- root node --> 12036 <feature> 12037 <rects> 12038 <_>11 5 11 2 -1.</_> 12039 <_>11 5 11 1 2.</_></rects> 12040 <tilted>1</tilted></feature> 12041 <threshold>4.0103439241647720e-003</threshold> 12042 <left_val>-0.1243560016155243</left_val> 12043 <right_val>0.1124764010310173</right_val></_></_> 12044 <_> 12045 <!-- tree 79 --> 12046 <_> 12047 <!-- root node --> 12048 <feature> 12049 <rects> 12050 <_>14 7 3 10 -1.</_> 12051 <_>14 12 3 5 2.</_></rects> 12052 <tilted>0</tilted></feature> 12053 <threshold>1.7989509506151080e-003</threshold> 12054 <left_val>-0.0546759888529778</left_val> 12055 <right_val>0.1070184037089348</right_val></_></_> 12056 <_> 12057 <!-- tree 80 --> 12058 <_> 12059 <!-- root node --> 12060 <feature> 12061 <rects> 12062 <_>5 13 12 2 -1.</_> 12063 <_>5 14 12 1 2.</_></rects> 12064 <tilted>0</tilted></feature> 12065 <threshold>-1.6359580331481993e-004</threshold> 12066 <left_val>0.0817552283406258</left_val> 12067 <right_val>-0.1623550057411194</right_val></_></_> 12068 <_> 12069 <!-- tree 81 --> 12070 <_> 12071 <!-- root node --> 12072 <feature> 12073 <rects> 12074 <_>11 8 4 9 -1.</_> 12075 <_>11 11 4 3 3.</_></rects> 12076 <tilted>0</tilted></feature> 12077 <threshold>-0.0319938994944096</threshold> 12078 <left_val>0.1863123029470444</left_val> 12079 <right_val>-0.0173506308346987</right_val></_></_> 12080 <_> 12081 <!-- tree 82 --> 12082 <_> 12083 <!-- root node --> 12084 <feature> 12085 <rects> 12086 <_>1 8 12 6 -1.</_> 12087 <_>1 10 12 2 3.</_></rects> 12088 <tilted>0</tilted></feature> 12089 <threshold>-0.0817376673221588</threshold> 12090 <left_val>-0.7596148252487183</left_val> 12091 <right_val>0.0144199002534151</right_val></_></_> 12092 <_> 12093 <!-- tree 83 --> 12094 <_> 12095 <!-- root node --> 12096 <feature> 12097 <rects> 12098 <_>16 8 3 8 -1.</_> 12099 <_>16 12 3 4 2.</_></rects> 12100 <tilted>0</tilted></feature> 12101 <threshold>-0.0882625505328178</threshold> 12102 <left_val>-1.</left_val> 12103 <right_val>5.3146481513977051e-004</right_val></_></_> 12104 <_> 12105 <!-- tree 84 --> 12106 <_> 12107 <!-- root node --> 12108 <feature> 12109 <rects> 12110 <_>3 8 3 8 -1.</_> 12111 <_>3 12 3 4 2.</_></rects> 12112 <tilted>0</tilted></feature> 12113 <threshold>-0.0579979009926319</threshold> 12114 <left_val>-0.8939151167869568</left_val> 12115 <right_val>0.0124950995668769</right_val></_></_> 12116 <_> 12117 <!-- tree 85 --> 12118 <_> 12119 <!-- root node --> 12120 <feature> 12121 <rects> 12122 <_>11 8 4 9 -1.</_> 12123 <_>11 11 4 3 3.</_></rects> 12124 <tilted>0</tilted></feature> 12125 <threshold>0.0206914097070694</threshold> 12126 <left_val>-0.0371675081551075</left_val> 12127 <right_val>0.0972085520625114</right_val></_></_> 12128 <_> 12129 <!-- tree 86 --> 12130 <_> 12131 <!-- root node --> 12132 <feature> 12133 <rects> 12134 <_>7 8 4 9 -1.</_> 12135 <_>7 11 4 3 3.</_></rects> 12136 <tilted>0</tilted></feature> 12137 <threshold>-6.0336058959364891e-003</threshold> 12138 <left_val>0.1754779070615768</left_val> 12139 <right_val>-0.0869168564677238</right_val></_></_> 12140 <_> 12141 <!-- tree 87 --> 12142 <_> 12143 <!-- root node --> 12144 <feature> 12145 <rects> 12146 <_>7 3 15 12 -1.</_> 12147 <_>12 7 5 4 9.</_></rects> 12148 <tilted>0</tilted></feature> 12149 <threshold>0.1578976064920425</threshold> 12150 <left_val>0.0306049603968859</left_val> 12151 <right_val>-0.2219929993152618</right_val></_></_> 12152 <_> 12153 <!-- tree 88 --> 12154 <_> 12155 <!-- root node --> 12156 <feature> 12157 <rects> 12158 <_>4 10 14 4 -1.</_> 12159 <_>4 10 7 2 2.</_> 12160 <_>11 12 7 2 2.</_></rects> 12161 <tilted>0</tilted></feature> 12162 <threshold>3.3271119464188814e-003</threshold> 12163 <left_val>0.1120152026414871</left_val> 12164 <right_val>-0.1638471037149429</right_val></_></_> 12165 <_> 12166 <!-- tree 89 --> 12167 <_> 12168 <!-- root node --> 12169 <feature> 12170 <rects> 12171 <_>9 10 10 6 -1.</_> 12172 <_>14 10 5 3 2.</_> 12173 <_>9 13 5 3 2.</_></rects> 12174 <tilted>0</tilted></feature> 12175 <threshold>0.1138323992490768</threshold> 12176 <left_val>1.8078039865940809e-003</left_val> 12177 <right_val>-0.9998143911361694</right_val></_></_> 12178 <_> 12179 <!-- tree 90 --> 12180 <_> 12181 <!-- root node --> 12182 <feature> 12183 <rects> 12184 <_>3 10 10 6 -1.</_> 12185 <_>3 10 5 3 2.</_> 12186 <_>8 13 5 3 2.</_></rects> 12187 <tilted>0</tilted></feature> 12188 <threshold>0.0391889698803425</threshold> 12189 <left_val>-0.0394944287836552</left_val> 12190 <right_val>0.3413948118686676</right_val></_></_> 12191 <_> 12192 <!-- tree 91 --> 12193 <_> 12194 <!-- root node --> 12195 <feature> 12196 <rects> 12197 <_>16 7 6 6 -1.</_> 12198 <_>18 7 2 6 3.</_></rects> 12199 <tilted>0</tilted></feature> 12200 <threshold>-4.7382968477904797e-003</threshold> 12201 <left_val>-0.0816014036536217</left_val> 12202 <right_val>0.0354984514415264</right_val></_></_> 12203 <_> 12204 <!-- tree 92 --> 12205 <_> 12206 <!-- root node --> 12207 <feature> 12208 <rects> 12209 <_>3 5 14 2 -1.</_> 12210 <_>10 5 7 2 2.</_></rects> 12211 <tilted>0</tilted></feature> 12212 <threshold>0.0234581604599953</threshold> 12213 <left_val>-0.0407674796879292</left_val> 12214 <right_val>0.3479276895523071</right_val></_></_> 12215 <_> 12216 <!-- tree 93 --> 12217 <_> 12218 <!-- root node --> 12219 <feature> 12220 <rects> 12221 <_>18 2 4 12 -1.</_> 12222 <_>20 2 2 6 2.</_> 12223 <_>18 8 2 6 2.</_></rects> 12224 <tilted>0</tilted></feature> 12225 <threshold>0.0165052209049463</threshold> 12226 <left_val>0.0201702807098627</left_val> 12227 <right_val>-0.1553200930356979</right_val></_></_> 12228 <_> 12229 <!-- tree 94 --> 12230 <_> 12231 <!-- root node --> 12232 <feature> 12233 <rects> 12234 <_>3 14 12 4 -1.</_> 12235 <_>3 15 12 2 2.</_></rects> 12236 <tilted>0</tilted></feature> 12237 <threshold>0.0202629491686821</threshold> 12238 <left_val>0.0212923791259527</left_val> 12239 <right_val>-0.6261150240898132</right_val></_></_> 12240 <_> 12241 <!-- tree 95 --> 12242 <_> 12243 <!-- root node --> 12244 <feature> 12245 <rects> 12246 <_>7 6 9 6 -1.</_> 12247 <_>7 9 9 3 2.</_></rects> 12248 <tilted>0</tilted></feature> 12249 <threshold>-9.1393236070871353e-003</threshold> 12250 <left_val>-0.1363748013973236</left_val> 12251 <right_val>0.0638918429613113</right_val></_></_> 12252 <_> 12253 <!-- tree 96 --> 12254 <_> 12255 <!-- root node --> 12256 <feature> 12257 <rects> 12258 <_>1 14 6 4 -1.</_> 12259 <_>4 14 3 4 2.</_></rects> 12260 <tilted>0</tilted></feature> 12261 <threshold>-0.0562079809606075</threshold> 12262 <left_val>0.4067111909389496</left_val> 12263 <right_val>-0.0332582183182240</right_val></_></_> 12264 <_> 12265 <!-- tree 97 --> 12266 <_> 12267 <!-- root node --> 12268 <feature> 12269 <rects> 12270 <_>12 5 5 12 -1.</_> 12271 <_>12 8 5 6 2.</_></rects> 12272 <tilted>0</tilted></feature> 12273 <threshold>6.6868839785456657e-003</threshold> 12274 <left_val>0.0641743093729019</left_val> 12275 <right_val>-0.0939662382006645</right_val></_></_> 12276 <_> 12277 <!-- tree 98 --> 12278 <_> 12279 <!-- root node --> 12280 <feature> 12281 <rects> 12282 <_>5 0 3 17 -1.</_> 12283 <_>6 0 1 17 3.</_></rects> 12284 <tilted>0</tilted></feature> 12285 <threshold>5.8862278237938881e-003</threshold> 12286 <left_val>-0.0657899603247643</left_val> 12287 <right_val>0.2018133997917175</right_val></_></_> 12288 <_> 12289 <!-- tree 99 --> 12290 <_> 12291 <!-- root node --> 12292 <feature> 12293 <rects> 12294 <_>16 7 6 6 -1.</_> 12295 <_>18 7 2 6 3.</_></rects> 12296 <tilted>0</tilted></feature> 12297 <threshold>-0.1151738017797470</threshold> 12298 <left_val>-1.</left_val> 12299 <right_val>2.5347759947180748e-003</right_val></_></_> 12300 <_> 12301 <!-- tree 100 --> 12302 <_> 12303 <!-- root node --> 12304 <feature> 12305 <rects> 12306 <_>0 7 6 6 -1.</_> 12307 <_>2 7 2 6 3.</_></rects> 12308 <tilted>0</tilted></feature> 12309 <threshold>5.5793710052967072e-003</threshold> 12310 <left_val>0.0706422030925751</left_val> 12311 <right_val>-0.1963742971420288</right_val></_></_> 12312 <_> 12313 <!-- tree 101 --> 12314 <_> 12315 <!-- root node --> 12316 <feature> 12317 <rects> 12318 <_>14 0 3 18 -1.</_> 12319 <_>15 0 1 18 3.</_></rects> 12320 <tilted>0</tilted></feature> 12321 <threshold>0.0321800000965595</threshold> 12322 <left_val>-0.0147377196699381</left_val> 12323 <right_val>0.2242016047239304</right_val></_></_> 12324 <_> 12325 <!-- tree 102 --> 12326 <_> 12327 <!-- root node --> 12328 <feature> 12329 <rects> 12330 <_>0 5 5 10 -1.</_> 12331 <_>0 10 5 5 2.</_></rects> 12332 <tilted>0</tilted></feature> 12333 <threshold>-9.1598782455548644e-004</threshold> 12334 <left_val>0.1147874966263771</left_val> 12335 <right_val>-0.1176707968115807</right_val></_></_></trees> 12336 <stage_threshold>-0.7688630819320679</stage_threshold> 12337 <parent>16</parent> 12338 <next>-1</next></_> 12339 <_> 12340 <!-- stage 18 --> 12341 <trees> 12342 <_> 12343 <!-- tree 0 --> 12344 <_> 12345 <!-- root node --> 12346 <feature> 12347 <rects> 12348 <_>5 12 12 4 -1.</_> 12349 <_>5 13 12 2 2.</_></rects> 12350 <tilted>0</tilted></feature> 12351 <threshold>9.1346232220530510e-003</threshold> 12352 <left_val>0.0886986628174782</left_val> 12353 <right_val>-0.3859564960002899</right_val></_></_> 12354 <_> 12355 <!-- tree 1 --> 12356 <_> 12357 <!-- root node --> 12358 <feature> 12359 <rects> 12360 <_>7 9 8 6 -1.</_> 12361 <_>7 11 8 2 3.</_></rects> 12362 <tilted>0</tilted></feature> 12363 <threshold>-2.4696369655430317e-003</threshold> 12364 <left_val>0.1677206009626389</left_val> 12365 <right_val>-0.1464917063713074</right_val></_></_> 12366 <_> 12367 <!-- tree 2 --> 12368 <_> 12369 <!-- root node --> 12370 <feature> 12371 <rects> 12372 <_>2 10 15 4 -1.</_> 12373 <_>2 12 15 2 2.</_></rects> 12374 <tilted>0</tilted></feature> 12375 <threshold>0.0589350201189518</threshold> 12376 <left_val>-0.0133940000087023</left_val> 12377 <right_val>0.6183267235755920</right_val></_></_> 12378 <_> 12379 <!-- tree 3 --> 12380 <_> 12381 <!-- root node --> 12382 <feature> 12383 <rects> 12384 <_>5 15 12 3 -1.</_> 12385 <_>5 15 6 3 2.</_></rects> 12386 <tilted>0</tilted></feature> 12387 <threshold>-8.9100059121847153e-003</threshold> 12388 <left_val>-0.2695023119449616</left_val> 12389 <right_val>0.0729398131370544</right_val></_></_> 12390 <_> 12391 <!-- tree 4 --> 12392 <_> 12393 <!-- root node --> 12394 <feature> 12395 <rects> 12396 <_>7 4 3 14 -1.</_> 12397 <_>8 4 1 14 3.</_></rects> 12398 <tilted>0</tilted></feature> 12399 <threshold>0.0177438799291849</threshold> 12400 <left_val>-0.0502171888947487</left_val> 12401 <right_val>0.4316602051258087</right_val></_></_> 12402 <_> 12403 <!-- tree 5 --> 12404 <_> 12405 <!-- root node --> 12406 <feature> 12407 <rects> 12408 <_>7 15 8 3 -1.</_> 12409 <_>7 15 4 3 2.</_></rects> 12410 <tilted>0</tilted></feature> 12411 <threshold>0.0110566504299641</threshold> 12412 <left_val>0.0391558595001698</left_val> 12413 <right_val>-0.5286077260971069</right_val></_></_> 12414 <_> 12415 <!-- tree 6 --> 12416 <_> 12417 <!-- root node --> 12418 <feature> 12419 <rects> 12420 <_>1 2 8 6 -1.</_> 12421 <_>1 2 4 3 2.</_> 12422 <_>5 5 4 3 2.</_></rects> 12423 <tilted>0</tilted></feature> 12424 <threshold>0.0161613207310438</threshold> 12425 <left_val>0.0695810392498970</left_val> 12426 <right_val>-0.3761014044284821</right_val></_></_> 12427 <_> 12428 <!-- tree 7 --> 12429 <_> 12430 <!-- root node --> 12431 <feature> 12432 <rects> 12433 <_>14 9 6 8 -1.</_> 12434 <_>17 9 3 4 2.</_> 12435 <_>14 13 3 4 2.</_></rects> 12436 <tilted>0</tilted></feature> 12437 <threshold>-0.0278790891170502</threshold> 12438 <left_val>0.2322065979242325</left_val> 12439 <right_val>-0.0559795796871185</right_val></_></_> 12440 <_> 12441 <!-- tree 8 --> 12442 <_> 12443 <!-- root node --> 12444 <feature> 12445 <rects> 12446 <_>0 0 6 8 -1.</_> 12447 <_>0 0 3 4 2.</_> 12448 <_>3 4 3 4 2.</_></rects> 12449 <tilted>0</tilted></feature> 12450 <threshold>-0.0115568395704031</threshold> 12451 <left_val>-0.3123108148574829</left_val> 12452 <right_val>0.0743399634957314</right_val></_></_> 12453 <_> 12454 <!-- tree 9 --> 12455 <_> 12456 <!-- root node --> 12457 <feature> 12458 <rects> 12459 <_>14 9 6 8 -1.</_> 12460 <_>17 9 3 4 2.</_> 12461 <_>14 13 3 4 2.</_></rects> 12462 <tilted>0</tilted></feature> 12463 <threshold>-0.0696514770388603</threshold> 12464 <left_val>-0.4190568923950195</left_val> 12465 <right_val>6.9694789126515388e-003</right_val></_></_> 12466 <_> 12467 <!-- tree 10 --> 12468 <_> 12469 <!-- root node --> 12470 <feature> 12471 <rects> 12472 <_>2 9 6 8 -1.</_> 12473 <_>2 9 3 4 2.</_> 12474 <_>5 13 3 4 2.</_></rects> 12475 <tilted>0</tilted></feature> 12476 <threshold>-5.0344727933406830e-003</threshold> 12477 <left_val>0.1318362057209015</left_val> 12478 <right_val>-0.1970203071832657</right_val></_></_> 12479 <_> 12480 <!-- tree 11 --> 12481 <_> 12482 <!-- root node --> 12483 <feature> 12484 <rects> 12485 <_>14 10 6 8 -1.</_> 12486 <_>17 10 3 4 2.</_> 12487 <_>14 14 3 4 2.</_></rects> 12488 <tilted>0</tilted></feature> 12489 <threshold>-0.0860981196165085</threshold> 12490 <left_val>0.6572775244712830</left_val> 12491 <right_val>-9.5664570108056068e-003</right_val></_></_> 12492 <_> 12493 <!-- tree 12 --> 12494 <_> 12495 <!-- root node --> 12496 <feature> 12497 <rects> 12498 <_>2 10 6 8 -1.</_> 12499 <_>2 10 3 4 2.</_> 12500 <_>5 14 3 4 2.</_></rects> 12501 <tilted>0</tilted></feature> 12502 <threshold>0.0255463197827339</threshold> 12503 <left_val>-0.0401363410055637</left_val> 12504 <right_val>0.5484703779220581</right_val></_></_> 12505 <_> 12506 <!-- tree 13 --> 12507 <_> 12508 <!-- root node --> 12509 <feature> 12510 <rects> 12511 <_>13 1 6 8 -1.</_> 12512 <_>16 1 3 4 2.</_> 12513 <_>13 5 3 4 2.</_></rects> 12514 <tilted>0</tilted></feature> 12515 <threshold>-0.0268708802759647</threshold> 12516 <left_val>-0.2530665099620819</left_val> 12517 <right_val>0.0441817194223404</right_val></_></_> 12518 <_> 12519 <!-- tree 14 --> 12520 <_> 12521 <!-- root node --> 12522 <feature> 12523 <rects> 12524 <_>3 3 12 3 -1.</_> 12525 <_>3 4 12 1 3.</_></rects> 12526 <tilted>0</tilted></feature> 12527 <threshold>9.5859682187438011e-003</threshold> 12528 <left_val>-0.0818824619054794</left_val> 12529 <right_val>0.2689467072486877</right_val></_></_> 12530 <_> 12531 <!-- tree 15 --> 12532 <_> 12533 <!-- root node --> 12534 <feature> 12535 <rects> 12536 <_>13 1 6 8 -1.</_> 12537 <_>16 1 3 4 2.</_> 12538 <_>13 5 3 4 2.</_></rects> 12539 <tilted>0</tilted></feature> 12540 <threshold>0.0266838092356920</threshold> 12541 <left_val>0.0265933498740196</left_val> 12542 <right_val>-0.4412704110145569</right_val></_></_> 12543 <_> 12544 <!-- tree 16 --> 12545 <_> 12546 <!-- root node --> 12547 <feature> 12548 <rects> 12549 <_>3 1 6 8 -1.</_> 12550 <_>3 1 3 4 2.</_> 12551 <_>6 5 3 4 2.</_></rects> 12552 <tilted>0</tilted></feature> 12553 <threshold>-0.0144908400252461</threshold> 12554 <left_val>-0.3569746911525726</left_val> 12555 <right_val>0.0700729414820671</right_val></_></_> 12556 <_> 12557 <!-- tree 17 --> 12558 <_> 12559 <!-- root node --> 12560 <feature> 12561 <rects> 12562 <_>3 3 16 3 -1.</_> 12563 <_>3 4 16 1 3.</_></rects> 12564 <tilted>0</tilted></feature> 12565 <threshold>-2.2448399104177952e-003</threshold> 12566 <left_val>0.2008823007345200</left_val> 12567 <right_val>-0.1222817003726959</right_val></_></_> 12568 <_> 12569 <!-- tree 18 --> 12570 <_> 12571 <!-- root node --> 12572 <feature> 12573 <rects> 12574 <_>7 13 6 4 -1.</_> 12575 <_>7 15 6 2 2.</_></rects> 12576 <tilted>0</tilted></feature> 12577 <threshold>4.8795710317790508e-003</threshold> 12578 <left_val>0.0458209812641144</left_val> 12579 <right_val>-0.3949818909168243</right_val></_></_> 12580 <_> 12581 <!-- tree 19 --> 12582 <_> 12583 <!-- root node --> 12584 <feature> 12585 <rects> 12586 <_>10 14 6 4 -1.</_> 12587 <_>10 16 6 2 2.</_></rects> 12588 <tilted>0</tilted></feature> 12589 <threshold>-6.1262990348041058e-003</threshold> 12590 <left_val>-0.1882608979940414</left_val> 12591 <right_val>0.0788120776414871</right_val></_></_> 12592 <_> 12593 <!-- tree 20 --> 12594 <_> 12595 <!-- root node --> 12596 <feature> 12597 <rects> 12598 <_>2 10 15 3 -1.</_> 12599 <_>2 11 15 1 3.</_></rects> 12600 <tilted>0</tilted></feature> 12601 <threshold>0.0169529691338539</threshold> 12602 <left_val>-0.0616842210292816</left_val> 12603 <right_val>0.3360370099544525</right_val></_></_> 12604 <_> 12605 <!-- tree 21 --> 12606 <_> 12607 <!-- root node --> 12608 <feature> 12609 <rects> 12610 <_>8 12 8 6 -1.</_> 12611 <_>10 12 4 6 2.</_></rects> 12612 <tilted>0</tilted></feature> 12613 <threshold>-4.5547191984951496e-003</threshold> 12614 <left_val>-0.1947139054536820</left_val> 12615 <right_val>0.0531471893191338</right_val></_></_> 12616 <_> 12617 <!-- tree 22 --> 12618 <_> 12619 <!-- root node --> 12620 <feature> 12621 <rects> 12622 <_>2 4 13 4 -1.</_> 12623 <_>2 5 13 2 2.</_></rects> 12624 <tilted>0</tilted></feature> 12625 <threshold>-1.2753040064126253e-003</threshold> 12626 <left_val>0.1480087935924530</left_val> 12627 <right_val>-0.1424434930086136</right_val></_></_> 12628 <_> 12629 <!-- tree 23 --> 12630 <_> 12631 <!-- root node --> 12632 <feature> 12633 <rects> 12634 <_>9 9 12 3 -1.</_> 12635 <_>9 10 12 1 3.</_></rects> 12636 <tilted>0</tilted></feature> 12637 <threshold>0.0220602806657553</threshold> 12638 <left_val>-0.0354067385196686</left_val> 12639 <right_val>0.3377530872821808</right_val></_></_> 12640 <_> 12641 <!-- tree 24 --> 12642 <_> 12643 <!-- root node --> 12644 <feature> 12645 <rects> 12646 <_>3 13 16 4 -1.</_> 12647 <_>3 13 8 2 2.</_> 12648 <_>11 15 8 2 2.</_></rects> 12649 <tilted>0</tilted></feature> 12650 <threshold>0.0210503898561001</threshold> 12651 <left_val>0.0422891303896904</left_val> 12652 <right_val>-0.4588645100593567</right_val></_></_> 12653 <_> 12654 <!-- tree 25 --> 12655 <_> 12656 <!-- root node --> 12657 <feature> 12658 <rects> 12659 <_>8 12 8 6 -1.</_> 12660 <_>10 12 4 6 2.</_></rects> 12661 <tilted>0</tilted></feature> 12662 <threshold>0.0956372097134590</threshold> 12663 <left_val>-0.0131716495379806</left_val> 12664 <right_val>0.5553498268127441</right_val></_></_> 12665 <_> 12666 <!-- tree 26 --> 12667 <_> 12668 <!-- root node --> 12669 <feature> 12670 <rects> 12671 <_>6 12 8 6 -1.</_> 12672 <_>8 12 4 6 2.</_></rects> 12673 <tilted>0</tilted></feature> 12674 <threshold>-3.6728319246321917e-003</threshold> 12675 <left_val>-0.1884289979934692</left_val> 12676 <right_val>0.0954581424593925</right_val></_></_> 12677 <_> 12678 <!-- tree 27 --> 12679 <_> 12680 <!-- root node --> 12681 <feature> 12682 <rects> 12683 <_>9 4 13 2 -1.</_> 12684 <_>9 5 13 1 2.</_></rects> 12685 <tilted>0</tilted></feature> 12686 <threshold>1.6345079347956926e-004</threshold> 12687 <left_val>-0.0604448094964027</left_val> 12688 <right_val>0.1053673028945923</right_val></_></_> 12689 <_> 12690 <!-- tree 28 --> 12691 <_> 12692 <!-- root node --> 12693 <feature> 12694 <rects> 12695 <_>7 3 8 12 -1.</_> 12696 <_>7 9 8 6 2.</_></rects> 12697 <tilted>0</tilted></feature> 12698 <threshold>0.2533828914165497</threshold> 12699 <left_val>0.0160262603312731</left_val> 12700 <right_val>-0.9999446868896484</right_val></_></_> 12701 <_> 12702 <!-- tree 29 --> 12703 <_> 12704 <!-- root node --> 12705 <feature> 12706 <rects> 12707 <_>3 6 17 3 -1.</_> 12708 <_>3 7 17 1 3.</_></rects> 12709 <tilted>0</tilted></feature> 12710 <threshold>-0.0461133308708668</threshold> 12711 <left_val>0.5424798727035523</left_val> 12712 <right_val>-0.0278902091085911</right_val></_></_> 12713 <_> 12714 <!-- tree 30 --> 12715 <_> 12716 <!-- root node --> 12717 <feature> 12718 <rects> 12719 <_>3 0 14 4 -1.</_> 12720 <_>3 0 7 2 2.</_> 12721 <_>10 2 7 2 2.</_></rects> 12722 <tilted>0</tilted></feature> 12723 <threshold>5.2588270045816898e-003</threshold> 12724 <left_val>0.0798673033714294</left_val> 12725 <right_val>-0.2070070952177048</right_val></_></_> 12726 <_> 12727 <!-- tree 31 --> 12728 <_> 12729 <!-- root node --> 12730 <feature> 12731 <rects> 12732 <_>11 4 6 5 -1.</_> 12733 <_>11 4 3 5 2.</_></rects> 12734 <tilted>1</tilted></feature> 12735 <threshold>-0.1344957053661346</threshold> 12736 <left_val>-0.4127010107040405</left_val> 12737 <right_val>8.1500215455889702e-003</right_val></_></_> 12738 <_> 12739 <!-- tree 32 --> 12740 <_> 12741 <!-- root node --> 12742 <feature> 12743 <rects> 12744 <_>11 4 5 6 -1.</_> 12745 <_>11 4 5 3 2.</_></rects> 12746 <tilted>1</tilted></feature> 12747 <threshold>1.6953679732978344e-003</threshold> 12748 <left_val>0.1103534996509552</left_val> 12749 <right_val>-0.1680212020874023</right_val></_></_> 12750 <_> 12751 <!-- tree 33 --> 12752 <_> 12753 <!-- root node --> 12754 <feature> 12755 <rects> 12756 <_>10 5 4 6 -1.</_> 12757 <_>10 5 2 6 2.</_></rects> 12758 <tilted>0</tilted></feature> 12759 <threshold>0.0394921414554119</threshold> 12760 <left_val>-0.0134100103750825</left_val> 12761 <right_val>0.3844763934612274</right_val></_></_> 12762 <_> 12763 <!-- tree 34 --> 12764 <_> 12765 <!-- root node --> 12766 <feature> 12767 <rects> 12768 <_>4 12 12 3 -1.</_> 12769 <_>8 12 4 3 3.</_></rects> 12770 <tilted>0</tilted></feature> 12771 <threshold>-9.3634781660512090e-004</threshold> 12772 <left_val>0.1098681986331940</left_val> 12773 <right_val>-0.1731048971414566</right_val></_></_> 12774 <_> 12775 <!-- tree 35 --> 12776 <_> 12777 <!-- root node --> 12778 <feature> 12779 <rects> 12780 <_>8 6 8 7 -1.</_> 12781 <_>8 6 4 7 2.</_></rects> 12782 <tilted>0</tilted></feature> 12783 <threshold>-0.0444957092404366</threshold> 12784 <left_val>0.1947119981050491</left_val> 12785 <right_val>-0.0407688990235329</right_val></_></_> 12786 <_> 12787 <!-- tree 36 --> 12788 <_> 12789 <!-- root node --> 12790 <feature> 12791 <rects> 12792 <_>5 0 8 12 -1.</_> 12793 <_>5 0 4 6 2.</_> 12794 <_>9 6 4 6 2.</_></rects> 12795 <tilted>0</tilted></feature> 12796 <threshold>0.0606301091611385</threshold> 12797 <left_val>-0.0422523692250252</left_val> 12798 <right_val>0.5141298770904541</right_val></_></_> 12799 <_> 12800 <!-- tree 37 --> 12801 <_> 12802 <!-- root node --> 12803 <feature> 12804 <rects> 12805 <_>7 0 12 4 -1.</_> 12806 <_>13 0 6 2 2.</_> 12807 <_>7 2 6 2 2.</_></rects> 12808 <tilted>0</tilted></feature> 12809 <threshold>7.5067640282213688e-003</threshold> 12810 <left_val>0.0420869700610638</left_val> 12811 <right_val>-0.1608040034770966</right_val></_></_> 12812 <_> 12813 <!-- tree 38 --> 12814 <_> 12815 <!-- root node --> 12816 <feature> 12817 <rects> 12818 <_>1 4 6 5 -1.</_> 12819 <_>4 4 3 5 2.</_></rects> 12820 <tilted>0</tilted></feature> 12821 <threshold>9.9260415881872177e-003</threshold> 12822 <left_val>0.0641195327043533</left_val> 12823 <right_val>-0.2621530890464783</right_val></_></_> 12824 <_> 12825 <!-- tree 39 --> 12826 <_> 12827 <!-- root node --> 12828 <feature> 12829 <rects> 12830 <_>15 0 7 4 -1.</_> 12831 <_>15 0 7 2 2.</_></rects> 12832 <tilted>1</tilted></feature> 12833 <threshold>0.0605285204946995</threshold> 12834 <left_val>0.0241899695247412</left_val> 12835 <right_val>-0.3660838901996613</right_val></_></_> 12836 <_> 12837 <!-- tree 40 --> 12838 <_> 12839 <!-- root node --> 12840 <feature> 12841 <rects> 12842 <_>5 2 8 6 -1.</_> 12843 <_>5 2 4 3 2.</_> 12844 <_>9 5 4 3 2.</_></rects> 12845 <tilted>0</tilted></feature> 12846 <threshold>-6.8054231815040112e-003</threshold> 12847 <left_val>0.1250838935375214</left_val> 12848 <right_val>-0.1388971060514450</right_val></_></_> 12849 <_> 12850 <!-- tree 41 --> 12851 <_> 12852 <!-- root node --> 12853 <feature> 12854 <rects> 12855 <_>4 2 15 3 -1.</_> 12856 <_>4 3 15 1 3.</_></rects> 12857 <tilted>0</tilted></feature> 12858 <threshold>-2.0940289832651615e-003</threshold> 12859 <left_val>0.1399659961462021</left_val> 12860 <right_val>-0.0827063992619514</right_val></_></_> 12861 <_> 12862 <!-- tree 42 --> 12863 <_> 12864 <!-- root node --> 12865 <feature> 12866 <rects> 12867 <_>4 1 14 3 -1.</_> 12868 <_>4 2 14 1 3.</_></rects> 12869 <tilted>0</tilted></feature> 12870 <threshold>-9.6904346719384193e-003</threshold> 12871 <left_val>0.2668136060237885</left_val> 12872 <right_val>-0.0715769901871681</right_val></_></_> 12873 <_> 12874 <!-- tree 43 --> 12875 <_> 12876 <!-- root node --> 12877 <feature> 12878 <rects> 12879 <_>15 5 4 6 -1.</_> 12880 <_>15 8 4 3 2.</_></rects> 12881 <tilted>0</tilted></feature> 12882 <threshold>0.0183203499764204</threshold> 12883 <left_val>0.0313219800591469</left_val> 12884 <right_val>-0.2346061021089554</right_val></_></_> 12885 <_> 12886 <!-- tree 44 --> 12887 <_> 12888 <!-- root node --> 12889 <feature> 12890 <rects> 12891 <_>0 1 17 2 -1.</_> 12892 <_>0 2 17 1 2.</_></rects> 12893 <tilted>0</tilted></feature> 12894 <threshold>5.0429959082975984e-004</threshold> 12895 <left_val>-0.1166971996426582</left_val> 12896 <right_val>0.1651464998722076</right_val></_></_> 12897 <_> 12898 <!-- tree 45 --> 12899 <_> 12900 <!-- root node --> 12901 <feature> 12902 <rects> 12903 <_>15 5 4 6 -1.</_> 12904 <_>15 8 4 3 2.</_></rects> 12905 <tilted>0</tilted></feature> 12906 <threshold>-4.7016288153827190e-003</threshold> 12907 <left_val>-0.1200615018606186</left_val> 12908 <right_val>0.0592004284262657</right_val></_></_> 12909 <_> 12910 <!-- tree 46 --> 12911 <_> 12912 <!-- root node --> 12913 <feature> 12914 <rects> 12915 <_>3 5 4 6 -1.</_> 12916 <_>3 8 4 3 2.</_></rects> 12917 <tilted>0</tilted></feature> 12918 <threshold>-0.0199268702417612</threshold> 12919 <left_val>-0.3948509991168976</left_val> 12920 <right_val>0.0411430187523365</right_val></_></_> 12921 <_> 12922 <!-- tree 47 --> 12923 <_> 12924 <!-- root node --> 12925 <feature> 12926 <rects> 12927 <_>3 0 18 3 -1.</_> 12928 <_>3 1 18 1 3.</_></rects> 12929 <tilted>0</tilted></feature> 12930 <threshold>7.4013080447912216e-003</threshold> 12931 <left_val>-0.0763312578201294</left_val> 12932 <right_val>0.2106536030769348</right_val></_></_> 12933 <_> 12934 <!-- tree 48 --> 12935 <_> 12936 <!-- root node --> 12937 <feature> 12938 <rects> 12939 <_>7 1 6 4 -1.</_> 12940 <_>10 1 3 4 2.</_></rects> 12941 <tilted>0</tilted></feature> 12942 <threshold>0.0148796299472451</threshold> 12943 <left_val>0.0479790717363358</left_val> 12944 <right_val>-0.3401476144790649</right_val></_></_> 12945 <_> 12946 <!-- tree 49 --> 12947 <_> 12948 <!-- root node --> 12949 <feature> 12950 <rects> 12951 <_>0 11 22 7 -1.</_> 12952 <_>0 11 11 7 2.</_></rects> 12953 <tilted>0</tilted></feature> 12954 <threshold>0.1552755981683731</threshold> 12955 <left_val>0.0322258807718754</left_val> 12956 <right_val>-0.4693807959556580</right_val></_></_> 12957 <_> 12958 <!-- tree 50 --> 12959 <_> 12960 <!-- root node --> 12961 <feature> 12962 <rects> 12963 <_>3 5 4 12 -1.</_> 12964 <_>3 5 2 6 2.</_> 12965 <_>5 11 2 6 2.</_></rects> 12966 <tilted>0</tilted></feature> 12967 <threshold>-7.0786331780254841e-003</threshold> 12968 <left_val>0.1219948008656502</left_val> 12969 <right_val>-0.1200494021177292</right_val></_></_> 12970 <_> 12971 <!-- tree 51 --> 12972 <_> 12973 <!-- root node --> 12974 <feature> 12975 <rects> 12976 <_>14 7 3 10 -1.</_> 12977 <_>14 12 3 5 2.</_></rects> 12978 <tilted>0</tilted></feature> 12979 <threshold>0.0298721697181463</threshold> 12980 <left_val>-0.0436775088310242</left_val> 12981 <right_val>0.2352982014417648</right_val></_></_> 12982 <_> 12983 <!-- tree 52 --> 12984 <_> 12985 <!-- root node --> 12986 <feature> 12987 <rects> 12988 <_>4 11 14 4 -1.</_> 12989 <_>4 11 7 2 2.</_> 12990 <_>11 13 7 2 2.</_></rects> 12991 <tilted>0</tilted></feature> 12992 <threshold>0.0305551700294018</threshold> 12993 <left_val>0.0317758806049824</left_val> 12994 <right_val>-0.5782545208930969</right_val></_></_> 12995 <_> 12996 <!-- tree 53 --> 12997 <_> 12998 <!-- root node --> 12999 <feature> 13000 <rects> 13001 <_>7 11 8 6 -1.</_> 13002 <_>11 11 4 3 2.</_> 13003 <_>7 14 4 3 2.</_></rects> 13004 <tilted>0</tilted></feature> 13005 <threshold>0.0102845700457692</threshold> 13006 <left_val>0.0472028106451035</left_val> 13007 <right_val>-0.2956649959087372</right_val></_></_> 13008 <_> 13009 <!-- tree 54 --> 13010 <_> 13011 <!-- root node --> 13012 <feature> 13013 <rects> 13014 <_>3 5 3 13 -1.</_> 13015 <_>4 5 1 13 3.</_></rects> 13016 <tilted>0</tilted></feature> 13017 <threshold>0.0198087096214294</threshold> 13018 <left_val>-0.0457759387791157</left_val> 13019 <right_val>0.3323101997375488</right_val></_></_> 13020 <_> 13021 <!-- tree 55 --> 13022 <_> 13023 <!-- root node --> 13024 <feature> 13025 <rects> 13026 <_>17 1 4 12 -1.</_> 13027 <_>19 1 2 6 2.</_> 13028 <_>17 7 2 6 2.</_></rects> 13029 <tilted>0</tilted></feature> 13030 <threshold>0.0272188801318407</threshold> 13031 <left_val>0.0255772192031145</left_val> 13032 <right_val>-0.3318088054656982</right_val></_></_> 13033 <_> 13034 <!-- tree 56 --> 13035 <_> 13036 <!-- root node --> 13037 <feature> 13038 <rects> 13039 <_>1 1 4 12 -1.</_> 13040 <_>1 1 2 6 2.</_> 13041 <_>3 7 2 6 2.</_></rects> 13042 <tilted>0</tilted></feature> 13043 <threshold>0.0140976803377271</threshold> 13044 <left_val>0.0521574206650257</left_val> 13045 <right_val>-0.2935838103294373</right_val></_></_> 13046 <_> 13047 <!-- tree 57 --> 13048 <_> 13049 <!-- root node --> 13050 <feature> 13051 <rects> 13052 <_>7 0 13 16 -1.</_> 13053 <_>7 4 13 8 2.</_></rects> 13054 <tilted>0</tilted></feature> 13055 <threshold>0.2428656965494156</threshold> 13056 <left_val>0.0146924601867795</left_val> 13057 <right_val>-0.6985487937927246</right_val></_></_> 13058 <_> 13059 <!-- tree 58 --> 13060 <_> 13061 <!-- root node --> 13062 <feature> 13063 <rects> 13064 <_>1 4 13 2 -1.</_> 13065 <_>1 5 13 1 2.</_></rects> 13066 <tilted>0</tilted></feature> 13067 <threshold>0.0124195702373981</threshold> 13068 <left_val>-0.0471058785915375</left_val> 13069 <right_val>0.3669505119323731</right_val></_></_> 13070 <_> 13071 <!-- tree 59 --> 13072 <_> 13073 <!-- root node --> 13074 <feature> 13075 <rects> 13076 <_>9 14 6 4 -1.</_> 13077 <_>9 16 6 2 2.</_></rects> 13078 <tilted>0</tilted></feature> 13079 <threshold>1.3503880472853780e-003</threshold> 13080 <left_val>0.0537913590669632</left_val> 13081 <right_val>-0.2095365971326828</right_val></_></_> 13082 <_> 13083 <!-- tree 60 --> 13084 <_> 13085 <!-- root node --> 13086 <feature> 13087 <rects> 13088 <_>2 4 17 3 -1.</_> 13089 <_>2 5 17 1 3.</_></rects> 13090 <tilted>0</tilted></feature> 13091 <threshold>-0.0156262908130884</threshold> 13092 <left_val>0.2788845896720886</left_val> 13093 <right_val>-0.0600537508726120</right_val></_></_> 13094 <_> 13095 <!-- tree 61 --> 13096 <_> 13097 <!-- root node --> 13098 <feature> 13099 <rects> 13100 <_>14 0 3 10 -1.</_> 13101 <_>15 1 1 10 3.</_></rects> 13102 <tilted>1</tilted></feature> 13103 <threshold>0.0158501397818327</threshold> 13104 <left_val>-0.0303249098360538</left_val> 13105 <right_val>0.1028752028942108</right_val></_></_> 13106 <_> 13107 <!-- tree 62 --> 13108 <_> 13109 <!-- root node --> 13110 <feature> 13111 <rects> 13112 <_>7 0 8 3 -1.</_> 13113 <_>6 1 8 1 3.</_></rects> 13114 <tilted>1</tilted></feature> 13115 <threshold>-0.0408689193427563</threshold> 13116 <left_val>-0.8040220737457275</left_val> 13117 <right_val>0.0176014993339777</right_val></_></_> 13118 <_> 13119 <!-- tree 63 --> 13120 <_> 13121 <!-- root node --> 13122 <feature> 13123 <rects> 13124 <_>14 0 3 10 -1.</_> 13125 <_>15 1 1 10 3.</_></rects> 13126 <tilted>1</tilted></feature> 13127 <threshold>0.0641086399555206</threshold> 13128 <left_val>2.5845379568636417e-003</left_val> 13129 <right_val>-0.5385494232177734</right_val></_></_> 13130 <_> 13131 <!-- tree 64 --> 13132 <_> 13133 <!-- root node --> 13134 <feature> 13135 <rects> 13136 <_>8 0 10 3 -1.</_> 13137 <_>7 1 10 1 3.</_></rects> 13138 <tilted>1</tilted></feature> 13139 <threshold>0.0499271005392075</threshold> 13140 <left_val>0.0218633003532887</left_val> 13141 <right_val>-0.6178072094917297</right_val></_></_> 13142 <_> 13143 <!-- tree 65 --> 13144 <_> 13145 <!-- root node --> 13146 <feature> 13147 <rects> 13148 <_>11 1 2 7 -1.</_> 13149 <_>11 1 1 7 2.</_></rects> 13150 <tilted>1</tilted></feature> 13151 <threshold>0.0146554196253419</threshold> 13152 <left_val>0.0196633692830801</left_val> 13153 <right_val>-0.2042617052793503</right_val></_></_> 13154 <_> 13155 <!-- tree 66 --> 13156 <_> 13157 <!-- root node --> 13158 <feature> 13159 <rects> 13160 <_>8 0 3 14 -1.</_> 13161 <_>9 0 1 14 3.</_></rects> 13162 <tilted>0</tilted></feature> 13163 <threshold>-0.0240948107093573</threshold> 13164 <left_val>0.3760913014411926</left_val> 13165 <right_val>-0.0409541018307209</right_val></_></_> 13166 <_> 13167 <!-- tree 67 --> 13168 <_> 13169 <!-- root node --> 13170 <feature> 13171 <rects> 13172 <_>11 1 2 7 -1.</_> 13173 <_>11 1 1 7 2.</_></rects> 13174 <tilted>1</tilted></feature> 13175 <threshold>0.0294177699834108</threshold> 13176 <left_val>-8.6903842166066170e-003</left_val> 13177 <right_val>0.4044741988182068</right_val></_></_> 13178 <_> 13179 <!-- tree 68 --> 13180 <_> 13181 <!-- root node --> 13182 <feature> 13183 <rects> 13184 <_>11 1 7 2 -1.</_> 13185 <_>11 1 7 1 2.</_></rects> 13186 <tilted>1</tilted></feature> 13187 <threshold>-0.0141586400568485</threshold> 13188 <left_val>0.3781171143054962</left_val> 13189 <right_val>-0.0403216406702995</right_val></_></_> 13190 <_> 13191 <!-- tree 69 --> 13192 <_> 13193 <!-- root node --> 13194 <feature> 13195 <rects> 13196 <_>7 9 9 8 -1.</_> 13197 <_>10 9 3 8 3.</_></rects> 13198 <tilted>0</tilted></feature> 13199 <threshold>-0.0467549897730350</threshold> 13200 <left_val>0.2210430949926376</left_val> 13201 <right_val>-0.0289961099624634</right_val></_></_> 13202 <_> 13203 <!-- tree 70 --> 13204 <_> 13205 <!-- root node --> 13206 <feature> 13207 <rects> 13208 <_>1 7 4 8 -1.</_> 13209 <_>3 7 2 8 2.</_></rects> 13210 <tilted>0</tilted></feature> 13211 <threshold>-0.0114379497244954</threshold> 13212 <left_val>-0.2503308951854706</left_val> 13213 <right_val>0.0582142882049084</right_val></_></_> 13214 <_> 13215 <!-- tree 71 --> 13216 <_> 13217 <!-- root node --> 13218 <feature> 13219 <rects> 13220 <_>17 11 4 6 -1.</_> 13221 <_>17 11 2 6 2.</_></rects> 13222 <tilted>0</tilted></feature> 13223 <threshold>-0.0425987802445889</threshold> 13224 <left_val>0.3756220042705536</left_val> 13225 <right_val>-0.0163490902632475</right_val></_></_> 13226 <_> 13227 <!-- tree 72 --> 13228 <_> 13229 <!-- root node --> 13230 <feature> 13231 <rects> 13232 <_>8 12 6 6 -1.</_> 13233 <_>10 12 2 6 3.</_></rects> 13234 <tilted>0</tilted></feature> 13235 <threshold>-0.0152011597529054</threshold> 13236 <left_val>-0.3563781976699829</left_val> 13237 <right_val>0.0386903695762157</right_val></_></_> 13238 <_> 13239 <!-- tree 73 --> 13240 <_> 13241 <!-- root node --> 13242 <feature> 13243 <rects> 13244 <_>11 0 3 6 -1.</_> 13245 <_>12 1 1 6 3.</_></rects> 13246 <tilted>1</tilted></feature> 13247 <threshold>0.0433788485825062</threshold> 13248 <left_val>3.3045639283955097e-003</left_val> 13249 <right_val>-0.4672946929931641</right_val></_></_> 13250 <_> 13251 <!-- tree 74 --> 13252 <_> 13253 <!-- root node --> 13254 <feature> 13255 <rects> 13256 <_>11 0 6 3 -1.</_> 13257 <_>10 1 6 1 3.</_></rects> 13258 <tilted>1</tilted></feature> 13259 <threshold>5.5153011344373226e-003</threshold> 13260 <left_val>-0.0835836082696915</left_val> 13261 <right_val>0.1879317015409470</right_val></_></_> 13262 <_> 13263 <!-- tree 75 --> 13264 <_> 13265 <!-- root node --> 13266 <feature> 13267 <rects> 13268 <_>9 14 9 4 -1.</_> 13269 <_>12 14 3 4 3.</_></rects> 13270 <tilted>0</tilted></feature> 13271 <threshold>-7.8126927837729454e-003</threshold> 13272 <left_val>-0.1658685952425003</left_val> 13273 <right_val>0.0438011288642883</right_val></_></_> 13274 <_> 13275 <!-- tree 76 --> 13276 <_> 13277 <!-- root node --> 13278 <feature> 13279 <rects> 13280 <_>8 2 6 4 -1.</_> 13281 <_>8 2 6 2 2.</_></rects> 13282 <tilted>1</tilted></feature> 13283 <threshold>0.0416526012122631</threshold> 13284 <left_val>-0.0318045206367970</left_val> 13285 <right_val>0.4351752102375031</right_val></_></_> 13286 <_> 13287 <!-- tree 77 --> 13288 <_> 13289 <!-- root node --> 13290 <feature> 13291 <rects> 13292 <_>10 10 4 6 -1.</_> 13293 <_>10 10 2 6 2.</_></rects> 13294 <tilted>0</tilted></feature> 13295 <threshold>3.4417589195072651e-003</threshold> 13296 <left_val>0.0422822795808315</left_val> 13297 <right_val>-0.1308895945549011</right_val></_></_> 13298 <_> 13299 <!-- tree 78 --> 13300 <_> 13301 <!-- root node --> 13302 <feature> 13303 <rects> 13304 <_>1 8 18 2 -1.</_> 13305 <_>1 9 18 1 2.</_></rects> 13306 <tilted>0</tilted></feature> 13307 <threshold>1.3004569336771965e-004</threshold> 13308 <left_val>-0.1126001030206680</left_val> 13309 <right_val>0.1396459937095642</right_val></_></_> 13310 <_> 13311 <!-- tree 79 --> 13312 <_> 13313 <!-- root node --> 13314 <feature> 13315 <rects> 13316 <_>8 8 14 3 -1.</_> 13317 <_>8 9 14 1 3.</_></rects> 13318 <tilted>0</tilted></feature> 13319 <threshold>-0.0773477330803871</threshold> 13320 <left_val>0.7075064778327942</left_val> 13321 <right_val>-5.4134069941937923e-003</right_val></_></_> 13322 <_> 13323 <!-- tree 80 --> 13324 <_> 13325 <!-- root node --> 13326 <feature> 13327 <rects> 13328 <_>3 15 14 3 -1.</_> 13329 <_>10 15 7 3 2.</_></rects> 13330 <tilted>0</tilted></feature> 13331 <threshold>-1.6143550164997578e-003</threshold> 13332 <left_val>0.1192042008042336</left_val> 13333 <right_val>-0.1188426986336708</right_val></_></_> 13334 <_> 13335 <!-- tree 81 --> 13336 <_> 13337 <!-- root node --> 13338 <feature> 13339 <rects> 13340 <_>8 8 14 3 -1.</_> 13341 <_>8 9 14 1 3.</_></rects> 13342 <tilted>0</tilted></feature> 13343 <threshold>-9.8279246594756842e-004</threshold> 13344 <left_val>0.0631562769412994</left_val> 13345 <right_val>-0.0527811013162136</right_val></_></_> 13346 <_> 13347 <!-- tree 82 --> 13348 <_> 13349 <!-- root node --> 13350 <feature> 13351 <rects> 13352 <_>4 14 9 4 -1.</_> 13353 <_>7 14 3 4 3.</_></rects> 13354 <tilted>0</tilted></feature> 13355 <threshold>-0.0456674695014954</threshold> 13356 <left_val>-0.3450087010860443</left_val> 13357 <right_val>0.0446007288992405</right_val></_></_></trees> 13358 <stage_threshold>-0.7757309079170227</stage_threshold> 13359 <parent>17</parent> 13360 <next>-1</next></_> 13361 <_> 13362 <!-- stage 19 --> 13363 <trees> 13364 <_> 13365 <!-- tree 0 --> 13366 <_> 13367 <!-- root node --> 13368 <feature> 13369 <rects> 13370 <_>10 6 4 8 -1.</_> 13371 <_>10 6 2 8 2.</_></rects> 13372 <tilted>1</tilted></feature> 13373 <threshold>0.0733159780502319</threshold> 13374 <left_val>-0.1141010969877243</left_val> 13375 <right_val>0.4003581106662750</right_val></_></_> 13376 <_> 13377 <!-- tree 1 --> 13378 <_> 13379 <!-- root node --> 13380 <feature> 13381 <rects> 13382 <_>2 11 18 3 -1.</_> 13383 <_>8 11 6 3 3.</_></rects> 13384 <tilted>0</tilted></feature> 13385 <threshold>0.0252756699919701</threshold> 13386 <left_val>-0.0720138773322105</left_val> 13387 <right_val>0.3609578013420105</right_val></_></_> 13388 <_> 13389 <!-- tree 2 --> 13390 <_> 13391 <!-- root node --> 13392 <feature> 13393 <rects> 13394 <_>10 0 12 4 -1.</_> 13395 <_>10 0 12 2 2.</_></rects> 13396 <tilted>1</tilted></feature> 13397 <threshold>0.0188738591969013</threshold> 13398 <left_val>-0.1723437011241913</left_val> 13399 <right_val>0.1822322010993958</right_val></_></_> 13400 <_> 13401 <!-- tree 3 --> 13402 <_> 13403 <!-- root node --> 13404 <feature> 13405 <rects> 13406 <_>6 6 16 4 -1.</_> 13407 <_>14 6 8 2 2.</_> 13408 <_>6 8 8 2 2.</_></rects> 13409 <tilted>0</tilted></feature> 13410 <threshold>7.4607720307540148e-005</threshold> 13411 <left_val>-0.0816272869706154</left_val> 13412 <right_val>0.0888885036110878</right_val></_></_> 13413 <_> 13414 <!-- tree 4 --> 13415 <_> 13416 <!-- root node --> 13417 <feature> 13418 <rects> 13419 <_>6 3 4 14 -1.</_> 13420 <_>7 3 2 14 2.</_></rects> 13421 <tilted>0</tilted></feature> 13422 <threshold>4.2250280966982245e-004</threshold> 13423 <left_val>-0.1284023970365524</left_val> 13424 <right_val>0.1179141998291016</right_val></_></_> 13425 <_> 13426 <!-- tree 5 --> 13427 <_> 13428 <!-- root node --> 13429 <feature> 13430 <rects> 13431 <_>12 12 6 6 -1.</_> 13432 <_>14 12 2 6 3.</_></rects> 13433 <tilted>0</tilted></feature> 13434 <threshold>0.0144024603068829</threshold> 13435 <left_val>0.0209603402763605</left_val> 13436 <right_val>0.1902469992637634</right_val></_></_> 13437 <_> 13438 <!-- tree 6 --> 13439 <_> 13440 <!-- root node --> 13441 <feature> 13442 <rects> 13443 <_>4 12 6 6 -1.</_> 13444 <_>6 12 2 6 3.</_></rects> 13445 <tilted>0</tilted></feature> 13446 <threshold>-2.0460959058254957e-003</threshold> 13447 <left_val>0.0957124978303909</left_val> 13448 <right_val>-0.2151706069707871</right_val></_></_> 13449 <_> 13450 <!-- tree 7 --> 13451 <_> 13452 <!-- root node --> 13453 <feature> 13454 <rects> 13455 <_>14 8 3 8 -1.</_> 13456 <_>14 12 3 4 2.</_></rects> 13457 <tilted>0</tilted></feature> 13458 <threshold>7.1128448471426964e-003</threshold> 13459 <left_val>-0.0561004802584648</left_val> 13460 <right_val>0.2098432034254074</right_val></_></_> 13461 <_> 13462 <!-- tree 8 --> 13463 <_> 13464 <!-- root node --> 13465 <feature> 13466 <rects> 13467 <_>0 6 16 4 -1.</_> 13468 <_>0 6 8 2 2.</_> 13469 <_>8 8 8 2 2.</_></rects> 13470 <tilted>0</tilted></feature> 13471 <threshold>-6.5832170657813549e-003</threshold> 13472 <left_val>-0.2113818973302841</left_val> 13473 <right_val>0.0760941505432129</right_val></_></_> 13474 <_> 13475 <!-- tree 9 --> 13476 <_> 13477 <!-- root node --> 13478 <feature> 13479 <rects> 13480 <_>9 10 5 6 -1.</_> 13481 <_>9 13 5 3 2.</_></rects> 13482 <tilted>0</tilted></feature> 13483 <threshold>-4.1252959636040032e-004</threshold> 13484 <left_val>0.1310734003782272</left_val> 13485 <right_val>-0.1567085981369019</right_val></_></_> 13486 <_> 13487 <!-- tree 10 --> 13488 <_> 13489 <!-- root node --> 13490 <feature> 13491 <rects> 13492 <_>7 5 6 12 -1.</_> 13493 <_>7 5 3 6 2.</_> 13494 <_>10 11 3 6 2.</_></rects> 13495 <tilted>0</tilted></feature> 13496 <threshold>-0.0443308316171169</threshold> 13497 <left_val>0.5404803752899170</left_val> 13498 <right_val>-0.0190594792366028</right_val></_></_> 13499 <_> 13500 <!-- tree 11 --> 13501 <_> 13502 <!-- root node --> 13503 <feature> 13504 <rects> 13505 <_>1 5 21 9 -1.</_> 13506 <_>8 8 7 3 9.</_></rects> 13507 <tilted>0</tilted></feature> 13508 <threshold>0.0117001300677657</threshold> 13509 <left_val>0.0517124012112617</left_val> 13510 <right_val>-0.1721616983413696</right_val></_></_> 13511 <_> 13512 <!-- tree 12 --> 13513 <_> 13514 <!-- root node --> 13515 <feature> 13516 <rects> 13517 <_>8 6 3 12 -1.</_> 13518 <_>9 6 1 12 3.</_></rects> 13519 <tilted>0</tilted></feature> 13520 <threshold>3.5091140307486057e-003</threshold> 13521 <left_val>-0.0767679512500763</left_val> 13522 <right_val>0.1777625977993012</right_val></_></_> 13523 <_> 13524 <!-- tree 13 --> 13525 <_> 13526 <!-- root node --> 13527 <feature> 13528 <rects> 13529 <_>11 3 3 11 -1.</_> 13530 <_>12 4 1 11 3.</_></rects> 13531 <tilted>1</tilted></feature> 13532 <threshold>0.0155975697562099</threshold> 13533 <left_val>0.0383078902959824</left_val> 13534 <right_val>-0.1473001986742020</right_val></_></_> 13535 <_> 13536 <!-- tree 14 --> 13537 <_> 13538 <!-- root node --> 13539 <feature> 13540 <rects> 13541 <_>11 5 9 3 -1.</_> 13542 <_>10 6 9 1 3.</_></rects> 13543 <tilted>1</tilted></feature> 13544 <threshold>-0.0362853705883026</threshold> 13545 <left_val>0.3534766137599945</left_val> 13546 <right_val>-0.0450184904038906</right_val></_></_> 13547 <_> 13548 <!-- tree 15 --> 13549 <_> 13550 <!-- root node --> 13551 <feature> 13552 <rects> 13553 <_>12 11 6 6 -1.</_> 13554 <_>12 13 6 2 3.</_></rects> 13555 <tilted>0</tilted></feature> 13556 <threshold>-0.0451182983815670</threshold> 13557 <left_val>-0.5707414150238037</left_val> 13558 <right_val>0.0106467101722956</right_val></_></_> 13559 <_> 13560 <!-- tree 16 --> 13561 <_> 13562 <!-- root node --> 13563 <feature> 13564 <rects> 13565 <_>0 1 9 9 -1.</_> 13566 <_>3 1 3 9 3.</_></rects> 13567 <tilted>0</tilted></feature> 13568 <threshold>0.0137345800176263</threshold> 13569 <left_val>0.0660183578729630</left_val> 13570 <right_val>-0.2048089057207108</right_val></_></_> 13571 <_> 13572 <!-- tree 17 --> 13573 <_> 13574 <!-- root node --> 13575 <feature> 13576 <rects> 13577 <_>6 0 12 12 -1.</_> 13578 <_>9 0 6 12 2.</_></rects> 13579 <tilted>0</tilted></feature> 13580 <threshold>-0.0271209795027971</threshold> 13581 <left_val>0.0480942092835903</left_val> 13582 <right_val>-0.0513949617743492</right_val></_></_> 13583 <_> 13584 <!-- tree 18 --> 13585 <_> 13586 <!-- root node --> 13587 <feature> 13588 <rects> 13589 <_>7 14 6 4 -1.</_> 13590 <_>10 14 3 4 2.</_></rects> 13591 <tilted>0</tilted></feature> 13592 <threshold>-1.5354059869423509e-003</threshold> 13593 <left_val>-0.2354800999164581</left_val> 13594 <right_val>0.0530746094882488</right_val></_></_> 13595 <_> 13596 <!-- tree 19 --> 13597 <_> 13598 <!-- root node --> 13599 <feature> 13600 <rects> 13601 <_>8 7 13 3 -1.</_> 13602 <_>8 8 13 1 3.</_></rects> 13603 <tilted>0</tilted></feature> 13604 <threshold>3.6000818945467472e-003</threshold> 13605 <left_val>-0.0589443407952785</left_val> 13606 <right_val>0.1182541027665138</right_val></_></_> 13607 <_> 13608 <!-- tree 20 --> 13609 <_> 13610 <!-- root node --> 13611 <feature> 13612 <rects> 13613 <_>2 13 12 4 -1.</_> 13614 <_>5 13 6 4 2.</_></rects> 13615 <tilted>0</tilted></feature> 13616 <threshold>6.8916529417037964e-003</threshold> 13617 <left_val>-0.0500144883990288</left_val> 13618 <right_val>0.2690939903259277</right_val></_></_> 13619 <_> 13620 <!-- tree 21 --> 13621 <_> 13622 <!-- root node --> 13623 <feature> 13624 <rects> 13625 <_>15 3 2 13 -1.</_> 13626 <_>15 3 1 13 2.</_></rects> 13627 <tilted>1</tilted></feature> 13628 <threshold>3.5373449791222811e-003</threshold> 13629 <left_val>-0.1294703930616379</left_val> 13630 <right_val>0.0886970385909081</right_val></_></_> 13631 <_> 13632 <!-- tree 22 --> 13633 <_> 13634 <!-- root node --> 13635 <feature> 13636 <rects> 13637 <_>9 5 11 2 -1.</_> 13638 <_>9 5 11 1 2.</_></rects> 13639 <tilted>1</tilted></feature> 13640 <threshold>-4.1431561112403870e-003</threshold> 13641 <left_val>-0.1788363009691238</left_val> 13642 <right_val>0.0690981075167656</right_val></_></_> 13643 <_> 13644 <!-- tree 23 --> 13645 <_> 13646 <!-- root node --> 13647 <feature> 13648 <rects> 13649 <_>13 2 2 16 -1.</_> 13650 <_>13 10 2 8 2.</_></rects> 13651 <tilted>0</tilted></feature> 13652 <threshold>-0.1076257973909378</threshold> 13653 <left_val>-1.</left_val> 13654 <right_val>4.7263409942388535e-003</right_val></_></_> 13655 <_> 13656 <!-- tree 24 --> 13657 <_> 13658 <!-- root node --> 13659 <feature> 13660 <rects> 13661 <_>7 2 2 16 -1.</_> 13662 <_>7 10 2 8 2.</_></rects> 13663 <tilted>0</tilted></feature> 13664 <threshold>9.7946207970380783e-003</threshold> 13665 <left_val>-0.0540387704968452</left_val> 13666 <right_val>0.2411547005176544</right_val></_></_> 13667 <_> 13668 <!-- tree 25 --> 13669 <_> 13670 <!-- root node --> 13671 <feature> 13672 <rects> 13673 <_>14 0 7 6 -1.</_> 13674 <_>12 2 7 2 3.</_></rects> 13675 <tilted>1</tilted></feature> 13676 <threshold>0.0100542800500989</threshold> 13677 <left_val>-0.0806248933076859</left_val> 13678 <right_val>0.1162756010890007</right_val></_></_> 13679 <_> 13680 <!-- tree 26 --> 13681 <_> 13682 <!-- root node --> 13683 <feature> 13684 <rects> 13685 <_>7 3 6 12 -1.</_> 13686 <_>7 3 3 6 2.</_> 13687 <_>10 9 3 6 2.</_></rects> 13688 <tilted>0</tilted></feature> 13689 <threshold>-8.7350717512890697e-004</threshold> 13690 <left_val>-0.1819397956132889</left_val> 13691 <right_val>0.0774685069918633</right_val></_></_> 13692 <_> 13693 <!-- tree 27 --> 13694 <_> 13695 <!-- root node --> 13696 <feature> 13697 <rects> 13698 <_>9 14 8 4 -1.</_> 13699 <_>9 16 8 2 2.</_></rects> 13700 <tilted>0</tilted></feature> 13701 <threshold>9.4283261569216847e-004</threshold> 13702 <left_val>0.0462650507688522</left_val> 13703 <right_val>-0.2273202985525131</right_val></_></_> 13704 <_> 13705 <!-- tree 28 --> 13706 <_> 13707 <!-- root node --> 13708 <feature> 13709 <rects> 13710 <_>11 3 11 3 -1.</_> 13711 <_>10 4 11 1 3.</_></rects> 13712 <tilted>1</tilted></feature> 13713 <threshold>3.5424059024080634e-004</threshold> 13714 <left_val>-0.1182428970932961</left_val> 13715 <right_val>0.1109569966793060</right_val></_></_> 13716 <_> 13717 <!-- tree 29 --> 13718 <_> 13719 <!-- root node --> 13720 <feature> 13721 <rects> 13722 <_>11 1 4 6 -1.</_> 13723 <_>12 2 2 6 2.</_></rects> 13724 <tilted>1</tilted></feature> 13725 <threshold>-0.0385877899825573</threshold> 13726 <left_val>-0.3028686940670013</left_val> 13727 <right_val>3.1856179703027010e-003</right_val></_></_> 13728 <_> 13729 <!-- tree 30 --> 13730 <_> 13731 <!-- root node --> 13732 <feature> 13733 <rects> 13734 <_>11 1 6 4 -1.</_> 13735 <_>10 2 6 2 2.</_></rects> 13736 <tilted>1</tilted></feature> 13737 <threshold>-4.9504679627716541e-003</threshold> 13738 <left_val>0.1375810056924820</left_val> 13739 <right_val>-0.0916903465986252</right_val></_></_> 13740 <_> 13741 <!-- tree 31 --> 13742 <_> 13743 <!-- root node --> 13744 <feature> 13745 <rects> 13746 <_>10 10 6 8 -1.</_> 13747 <_>12 10 2 8 3.</_></rects> 13748 <tilted>0</tilted></feature> 13749 <threshold>-0.0254536308348179</threshold> 13750 <left_val>-0.2301352024078369</left_val> 13751 <right_val>0.0197479296475649</right_val></_></_> 13752 <_> 13753 <!-- tree 32 --> 13754 <_> 13755 <!-- root node --> 13756 <feature> 13757 <rects> 13758 <_>2 4 12 4 -1.</_> 13759 <_>2 4 6 2 2.</_> 13760 <_>8 6 6 2 2.</_></rects> 13761 <tilted>0</tilted></feature> 13762 <threshold>0.0158367007970810</threshold> 13763 <left_val>-0.0452521592378616</left_val> 13764 <right_val>0.2933708131313324</right_val></_></_> 13765 <_> 13766 <!-- tree 33 --> 13767 <_> 13768 <!-- root node --> 13769 <feature> 13770 <rects> 13771 <_>14 1 3 10 -1.</_> 13772 <_>15 2 1 10 3.</_></rects> 13773 <tilted>1</tilted></feature> 13774 <threshold>0.0103798797354102</threshold> 13775 <left_val>0.0597066916525364</left_val> 13776 <right_val>-0.1641553044319153</right_val></_></_> 13777 <_> 13778 <!-- tree 34 --> 13779 <_> 13780 <!-- root node --> 13781 <feature> 13782 <rects> 13783 <_>0 7 22 7 -1.</_> 13784 <_>11 7 11 7 2.</_></rects> 13785 <tilted>0</tilted></feature> 13786 <threshold>0.0431784503161907</threshold> 13787 <left_val>0.0634605363011360</left_val> 13788 <right_val>-0.2136048972606659</right_val></_></_> 13789 <_> 13790 <!-- tree 35 --> 13791 <_> 13792 <!-- root node --> 13793 <feature> 13794 <rects> 13795 <_>8 2 14 3 -1.</_> 13796 <_>8 3 14 1 3.</_></rects> 13797 <tilted>0</tilted></feature> 13798 <threshold>-2.2508678957819939e-003</threshold> 13799 <left_val>0.1064511016011238</left_val> 13800 <right_val>-0.0595391802489758</right_val></_></_> 13801 <_> 13802 <!-- tree 36 --> 13803 <_> 13804 <!-- root node --> 13805 <feature> 13806 <rects> 13807 <_>0 2 14 3 -1.</_> 13808 <_>0 3 14 1 3.</_></rects> 13809 <tilted>0</tilted></feature> 13810 <threshold>5.0743711180984974e-003</threshold> 13811 <left_val>-0.0943770334124565</left_val> 13812 <right_val>0.2299972027540207</right_val></_></_> 13813 <_> 13814 <!-- tree 37 --> 13815 <_> 13816 <!-- root node --> 13817 <feature> 13818 <rects> 13819 <_>14 1 3 10 -1.</_> 13820 <_>15 2 1 10 3.</_></rects> 13821 <tilted>1</tilted></feature> 13822 <threshold>-0.0306706503033638</threshold> 13823 <left_val>0.2597576081752777</left_val> 13824 <right_val>-0.0231882091611624</right_val></_></_> 13825 <_> 13826 <!-- tree 38 --> 13827 <_> 13828 <!-- root node --> 13829 <feature> 13830 <rects> 13831 <_>8 1 10 3 -1.</_> 13832 <_>7 2 10 1 3.</_></rects> 13833 <tilted>1</tilted></feature> 13834 <threshold>2.4162670597434044e-003</threshold> 13835 <left_val>0.0879190564155579</left_val> 13836 <right_val>-0.1928738057613373</right_val></_></_> 13837 <_> 13838 <!-- tree 39 --> 13839 <_> 13840 <!-- root node --> 13841 <feature> 13842 <rects> 13843 <_>12 3 3 10 -1.</_> 13844 <_>13 4 1 10 3.</_></rects> 13845 <tilted>1</tilted></feature> 13846 <threshold>-9.3405842781066895e-003</threshold> 13847 <left_val>-0.1093555986881256</left_val> 13848 <right_val>0.0293585006147623</right_val></_></_> 13849 <_> 13850 <!-- tree 40 --> 13851 <_> 13852 <!-- root node --> 13853 <feature> 13854 <rects> 13855 <_>11 4 10 3 -1.</_> 13856 <_>10 5 10 1 3.</_></rects> 13857 <tilted>1</tilted></feature> 13858 <threshold>0.0205137301236391</threshold> 13859 <left_val>-0.0525113493204117</left_val> 13860 <right_val>0.3054544925689697</right_val></_></_> 13861 <_> 13862 <!-- tree 41 --> 13863 <_> 13864 <!-- root node --> 13865 <feature> 13866 <rects> 13867 <_>12 1 7 6 -1.</_> 13868 <_>12 3 7 2 3.</_></rects> 13869 <tilted>0</tilted></feature> 13870 <threshold>-0.0436303801834583</threshold> 13871 <left_val>-0.4531044960021973</left_val> 13872 <right_val>0.0182615704834461</right_val></_></_> 13873 <_> 13874 <!-- tree 42 --> 13875 <_> 13876 <!-- root node --> 13877 <feature> 13878 <rects> 13879 <_>0 3 14 3 -1.</_> 13880 <_>0 4 14 1 3.</_></rects> 13881 <tilted>0</tilted></feature> 13882 <threshold>3.4857920836657286e-003</threshold> 13883 <left_val>-0.0970931202173233</left_val> 13884 <right_val>0.1487710028886795</right_val></_></_> 13885 <_> 13886 <!-- tree 43 --> 13887 <_> 13888 <!-- root node --> 13889 <feature> 13890 <rects> 13891 <_>8 0 12 4 -1.</_> 13892 <_>14 0 6 2 2.</_> 13893 <_>8 2 6 2 2.</_></rects> 13894 <tilted>0</tilted></feature> 13895 <threshold>0.0104116098955274</threshold> 13896 <left_val>0.0429157316684723</left_val> 13897 <right_val>-0.2484963983297348</right_val></_></_> 13898 <_> 13899 <!-- tree 44 --> 13900 <_> 13901 <!-- root node --> 13902 <feature> 13903 <rects> 13904 <_>2 0 12 4 -1.</_> 13905 <_>2 0 6 2 2.</_> 13906 <_>8 2 6 2 2.</_></rects> 13907 <tilted>0</tilted></feature> 13908 <threshold>-7.5155291706323624e-003</threshold> 13909 <left_val>-0.2662334144115448</left_val> 13910 <right_val>0.0516023188829422</right_val></_></_> 13911 <_> 13912 <!-- tree 45 --> 13913 <_> 13914 <!-- root node --> 13915 <feature> 13916 <rects> 13917 <_>8 4 12 3 -1.</_> 13918 <_>8 5 12 1 3.</_></rects> 13919 <tilted>0</tilted></feature> 13920 <threshold>7.2157550603151321e-003</threshold> 13921 <left_val>-0.0618781596422195</left_val> 13922 <right_val>0.1831496953964233</right_val></_></_> 13923 <_> 13924 <!-- tree 46 --> 13925 <_> 13926 <!-- root node --> 13927 <feature> 13928 <rects> 13929 <_>0 1 14 2 -1.</_> 13930 <_>7 1 7 2 2.</_></rects> 13931 <tilted>0</tilted></feature> 13932 <threshold>9.1090862406417727e-004</threshold> 13933 <left_val>-0.0974202826619148</left_val> 13934 <right_val>0.1222369968891144</right_val></_></_> 13935 <_> 13936 <!-- tree 47 --> 13937 <_> 13938 <!-- root node --> 13939 <feature> 13940 <rects> 13941 <_>5 0 15 11 -1.</_> 13942 <_>10 0 5 11 3.</_></rects> 13943 <tilted>0</tilted></feature> 13944 <threshold>-0.4006991088390350</threshold> 13945 <left_val>-0.8183109164237976</left_val> 13946 <right_val>4.7453590668737888e-003</right_val></_></_> 13947 <_> 13948 <!-- tree 48 --> 13949 <_> 13950 <!-- root node --> 13951 <feature> 13952 <rects> 13953 <_>2 0 15 11 -1.</_> 13954 <_>7 0 5 11 3.</_></rects> 13955 <tilted>0</tilted></feature> 13956 <threshold>-4.8033627681434155e-003</threshold> 13957 <left_val>0.0941939875483513</left_val> 13958 <right_val>-0.1443651020526886</right_val></_></_> 13959 <_> 13960 <!-- tree 49 --> 13961 <_> 13962 <!-- root node --> 13963 <feature> 13964 <rects> 13965 <_>11 6 6 12 -1.</_> 13966 <_>14 6 3 6 2.</_> 13967 <_>11 12 3 6 2.</_></rects> 13968 <tilted>0</tilted></feature> 13969 <threshold>-0.0211474299430847</threshold> 13970 <left_val>0.2953240871429443</left_val> 13971 <right_val>-0.0447512716054916</right_val></_></_> 13972 <_> 13973 <!-- tree 50 --> 13974 <_> 13975 <!-- root node --> 13976 <feature> 13977 <rects> 13978 <_>7 5 6 6 -1.</_> 13979 <_>9 5 2 6 3.</_></rects> 13980 <tilted>0</tilted></feature> 13981 <threshold>0.0186022594571114</threshold> 13982 <left_val>-0.0429937802255154</left_val> 13983 <right_val>0.2970671951770783</right_val></_></_> 13984 <_> 13985 <!-- tree 51 --> 13986 <_> 13987 <!-- root node --> 13988 <feature> 13989 <rects> 13990 <_>14 13 6 5 -1.</_> 13991 <_>14 13 3 5 2.</_></rects> 13992 <tilted>0</tilted></feature> 13993 <threshold>-8.1051718443632126e-003</threshold> 13994 <left_val>0.1236922964453697</left_val> 13995 <right_val>-0.1324644982814789</right_val></_></_> 13996 <_> 13997 <!-- tree 52 --> 13998 <_> 13999 <!-- root node --> 14000 <feature> 14001 <rects> 14002 <_>6 10 6 8 -1.</_> 14003 <_>8 10 2 8 3.</_></rects> 14004 <tilted>0</tilted></feature> 14005 <threshold>-8.3215925842523575e-003</threshold> 14006 <left_val>-0.1902258992195129</left_val> 14007 <right_val>0.0891510173678398</right_val></_></_> 14008 <_> 14009 <!-- tree 53 --> 14010 <_> 14011 <!-- root node --> 14012 <feature> 14013 <rects> 14014 <_>10 10 6 6 -1.</_> 14015 <_>12 10 2 6 3.</_></rects> 14016 <tilted>0</tilted></feature> 14017 <threshold>3.1376329716295004e-003</threshold> 14018 <left_val>0.0415848195552826</left_val> 14019 <right_val>-0.0795528963208199</right_val></_></_> 14020 <_> 14021 <!-- tree 54 --> 14022 <_> 14023 <!-- root node --> 14024 <feature> 14025 <rects> 14026 <_>6 10 6 6 -1.</_> 14027 <_>8 10 2 6 3.</_></rects> 14028 <tilted>0</tilted></feature> 14029 <threshold>0.0165560692548752</threshold> 14030 <left_val>0.0449088588356972</left_val> 14031 <right_val>-0.3694730103015900</right_val></_></_> 14032 <_> 14033 <!-- tree 55 --> 14034 <_> 14035 <!-- root node --> 14036 <feature> 14037 <rects> 14038 <_>6 11 14 3 -1.</_> 14039 <_>6 11 7 3 2.</_></rects> 14040 <tilted>0</tilted></feature> 14041 <threshold>0.0299197304993868</threshold> 14042 <left_val>-0.0377202592790127</left_val> 14043 <right_val>0.2428061962127686</right_val></_></_> 14044 <_> 14045 <!-- tree 56 --> 14046 <_> 14047 <!-- root node --> 14048 <feature> 14049 <rects> 14050 <_>3 1 7 6 -1.</_> 14051 <_>3 3 7 2 3.</_></rects> 14052 <tilted>0</tilted></feature> 14053 <threshold>-0.0519882887601852</threshold> 14054 <left_val>-0.6937226057052612</left_val> 14055 <right_val>0.0189267806708813</right_val></_></_> 14056 <_> 14057 <!-- tree 57 --> 14058 <_> 14059 <!-- root node --> 14060 <feature> 14061 <rects> 14062 <_>11 8 6 10 -1.</_> 14063 <_>14 8 3 5 2.</_> 14064 <_>11 13 3 5 2.</_></rects> 14065 <tilted>0</tilted></feature> 14066 <threshold>0.0755281075835228</threshold> 14067 <left_val>-0.0126113500446081</left_val> 14068 <right_val>0.2573269009590149</right_val></_></_> 14069 <_> 14070 <!-- tree 58 --> 14071 <_> 14072 <!-- root node --> 14073 <feature> 14074 <rects> 14075 <_>8 5 3 13 -1.</_> 14076 <_>9 5 1 13 3.</_></rects> 14077 <tilted>0</tilted></feature> 14078 <threshold>-2.5031189434230328e-003</threshold> 14079 <left_val>0.1380728036165237</left_val> 14080 <right_val>-0.0916624665260315</right_val></_></_> 14081 <_> 14082 <!-- tree 59 --> 14083 <_> 14084 <!-- root node --> 14085 <feature> 14086 <rects> 14087 <_>11 0 6 4 -1.</_> 14088 <_>11 0 3 4 2.</_></rects> 14089 <tilted>1</tilted></feature> 14090 <threshold>-5.9646938461810350e-004</threshold> 14091 <left_val>-0.0636546164751053</left_val> 14092 <right_val>0.0259372703731060</right_val></_></_> 14093 <_> 14094 <!-- tree 60 --> 14095 <_> 14096 <!-- root node --> 14097 <feature> 14098 <rects> 14099 <_>11 0 4 6 -1.</_> 14100 <_>11 0 4 3 2.</_></rects> 14101 <tilted>1</tilted></feature> 14102 <threshold>0.0103193400427699</threshold> 14103 <left_val>0.0837918370962143</left_val> 14104 <right_val>-0.1740830987691879</right_val></_></_> 14105 <_> 14106 <!-- tree 61 --> 14107 <_> 14108 <!-- root node --> 14109 <feature> 14110 <rects> 14111 <_>14 3 2 12 -1.</_> 14112 <_>14 3 2 6 2.</_></rects> 14113 <tilted>1</tilted></feature> 14114 <threshold>9.3816686421632767e-003</threshold> 14115 <left_val>0.0278715305030346</left_val> 14116 <right_val>-0.1114158034324646</right_val></_></_> 14117 <_> 14118 <!-- tree 62 --> 14119 <_> 14120 <!-- root node --> 14121 <feature> 14122 <rects> 14123 <_>5 4 10 7 -1.</_> 14124 <_>10 4 5 7 2.</_></rects> 14125 <tilted>0</tilted></feature> 14126 <threshold>0.0100234104320407</threshold> 14127 <left_val>-0.0699662491679192</left_val> 14128 <right_val>0.2190064042806625</right_val></_></_> 14129 <_> 14130 <!-- tree 63 --> 14131 <_> 14132 <!-- root node --> 14133 <feature> 14134 <rects> 14135 <_>8 9 6 6 -1.</_> 14136 <_>10 9 2 6 3.</_></rects> 14137 <tilted>0</tilted></feature> 14138 <threshold>-8.3700200775638223e-004</threshold> 14139 <left_val>0.1009768992662430</left_val> 14140 <right_val>-0.1426136046648026</right_val></_></_> 14141 <_> 14142 <!-- tree 64 --> 14143 <_> 14144 <!-- root node --> 14145 <feature> 14146 <rects> 14147 <_>0 8 12 9 -1.</_> 14148 <_>4 11 4 3 9.</_></rects> 14149 <tilted>0</tilted></feature> 14150 <threshold>0.0224687103182077</threshold> 14151 <left_val>0.0940282121300697</left_val> 14152 <right_val>-0.1380742043256760</right_val></_></_> 14153 <_> 14154 <!-- tree 65 --> 14155 <_> 14156 <!-- root node --> 14157 <feature> 14158 <rects> 14159 <_>13 12 4 6 -1.</_> 14160 <_>13 15 4 3 2.</_></rects> 14161 <tilted>0</tilted></feature> 14162 <threshold>0.0391152091324329</threshold> 14163 <left_val>-5.3969398140907288e-003</left_val> 14164 <right_val>0.6518750786781311</right_val></_></_> 14165 <_> 14166 <!-- tree 66 --> 14167 <_> 14168 <!-- root node --> 14169 <feature> 14170 <rects> 14171 <_>5 12 5 6 -1.</_> 14172 <_>5 15 5 3 2.</_></rects> 14173 <tilted>0</tilted></feature> 14174 <threshold>-1.5670569846406579e-003</threshold> 14175 <left_val>0.0708860307931900</left_val> 14176 <right_val>-0.2001060992479324</right_val></_></_> 14177 <_> 14178 <!-- tree 67 --> 14179 <_> 14180 <!-- root node --> 14181 <feature> 14182 <rects> 14183 <_>12 4 2 11 -1.</_> 14184 <_>12 4 1 11 2.</_></rects> 14185 <tilted>1</tilted></feature> 14186 <threshold>6.0749892145395279e-003</threshold> 14187 <left_val>0.0353959389030933</left_val> 14188 <right_val>-0.0439185909926891</right_val></_></_> 14189 <_> 14190 <!-- tree 68 --> 14191 <_> 14192 <!-- root node --> 14193 <feature> 14194 <rects> 14195 <_>9 4 11 2 -1.</_> 14196 <_>9 4 11 1 2.</_></rects> 14197 <tilted>1</tilted></feature> 14198 <threshold>-0.0431668907403946</threshold> 14199 <left_val>0.5988184809684753</left_val> 14200 <right_val>-0.0234801806509495</right_val></_></_> 14201 <_> 14202 <!-- tree 69 --> 14203 <_> 14204 <!-- root node --> 14205 <feature> 14206 <rects> 14207 <_>11 8 6 10 -1.</_> 14208 <_>14 8 3 5 2.</_> 14209 <_>11 13 3 5 2.</_></rects> 14210 <tilted>0</tilted></feature> 14211 <threshold>2.3302088957279921e-003</threshold> 14212 <left_val>-0.0728186890482903</left_val> 14213 <right_val>0.0439402088522911</right_val></_></_> 14214 <_> 14215 <!-- tree 70 --> 14216 <_> 14217 <!-- root node --> 14218 <feature> 14219 <rects> 14220 <_>5 8 6 10 -1.</_> 14221 <_>5 8 3 5 2.</_> 14222 <_>8 13 3 5 2.</_></rects> 14223 <tilted>0</tilted></feature> 14224 <threshold>0.0552365891635418</threshold> 14225 <left_val>-0.0351179204881191</left_val> 14226 <right_val>0.3635514974594116</right_val></_></_> 14227 <_> 14228 <!-- tree 71 --> 14229 <_> 14230 <!-- root node --> 14231 <feature> 14232 <rects> 14233 <_>11 7 6 10 -1.</_> 14234 <_>14 7 3 5 2.</_> 14235 <_>11 12 3 5 2.</_></rects> 14236 <tilted>0</tilted></feature> 14237 <threshold>0.0277743991464376</threshold> 14238 <left_val>0.0300742909312248</left_val> 14239 <right_val>-0.1002677008509636</right_val></_></_> 14240 <_> 14241 <!-- tree 72 --> 14242 <_> 14243 <!-- root node --> 14244 <feature> 14245 <rects> 14246 <_>2 1 18 3 -1.</_> 14247 <_>2 2 18 1 3.</_></rects> 14248 <tilted>0</tilted></feature> 14249 <threshold>8.4784086793661118e-003</threshold> 14250 <left_val>-0.0562433004379272</left_val> 14251 <right_val>0.2171134948730469</right_val></_></_> 14252 <_> 14253 <!-- tree 73 --> 14254 <_> 14255 <!-- root node --> 14256 <feature> 14257 <rects> 14258 <_>16 4 6 7 -1.</_> 14259 <_>16 4 3 7 2.</_></rects> 14260 <tilted>0</tilted></feature> 14261 <threshold>0.0132693601772189</threshold> 14262 <left_val>0.0431383699178696</left_val> 14263 <right_val>-0.1642978042364121</right_val></_></_> 14264 <_> 14265 <!-- tree 74 --> 14266 <_> 14267 <!-- root node --> 14268 <feature> 14269 <rects> 14270 <_>5 7 6 10 -1.</_> 14271 <_>5 7 3 5 2.</_> 14272 <_>8 12 3 5 2.</_></rects> 14273 <tilted>0</tilted></feature> 14274 <threshold>-0.0340722799301147</threshold> 14275 <left_val>0.3941879868507385</left_val> 14276 <right_val>-0.0329146385192871</right_val></_></_> 14277 <_> 14278 <!-- tree 75 --> 14279 <_> 14280 <!-- root node --> 14281 <feature> 14282 <rects> 14283 <_>12 0 3 14 -1.</_> 14284 <_>12 7 3 7 2.</_></rects> 14285 <tilted>0</tilted></feature> 14286 <threshold>-5.9365970082581043e-003</threshold> 14287 <left_val>0.0648541226983070</left_val> 14288 <right_val>-0.0869715884327888</right_val></_></_> 14289 <_> 14290 <!-- tree 76 --> 14291 <_> 14292 <!-- root node --> 14293 <feature> 14294 <rects> 14295 <_>7 10 8 7 -1.</_> 14296 <_>11 10 4 7 2.</_></rects> 14297 <tilted>0</tilted></feature> 14298 <threshold>-5.1997308619320393e-003</threshold> 14299 <left_val>-0.2171074002981186</left_val> 14300 <right_val>0.0654410123825073</right_val></_></_> 14301 <_> 14302 <!-- tree 77 --> 14303 <_> 14304 <!-- root node --> 14305 <feature> 14306 <rects> 14307 <_>8 0 12 3 -1.</_> 14308 <_>8 1 12 1 3.</_></rects> 14309 <tilted>0</tilted></feature> 14310 <threshold>3.0441130511462688e-003</threshold> 14311 <left_val>-0.0471716411411762</left_val> 14312 <right_val>0.0946628674864769</right_val></_></_> 14313 <_> 14314 <!-- tree 78 --> 14315 <_> 14316 <!-- root node --> 14317 <feature> 14318 <rects> 14319 <_>3 0 13 4 -1.</_> 14320 <_>3 1 13 2 2.</_></rects> 14321 <tilted>0</tilted></feature> 14322 <threshold>-2.2375459957402200e-004</threshold> 14323 <left_val>0.1173989996314049</left_val> 14324 <right_val>-0.1045159026980400</right_val></_></_> 14325 <_> 14326 <!-- tree 79 --> 14327 <_> 14328 <!-- root node --> 14329 <feature> 14330 <rects> 14331 <_>7 11 12 4 -1.</_> 14332 <_>7 12 12 2 2.</_></rects> 14333 <tilted>0</tilted></feature> 14334 <threshold>0.0494941398501396</threshold> 14335 <left_val>9.9552040919661522e-003</left_val> 14336 <right_val>-0.8820502161979675</right_val></_></_> 14337 <_> 14338 <!-- tree 80 --> 14339 <_> 14340 <!-- root node --> 14341 <feature> 14342 <rects> 14343 <_>0 0 8 18 -1.</_> 14344 <_>4 0 4 18 2.</_></rects> 14345 <tilted>0</tilted></feature> 14346 <threshold>0.0771270319819450</threshold> 14347 <left_val>-0.0366387590765953</left_val> 14348 <right_val>0.3715699911117554</right_val></_></_> 14349 <_> 14350 <!-- tree 81 --> 14351 <_> 14352 <!-- root node --> 14353 <feature> 14354 <rects> 14355 <_>14 13 6 5 -1.</_> 14356 <_>14 13 3 5 2.</_></rects> 14357 <tilted>0</tilted></feature> 14358 <threshold>-3.7054829299449921e-003</threshold> 14359 <left_val>0.0462130792438984</left_val> 14360 <right_val>-0.0794984996318817</right_val></_></_> 14361 <_> 14362 <!-- tree 82 --> 14363 <_> 14364 <!-- root node --> 14365 <feature> 14366 <rects> 14367 <_>0 5 22 4 -1.</_> 14368 <_>11 5 11 4 2.</_></rects> 14369 <tilted>0</tilted></feature> 14370 <threshold>0.1365543007850647</threshold> 14371 <left_val>0.0208025798201561</left_val> 14372 <right_val>-0.6469228267669678</right_val></_></_> 14373 <_> 14374 <!-- tree 83 --> 14375 <_> 14376 <!-- root node --> 14377 <feature> 14378 <rects> 14379 <_>11 2 10 9 -1.</_> 14380 <_>11 5 10 3 3.</_></rects> 14381 <tilted>0</tilted></feature> 14382 <threshold>-0.1691939979791641</threshold> 14383 <left_val>-0.9014499187469482</left_val> 14384 <right_val>4.3158119660802186e-004</right_val></_></_> 14385 <_> 14386 <!-- tree 84 --> 14387 <_> 14388 <!-- root node --> 14389 <feature> 14390 <rects> 14391 <_>1 2 10 9 -1.</_> 14392 <_>1 5 10 3 3.</_></rects> 14393 <tilted>0</tilted></feature> 14394 <threshold>5.2525149658322334e-003</threshold> 14395 <left_val>0.0866862162947655</left_val> 14396 <right_val>-0.1575164049863815</right_val></_></_> 14397 <_> 14398 <!-- tree 85 --> 14399 <_> 14400 <!-- root node --> 14401 <feature> 14402 <rects> 14403 <_>18 6 2 12 -1.</_> 14404 <_>18 6 1 12 2.</_></rects> 14405 <tilted>0</tilted></feature> 14406 <threshold>0.0579522587358952</threshold> 14407 <left_val>1.3485850067809224e-003</left_val> 14408 <right_val>-1.0001620054244995</right_val></_></_> 14409 <_> 14410 <!-- tree 86 --> 14411 <_> 14412 <!-- root node --> 14413 <feature> 14414 <rects> 14415 <_>2 6 2 12 -1.</_> 14416 <_>3 6 1 12 2.</_></rects> 14417 <tilted>0</tilted></feature> 14418 <threshold>-0.0306814592331648</threshold> 14419 <left_val>-0.6734688878059387</left_val> 14420 <right_val>0.0177308097481728</right_val></_></_> 14421 <_> 14422 <!-- tree 87 --> 14423 <_> 14424 <!-- root node --> 14425 <feature> 14426 <rects> 14427 <_>15 6 4 12 -1.</_> 14428 <_>15 9 4 6 2.</_></rects> 14429 <tilted>0</tilted></feature> 14430 <threshold>-0.0285564009100199</threshold> 14431 <left_val>0.2491353005170822</left_val> 14432 <right_val>-0.0218073595315218</right_val></_></_> 14433 <_> 14434 <!-- tree 88 --> 14435 <_> 14436 <!-- root node --> 14437 <feature> 14438 <rects> 14439 <_>3 6 4 12 -1.</_> 14440 <_>3 9 4 6 2.</_></rects> 14441 <tilted>0</tilted></feature> 14442 <threshold>5.8311191387474537e-003</threshold> 14443 <left_val>0.1010965034365654</left_val> 14444 <right_val>-0.1258653998374939</right_val></_></_> 14445 <_> 14446 <!-- tree 89 --> 14447 <_> 14448 <!-- root node --> 14449 <feature> 14450 <rects> 14451 <_>14 13 6 5 -1.</_> 14452 <_>14 13 3 5 2.</_></rects> 14453 <tilted>0</tilted></feature> 14454 <threshold>2.8870739042758942e-003</threshold> 14455 <left_val>-0.0454622805118561</left_val> 14456 <right_val>0.1479419022798538</right_val></_></_> 14457 <_> 14458 <!-- tree 90 --> 14459 <_> 14460 <!-- root node --> 14461 <feature> 14462 <rects> 14463 <_>2 13 6 5 -1.</_> 14464 <_>5 13 3 5 2.</_></rects> 14465 <tilted>0</tilted></feature> 14466 <threshold>-5.3575891070067883e-003</threshold> 14467 <left_val>0.1084545999765396</left_val> 14468 <right_val>-0.2063605934381485</right_val></_></_> 14469 <_> 14470 <!-- tree 91 --> 14471 <_> 14472 <!-- root node --> 14473 <feature> 14474 <rects> 14475 <_>8 12 12 5 -1.</_> 14476 <_>11 12 6 5 2.</_></rects> 14477 <tilted>0</tilted></feature> 14478 <threshold>0.0208518300205469</threshold> 14479 <left_val>-0.0256414301693439</left_val> 14480 <right_val>0.1200079992413521</right_val></_></_> 14481 <_> 14482 <!-- tree 92 --> 14483 <_> 14484 <!-- root node --> 14485 <feature> 14486 <rects> 14487 <_>2 12 12 5 -1.</_> 14488 <_>5 12 6 5 2.</_></rects> 14489 <tilted>0</tilted></feature> 14490 <threshold>2.9372319113463163e-003</threshold> 14491 <left_val>-0.0588329806923866</left_val> 14492 <right_val>0.2396713942289352</right_val></_></_> 14493 <_> 14494 <!-- tree 93 --> 14495 <_> 14496 <!-- root node --> 14497 <feature> 14498 <rects> 14499 <_>12 12 6 6 -1.</_> 14500 <_>12 14 6 2 3.</_></rects> 14501 <tilted>0</tilted></feature> 14502 <threshold>0.0101090697571635</threshold> 14503 <left_val>0.0447247400879860</left_val> 14504 <right_val>-0.2502495944499970</right_val></_></_> 14505 <_> 14506 <!-- tree 94 --> 14507 <_> 14508 <!-- root node --> 14509 <feature> 14510 <rects> 14511 <_>0 10 16 8 -1.</_> 14512 <_>4 10 8 8 2.</_></rects> 14513 <tilted>0</tilted></feature> 14514 <threshold>0.0620026402175426</threshold> 14515 <left_val>0.0312366802245378</left_val> 14516 <right_val>-0.3877547979354858</right_val></_></_> 14517 <_> 14518 <!-- tree 95 --> 14519 <_> 14520 <!-- root node --> 14521 <feature> 14522 <rects> 14523 <_>13 1 8 8 -1.</_> 14524 <_>15 1 4 8 2.</_></rects> 14525 <tilted>0</tilted></feature> 14526 <threshold>1.7331680282950401e-003</threshold> 14527 <left_val>-0.0766425207257271</left_val> 14528 <right_val>0.0587383098900318</right_val></_></_> 14529 <_> 14530 <!-- tree 96 --> 14531 <_> 14532 <!-- root node --> 14533 <feature> 14534 <rects> 14535 <_>1 1 8 8 -1.</_> 14536 <_>3 1 4 8 2.</_></rects> 14537 <tilted>0</tilted></feature> 14538 <threshold>-0.0466489009559155</threshold> 14539 <left_val>0.4780037105083466</left_val> 14540 <right_val>-0.0282232593744993</right_val></_></_> 14541 <_> 14542 <!-- tree 97 --> 14543 <_> 14544 <!-- root node --> 14545 <feature> 14546 <rects> 14547 <_>14 8 3 8 -1.</_> 14548 <_>14 12 3 4 2.</_></rects> 14549 <tilted>0</tilted></feature> 14550 <threshold>-0.0405850112438202</threshold> 14551 <left_val>0.1959132999181747</left_val> 14552 <right_val>-0.0296085495501757</right_val></_></_> 14553 <_> 14554 <!-- tree 98 --> 14555 <_> 14556 <!-- root node --> 14557 <feature> 14558 <rects> 14559 <_>10 4 7 6 -1.</_> 14560 <_>10 4 7 3 2.</_></rects> 14561 <tilted>1</tilted></feature> 14562 <threshold>0.0142973596230149</threshold> 14563 <left_val>0.0804227814078331</left_val> 14564 <right_val>-0.2002439945936203</right_val></_></_> 14565 <_> 14566 <!-- tree 99 --> 14567 <_> 14568 <!-- root node --> 14569 <feature> 14570 <rects> 14571 <_>9 10 4 8 -1.</_> 14572 <_>9 14 4 4 2.</_></rects> 14573 <tilted>0</tilted></feature> 14574 <threshold>-1.4215649571269751e-003</threshold> 14575 <left_val>0.0976939424872398</left_val> 14576 <right_val>-0.1309012025594711</right_val></_></_> 14577 <_> 14578 <!-- tree 100 --> 14579 <_> 14580 <!-- root node --> 14581 <feature> 14582 <rects> 14583 <_>5 8 3 8 -1.</_> 14584 <_>5 12 3 4 2.</_></rects> 14585 <tilted>0</tilted></feature> 14586 <threshold>5.2683628164231777e-003</threshold> 14587 <left_val>-0.0583763718605042</left_val> 14588 <right_val>0.2437804043292999</right_val></_></_></trees> 14589 <stage_threshold>-0.6976336836814880</stage_threshold> 14590 <parent>18</parent> 14591 <next>-1</next></_> 14592 <_> 14593 <!-- stage 20 --> 14594 <trees> 14595 <_> 14596 <!-- tree 0 --> 14597 <_> 14598 <!-- root node --> 14599 <feature> 14600 <rects> 14601 <_>6 9 4 9 -1.</_> 14602 <_>6 12 4 3 3.</_></rects> 14603 <tilted>0</tilted></feature> 14604 <threshold>-2.6198190171271563e-003</threshold> 14605 <left_val>0.1867370009422302</left_val> 14606 <right_val>-0.1912652999162674</right_val></_></_> 14607 <_> 14608 <!-- tree 1 --> 14609 <_> 14610 <!-- root node --> 14611 <feature> 14612 <rects> 14613 <_>6 3 16 4 -1.</_> 14614 <_>14 3 8 2 2.</_> 14615 <_>6 5 8 2 2.</_></rects> 14616 <tilted>0</tilted></feature> 14617 <threshold>-0.0286290999501944</threshold> 14618 <left_val>0.1288710981607437</left_val> 14619 <right_val>-0.0261868499219418</right_val></_></_> 14620 <_> 14621 <!-- tree 2 --> 14622 <_> 14623 <!-- root node --> 14624 <feature> 14625 <rects> 14626 <_>1 3 20 4 -1.</_> 14627 <_>1 3 10 2 2.</_> 14628 <_>11 5 10 2 2.</_></rects> 14629 <tilted>0</tilted></feature> 14630 <threshold>7.1718869730830193e-003</threshold> 14631 <left_val>0.0881585925817490</left_val> 14632 <right_val>-0.2032734006643295</right_val></_></_> 14633 <_> 14634 <!-- tree 3 --> 14635 <_> 14636 <!-- root node --> 14637 <feature> 14638 <rects> 14639 <_>9 5 6 12 -1.</_> 14640 <_>12 5 3 6 2.</_> 14641 <_>9 11 3 6 2.</_></rects> 14642 <tilted>0</tilted></feature> 14643 <threshold>0.0116410404443741</threshold> 14644 <left_val>-0.0210582502186298</left_val> 14645 <right_val>0.1759178936481476</right_val></_></_> 14646 <_> 14647 <!-- tree 4 --> 14648 <_> 14649 <!-- root node --> 14650 <feature> 14651 <rects> 14652 <_>1 6 2 12 -1.</_> 14653 <_>2 6 1 12 2.</_></rects> 14654 <tilted>0</tilted></feature> 14655 <threshold>5.6764329783618450e-003</threshold> 14656 <left_val>0.0499411597847939</left_val> 14657 <right_val>-0.2732929885387421</right_val></_></_> 14658 <_> 14659 <!-- tree 5 --> 14660 <_> 14661 <!-- root node --> 14662 <feature> 14663 <rects> 14664 <_>19 0 2 16 -1.</_> 14665 <_>19 0 1 16 2.</_></rects> 14666 <tilted>0</tilted></feature> 14667 <threshold>-0.0443926900625229</threshold> 14668 <left_val>0.5676612854003906</left_val> 14669 <right_val>-0.0186747796833515</right_val></_></_> 14670 <_> 14671 <!-- tree 6 --> 14672 <_> 14673 <!-- root node --> 14674 <feature> 14675 <rects> 14676 <_>1 0 2 16 -1.</_> 14677 <_>2 0 1 16 2.</_></rects> 14678 <tilted>0</tilted></feature> 14679 <threshold>1.3367610517889261e-004</threshold> 14680 <left_val>-0.1299030929803848</left_val> 14681 <right_val>0.1354229003190994</right_val></_></_> 14682 <_> 14683 <!-- tree 7 --> 14684 <_> 14685 <!-- root node --> 14686 <feature> 14687 <rects> 14688 <_>13 5 5 9 -1.</_> 14689 <_>13 8 5 3 3.</_></rects> 14690 <tilted>0</tilted></feature> 14691 <threshold>-0.0441119484603405</threshold> 14692 <left_val>0.2268483042716980</left_val> 14693 <right_val>-0.0133183998987079</right_val></_></_> 14694 <_> 14695 <!-- tree 8 --> 14696 <_> 14697 <!-- root node --> 14698 <feature> 14699 <rects> 14700 <_>5 16 12 2 -1.</_> 14701 <_>5 17 12 1 2.</_></rects> 14702 <tilted>0</tilted></feature> 14703 <threshold>2.9443150851875544e-003</threshold> 14704 <left_val>0.0431614592671394</left_val> 14705 <right_val>-0.2931117117404938</right_val></_></_> 14706 <_> 14707 <!-- tree 9 --> 14708 <_> 14709 <!-- root node --> 14710 <feature> 14711 <rects> 14712 <_>5 14 12 4 -1.</_> 14713 <_>5 15 12 2 2.</_></rects> 14714 <tilted>0</tilted></feature> 14715 <threshold>3.5300010349601507e-003</threshold> 14716 <left_val>0.0771937221288681</left_val> 14717 <right_val>-0.2632498145103455</right_val></_></_> 14718 <_> 14719 <!-- tree 10 --> 14720 <_> 14721 <!-- root node --> 14722 <feature> 14723 <rects> 14724 <_>5 3 12 9 -1.</_> 14725 <_>9 6 4 3 9.</_></rects> 14726 <tilted>0</tilted></feature> 14727 <threshold>0.1011921018362045</threshold> 14728 <left_val>-0.0549242608249187</left_val> 14729 <right_val>0.3243021965026856</right_val></_></_> 14730 <_> 14731 <!-- tree 11 --> 14732 <_> 14733 <!-- root node --> 14734 <feature> 14735 <rects> 14736 <_>7 5 13 2 -1.</_> 14737 <_>7 6 13 1 2.</_></rects> 14738 <tilted>0</tilted></feature> 14739 <threshold>-0.0223485697060823</threshold> 14740 <left_val>0.3080311119556427</left_val> 14741 <right_val>-0.0225184895098209</right_val></_></_> 14742 <_> 14743 <!-- tree 12 --> 14744 <_> 14745 <!-- root node --> 14746 <feature> 14747 <rects> 14748 <_>8 1 12 2 -1.</_> 14749 <_>8 1 12 1 2.</_></rects> 14750 <tilted>1</tilted></feature> 14751 <threshold>6.4755380153656006e-003</threshold> 14752 <left_val>-0.1204577013850212</left_val> 14753 <right_val>0.1318611055612564</right_val></_></_> 14754 <_> 14755 <!-- tree 13 --> 14756 <_> 14757 <!-- root node --> 14758 <feature> 14759 <rects> 14760 <_>0 4 22 8 -1.</_> 14761 <_>11 4 11 4 2.</_> 14762 <_>0 8 11 4 2.</_></rects> 14763 <tilted>0</tilted></feature> 14764 <threshold>0.0109043195843697</threshold> 14765 <left_val>0.1021798998117447</left_val> 14766 <right_val>-0.1830884963274002</right_val></_></_> 14767 <_> 14768 <!-- tree 14 --> 14769 <_> 14770 <!-- root node --> 14771 <feature> 14772 <rects> 14773 <_>2 3 6 4 -1.</_> 14774 <_>5 3 3 4 2.</_></rects> 14775 <tilted>0</tilted></feature> 14776 <threshold>-0.0112566296011209</threshold> 14777 <left_val>-0.2918663918972015</left_val> 14778 <right_val>0.0554912202060223</right_val></_></_> 14779 <_> 14780 <!-- tree 15 --> 14781 <_> 14782 <!-- root node --> 14783 <feature> 14784 <rects> 14785 <_>7 11 15 3 -1.</_> 14786 <_>7 12 15 1 3.</_></rects> 14787 <tilted>0</tilted></feature> 14788 <threshold>3.6791800521314144e-003</threshold> 14789 <left_val>-0.0506146885454655</left_val> 14790 <right_val>0.0826633125543594</right_val></_></_> 14791 <_> 14792 <!-- tree 16 --> 14793 <_> 14794 <!-- root node --> 14795 <feature> 14796 <rects> 14797 <_>5 7 6 7 -1.</_> 14798 <_>8 7 3 7 2.</_></rects> 14799 <tilted>0</tilted></feature> 14800 <threshold>-0.0917212888598442</threshold> 14801 <left_val>-0.7712755203247070</left_val> 14802 <right_val>0.0193129591643810</right_val></_></_> 14803 <_> 14804 <!-- tree 17 --> 14805 <_> 14806 <!-- root node --> 14807 <feature> 14808 <rects> 14809 <_>7 12 12 4 -1.</_> 14810 <_>13 12 6 2 2.</_> 14811 <_>7 14 6 2 2.</_></rects> 14812 <tilted>0</tilted></feature> 14813 <threshold>0.0400998890399933</threshold> 14814 <left_val>7.8663527965545654e-003</left_val> 14815 <right_val>-0.8130282759666443</right_val></_></_> 14816 <_> 14817 <!-- tree 18 --> 14818 <_> 14819 <!-- root node --> 14820 <feature> 14821 <rects> 14822 <_>0 11 16 2 -1.</_> 14823 <_>8 11 8 2 2.</_></rects> 14824 <tilted>0</tilted></feature> 14825 <threshold>-0.0549564287066460</threshold> 14826 <left_val>0.2905952036380768</left_val> 14827 <right_val>-0.0598255805671215</right_val></_></_> 14828 <_> 14829 <!-- tree 19 --> 14830 <_> 14831 <!-- root node --> 14832 <feature> 14833 <rects> 14834 <_>18 3 4 10 -1.</_> 14835 <_>18 3 4 5 2.</_></rects> 14836 <tilted>1</tilted></feature> 14837 <threshold>0.2480465024709702</threshold> 14838 <left_val>0.0116651896387339</left_val> 14839 <right_val>-0.6912195086479187</right_val></_></_> 14840 <_> 14841 <!-- tree 20 --> 14842 <_> 14843 <!-- root node --> 14844 <feature> 14845 <rects> 14846 <_>2 2 17 3 -1.</_> 14847 <_>2 3 17 1 3.</_></rects> 14848 <tilted>0</tilted></feature> 14849 <threshold>-0.0342848002910614</threshold> 14850 <left_val>0.4535839855670929</left_val> 14851 <right_val>-0.0320712514221668</right_val></_></_> 14852 <_> 14853 <!-- tree 21 --> 14854 <_> 14855 <!-- root node --> 14856 <feature> 14857 <rects> 14858 <_>10 14 12 4 -1.</_> 14859 <_>16 14 6 2 2.</_> 14860 <_>10 16 6 2 2.</_></rects> 14861 <tilted>0</tilted></feature> 14862 <threshold>0.0254392307251692</threshold> 14863 <left_val>0.0194671507924795</left_val> 14864 <right_val>-0.3792799115180969</right_val></_></_> 14865 <_> 14866 <!-- tree 22 --> 14867 <_> 14868 <!-- root node --> 14869 <feature> 14870 <rects> 14871 <_>1 9 11 6 -1.</_> 14872 <_>1 11 11 2 3.</_></rects> 14873 <tilted>0</tilted></feature> 14874 <threshold>-0.0127206603065133</threshold> 14875 <left_val>-0.2121143043041229</left_val> 14876 <right_val>0.0615338310599327</right_val></_></_> 14877 <_> 14878 <!-- tree 23 --> 14879 <_> 14880 <!-- root node --> 14881 <feature> 14882 <rects> 14883 <_>4 9 18 3 -1.</_> 14884 <_>4 10 18 1 3.</_></rects> 14885 <tilted>0</tilted></feature> 14886 <threshold>0.0108310002833605</threshold> 14887 <left_val>-0.0514436811208725</left_val> 14888 <right_val>0.1694768965244293</right_val></_></_> 14889 <_> 14890 <!-- tree 24 --> 14891 <_> 14892 <!-- root node --> 14893 <feature> 14894 <rects> 14895 <_>0 9 18 3 -1.</_> 14896 <_>0 10 18 1 3.</_></rects> 14897 <tilted>0</tilted></feature> 14898 <threshold>-0.0219315700232983</threshold> 14899 <left_val>0.2483938932418823</left_val> 14900 <right_val>-0.0566363595426083</right_val></_></_> 14901 <_> 14902 <!-- tree 25 --> 14903 <_> 14904 <!-- root node --> 14905 <feature> 14906 <rects> 14907 <_>11 5 11 12 -1.</_> 14908 <_>11 11 11 6 2.</_></rects> 14909 <tilted>0</tilted></feature> 14910 <threshold>0.2939789891242981</threshold> 14911 <left_val>0.0114115299656987</left_val> 14912 <right_val>-0.9369606971740723</right_val></_></_> 14913 <_> 14914 <!-- tree 26 --> 14915 <_> 14916 <!-- root node --> 14917 <feature> 14918 <rects> 14919 <_>5 12 6 6 -1.</_> 14920 <_>5 14 6 2 3.</_></rects> 14921 <tilted>0</tilted></feature> 14922 <threshold>-0.0163422599434853</threshold> 14923 <left_val>-0.3158954977989197</left_val> 14924 <right_val>0.0443719811737537</right_val></_></_> 14925 <_> 14926 <!-- tree 27 --> 14927 <_> 14928 <!-- root node --> 14929 <feature> 14930 <rects> 14931 <_>14 10 6 8 -1.</_> 14932 <_>17 10 3 4 2.</_> 14933 <_>14 14 3 4 2.</_></rects> 14934 <tilted>0</tilted></feature> 14935 <threshold>-0.0442804992198944</threshold> 14936 <left_val>0.2033734023571014</left_val> 14937 <right_val>-0.0214623194187880</right_val></_></_> 14938 <_> 14939 <!-- tree 28 --> 14940 <_> 14941 <!-- root node --> 14942 <feature> 14943 <rects> 14944 <_>0 5 11 12 -1.</_> 14945 <_>0 11 11 6 2.</_></rects> 14946 <tilted>0</tilted></feature> 14947 <threshold>0.2650330960750580</threshold> 14948 <left_val>0.0116331502795219</left_val> 14949 <right_val>-0.9122017025947571</right_val></_></_> 14950 <_> 14951 <!-- tree 29 --> 14952 <_> 14953 <!-- root node --> 14954 <feature> 14955 <rects> 14956 <_>15 3 2 12 -1.</_> 14957 <_>15 3 2 6 2.</_></rects> 14958 <tilted>1</tilted></feature> 14959 <threshold>-0.0763784795999527</threshold> 14960 <left_val>0.1868827044963837</left_val> 14961 <right_val>-0.0196720808744431</right_val></_></_> 14962 <_> 14963 <!-- tree 30 --> 14964 <_> 14965 <!-- root node --> 14966 <feature> 14967 <rects> 14968 <_>3 0 12 4 -1.</_> 14969 <_>3 0 6 2 2.</_> 14970 <_>9 2 6 2 2.</_></rects> 14971 <tilted>0</tilted></feature> 14972 <threshold>-0.0100615704432130</threshold> 14973 <left_val>-0.2646203935146332</left_val> 14974 <right_val>0.0466202609241009</right_val></_></_> 14975 <_> 14976 <!-- tree 31 --> 14977 <_> 14978 <!-- root node --> 14979 <feature> 14980 <rects> 14981 <_>14 10 6 8 -1.</_> 14982 <_>17 10 3 4 2.</_> 14983 <_>14 14 3 4 2.</_></rects> 14984 <tilted>0</tilted></feature> 14985 <threshold>0.0249217301607132</threshold> 14986 <left_val>-0.0191313903778791</left_val> 14987 <right_val>0.2015450000762940</right_val></_></_> 14988 <_> 14989 <!-- tree 32 --> 14990 <_> 14991 <!-- root node --> 14992 <feature> 14993 <rects> 14994 <_>5 12 8 6 -1.</_> 14995 <_>5 12 4 3 2.</_> 14996 <_>9 15 4 3 2.</_></rects> 14997 <tilted>0</tilted></feature> 14998 <threshold>1.5098409676284064e-005</threshold> 14999 <left_val>-0.1624169051647186</left_val> 15000 <right_val>0.0761839672923088</right_val></_></_> 15001 <_> 15002 <!-- tree 33 --> 15003 <_> 15004 <!-- root node --> 15005 <feature> 15006 <rects> 15007 <_>8 11 10 5 -1.</_> 15008 <_>8 11 5 5 2.</_></rects> 15009 <tilted>0</tilted></feature> 15010 <threshold>-0.1008191034197807</threshold> 15011 <left_val>-1.</left_val> 15012 <right_val>7.4751500505954027e-004</right_val></_></_> 15013 <_> 15014 <!-- tree 34 --> 15015 <_> 15016 <!-- root node --> 15017 <feature> 15018 <rects> 15019 <_>4 11 10 5 -1.</_> 15020 <_>9 11 5 5 2.</_></rects> 15021 <tilted>0</tilted></feature> 15022 <threshold>0.0650585964322090</threshold> 15023 <left_val>-0.0404686406254768</left_val> 15024 <right_val>0.3516007959842682</right_val></_></_> 15025 <_> 15026 <!-- tree 35 --> 15027 <_> 15028 <!-- root node --> 15029 <feature> 15030 <rects> 15031 <_>6 6 12 12 -1.</_> 15032 <_>12 6 6 6 2.</_> 15033 <_>6 12 6 6 2.</_></rects> 15034 <tilted>0</tilted></feature> 15035 <threshold>-0.1219023987650871</threshold> 15036 <left_val>-0.5362455844879150</left_val> 15037 <right_val>0.0186370201408863</right_val></_></_> 15038 <_> 15039 <!-- tree 36 --> 15040 <_> 15041 <!-- root node --> 15042 <feature> 15043 <rects> 15044 <_>7 10 6 8 -1.</_> 15045 <_>7 12 6 4 2.</_></rects> 15046 <tilted>0</tilted></feature> 15047 <threshold>-9.8520738538354635e-004</threshold> 15048 <left_val>0.1139819994568825</left_val> 15049 <right_val>-0.1129883006215096</right_val></_></_> 15050 <_> 15051 <!-- tree 37 --> 15052 <_> 15053 <!-- root node --> 15054 <feature> 15055 <rects> 15056 <_>7 8 15 10 -1.</_> 15057 <_>7 13 15 5 2.</_></rects> 15058 <tilted>0</tilted></feature> 15059 <threshold>-0.2530061900615692</threshold> 15060 <left_val>-0.4337590932846069</left_val> 15061 <right_val>0.0123674003407359</right_val></_></_> 15062 <_> 15063 <!-- tree 38 --> 15064 <_> 15065 <!-- root node --> 15066 <feature> 15067 <rects> 15068 <_>0 0 22 4 -1.</_> 15069 <_>0 0 11 2 2.</_> 15070 <_>11 2 11 2 2.</_></rects> 15071 <tilted>0</tilted></feature> 15072 <threshold>7.5246659107506275e-003</threshold> 15073 <left_val>0.0673554763197899</left_val> 15074 <right_val>-0.1858396977186203</right_val></_></_> 15075 <_> 15076 <!-- tree 39 --> 15077 <_> 15078 <!-- root node --> 15079 <feature> 15080 <rects> 15081 <_>10 3 12 3 -1.</_> 15082 <_>10 4 12 1 3.</_></rects> 15083 <tilted>0</tilted></feature> 15084 <threshold>4.8102210275828838e-003</threshold> 15085 <left_val>-0.0658700615167618</left_val> 15086 <right_val>0.1284891068935394</right_val></_></_> 15087 <_> 15088 <!-- tree 40 --> 15089 <_> 15090 <!-- root node --> 15091 <feature> 15092 <rects> 15093 <_>0 3 13 3 -1.</_> 15094 <_>0 4 13 1 3.</_></rects> 15095 <tilted>0</tilted></feature> 15096 <threshold>-1.4562129508703947e-003</threshold> 15097 <left_val>0.1811068952083588</left_val> 15098 <right_val>-0.1124845966696739</right_val></_></_> 15099 <_> 15100 <!-- tree 41 --> 15101 <_> 15102 <!-- root node --> 15103 <feature> 15104 <rects> 15105 <_>9 3 4 12 -1.</_> 15106 <_>9 6 4 6 2.</_></rects> 15107 <tilted>0</tilted></feature> 15108 <threshold>-5.6546321138739586e-003</threshold> 15109 <left_val>0.1036984026432037</left_val> 15110 <right_val>-0.1411557048559189</right_val></_></_> 15111 <_> 15112 <!-- tree 42 --> 15113 <_> 15114 <!-- root node --> 15115 <feature> 15116 <rects> 15117 <_>4 5 9 6 -1.</_> 15118 <_>4 8 9 3 2.</_></rects> 15119 <tilted>0</tilted></feature> 15120 <threshold>-0.0319512896239758</threshold> 15121 <left_val>-0.3297160863876343</left_val> 15122 <right_val>0.0482818111777306</right_val></_></_> 15123 <_> 15124 <!-- tree 43 --> 15125 <_> 15126 <!-- root node --> 15127 <feature> 15128 <rects> 15129 <_>11 6 2 9 -1.</_> 15130 <_>11 6 1 9 2.</_></rects> 15131 <tilted>1</tilted></feature> 15132 <threshold>0.0421903803944588</threshold> 15133 <left_val>-0.0116448104381561</left_val> 15134 <right_val>0.1370130032300949</right_val></_></_> 15135 <_> 15136 <!-- tree 44 --> 15137 <_> 15138 <!-- root node --> 15139 <feature> 15140 <rects> 15141 <_>9 2 4 8 -1.</_> 15142 <_>9 6 4 4 2.</_></rects> 15143 <tilted>0</tilted></feature> 15144 <threshold>0.0126066599041224</threshold> 15145 <left_val>-0.0603958815336227</left_val> 15146 <right_val>0.2421005964279175</right_val></_></_> 15147 <_> 15148 <!-- tree 45 --> 15149 <_> 15150 <!-- root node --> 15151 <feature> 15152 <rects> 15153 <_>7 0 8 10 -1.</_> 15154 <_>7 5 8 5 2.</_></rects> 15155 <tilted>0</tilted></feature> 15156 <threshold>-6.0083861462771893e-003</threshold> 15157 <left_val>0.0956776067614555</left_val> 15158 <right_val>-0.2024825960397720</right_val></_></_> 15159 <_> 15160 <!-- tree 46 --> 15161 <_> 15162 <!-- root node --> 15163 <feature> 15164 <rects> 15165 <_>11 5 9 2 -1.</_> 15166 <_>11 5 9 1 2.</_></rects> 15167 <tilted>1</tilted></feature> 15168 <threshold>0.0406763888895512</threshold> 15169 <left_val>-0.0385064296424389</left_val> 15170 <right_val>0.3982402980327606</right_val></_></_> 15171 <_> 15172 <!-- tree 47 --> 15173 <_> 15174 <!-- root node --> 15175 <feature> 15176 <rects> 15177 <_>17 0 3 11 -1.</_> 15178 <_>18 1 1 11 3.</_></rects> 15179 <tilted>1</tilted></feature> 15180 <threshold>-0.0130102196708322</threshold> 15181 <left_val>-0.0778704434633255</left_val> 15182 <right_val>0.0325333103537560</right_val></_></_> 15183 <_> 15184 <!-- tree 48 --> 15185 <_> 15186 <!-- root node --> 15187 <feature> 15188 <rects> 15189 <_>5 0 11 3 -1.</_> 15190 <_>4 1 11 1 3.</_></rects> 15191 <tilted>1</tilted></feature> 15192 <threshold>-0.0566469691693783</threshold> 15193 <left_val>-0.9529355168342590</left_val> 15194 <right_val>0.0173756591975689</right_val></_></_> 15195 <_> 15196 <!-- tree 49 --> 15197 <_> 15198 <!-- root node --> 15199 <feature> 15200 <rects> 15201 <_>9 6 4 7 -1.</_> 15202 <_>9 6 2 7 2.</_></rects> 15203 <tilted>0</tilted></feature> 15204 <threshold>0.0373079702258110</threshold> 15205 <left_val>-0.0332614406943321</left_val> 15206 <right_val>0.4685631990432739</right_val></_></_> 15207 <_> 15208 <!-- tree 50 --> 15209 <_> 15210 <!-- root node --> 15211 <feature> 15212 <rects> 15213 <_>3 11 6 6 -1.</_> 15214 <_>3 13 6 2 3.</_></rects> 15215 <tilted>0</tilted></feature> 15216 <threshold>-0.0279863793402910</threshold> 15217 <left_val>-0.4635669887065888</left_val> 15218 <right_val>0.0285240299999714</right_val></_></_> 15219 <_> 15220 <!-- tree 51 --> 15221 <_> 15222 <!-- root node --> 15223 <feature> 15224 <rects> 15225 <_>6 10 16 8 -1.</_> 15226 <_>6 12 16 4 2.</_></rects> 15227 <tilted>0</tilted></feature> 15228 <threshold>-0.0750148966908455</threshold> 15229 <left_val>0.2451989948749542</left_val> 15230 <right_val>-0.0158301591873169</right_val></_></_> 15231 <_> 15232 <!-- tree 52 --> 15233 <_> 15234 <!-- root node --> 15235 <feature> 15236 <rects> 15237 <_>11 6 9 3 -1.</_> 15238 <_>10 7 9 1 3.</_></rects> 15239 <tilted>1</tilted></feature> 15240 <threshold>0.0276730805635452</threshold> 15241 <left_val>-0.0364583581686020</left_val> 15242 <right_val>0.3721557855606079</right_val></_></_> 15243 <_> 15244 <!-- tree 53 --> 15245 <_> 15246 <!-- root node --> 15247 <feature> 15248 <rects> 15249 <_>12 11 8 6 -1.</_> 15250 <_>12 13 8 2 3.</_></rects> 15251 <tilted>0</tilted></feature> 15252 <threshold>-0.0173129606992006</threshold> 15253 <left_val>-0.2211765944957733</left_val> 15254 <right_val>0.0432326197624207</right_val></_></_> 15255 <_> 15256 <!-- tree 54 --> 15257 <_> 15258 <!-- root node --> 15259 <feature> 15260 <rects> 15261 <_>0 10 16 8 -1.</_> 15262 <_>0 12 16 4 2.</_></rects> 15263 <tilted>0</tilted></feature> 15264 <threshold>-0.0588939487934113</threshold> 15265 <left_val>0.3972674906253815</left_val> 15266 <right_val>-0.0376325286924839</right_val></_></_> 15267 <_> 15268 <!-- tree 55 --> 15269 <_> 15270 <!-- root node --> 15271 <feature> 15272 <rects> 15273 <_>10 14 12 4 -1.</_> 15274 <_>16 14 6 2 2.</_> 15275 <_>10 16 6 2 2.</_></rects> 15276 <tilted>0</tilted></feature> 15277 <threshold>0.0131936799734831</threshold> 15278 <left_val>0.0248577296733856</left_val> 15279 <right_val>-0.1751435995101929</right_val></_></_> 15280 <_> 15281 <!-- tree 56 --> 15282 <_> 15283 <!-- root node --> 15284 <feature> 15285 <rects> 15286 <_>2 11 8 6 -1.</_> 15287 <_>2 13 8 2 3.</_></rects> 15288 <tilted>0</tilted></feature> 15289 <threshold>0.0382306799292564</threshold> 15290 <left_val>0.0296351108700037</left_val> 15291 <right_val>-0.4345274865627289</right_val></_></_> 15292 <_> 15293 <!-- tree 57 --> 15294 <_> 15295 <!-- root node --> 15296 <feature> 15297 <rects> 15298 <_>6 11 16 4 -1.</_> 15299 <_>14 11 8 2 2.</_> 15300 <_>6 13 8 2 2.</_></rects> 15301 <tilted>0</tilted></feature> 15302 <threshold>0.0168453995138407</threshold> 15303 <left_val>0.0393387489020824</left_val> 15304 <right_val>-0.2376572042703629</right_val></_></_> 15305 <_> 15306 <!-- tree 58 --> 15307 <_> 15308 <!-- root node --> 15309 <feature> 15310 <rects> 15311 <_>0 11 22 6 -1.</_> 15312 <_>11 11 11 6 2.</_></rects> 15313 <tilted>0</tilted></feature> 15314 <threshold>-0.1155946031212807</threshold> 15315 <left_val>-0.4000687897205353</left_val> 15316 <right_val>0.0323905386030674</right_val></_></_> 15317 <_> 15318 <!-- tree 59 --> 15319 <_> 15320 <!-- root node --> 15321 <feature> 15322 <rects> 15323 <_>14 10 6 8 -1.</_> 15324 <_>17 10 3 4 2.</_> 15325 <_>14 14 3 4 2.</_></rects> 15326 <tilted>0</tilted></feature> 15327 <threshold>-1.7385910032317042e-003</threshold> 15328 <left_val>0.0485458187758923</left_val> 15329 <right_val>-0.0614746809005737</right_val></_></_> 15330 <_> 15331 <!-- tree 60 --> 15332 <_> 15333 <!-- root node --> 15334 <feature> 15335 <rects> 15336 <_>2 10 6 8 -1.</_> 15337 <_>2 10 3 4 2.</_> 15338 <_>5 14 3 4 2.</_></rects> 15339 <tilted>0</tilted></feature> 15340 <threshold>-0.0336976684629917</threshold> 15341 <left_val>0.2434500008821487</left_val> 15342 <right_val>-0.0655046030879021</right_val></_></_> 15343 <_> 15344 <!-- tree 61 --> 15345 <_> 15346 <!-- root node --> 15347 <feature> 15348 <rects> 15349 <_>6 4 15 12 -1.</_> 15350 <_>11 8 5 4 9.</_></rects> 15351 <tilted>0</tilted></feature> 15352 <threshold>-0.3472279906272888</threshold> 15353 <left_val>-0.3361206054687500</left_val> 15354 <right_val>0.0155012002214789</right_val></_></_> 15355 <_> 15356 <!-- tree 62 --> 15357 <_> 15358 <!-- root node --> 15359 <feature> 15360 <rects> 15361 <_>0 4 18 12 -1.</_> 15362 <_>6 8 6 4 9.</_></rects> 15363 <tilted>0</tilted></feature> 15364 <threshold>0.0586680397391319</threshold> 15365 <left_val>0.0680680572986603</left_val> 15366 <right_val>-0.2210492938756943</right_val></_></_> 15367 <_> 15368 <!-- tree 63 --> 15369 <_> 15370 <!-- root node --> 15371 <feature> 15372 <rects> 15373 <_>15 7 2 8 -1.</_> 15374 <_>15 7 1 8 2.</_></rects> 15375 <tilted>1</tilted></feature> 15376 <threshold>0.0237181894481182</threshold> 15377 <left_val>-0.0147795695811510</left_val> 15378 <right_val>0.4732834100723267</right_val></_></_> 15379 <_> 15380 <!-- tree 64 --> 15381 <_> 15382 <!-- root node --> 15383 <feature> 15384 <rects> 15385 <_>3 3 10 3 -1.</_> 15386 <_>2 4 10 1 3.</_></rects> 15387 <tilted>1</tilted></feature> 15388 <threshold>0.0288127008825541</threshold> 15389 <left_val>0.0333098806440830</left_val> 15390 <right_val>-0.4679769873619080</right_val></_></_> 15391 <_> 15392 <!-- tree 65 --> 15393 <_> 15394 <!-- root node --> 15395 <feature> 15396 <rects> 15397 <_>4 2 14 3 -1.</_> 15398 <_>4 3 14 1 3.</_></rects> 15399 <tilted>0</tilted></feature> 15400 <threshold>0.0410237498581409</threshold> 15401 <left_val>-0.0282930005341768</left_val> 15402 <right_val>0.4942755103111267</right_val></_></_> 15403 <_> 15404 <!-- tree 66 --> 15405 <_> 15406 <!-- root node --> 15407 <feature> 15408 <rects> 15409 <_>10 8 8 2 -1.</_> 15410 <_>10 8 8 1 2.</_></rects> 15411 <tilted>1</tilted></feature> 15412 <threshold>-1.2017590051982552e-004</threshold> 15413 <left_val>0.1036365032196045</left_val> 15414 <right_val>-0.1210749000310898</right_val></_></_> 15415 <_> 15416 <!-- tree 67 --> 15417 <_> 15418 <!-- root node --> 15419 <feature> 15420 <rects> 15421 <_>15 5 4 7 -1.</_> 15422 <_>15 5 2 7 2.</_></rects> 15423 <tilted>1</tilted></feature> 15424 <threshold>-0.1090807020664215</threshold> 15425 <left_val>-1.</left_val> 15426 <right_val>3.2971999607980251e-003</right_val></_></_> 15427 <_> 15428 <!-- tree 68 --> 15429 <_> 15430 <!-- root node --> 15431 <feature> 15432 <rects> 15433 <_>3 6 5 6 -1.</_> 15434 <_>3 9 5 3 2.</_></rects> 15435 <tilted>0</tilted></feature> 15436 <threshold>-0.0459673590958118</threshold> 15437 <left_val>0.6481946110725403</left_val> 15438 <right_val>-0.0192335192114115</right_val></_></_> 15439 <_> 15440 <!-- tree 69 --> 15441 <_> 15442 <!-- root node --> 15443 <feature> 15444 <rects> 15445 <_>14 1 8 6 -1.</_> 15446 <_>18 1 4 3 2.</_> 15447 <_>14 4 4 3 2.</_></rects> 15448 <tilted>0</tilted></feature> 15449 <threshold>-0.0193457193672657</threshold> 15450 <left_val>-0.3314554989337921</left_val> 15451 <right_val>0.0390085391700268</right_val></_></_> 15452 <_> 15453 <!-- tree 70 --> 15454 <_> 15455 <!-- root node --> 15456 <feature> 15457 <rects> 15458 <_>0 1 8 6 -1.</_> 15459 <_>0 1 4 3 2.</_> 15460 <_>4 4 4 3 2.</_></rects> 15461 <tilted>0</tilted></feature> 15462 <threshold>0.0123127903789282</threshold> 15463 <left_val>0.0410296283662319</left_val> 15464 <right_val>-0.2794392108917236</right_val></_></_> 15465 <_> 15466 <!-- tree 71 --> 15467 <_> 15468 <!-- root node --> 15469 <feature> 15470 <rects> 15471 <_>17 0 4 12 -1.</_> 15472 <_>18 0 2 12 2.</_></rects> 15473 <tilted>0</tilted></feature> 15474 <threshold>2.1535221021622419e-003</threshold> 15475 <left_val>-0.0675450563430786</left_val> 15476 <right_val>0.1164774000644684</right_val></_></_> 15477 <_> 15478 <!-- tree 72 --> 15479 <_> 15480 <!-- root node --> 15481 <feature> 15482 <rects> 15483 <_>1 0 4 12 -1.</_> 15484 <_>2 0 2 12 2.</_></rects> 15485 <tilted>0</tilted></feature> 15486 <threshold>-0.0321587882936001</threshold> 15487 <left_val>0.5474163889884949</left_val> 15488 <right_val>-0.0237302295863628</right_val></_></_> 15489 <_> 15490 <!-- tree 73 --> 15491 <_> 15492 <!-- root node --> 15493 <feature> 15494 <rects> 15495 <_>9 16 12 2 -1.</_> 15496 <_>9 17 12 1 2.</_></rects> 15497 <tilted>0</tilted></feature> 15498 <threshold>-0.0275923591107130</threshold> 15499 <left_val>-0.7531942129135132</left_val> 15500 <right_val>8.4066214039921761e-003</right_val></_></_> 15501 <_> 15502 <!-- tree 74 --> 15503 <_> 15504 <!-- root node --> 15505 <feature> 15506 <rects> 15507 <_>1 16 12 2 -1.</_> 15508 <_>1 17 12 1 2.</_></rects> 15509 <tilted>0</tilted></feature> 15510 <threshold>0.0222645103931427</threshold> 15511 <left_val>0.0121467402204871</left_val> 15512 <right_val>-0.9029129743576050</right_val></_></_> 15513 <_> 15514 <!-- tree 75 --> 15515 <_> 15516 <!-- root node --> 15517 <feature> 15518 <rects> 15519 <_>10 15 12 3 -1.</_> 15520 <_>10 16 12 1 3.</_></rects> 15521 <tilted>0</tilted></feature> 15522 <threshold>0.0153613798320293</threshold> 15523 <left_val>-0.0316411890089512</left_val> 15524 <right_val>0.3213280141353607</right_val></_></_> 15525 <_> 15526 <!-- tree 76 --> 15527 <_> 15528 <!-- root node --> 15529 <feature> 15530 <rects> 15531 <_>0 15 12 3 -1.</_> 15532 <_>0 16 12 1 3.</_></rects> 15533 <tilted>0</tilted></feature> 15534 <threshold>-0.0123606603592634</threshold> 15535 <left_val>0.2924863100051880</left_val> 15536 <right_val>-0.0453037582337856</right_val></_></_> 15537 <_> 15538 <!-- tree 77 --> 15539 <_> 15540 <!-- root node --> 15541 <feature> 15542 <rects> 15543 <_>10 14 12 4 -1.</_> 15544 <_>16 14 6 2 2.</_> 15545 <_>10 16 6 2 2.</_></rects> 15546 <tilted>0</tilted></feature> 15547 <threshold>0.0229787491261959</threshold> 15548 <left_val>-0.0120544796809554</left_val> 15549 <right_val>0.1906094998121262</right_val></_></_> 15550 <_> 15551 <!-- tree 78 --> 15552 <_> 15553 <!-- root node --> 15554 <feature> 15555 <rects> 15556 <_>0 14 12 4 -1.</_> 15557 <_>0 14 6 2 2.</_> 15558 <_>6 16 6 2 2.</_></rects> 15559 <tilted>0</tilted></feature> 15560 <threshold>0.0232963804155588</threshold> 15561 <left_val>0.0314090512692928</left_val> 15562 <right_val>-0.5185608267784119</right_val></_></_> 15563 <_> 15564 <!-- tree 79 --> 15565 <_> 15566 <!-- root node --> 15567 <feature> 15568 <rects> 15569 <_>9 11 12 4 -1.</_> 15570 <_>15 11 6 2 2.</_> 15571 <_>9 13 6 2 2.</_></rects> 15572 <tilted>0</tilted></feature> 15573 <threshold>5.7384249521419406e-004</threshold> 15574 <left_val>-0.1029348969459534</left_val> 15575 <right_val>0.0815484523773193</right_val></_></_> 15576 <_> 15577 <!-- tree 80 --> 15578 <_> 15579 <!-- root node --> 15580 <feature> 15581 <rects> 15582 <_>0 11 16 4 -1.</_> 15583 <_>0 11 8 2 2.</_> 15584 <_>8 13 8 2 2.</_></rects> 15585 <tilted>0</tilted></feature> 15586 <threshold>-0.0330204702913761</threshold> 15587 <left_val>0.4247055947780609</left_val> 15588 <right_val>-0.0447946786880493</right_val></_></_> 15589 <_> 15590 <!-- tree 81 --> 15591 <_> 15592 <!-- root node --> 15593 <feature> 15594 <rects> 15595 <_>8 12 9 6 -1.</_> 15596 <_>8 14 9 2 3.</_></rects> 15597 <tilted>0</tilted></feature> 15598 <threshold>-0.0217130295932293</threshold> 15599 <left_val>-0.1482526063919067</left_val> 15600 <right_val>0.0129598798230290</right_val></_></_> 15601 <_> 15602 <!-- tree 82 --> 15603 <_> 15604 <!-- root node --> 15605 <feature> 15606 <rects> 15607 <_>5 12 9 6 -1.</_> 15608 <_>5 14 9 2 3.</_></rects> 15609 <tilted>0</tilted></feature> 15610 <threshold>-9.7430922323837876e-005</threshold> 15611 <left_val>0.1189963966608048</left_val> 15612 <right_val>-0.1475397050380707</right_val></_></_> 15613 <_> 15614 <!-- tree 83 --> 15615 <_> 15616 <!-- root node --> 15617 <feature> 15618 <rects> 15619 <_>4 5 16 2 -1.</_> 15620 <_>4 5 8 2 2.</_></rects> 15621 <tilted>0</tilted></feature> 15622 <threshold>-9.2907734215259552e-003</threshold> 15623 <left_val>-0.1163543015718460</left_val> 15624 <right_val>0.0541046410799026</right_val></_></_> 15625 <_> 15626 <!-- tree 84 --> 15627 <_> 15628 <!-- root node --> 15629 <feature> 15630 <rects> 15631 <_>1 10 10 8 -1.</_> 15632 <_>1 10 5 4 2.</_> 15633 <_>6 14 5 4 2.</_></rects> 15634 <tilted>0</tilted></feature> 15635 <threshold>0.0372448489069939</threshold> 15636 <left_val>-0.0344212017953396</left_val> 15637 <right_val>0.3794392943382263</right_val></_></_> 15638 <_> 15639 <!-- tree 85 --> 15640 <_> 15641 <!-- root node --> 15642 <feature> 15643 <rects> 15644 <_>16 2 5 9 -1.</_> 15645 <_>13 5 5 3 3.</_></rects> 15646 <tilted>1</tilted></feature> 15647 <threshold>0.1527702957391739</threshold> 15648 <left_val>7.2725401259958744e-003</left_val> 15649 <right_val>-0.3415508866310120</right_val></_></_> 15650 <_> 15651 <!-- tree 86 --> 15652 <_> 15653 <!-- root node --> 15654 <feature> 15655 <rects> 15656 <_>4 4 4 6 -1.</_> 15657 <_>6 4 2 6 2.</_></rects> 15658 <tilted>0</tilted></feature> 15659 <threshold>-0.0126634500920773</threshold> 15660 <left_val>-0.3059667050838471</left_val> 15661 <right_val>0.0382312610745430</right_val></_></_> 15662 <_> 15663 <!-- tree 87 --> 15664 <_> 15665 <!-- root node --> 15666 <feature> 15667 <rects> 15668 <_>9 2 9 7 -1.</_> 15669 <_>12 2 3 7 3.</_></rects> 15670 <tilted>0</tilted></feature> 15671 <threshold>-0.0748884230852127</threshold> 15672 <left_val>-0.3465895056724548</left_val> 15673 <right_val>0.0155016500502825</right_val></_></_> 15674 <_> 15675 <!-- tree 88 --> 15676 <_> 15677 <!-- root node --> 15678 <feature> 15679 <rects> 15680 <_>4 2 9 7 -1.</_> 15681 <_>7 2 3 7 3.</_></rects> 15682 <tilted>0</tilted></feature> 15683 <threshold>-0.0401145890355110</threshold> 15684 <left_val>0.3262982070446014</left_val> 15685 <right_val>-0.0413136705756187</right_val></_></_> 15686 <_> 15687 <!-- tree 89 --> 15688 <_> 15689 <!-- root node --> 15690 <feature> 15691 <rects> 15692 <_>16 2 5 9 -1.</_> 15693 <_>13 5 5 3 3.</_></rects> 15694 <tilted>1</tilted></feature> 15695 <threshold>-0.0964921116828918</threshold> 15696 <left_val>0.1017284989356995</left_val> 15697 <right_val>-0.0171560104936361</right_val></_></_> 15698 <_> 15699 <!-- tree 90 --> 15700 <_> 15701 <!-- root node --> 15702 <feature> 15703 <rects> 15704 <_>6 2 9 5 -1.</_> 15705 <_>9 5 3 5 3.</_></rects> 15706 <tilted>1</tilted></feature> 15707 <threshold>-0.1671283990144730</threshold> 15708 <left_val>-0.7765511870384216</left_val> 15709 <right_val>0.0180295594036579</right_val></_></_> 15710 <_> 15711 <!-- tree 91 --> 15712 <_> 15713 <!-- root node --> 15714 <feature> 15715 <rects> 15716 <_>5 12 14 6 -1.</_> 15717 <_>5 14 14 2 3.</_></rects> 15718 <tilted>0</tilted></feature> 15719 <threshold>-8.2981940358877182e-003</threshold> 15720 <left_val>-0.1439713984727860</left_val> 15721 <right_val>0.0589481405913830</right_val></_></_> 15722 <_> 15723 <!-- tree 92 --> 15724 <_> 15725 <!-- root node --> 15726 <feature> 15727 <rects> 15728 <_>6 4 4 12 -1.</_> 15729 <_>6 4 2 6 2.</_> 15730 <_>8 10 2 6 2.</_></rects> 15731 <tilted>0</tilted></feature> 15732 <threshold>-3.7844169419258833e-003</threshold> 15733 <left_val>0.1709517985582352</left_val> 15734 <right_val>-0.0782564431428909</right_val></_></_> 15735 <_> 15736 <!-- tree 93 --> 15737 <_> 15738 <!-- root node --> 15739 <feature> 15740 <rects> 15741 <_>9 4 10 8 -1.</_> 15742 <_>9 4 5 8 2.</_></rects> 15743 <tilted>0</tilted></feature> 15744 <threshold>-0.1607642024755478</threshold> 15745 <left_val>0.2313822954893112</left_val> 15746 <right_val>-0.0134280500933528</right_val></_></_> 15747 <_> 15748 <!-- tree 94 --> 15749 <_> 15750 <!-- root node --> 15751 <feature> 15752 <rects> 15753 <_>7 5 6 8 -1.</_> 15754 <_>7 5 3 4 2.</_> 15755 <_>10 9 3 4 2.</_></rects> 15756 <tilted>0</tilted></feature> 15757 <threshold>6.4544437918812037e-004</threshold> 15758 <left_val>-0.1442440003156662</left_val> 15759 <right_val>0.0832878202199936</right_val></_></_> 15760 <_> 15761 <!-- tree 95 --> 15762 <_> 15763 <!-- root node --> 15764 <feature> 15765 <rects> 15766 <_>8 7 6 8 -1.</_> 15767 <_>11 7 3 4 2.</_> 15768 <_>8 11 3 4 2.</_></rects> 15769 <tilted>0</tilted></feature> 15770 <threshold>0.0227373093366623</threshold> 15771 <left_val>-0.0341558195650578</left_val> 15772 <right_val>0.3551980853080750</right_val></_></_> 15773 <_> 15774 <!-- tree 96 --> 15775 <_> 15776 <!-- root node --> 15777 <feature> 15778 <rects> 15779 <_>2 4 11 2 -1.</_> 15780 <_>2 4 11 1 2.</_></rects> 15781 <tilted>1</tilted></feature> 15782 <threshold>-3.9030050393193960e-003</threshold> 15783 <left_val>-0.1873676925897598</left_val> 15784 <right_val>0.0646280124783516</right_val></_></_> 15785 <_> 15786 <!-- tree 97 --> 15787 <_> 15788 <!-- root node --> 15789 <feature> 15790 <rects> 15791 <_>16 0 3 13 -1.</_> 15792 <_>17 0 1 13 3.</_></rects> 15793 <tilted>0</tilted></feature> 15794 <threshold>-0.0511454306542873</threshold> 15795 <left_val>0.6689270734786987</left_val> 15796 <right_val>-0.0111800497397780</right_val></_></_> 15797 <_> 15798 <!-- tree 98 --> 15799 <_> 15800 <!-- root node --> 15801 <feature> 15802 <rects> 15803 <_>2 0 18 3 -1.</_> 15804 <_>2 1 18 1 3.</_></rects> 15805 <tilted>0</tilted></feature> 15806 <threshold>-6.0482369735836983e-003</threshold> 15807 <left_val>0.1862275004386902</left_val> 15808 <right_val>-0.0630187019705772</right_val></_></_> 15809 <_> 15810 <!-- tree 99 --> 15811 <_> 15812 <!-- root node --> 15813 <feature> 15814 <rects> 15815 <_>15 8 6 4 -1.</_> 15816 <_>15 8 3 4 2.</_></rects> 15817 <tilted>0</tilted></feature> 15818 <threshold>0.0117435697466135</threshold> 15819 <left_val>0.0254492796957493</left_val> 15820 <right_val>-0.1333124935626984</right_val></_></_> 15821 <_> 15822 <!-- tree 100 --> 15823 <_> 15824 <!-- root node --> 15825 <feature> 15826 <rects> 15827 <_>2 0 13 3 -1.</_> 15828 <_>2 1 13 1 3.</_></rects> 15829 <tilted>0</tilted></feature> 15830 <threshold>8.4120890824124217e-004</threshold> 15831 <left_val>-0.0933334678411484</left_val> 15832 <right_val>0.1331588029861450</right_val></_></_> 15833 <_> 15834 <!-- tree 101 --> 15835 <_> 15836 <!-- root node --> 15837 <feature> 15838 <rects> 15839 <_>4 4 18 4 -1.</_> 15840 <_>4 6 18 2 2.</_></rects> 15841 <tilted>0</tilted></feature> 15842 <threshold>-0.0377561710774899</threshold> 15843 <left_val>-0.2313880026340485</left_val> 15844 <right_val>0.0405697897076607</right_val></_></_> 15845 <_> 15846 <!-- tree 102 --> 15847 <_> 15848 <!-- root node --> 15849 <feature> 15850 <rects> 15851 <_>3 3 10 9 -1.</_> 15852 <_>8 3 5 9 2.</_></rects> 15853 <tilted>0</tilted></feature> 15854 <threshold>-0.0208675600588322</threshold> 15855 <left_val>0.1005609035491943</left_val> 15856 <right_val>-0.1174419000744820</right_val></_></_> 15857 <_> 15858 <!-- tree 103 --> 15859 <_> 15860 <!-- root node --> 15861 <feature> 15862 <rects> 15863 <_>2 7 18 6 -1.</_> 15864 <_>8 9 6 2 9.</_></rects> 15865 <tilted>0</tilted></feature> 15866 <threshold>-0.0398021787405014</threshold> 15867 <left_val>-0.1158571988344193</left_val> 15868 <right_val>0.1266818940639496</right_val></_></_></trees> 15869 <stage_threshold>-0.6897674202919006</stage_threshold> 15870 <parent>19</parent> 15871 <next>-1</next></_> 15872 <_> 15873 <!-- stage 21 --> 15874 <trees> 15875 <_> 15876 <!-- tree 0 --> 15877 <_> 15878 <!-- root node --> 15879 <feature> 15880 <rects> 15881 <_>10 4 11 2 -1.</_> 15882 <_>10 4 11 1 2.</_></rects> 15883 <tilted>1</tilted></feature> 15884 <threshold>8.4546189755201340e-003</threshold> 15885 <left_val>-0.1628966033458710</left_val> 15886 <right_val>0.1983439028263092</right_val></_></_> 15887 <_> 15888 <!-- tree 1 --> 15889 <_> 15890 <!-- root node --> 15891 <feature> 15892 <rects> 15893 <_>14 6 6 12 -1.</_> 15894 <_>17 6 3 6 2.</_> 15895 <_>14 12 3 6 2.</_></rects> 15896 <tilted>0</tilted></feature> 15897 <threshold>0.0516104511916637</threshold> 15898 <left_val>-0.0308270901441574</left_val> 15899 <right_val>0.3374255001544952</right_val></_></_> 15900 <_> 15901 <!-- tree 2 --> 15902 <_> 15903 <!-- root node --> 15904 <feature> 15905 <rects> 15906 <_>2 6 6 12 -1.</_> 15907 <_>2 6 3 6 2.</_> 15908 <_>5 12 3 6 2.</_></rects> 15909 <tilted>0</tilted></feature> 15910 <threshold>-0.0649094432592392</threshold> 15911 <left_val>0.2860228121280670</left_val> 15912 <right_val>-0.0598486512899399</right_val></_></_> 15913 <_> 15914 <!-- tree 3 --> 15915 <_> 15916 <!-- root node --> 15917 <feature> 15918 <rects> 15919 <_>3 4 16 6 -1.</_> 15920 <_>3 6 16 2 3.</_></rects> 15921 <tilted>0</tilted></feature> 15922 <threshold>-4.3951408006250858e-003</threshold> 15923 <left_val>0.1130265966057777</left_val> 15924 <right_val>-0.1263208985328674</right_val></_></_> 15925 <_> 15926 <!-- tree 4 --> 15927 <_> 15928 <!-- root node --> 15929 <feature> 15930 <rects> 15931 <_>1 11 16 3 -1.</_> 15932 <_>5 11 8 3 2.</_></rects> 15933 <tilted>0</tilted></feature> 15934 <threshold>-0.0827568024396896</threshold> 15935 <left_val>-0.6079095005989075</left_val> 15936 <right_val>0.0219671800732613</right_val></_></_> 15937 <_> 15938 <!-- tree 5 --> 15939 <_> 15940 <!-- root node --> 15941 <feature> 15942 <rects> 15943 <_>12 10 8 3 -1.</_> 15944 <_>12 10 4 3 2.</_></rects> 15945 <tilted>0</tilted></feature> 15946 <threshold>-4.8698862083256245e-003</threshold> 15947 <left_val>0.0858661904931068</left_val> 15948 <right_val>-0.0890095233917236</right_val></_></_> 15949 <_> 15950 <!-- tree 6 --> 15951 <_> 15952 <!-- root node --> 15953 <feature> 15954 <rects> 15955 <_>0 9 17 9 -1.</_> 15956 <_>0 12 17 3 3.</_></rects> 15957 <tilted>0</tilted></feature> 15958 <threshold>0.0915124416351318</threshold> 15959 <left_val>-0.0533453486859798</left_val> 15960 <right_val>0.2673287093639374</right_val></_></_> 15961 <_> 15962 <!-- tree 7 --> 15963 <_> 15964 <!-- root node --> 15965 <feature> 15966 <rects> 15967 <_>8 4 6 10 -1.</_> 15968 <_>11 4 3 5 2.</_> 15969 <_>8 9 3 5 2.</_></rects> 15970 <tilted>0</tilted></feature> 15971 <threshold>3.6815661005675793e-003</threshold> 15972 <left_val>0.0709156990051270</left_val> 15973 <right_val>-0.1794120967388153</right_val></_></_> 15974 <_> 15975 <!-- tree 8 --> 15976 <_> 15977 <!-- root node --> 15978 <feature> 15979 <rects> 15980 <_>2 4 16 8 -1.</_> 15981 <_>2 4 8 4 2.</_> 15982 <_>10 8 8 4 2.</_></rects> 15983 <tilted>0</tilted></feature> 15984 <threshold>6.3032708130776882e-003</threshold> 15985 <left_val>0.1237815022468567</left_val> 15986 <right_val>-0.1239148005843163</right_val></_></_> 15987 <_> 15988 <!-- tree 9 --> 15989 <_> 15990 <!-- root node --> 15991 <feature> 15992 <rects> 15993 <_>9 6 12 4 -1.</_> 15994 <_>15 6 6 2 2.</_> 15995 <_>9 8 6 2 2.</_></rects> 15996 <tilted>0</tilted></feature> 15997 <threshold>5.8764131972566247e-004</threshold> 15998 <left_val>-0.0638136565685272</left_val> 15999 <right_val>0.0955457687377930</right_val></_></_> 16000 <_> 16001 <!-- tree 10 --> 16002 <_> 16003 <!-- root node --> 16004 <feature> 16005 <rects> 16006 <_>9 3 4 6 -1.</_> 16007 <_>9 6 4 3 2.</_></rects> 16008 <tilted>0</tilted></feature> 16009 <threshold>0.0146803203970194</threshold> 16010 <left_val>-0.0491835288703442</left_val> 16011 <right_val>0.2904059886932373</right_val></_></_> 16012 <_> 16013 <!-- tree 11 --> 16014 <_> 16015 <!-- root node --> 16016 <feature> 16017 <rects> 16018 <_>15 5 7 4 -1.</_> 16019 <_>15 5 7 2 2.</_></rects> 16020 <tilted>1</tilted></feature> 16021 <threshold>3.5624930169433355e-003</threshold> 16022 <left_val>-0.0975631475448608</left_val> 16023 <right_val>0.0489328317344189</right_val></_></_> 16024 <_> 16025 <!-- tree 12 --> 16026 <_> 16027 <!-- root node --> 16028 <feature> 16029 <rects> 16030 <_>0 6 18 6 -1.</_> 16031 <_>0 6 9 3 2.</_> 16032 <_>9 9 9 3 2.</_></rects> 16033 <tilted>0</tilted></feature> 16034 <threshold>-7.4473340064287186e-003</threshold> 16035 <left_val>-0.1595246046781540</left_val> 16036 <right_val>0.0847726464271545</right_val></_></_> 16037 <_> 16038 <!-- tree 13 --> 16039 <_> 16040 <!-- root node --> 16041 <feature> 16042 <rects> 16043 <_>4 2 15 3 -1.</_> 16044 <_>4 3 15 1 3.</_></rects> 16045 <tilted>0</tilted></feature> 16046 <threshold>0.0540109910070896</threshold> 16047 <left_val>-0.0205651503056288</left_val> 16048 <right_val>0.5734071731567383</right_val></_></_> 16049 <_> 16050 <!-- tree 14 --> 16051 <_> 16052 <!-- root node --> 16053 <feature> 16054 <rects> 16055 <_>2 0 6 6 -1.</_> 16056 <_>5 0 3 6 2.</_></rects> 16057 <tilted>0</tilted></feature> 16058 <threshold>-2.3613919038325548e-003</threshold> 16059 <left_val>0.1495765000581741</left_val> 16060 <right_val>-0.0751481130719185</right_val></_></_> 16061 <_> 16062 <!-- tree 15 --> 16063 <_> 16064 <!-- root node --> 16065 <feature> 16066 <rects> 16067 <_>13 4 8 6 -1.</_> 16068 <_>17 4 4 3 2.</_> 16069 <_>13 7 4 3 2.</_></rects> 16070 <tilted>0</tilted></feature> 16071 <threshold>0.0406654588878155</threshold> 16072 <left_val>0.0147623997181654</left_val> 16073 <right_val>-0.5968567132949829</right_val></_></_> 16074 <_> 16075 <!-- tree 16 --> 16076 <_> 16077 <!-- root node --> 16078 <feature> 16079 <rects> 16080 <_>4 2 13 6 -1.</_> 16081 <_>4 4 13 2 3.</_></rects> 16082 <tilted>0</tilted></feature> 16083 <threshold>0.0932583808898926</threshold> 16084 <left_val>0.0130362100899220</left_val> 16085 <right_val>-0.6864386200904846</right_val></_></_> 16086 <_> 16087 <!-- tree 17 --> 16088 <_> 16089 <!-- root node --> 16090 <feature> 16091 <rects> 16092 <_>9 8 12 3 -1.</_> 16093 <_>9 9 12 1 3.</_></rects> 16094 <tilted>0</tilted></feature> 16095 <threshold>2.8593749739229679e-003</threshold> 16096 <left_val>-0.0549046397209167</left_val> 16097 <right_val>0.0980746671557426</right_val></_></_> 16098 <_> 16099 <!-- tree 18 --> 16100 <_> 16101 <!-- root node --> 16102 <feature> 16103 <rects> 16104 <_>1 8 16 3 -1.</_> 16105 <_>1 9 16 1 3.</_></rects> 16106 <tilted>0</tilted></feature> 16107 <threshold>-4.9756402149796486e-003</threshold> 16108 <left_val>0.1675197035074234</left_val> 16109 <right_val>-0.0825638324022293</right_val></_></_> 16110 <_> 16111 <!-- tree 19 --> 16112 <_> 16113 <!-- root node --> 16114 <feature> 16115 <rects> 16116 <_>11 4 5 8 -1.</_> 16117 <_>11 8 5 4 2.</_></rects> 16118 <tilted>0</tilted></feature> 16119 <threshold>-2.2061138879507780e-003</threshold> 16120 <left_val>0.0714861825108528</left_val> 16121 <right_val>-0.0846847966313362</right_val></_></_> 16122 <_> 16123 <!-- tree 20 --> 16124 <_> 16125 <!-- root node --> 16126 <feature> 16127 <rects> 16128 <_>3 4 11 2 -1.</_> 16129 <_>3 4 11 1 2.</_></rects> 16130 <tilted>1</tilted></feature> 16131 <threshold>4.3787518516182899e-003</threshold> 16132 <left_val>0.0752964392304420</left_val> 16133 <right_val>-0.1698897033929825</right_val></_></_> 16134 <_> 16135 <!-- tree 21 --> 16136 <_> 16137 <!-- root node --> 16138 <feature> 16139 <rects> 16140 <_>10 7 12 3 -1.</_> 16141 <_>10 8 12 1 3.</_></rects> 16142 <tilted>0</tilted></feature> 16143 <threshold>-4.9143321812152863e-003</threshold> 16144 <left_val>0.1627433001995087</left_val> 16145 <right_val>-0.0575791895389557</right_val></_></_> 16146 <_> 16147 <!-- tree 22 --> 16148 <_> 16149 <!-- root node --> 16150 <feature> 16151 <rects> 16152 <_>9 3 7 8 -1.</_> 16153 <_>9 3 7 4 2.</_></rects> 16154 <tilted>1</tilted></feature> 16155 <threshold>-3.0191219411790371e-003</threshold> 16156 <left_val>-0.1245009973645210</left_val> 16157 <right_val>0.1152698025107384</right_val></_></_> 16158 <_> 16159 <!-- tree 23 --> 16160 <_> 16161 <!-- root node --> 16162 <feature> 16163 <rects> 16164 <_>13 2 2 12 -1.</_> 16165 <_>13 2 2 6 2.</_></rects> 16166 <tilted>1</tilted></feature> 16167 <threshold>6.8227178417146206e-003</threshold> 16168 <left_val>0.0371669717133045</left_val> 16169 <right_val>-0.1009344980120659</right_val></_></_> 16170 <_> 16171 <!-- tree 24 --> 16172 <_> 16173 <!-- root node --> 16174 <feature> 16175 <rects> 16176 <_>0 9 12 4 -1.</_> 16177 <_>0 9 6 2 2.</_> 16178 <_>6 11 6 2 2.</_></rects> 16179 <tilted>0</tilted></feature> 16180 <threshold>0.0351169817149639</threshold> 16181 <left_val>-0.0429974310100079</left_val> 16182 <right_val>0.3295919895172119</right_val></_></_> 16183 <_> 16184 <!-- tree 25 --> 16185 <_> 16186 <!-- root node --> 16187 <feature> 16188 <rects> 16189 <_>11 7 8 6 -1.</_> 16190 <_>13 7 4 6 2.</_></rects> 16191 <tilted>0</tilted></feature> 16192 <threshold>-1.4400649815797806e-003</threshold> 16193 <left_val>-0.0989222601056099</left_val> 16194 <right_val>0.0671088919043541</right_val></_></_> 16195 <_> 16196 <!-- tree 26 --> 16197 <_> 16198 <!-- root node --> 16199 <feature> 16200 <rects> 16201 <_>0 8 6 6 -1.</_> 16202 <_>2 8 2 6 3.</_></rects> 16203 <tilted>0</tilted></feature> 16204 <threshold>-4.6699359081685543e-003</threshold> 16205 <left_val>-0.1800343990325928</left_val> 16206 <right_val>0.0680383965373039</right_val></_></_> 16207 <_> 16208 <!-- tree 27 --> 16209 <_> 16210 <!-- root node --> 16211 <feature> 16212 <rects> 16213 <_>11 7 8 6 -1.</_> 16214 <_>13 7 4 6 2.</_></rects> 16215 <tilted>0</tilted></feature> 16216 <threshold>0.0376477204263210</threshold> 16217 <left_val>-0.0210317503660917</left_val> 16218 <right_val>0.1662711948156357</right_val></_></_> 16219 <_> 16220 <!-- tree 28 --> 16221 <_> 16222 <!-- root node --> 16223 <feature> 16224 <rects> 16225 <_>3 7 8 6 -1.</_> 16226 <_>5 7 4 6 2.</_></rects> 16227 <tilted>0</tilted></feature> 16228 <threshold>5.1745469681918621e-003</threshold> 16229 <left_val>-0.1184609010815620</left_val> 16230 <right_val>0.1091919019818306</right_val></_></_> 16231 <_> 16232 <!-- tree 29 --> 16233 <_> 16234 <!-- root node --> 16235 <feature> 16236 <rects> 16237 <_>10 6 6 4 -1.</_> 16238 <_>10 6 3 4 2.</_></rects> 16239 <tilted>0</tilted></feature> 16240 <threshold>7.7274879440665245e-003</threshold> 16241 <left_val>-0.0550973303616047</left_val> 16242 <right_val>0.2275228053331375</right_val></_></_> 16243 <_> 16244 <!-- tree 30 --> 16245 <_> 16246 <!-- root node --> 16247 <feature> 16248 <rects> 16249 <_>4 8 12 10 -1.</_> 16250 <_>4 8 6 5 2.</_> 16251 <_>10 13 6 5 2.</_></rects> 16252 <tilted>0</tilted></feature> 16253 <threshold>0.0291588492691517</threshold> 16254 <left_val>0.0778855830430985</left_val> 16255 <right_val>-0.1777552068233490</right_val></_></_> 16256 <_> 16257 <!-- tree 31 --> 16258 <_> 16259 <!-- root node --> 16260 <feature> 16261 <rects> 16262 <_>15 7 6 10 -1.</_> 16263 <_>17 7 2 10 3.</_></rects> 16264 <tilted>0</tilted></feature> 16265 <threshold>2.9885378899052739e-004</threshold> 16266 <left_val>-0.0788752809166908</left_val> 16267 <right_val>0.0511631108820438</right_val></_></_> 16268 <_> 16269 <!-- tree 32 --> 16270 <_> 16271 <!-- root node --> 16272 <feature> 16273 <rects> 16274 <_>6 14 6 4 -1.</_> 16275 <_>9 14 3 4 2.</_></rects> 16276 <tilted>0</tilted></feature> 16277 <threshold>1.4456070493906736e-004</threshold> 16278 <left_val>-0.1609764993190765</left_val> 16279 <right_val>0.0815740302205086</right_val></_></_> 16280 <_> 16281 <!-- tree 33 --> 16282 <_> 16283 <!-- root node --> 16284 <feature> 16285 <rects> 16286 <_>8 13 10 4 -1.</_> 16287 <_>8 13 5 4 2.</_></rects> 16288 <tilted>0</tilted></feature> 16289 <threshold>0.0478407405316830</threshold> 16290 <left_val>0.0142105501145124</left_val> 16291 <right_val>-0.3131667971611023</right_val></_></_> 16292 <_> 16293 <!-- tree 34 --> 16294 <_> 16295 <!-- root node --> 16296 <feature> 16297 <rects> 16298 <_>2 0 4 18 -1.</_> 16299 <_>4 0 2 18 2.</_></rects> 16300 <tilted>0</tilted></feature> 16301 <threshold>0.0439434684813023</threshold> 16302 <left_val>-0.0310024805366993</left_val> 16303 <right_val>0.4245035052299500</right_val></_></_> 16304 <_> 16305 <!-- tree 35 --> 16306 <_> 16307 <!-- root node --> 16308 <feature> 16309 <rects> 16310 <_>11 0 8 10 -1.</_> 16311 <_>11 0 8 5 2.</_></rects> 16312 <tilted>1</tilted></feature> 16313 <threshold>-0.1760338991880417</threshold> 16314 <left_val>-0.2162521928548813</left_val> 16315 <right_val>0.0137106403708458</right_val></_></_> 16316 <_> 16317 <!-- tree 36 --> 16318 <_> 16319 <!-- root node --> 16320 <feature> 16321 <rects> 16322 <_>0 7 12 3 -1.</_> 16323 <_>0 8 12 1 3.</_></rects> 16324 <tilted>0</tilted></feature> 16325 <threshold>-0.0270105507224798</threshold> 16326 <left_val>0.4544829130172730</left_val> 16327 <right_val>-0.0285076200962067</right_val></_></_> 16328 <_> 16329 <!-- tree 37 --> 16330 <_> 16331 <!-- root node --> 16332 <feature> 16333 <rects> 16334 <_>17 0 2 10 -1.</_> 16335 <_>17 0 1 10 2.</_></rects> 16336 <tilted>1</tilted></feature> 16337 <threshold>6.4534661360085011e-003</threshold> 16338 <left_val>-0.0496607087552547</left_val> 16339 <right_val>0.0830717235803604</right_val></_></_> 16340 <_> 16341 <!-- tree 38 --> 16342 <_> 16343 <!-- root node --> 16344 <feature> 16345 <rects> 16346 <_>5 6 6 4 -1.</_> 16347 <_>5 8 6 2 2.</_></rects> 16348 <tilted>0</tilted></feature> 16349 <threshold>-7.1115070022642612e-003</threshold> 16350 <left_val>-0.2250981032848358</left_val> 16351 <right_val>0.0650333613157272</right_val></_></_> 16352 <_> 16353 <!-- tree 39 --> 16354 <_> 16355 <!-- root node --> 16356 <feature> 16357 <rects> 16358 <_>15 10 7 6 -1.</_> 16359 <_>15 12 7 2 3.</_></rects> 16360 <tilted>0</tilted></feature> 16361 <threshold>-0.0251848492771387</threshold> 16362 <left_val>-0.1748033016920090</left_val> 16363 <right_val>0.0187510997056961</right_val></_></_> 16364 <_> 16365 <!-- tree 40 --> 16366 <_> 16367 <!-- root node --> 16368 <feature> 16369 <rects> 16370 <_>0 10 7 6 -1.</_> 16371 <_>0 12 7 2 3.</_></rects> 16372 <tilted>0</tilted></feature> 16373 <threshold>-8.8047432655002922e-005</threshold> 16374 <left_val>0.1267789006233215</left_val> 16375 <right_val>-0.1070457994937897</right_val></_></_> 16376 <_> 16377 <!-- tree 41 --> 16378 <_> 16379 <!-- root node --> 16380 <feature> 16381 <rects> 16382 <_>13 12 6 6 -1.</_> 16383 <_>15 12 2 6 3.</_></rects> 16384 <tilted>0</tilted></feature> 16385 <threshold>-0.0360202193260193</threshold> 16386 <left_val>0.2464960068464279</left_val> 16387 <right_val>-0.0497720800340176</right_val></_></_> 16388 <_> 16389 <!-- tree 42 --> 16390 <_> 16391 <!-- root node --> 16392 <feature> 16393 <rects> 16394 <_>1 11 20 7 -1.</_> 16395 <_>11 11 10 7 2.</_></rects> 16396 <tilted>0</tilted></feature> 16397 <threshold>7.6084570027887821e-003</threshold> 16398 <left_val>0.1004144027829170</left_val> 16399 <right_val>-0.1367384046316147</right_val></_></_> 16400 <_> 16401 <!-- tree 43 --> 16402 <_> 16403 <!-- root node --> 16404 <feature> 16405 <rects> 16406 <_>13 5 4 9 -1.</_> 16407 <_>13 8 4 3 3.</_></rects> 16408 <tilted>0</tilted></feature> 16409 <threshold>-8.2404967397451401e-003</threshold> 16410 <left_val>0.1170326024293900</left_val> 16411 <right_val>-0.0527819618582726</right_val></_></_> 16412 <_> 16413 <!-- tree 44 --> 16414 <_> 16415 <!-- root node --> 16416 <feature> 16417 <rects> 16418 <_>2 12 8 6 -1.</_> 16419 <_>2 12 4 3 2.</_> 16420 <_>6 15 4 3 2.</_></rects> 16421 <tilted>0</tilted></feature> 16422 <threshold>-7.2474818443879485e-004</threshold> 16423 <left_val>-0.1165003031492233</left_val> 16424 <right_val>0.1133349016308785</right_val></_></_> 16425 <_> 16426 <!-- tree 45 --> 16427 <_> 16428 <!-- root node --> 16429 <feature> 16430 <rects> 16431 <_>9 14 6 4 -1.</_> 16432 <_>9 16 6 2 2.</_></rects> 16433 <tilted>0</tilted></feature> 16434 <threshold>-7.8272278187796474e-005</threshold> 16435 <left_val>0.0644256770610809</left_val> 16436 <right_val>-0.1589460968971252</right_val></_></_> 16437 <_> 16438 <!-- tree 46 --> 16439 <_> 16440 <!-- root node --> 16441 <feature> 16442 <rects> 16443 <_>7 12 8 6 -1.</_> 16444 <_>7 12 4 3 2.</_> 16445 <_>11 15 4 3 2.</_></rects> 16446 <tilted>0</tilted></feature> 16447 <threshold>-2.0254699047654867e-003</threshold> 16448 <left_val>-0.1702708005905151</left_val> 16449 <right_val>0.0712168663740158</right_val></_></_> 16450 <_> 16451 <!-- tree 47 --> 16452 <_> 16453 <!-- root node --> 16454 <feature> 16455 <rects> 16456 <_>6 1 12 14 -1.</_> 16457 <_>12 1 6 7 2.</_> 16458 <_>6 8 6 7 2.</_></rects> 16459 <tilted>0</tilted></feature> 16460 <threshold>-0.1188203021883965</threshold> 16461 <left_val>0.3287855088710785</left_val> 16462 <right_val>-0.0153252100571990</right_val></_></_> 16463 <_> 16464 <!-- tree 48 --> 16465 <_> 16466 <!-- root node --> 16467 <feature> 16468 <rects> 16469 <_>5 5 4 9 -1.</_> 16470 <_>5 8 4 3 3.</_></rects> 16471 <tilted>0</tilted></feature> 16472 <threshold>-0.0162584297358990</threshold> 16473 <left_val>0.2184889018535614</left_val> 16474 <right_val>-0.0562531985342503</right_val></_></_> 16475 <_> 16476 <!-- tree 49 --> 16477 <_> 16478 <!-- root node --> 16479 <feature> 16480 <rects> 16481 <_>5 13 12 4 -1.</_> 16482 <_>11 13 6 2 2.</_> 16483 <_>5 15 6 2 2.</_></rects> 16484 <tilted>0</tilted></feature> 16485 <threshold>-6.8429792299866676e-003</threshold> 16486 <left_val>-0.2331349998712540</left_val> 16487 <right_val>0.0571078211069107</right_val></_></_> 16488 <_> 16489 <!-- tree 50 --> 16490 <_> 16491 <!-- root node --> 16492 <feature> 16493 <rects> 16494 <_>9 7 8 3 -1.</_> 16495 <_>8 8 8 1 3.</_></rects> 16496 <tilted>1</tilted></feature> 16497 <threshold>0.0349397100508213</threshold> 16498 <left_val>-0.0273338295519352</left_val> 16499 <right_val>0.4565196931362152</right_val></_></_> 16500 <_> 16501 <!-- tree 51 --> 16502 <_> 16503 <!-- root node --> 16504 <feature> 16505 <rects> 16506 <_>7 5 8 10 -1.</_> 16507 <_>7 10 8 5 2.</_></rects> 16508 <tilted>0</tilted></feature> 16509 <threshold>0.2297977954149246</threshold> 16510 <left_val>0.0145089896395803</left_val> 16511 <right_val>-0.8716508746147156</right_val></_></_> 16512 <_> 16513 <!-- tree 52 --> 16514 <_> 16515 <!-- root node --> 16516 <feature> 16517 <rects> 16518 <_>7 1 8 3 -1.</_> 16519 <_>6 2 8 1 3.</_></rects> 16520 <tilted>1</tilted></feature> 16521 <threshold>0.0433605983853340</threshold> 16522 <left_val>8.4467595443129539e-003</left_val> 16523 <right_val>-0.8750032782554627</right_val></_></_> 16524 <_> 16525 <!-- tree 53 --> 16526 <_> 16527 <!-- root node --> 16528 <feature> 16529 <rects> 16530 <_>10 14 12 3 -1.</_> 16531 <_>10 15 12 1 3.</_></rects> 16532 <tilted>0</tilted></feature> 16533 <threshold>-1.1806190013885498e-003</threshold> 16534 <left_val>0.0781866982579231</left_val> 16535 <right_val>-0.0528342090547085</right_val></_></_> 16536 <_> 16537 <!-- tree 54 --> 16538 <_> 16539 <!-- root node --> 16540 <feature> 16541 <rects> 16542 <_>0 6 18 12 -1.</_> 16543 <_>0 12 18 6 2.</_></rects> 16544 <tilted>0</tilted></feature> 16545 <threshold>-0.4177268147468567</threshold> 16546 <left_val>-0.8072922229766846</left_val> 16547 <right_val>0.0130481300875545</right_val></_></_> 16548 <_> 16549 <!-- tree 55 --> 16550 <_> 16551 <!-- root node --> 16552 <feature> 16553 <rects> 16554 <_>9 8 6 6 -1.</_> 16555 <_>9 11 6 3 2.</_></rects> 16556 <tilted>0</tilted></feature> 16557 <threshold>-0.0463152304291725</threshold> 16558 <left_val>0.2937507927417755</left_val> 16559 <right_val>-0.0351923890411854</right_val></_></_> 16560 <_> 16561 <!-- tree 56 --> 16562 <_> 16563 <!-- root node --> 16564 <feature> 16565 <rects> 16566 <_>3 2 4 12 -1.</_> 16567 <_>3 2 2 6 2.</_> 16568 <_>5 8 2 6 2.</_></rects> 16569 <tilted>0</tilted></feature> 16570 <threshold>-0.0402713008224964</threshold> 16571 <left_val>-0.5817453265190125</left_val> 16572 <right_val>0.0197685007005930</right_val></_></_> 16573 <_> 16574 <!-- tree 57 --> 16575 <_> 16576 <!-- root node --> 16577 <feature> 16578 <rects> 16579 <_>13 2 2 12 -1.</_> 16580 <_>13 2 2 6 2.</_></rects> 16581 <tilted>1</tilted></feature> 16582 <threshold>-0.0430124402046204</threshold> 16583 <left_val>0.1088251024484634</left_val> 16584 <right_val>-0.0269776098430157</right_val></_></_> 16585 <_> 16586 <!-- tree 58 --> 16587 <_> 16588 <!-- root node --> 16589 <feature> 16590 <rects> 16591 <_>2 4 6 8 -1.</_> 16592 <_>2 4 3 4 2.</_> 16593 <_>5 8 3 4 2.</_></rects> 16594 <tilted>0</tilted></feature> 16595 <threshold>2.8285770677030087e-003</threshold> 16596 <left_val>0.0768370479345322</left_val> 16597 <right_val>-0.1572055071592331</right_val></_></_> 16598 <_> 16599 <!-- tree 59 --> 16600 <_> 16601 <!-- root node --> 16602 <feature> 16603 <rects> 16604 <_>14 10 4 6 -1.</_> 16605 <_>14 10 2 6 2.</_></rects> 16606 <tilted>0</tilted></feature> 16607 <threshold>-0.0332046113908291</threshold> 16608 <left_val>-0.2315258979797363</left_val> 16609 <right_val>0.0159325394779444</right_val></_></_> 16610 <_> 16611 <!-- tree 60 --> 16612 <_> 16613 <!-- root node --> 16614 <feature> 16615 <rects> 16616 <_>0 0 2 12 -1.</_> 16617 <_>0 6 2 6 2.</_></rects> 16618 <tilted>0</tilted></feature> 16619 <threshold>-4.8097351100295782e-004</threshold> 16620 <left_val>0.1104374006390572</left_val> 16621 <right_val>-0.1158946007490158</right_val></_></_> 16622 <_> 16623 <!-- tree 61 --> 16624 <_> 16625 <!-- root node --> 16626 <feature> 16627 <rects> 16628 <_>13 2 2 12 -1.</_> 16629 <_>13 2 2 6 2.</_></rects> 16630 <tilted>1</tilted></feature> 16631 <threshold>2.9704240150749683e-003</threshold> 16632 <left_val>-0.0342437401413918</left_val> 16633 <right_val>0.0691073983907700</right_val></_></_> 16634 <_> 16635 <!-- tree 62 --> 16636 <_> 16637 <!-- root node --> 16638 <feature> 16639 <rects> 16640 <_>9 2 12 2 -1.</_> 16641 <_>9 2 6 2 2.</_></rects> 16642 <tilted>1</tilted></feature> 16643 <threshold>0.0118931904435158</threshold> 16644 <left_val>0.0801228806376457</left_val> 16645 <right_val>-0.2050309032201767</right_val></_></_> 16646 <_> 16647 <!-- tree 63 --> 16648 <_> 16649 <!-- root node --> 16650 <feature> 16651 <rects> 16652 <_>10 9 12 4 -1.</_> 16653 <_>16 9 6 2 2.</_> 16654 <_>10 11 6 2 2.</_></rects> 16655 <tilted>0</tilted></feature> 16656 <threshold>-0.0639636069536209</threshold> 16657 <left_val>-0.8553075194358826</left_val> 16658 <right_val>6.4783529378473759e-003</right_val></_></_> 16659 <_> 16660 <!-- tree 64 --> 16661 <_> 16662 <!-- root node --> 16663 <feature> 16664 <rects> 16665 <_>0 9 12 4 -1.</_> 16666 <_>0 9 6 2 2.</_> 16667 <_>6 11 6 2 2.</_></rects> 16668 <tilted>0</tilted></feature> 16669 <threshold>-5.6093540042638779e-003</threshold> 16670 <left_val>0.1627894937992096</left_val> 16671 <right_val>-0.1007907018065453</right_val></_></_> 16672 <_> 16673 <!-- tree 65 --> 16674 <_> 16675 <!-- root node --> 16676 <feature> 16677 <rects> 16678 <_>17 9 4 9 -1.</_> 16679 <_>17 12 4 3 3.</_></rects> 16680 <tilted>0</tilted></feature> 16681 <threshold>7.5979339890182018e-003</threshold> 16682 <left_val>0.0541234090924263</left_val> 16683 <right_val>-0.1243126988410950</right_val></_></_> 16684 <_> 16685 <!-- tree 66 --> 16686 <_> 16687 <!-- root node --> 16688 <feature> 16689 <rects> 16690 <_>1 9 10 6 -1.</_> 16691 <_>1 9 5 3 2.</_> 16692 <_>6 12 5 3 2.</_></rects> 16693 <tilted>0</tilted></feature> 16694 <threshold>0.0134808197617531</threshold> 16695 <left_val>-0.0637513026595116</left_val> 16696 <right_val>0.2525062859058380</right_val></_></_> 16697 <_> 16698 <!-- tree 67 --> 16699 <_> 16700 <!-- root node --> 16701 <feature> 16702 <rects> 16703 <_>8 12 9 4 -1.</_> 16704 <_>8 14 9 2 2.</_></rects> 16705 <tilted>0</tilted></feature> 16706 <threshold>-9.4613758847117424e-004</threshold> 16707 <left_val>0.0428358688950539</left_val> 16708 <right_val>-0.0768371000885963</right_val></_></_> 16709 <_> 16710 <!-- tree 68 --> 16711 <_> 16712 <!-- root node --> 16713 <feature> 16714 <rects> 16715 <_>2 8 6 10 -1.</_> 16716 <_>2 8 3 5 2.</_> 16717 <_>5 13 3 5 2.</_></rects> 16718 <tilted>0</tilted></feature> 16719 <threshold>-0.0380624905228615</threshold> 16720 <left_val>0.1925217956304550</left_val> 16721 <right_val>-0.0639471337199211</right_val></_></_> 16722 <_> 16723 <!-- tree 69 --> 16724 <_> 16725 <!-- root node --> 16726 <feature> 16727 <rects> 16728 <_>7 10 12 6 -1.</_> 16729 <_>10 10 6 6 2.</_></rects> 16730 <tilted>0</tilted></feature> 16731 <threshold>0.1241089999675751</threshold> 16732 <left_val>7.9416595399379730e-003</left_val> 16733 <right_val>-0.4265302121639252</right_val></_></_> 16734 <_> 16735 <!-- tree 70 --> 16736 <_> 16737 <!-- root node --> 16738 <feature> 16739 <rects> 16740 <_>3 10 12 6 -1.</_> 16741 <_>6 10 6 6 2.</_></rects> 16742 <tilted>0</tilted></feature> 16743 <threshold>-0.0922284424304962</threshold> 16744 <left_val>-0.5521062016487122</left_val> 16745 <right_val>0.0289649106562138</right_val></_></_> 16746 <_> 16747 <!-- tree 71 --> 16748 <_> 16749 <!-- root node --> 16750 <feature> 16751 <rects> 16752 <_>20 0 2 12 -1.</_> 16753 <_>20 6 2 6 2.</_></rects> 16754 <tilted>0</tilted></feature> 16755 <threshold>0.0151067702099681</threshold> 16756 <left_val>0.0276093408465385</left_val> 16757 <right_val>-0.1668844968080521</right_val></_></_> 16758 <_> 16759 <!-- tree 72 --> 16760 <_> 16761 <!-- root node --> 16762 <feature> 16763 <rects> 16764 <_>0 0 2 12 -1.</_> 16765 <_>0 6 2 6 2.</_></rects> 16766 <tilted>0</tilted></feature> 16767 <threshold>-0.0236542504280806</threshold> 16768 <left_val>-0.3437967896461487</left_val> 16769 <right_val>0.0395133309066296</right_val></_></_> 16770 <_> 16771 <!-- tree 73 --> 16772 <_> 16773 <!-- root node --> 16774 <feature> 16775 <rects> 16776 <_>14 3 4 15 -1.</_> 16777 <_>14 3 2 15 2.</_></rects> 16778 <tilted>0</tilted></feature> 16779 <threshold>0.0478813908994198</threshold> 16780 <left_val>8.0661084502935410e-003</left_val> 16781 <right_val>-0.1818519979715347</right_val></_></_> 16782 <_> 16783 <!-- tree 74 --> 16784 <_> 16785 <!-- root node --> 16786 <feature> 16787 <rects> 16788 <_>0 1 16 14 -1.</_> 16789 <_>0 1 8 7 2.</_> 16790 <_>8 8 8 7 2.</_></rects> 16791 <tilted>0</tilted></feature> 16792 <threshold>0.0854152888059616</threshold> 16793 <left_val>-0.0467524081468582</left_val> 16794 <right_val>0.2716900110244751</right_val></_></_> 16795 <_> 16796 <!-- tree 75 --> 16797 <_> 16798 <!-- root node --> 16799 <feature> 16800 <rects> 16801 <_>11 0 8 10 -1.</_> 16802 <_>11 0 8 5 2.</_></rects> 16803 <tilted>1</tilted></feature> 16804 <threshold>3.1524940859526396e-003</threshold> 16805 <left_val>-0.0864214003086090</left_val> 16806 <right_val>0.0683360025286675</right_val></_></_> 16807 <_> 16808 <!-- tree 76 --> 16809 <_> 16810 <!-- root node --> 16811 <feature> 16812 <rects> 16813 <_>0 3 16 4 -1.</_> 16814 <_>0 3 8 2 2.</_> 16815 <_>8 5 8 2 2.</_></rects> 16816 <tilted>0</tilted></feature> 16817 <threshold>-3.0099870637059212e-003</threshold> 16818 <left_val>0.0893362089991570</left_val> 16819 <right_val>-0.1362684965133667</right_val></_></_> 16820 <_> 16821 <!-- tree 77 --> 16822 <_> 16823 <!-- root node --> 16824 <feature> 16825 <rects> 16826 <_>13 0 7 12 -1.</_> 16827 <_>13 4 7 4 3.</_></rects> 16828 <tilted>0</tilted></feature> 16829 <threshold>-0.0581125207245350</threshold> 16830 <left_val>-0.1974812000989914</left_val> 16831 <right_val>0.0265364404767752</right_val></_></_> 16832 <_> 16833 <!-- tree 78 --> 16834 <_> 16835 <!-- root node --> 16836 <feature> 16837 <rects> 16838 <_>5 3 11 15 -1.</_> 16839 <_>5 8 11 5 3.</_></rects> 16840 <tilted>0</tilted></feature> 16841 <threshold>0.1277566999197006</threshold> 16842 <left_val>-0.0498380400240421</left_val> 16843 <right_val>0.3489640057086945</right_val></_></_> 16844 <_> 16845 <!-- tree 79 --> 16846 <_> 16847 <!-- root node --> 16848 <feature> 16849 <rects> 16850 <_>13 0 7 12 -1.</_> 16851 <_>13 4 7 4 3.</_></rects> 16852 <tilted>0</tilted></feature> 16853 <threshold>0.1201129034161568</threshold> 16854 <left_val>-6.3313432037830353e-003</left_val> 16855 <right_val>0.3793754875659943</right_val></_></_> 16856 <_> 16857 <!-- tree 80 --> 16858 <_> 16859 <!-- root node --> 16860 <feature> 16861 <rects> 16862 <_>2 0 7 12 -1.</_> 16863 <_>2 4 7 4 3.</_></rects> 16864 <tilted>0</tilted></feature> 16865 <threshold>4.7567482106387615e-003</threshold> 16866 <left_val>0.1049041971564293</left_val> 16867 <right_val>-0.1354257017374039</right_val></_></_> 16868 <_> 16869 <!-- tree 81 --> 16870 <_> 16871 <!-- root node --> 16872 <feature> 16873 <rects> 16874 <_>4 5 18 12 -1.</_> 16875 <_>10 9 6 4 9.</_></rects> 16876 <tilted>0</tilted></feature> 16877 <threshold>-0.0159023497253656</threshold> 16878 <left_val>0.0617863014340401</left_val> 16879 <right_val>-0.0983760803937912</right_val></_></_> 16880 <_> 16881 <!-- tree 82 --> 16882 <_> 16883 <!-- root node --> 16884 <feature> 16885 <rects> 16886 <_>4 7 14 6 -1.</_> 16887 <_>4 7 7 3 2.</_> 16888 <_>11 10 7 3 2.</_></rects> 16889 <tilted>0</tilted></feature> 16890 <threshold>-0.0564237087965012</threshold> 16891 <left_val>-0.6337103247642517</left_val> 16892 <right_val>0.0202245991677046</right_val></_></_> 16893 <_> 16894 <!-- tree 83 --> 16895 <_> 16896 <!-- root node --> 16897 <feature> 16898 <rects> 16899 <_>7 9 13 3 -1.</_> 16900 <_>7 10 13 1 3.</_></rects> 16901 <tilted>0</tilted></feature> 16902 <threshold>-0.0796413272619247</threshold> 16903 <left_val>-1.</left_val> 16904 <right_val>8.7428308324888349e-004</right_val></_></_> 16905 <_> 16906 <!-- tree 84 --> 16907 <_> 16908 <!-- root node --> 16909 <feature> 16910 <rects> 16911 <_>2 9 13 3 -1.</_> 16912 <_>2 10 13 1 3.</_></rects> 16913 <tilted>0</tilted></feature> 16914 <threshold>-2.0731301046907902e-003</threshold> 16915 <left_val>0.1384645998477936</left_val> 16916 <right_val>-0.0958653017878532</right_val></_></_> 16917 <_> 16918 <!-- tree 85 --> 16919 <_> 16920 <!-- root node --> 16921 <feature> 16922 <rects> 16923 <_>5 9 17 3 -1.</_> 16924 <_>5 10 17 1 3.</_></rects> 16925 <tilted>0</tilted></feature> 16926 <threshold>5.8470368385314941e-003</threshold> 16927 <left_val>-0.0570338405668736</left_val> 16928 <right_val>0.1169179975986481</right_val></_></_> 16929 <_> 16930 <!-- tree 86 --> 16931 <_> 16932 <!-- root node --> 16933 <feature> 16934 <rects> 16935 <_>1 1 10 9 -1.</_> 16936 <_>1 4 10 3 3.</_></rects> 16937 <tilted>0</tilted></feature> 16938 <threshold>-0.0261389501392841</threshold> 16939 <left_val>-0.2236243933439255</left_val> 16940 <right_val>0.0555466301739216</right_val></_></_> 16941 <_> 16942 <!-- tree 87 --> 16943 <_> 16944 <!-- root node --> 16945 <feature> 16946 <rects> 16947 <_>4 1 16 8 -1.</_> 16948 <_>4 3 16 4 2.</_></rects> 16949 <tilted>0</tilted></feature> 16950 <threshold>-6.5781630109995604e-004</threshold> 16951 <left_val>0.0929992273449898</left_val> 16952 <right_val>-0.0841521173715591</right_val></_></_> 16953 <_> 16954 <!-- tree 88 --> 16955 <_> 16956 <!-- root node --> 16957 <feature> 16958 <rects> 16959 <_>6 5 6 12 -1.</_> 16960 <_>8 5 2 12 3.</_></rects> 16961 <tilted>0</tilted></feature> 16962 <threshold>-0.0560413897037506</threshold> 16963 <left_val>0.3507285118103027</left_val> 16964 <right_val>-0.0314722806215286</right_val></_></_> 16965 <_> 16966 <!-- tree 89 --> 16967 <_> 16968 <!-- root node --> 16969 <feature> 16970 <rects> 16971 <_>11 7 6 5 -1.</_> 16972 <_>11 7 3 5 2.</_></rects> 16973 <tilted>1</tilted></feature> 16974 <threshold>0.0977998003363609</threshold> 16975 <left_val>0.0101244300603867</left_val> 16976 <right_val>-0.3771406114101410</right_val></_></_> 16977 <_> 16978 <!-- tree 90 --> 16979 <_> 16980 <!-- root node --> 16981 <feature> 16982 <rects> 16983 <_>5 4 9 5 -1.</_> 16984 <_>8 4 3 5 3.</_></rects> 16985 <tilted>0</tilted></feature> 16986 <threshold>4.5515140518546104e-003</threshold> 16987 <left_val>-0.0783113613724709</left_val> 16988 <right_val>0.1416697055101395</right_val></_></_> 16989 <_> 16990 <!-- tree 91 --> 16991 <_> 16992 <!-- root node --> 16993 <feature> 16994 <rects> 16995 <_>2 12 18 4 -1.</_> 16996 <_>11 12 9 2 2.</_> 16997 <_>2 14 9 2 2.</_></rects> 16998 <tilted>0</tilted></feature> 16999 <threshold>0.0101683801040053</threshold> 17000 <left_val>0.0521139912307262</left_val> 17001 <right_val>-0.2442279011011124</right_val></_></_> 17002 <_> 17003 <!-- tree 92 --> 17004 <_> 17005 <!-- root node --> 17006 <feature> 17007 <rects> 17008 <_>11 4 9 3 -1.</_> 17009 <_>10 5 9 1 3.</_></rects> 17010 <tilted>1</tilted></feature> 17011 <threshold>0.0628854036331177</threshold> 17012 <left_val>-0.0182555094361305</left_val> 17013 <right_val>0.6284729242324829</right_val></_></_> 17014 <_> 17015 <!-- tree 93 --> 17016 <_> 17017 <!-- root node --> 17018 <feature> 17019 <rects> 17020 <_>15 0 2 10 -1.</_> 17021 <_>15 0 1 10 2.</_></rects> 17022 <tilted>1</tilted></feature> 17023 <threshold>-0.0480641312897205</threshold> 17024 <left_val>-0.8681743144989014</left_val> 17025 <right_val>6.6064838320016861e-003</right_val></_></_> 17026 <_> 17027 <!-- tree 94 --> 17028 <_> 17029 <!-- root node --> 17030 <feature> 17031 <rects> 17032 <_>0 5 18 12 -1.</_> 17033 <_>6 9 6 4 9.</_></rects> 17034 <tilted>0</tilted></feature> 17035 <threshold>0.0184799004346132</threshold> 17036 <left_val>0.0699778124690056</left_val> 17037 <right_val>-0.1592939943075180</right_val></_></_> 17038 <_> 17039 <!-- tree 95 --> 17040 <_> 17041 <!-- root node --> 17042 <feature> 17043 <rects> 17044 <_>14 9 4 6 -1.</_> 17045 <_>14 9 2 6 2.</_></rects> 17046 <tilted>0</tilted></feature> 17047 <threshold>0.0245498400181532</threshold> 17048 <left_val>-0.0175191201269627</left_val> 17049 <right_val>0.1796191930770874</right_val></_></_> 17050 <_> 17051 <!-- tree 96 --> 17052 <_> 17053 <!-- root node --> 17054 <feature> 17055 <rects> 17056 <_>5 6 3 12 -1.</_> 17057 <_>5 10 3 4 3.</_></rects> 17058 <tilted>0</tilted></feature> 17059 <threshold>0.0392274707555771</threshold> 17060 <left_val>-0.0474179908633232</left_val> 17061 <right_val>0.2794578969478607</right_val></_></_> 17062 <_> 17063 <!-- tree 97 --> 17064 <_> 17065 <!-- root node --> 17066 <feature> 17067 <rects> 17068 <_>11 0 3 9 -1.</_> 17069 <_>12 1 1 9 3.</_></rects> 17070 <tilted>1</tilted></feature> 17071 <threshold>0.0412481985986233</threshold> 17072 <left_val>0.0114593701437116</left_val> 17073 <right_val>-0.4347747862339020</right_val></_></_> 17074 <_> 17075 <!-- tree 98 --> 17076 <_> 17077 <!-- root node --> 17078 <feature> 17079 <rects> 17080 <_>1 9 4 9 -1.</_> 17081 <_>1 12 4 3 3.</_></rects> 17082 <tilted>0</tilted></feature> 17083 <threshold>-8.4321142639964819e-004</threshold> 17084 <left_val>0.1275885999202728</left_val> 17085 <right_val>-0.0970105603337288</right_val></_></_> 17086 <_> 17087 <!-- tree 99 --> 17088 <_> 17089 <!-- root node --> 17090 <feature> 17091 <rects> 17092 <_>18 9 4 9 -1.</_> 17093 <_>18 12 4 3 3.</_></rects> 17094 <tilted>0</tilted></feature> 17095 <threshold>-0.0136887403205037</threshold> 17096 <left_val>-0.1623619049787521</left_val> 17097 <right_val>0.0432909503579140</right_val></_></_> 17098 <_> 17099 <!-- tree 100 --> 17100 <_> 17101 <!-- root node --> 17102 <feature> 17103 <rects> 17104 <_>6 9 6 4 -1.</_> 17105 <_>9 9 3 4 2.</_></rects> 17106 <tilted>0</tilted></feature> 17107 <threshold>-0.0559825114905834</threshold> 17108 <left_val>-0.7543113827705383</left_val> 17109 <right_val>0.0157977100461721</right_val></_></_> 17110 <_> 17111 <!-- tree 101 --> 17112 <_> 17113 <!-- root node --> 17114 <feature> 17115 <rects> 17116 <_>11 0 3 9 -1.</_> 17117 <_>12 1 1 9 3.</_></rects> 17118 <tilted>1</tilted></feature> 17119 <threshold>0.0735782682895660</threshold> 17120 <left_val>-1.4777439646422863e-003</left_val> 17121 <right_val>-1.0000350475311279</right_val></_></_> 17122 <_> 17123 <!-- tree 102 --> 17124 <_> 17125 <!-- root node --> 17126 <feature> 17127 <rects> 17128 <_>11 0 9 3 -1.</_> 17129 <_>10 1 9 1 3.</_></rects> 17130 <tilted>1</tilted></feature> 17131 <threshold>3.7084969226270914e-003</threshold> 17132 <left_val>-0.0971846431493759</left_val> 17133 <right_val>0.1243532970547676</right_val></_></_> 17134 <_> 17135 <!-- tree 103 --> 17136 <_> 17137 <!-- root node --> 17138 <feature> 17139 <rects> 17140 <_>5 15 12 2 -1.</_> 17141 <_>5 16 12 1 2.</_></rects> 17142 <tilted>0</tilted></feature> 17143 <threshold>-1.4889879821566865e-005</threshold> 17144 <left_val>0.0714653432369232</left_val> 17145 <right_val>-0.1684084981679916</right_val></_></_> 17146 <_> 17147 <!-- tree 104 --> 17148 <_> 17149 <!-- root node --> 17150 <feature> 17151 <rects> 17152 <_>0 0 22 2 -1.</_> 17153 <_>11 0 11 2 2.</_></rects> 17154 <tilted>0</tilted></feature> 17155 <threshold>0.1048756018280983</threshold> 17156 <left_val>0.0150766503065825</left_val> 17157 <right_val>-0.7115948200225830</right_val></_></_> 17158 <_> 17159 <!-- tree 105 --> 17160 <_> 17161 <!-- root node --> 17162 <feature> 17163 <rects> 17164 <_>20 0 2 13 -1.</_> 17165 <_>20 0 1 13 2.</_></rects> 17166 <tilted>0</tilted></feature> 17167 <threshold>0.0125874895602465</threshold> 17168 <left_val>-0.0207713004201651</left_val> 17169 <right_val>0.1746868044137955</right_val></_></_> 17170 <_> 17171 <!-- tree 106 --> 17172 <_> 17173 <!-- root node --> 17174 <feature> 17175 <rects> 17176 <_>0 0 2 13 -1.</_> 17177 <_>1 0 1 13 2.</_></rects> 17178 <tilted>0</tilted></feature> 17179 <threshold>-2.2228389570955187e-004</threshold> 17180 <left_val>0.1178164035081863</left_val> 17181 <right_val>-0.0926274582743645</right_val></_></_> 17182 <_> 17183 <!-- tree 107 --> 17184 <_> 17185 <!-- root node --> 17186 <feature> 17187 <rects> 17188 <_>10 1 6 6 -1.</_> 17189 <_>12 1 2 6 3.</_></rects> 17190 <tilted>0</tilted></feature> 17191 <threshold>-0.0777604132890701</threshold> 17192 <left_val>-0.7460541129112244</left_val> 17193 <right_val>3.6328181158751249e-003</right_val></_></_> 17194 <_> 17195 <!-- tree 108 --> 17196 <_> 17197 <!-- root node --> 17198 <feature> 17199 <rects> 17200 <_>6 1 6 6 -1.</_> 17201 <_>8 1 2 6 3.</_></rects> 17202 <tilted>0</tilted></feature> 17203 <threshold>0.0450434200465679</threshold> 17204 <left_val>0.0222178697586060</left_val> 17205 <right_val>-0.5005291104316711</right_val></_></_> 17206 <_> 17207 <!-- tree 109 --> 17208 <_> 17209 <!-- root node --> 17210 <feature> 17211 <rects> 17212 <_>10 7 12 3 -1.</_> 17213 <_>10 8 12 1 3.</_></rects> 17214 <tilted>0</tilted></feature> 17215 <threshold>3.5614410880953074e-003</threshold> 17216 <left_val>-0.0512132197618485</left_val> 17217 <right_val>0.0899865031242371</right_val></_></_> 17218 <_> 17219 <!-- tree 110 --> 17220 <_> 17221 <!-- root node --> 17222 <feature> 17223 <rects> 17224 <_>0 7 12 3 -1.</_> 17225 <_>0 8 12 1 3.</_></rects> 17226 <tilted>0</tilted></feature> 17227 <threshold>-7.4102368671447039e-004</threshold> 17228 <left_val>0.1393804997205734</left_val> 17229 <right_val>-0.1027221977710724</right_val></_></_></trees> 17230 <stage_threshold>-0.6816900968551636</stage_threshold> 17231 <parent>20</parent> 17232 <next>-1</next></_> 17233 <_> 17234 <!-- stage 22 --> 17235 <trees> 17236 <_> 17237 <!-- tree 0 --> 17238 <_> 17239 <!-- root node --> 17240 <feature> 17241 <rects> 17242 <_>1 9 8 6 -1.</_> 17243 <_>1 9 4 3 2.</_> 17244 <_>5 12 4 3 2.</_></rects> 17245 <tilted>0</tilted></feature> 17246 <threshold>-8.5600130259990692e-003</threshold> 17247 <left_val>0.1657890975475311</left_val> 17248 <right_val>-0.1641291975975037</right_val></_></_> 17249 <_> 17250 <!-- tree 1 --> 17251 <_> 17252 <!-- root node --> 17253 <feature> 17254 <rects> 17255 <_>10 10 7 4 -1.</_> 17256 <_>10 12 7 2 2.</_></rects> 17257 <tilted>0</tilted></feature> 17258 <threshold>0.0307988096028566</threshold> 17259 <left_val>-0.0334956496953964</left_val> 17260 <right_val>0.2857865095138550</right_val></_></_> 17261 <_> 17262 <!-- tree 2 --> 17263 <_> 17264 <!-- root node --> 17265 <feature> 17266 <rects> 17267 <_>8 10 4 6 -1.</_> 17268 <_>10 10 2 6 2.</_></rects> 17269 <tilted>0</tilted></feature> 17270 <threshold>-3.7319411057978868e-004</threshold> 17271 <left_val>0.1252344995737076</left_val> 17272 <right_val>-0.1211517006158829</right_val></_></_> 17273 <_> 17274 <!-- tree 3 --> 17275 <_> 17276 <!-- root node --> 17277 <feature> 17278 <rects> 17279 <_>13 6 8 4 -1.</_> 17280 <_>13 6 4 4 2.</_></rects> 17281 <tilted>1</tilted></feature> 17282 <threshold>-0.0192538499832153</threshold> 17283 <left_val>-0.0877408832311630</left_val> 17284 <right_val>0.0390665717422962</right_val></_></_> 17285 <_> 17286 <!-- tree 4 --> 17287 <_> 17288 <!-- root node --> 17289 <feature> 17290 <rects> 17291 <_>10 1 8 7 -1.</_> 17292 <_>12 3 4 7 2.</_></rects> 17293 <tilted>1</tilted></feature> 17294 <threshold>-8.5401646792888641e-003</threshold> 17295 <left_val>0.1315227001905441</left_val> 17296 <right_val>-0.1300774067640305</right_val></_></_> 17297 <_> 17298 <!-- tree 5 --> 17299 <_> 17300 <!-- root node --> 17301 <feature> 17302 <rects> 17303 <_>8 5 8 7 -1.</_> 17304 <_>8 5 4 7 2.</_></rects> 17305 <tilted>0</tilted></feature> 17306 <threshold>0.1242434978485107</threshold> 17307 <left_val>0.0190199799835682</left_val> 17308 <right_val>-0.7824705243110657</right_val></_></_> 17309 <_> 17310 <!-- tree 6 --> 17311 <_> 17312 <!-- root node --> 17313 <feature> 17314 <rects> 17315 <_>6 5 8 7 -1.</_> 17316 <_>10 5 4 7 2.</_></rects> 17317 <tilted>0</tilted></feature> 17318 <threshold>0.0400934182107449</threshold> 17319 <left_val>-0.0407437682151794</left_val> 17320 <right_val>0.3885174989700317</right_val></_></_> 17321 <_> 17322 <!-- tree 7 --> 17323 <_> 17324 <!-- root node --> 17325 <feature> 17326 <rects> 17327 <_>6 3 16 12 -1.</_> 17328 <_>14 3 8 6 2.</_> 17329 <_>6 9 8 6 2.</_></rects> 17330 <tilted>0</tilted></feature> 17331 <threshold>-4.4169559259898961e-005</threshold> 17332 <left_val>0.0455269701778889</left_val> 17333 <right_val>-0.0880638062953949</right_val></_></_> 17334 <_> 17335 <!-- tree 8 --> 17336 <_> 17337 <!-- root node --> 17338 <feature> 17339 <rects> 17340 <_>4 11 6 6 -1.</_> 17341 <_>4 13 6 2 3.</_></rects> 17342 <tilted>0</tilted></feature> 17343 <threshold>-0.0176628492772579</threshold> 17344 <left_val>-0.3137181103229523</left_val> 17345 <right_val>0.0517943389713764</right_val></_></_> 17346 <_> 17347 <!-- tree 9 --> 17348 <_> 17349 <!-- root node --> 17350 <feature> 17351 <rects> 17352 <_>4 2 18 14 -1.</_> 17353 <_>13 2 9 7 2.</_> 17354 <_>4 9 9 7 2.</_></rects> 17355 <tilted>0</tilted></feature> 17356 <threshold>0.0523685105144978</threshold> 17357 <left_val>-0.0358459986746311</left_val> 17358 <right_val>0.1500973999500275</right_val></_></_> 17359 <_> 17360 <!-- tree 10 --> 17361 <_> 17362 <!-- root node --> 17363 <feature> 17364 <rects> 17365 <_>5 0 11 12 -1.</_> 17366 <_>5 3 11 6 2.</_></rects> 17367 <tilted>0</tilted></feature> 17368 <threshold>-0.0287192799150944</threshold> 17369 <left_val>-0.1984937936067581</left_val> 17370 <right_val>0.0780990719795227</right_val></_></_> 17371 <_> 17372 <!-- tree 11 --> 17373 <_> 17374 <!-- root node --> 17375 <feature> 17376 <rects> 17377 <_>4 7 16 9 -1.</_> 17378 <_>4 10 16 3 3.</_></rects> 17379 <tilted>0</tilted></feature> 17380 <threshold>0.0694357901811600</threshold> 17381 <left_val>-0.0550737306475639</left_val> 17382 <right_val>0.2178084999322891</right_val></_></_> 17383 <_> 17384 <!-- tree 12 --> 17385 <_> 17386 <!-- root node --> 17387 <feature> 17388 <rects> 17389 <_>0 1 18 3 -1.</_> 17390 <_>0 2 18 1 3.</_></rects> 17391 <tilted>0</tilted></feature> 17392 <threshold>0.0547944381833076</threshold> 17393 <left_val>-0.0302236899733543</left_val> 17394 <right_val>0.6299396753311157</right_val></_></_> 17395 <_> 17396 <!-- tree 13 --> 17397 <_> 17398 <!-- root node --> 17399 <feature> 17400 <rects> 17401 <_>12 13 6 4 -1.</_> 17402 <_>12 15 6 2 2.</_></rects> 17403 <tilted>0</tilted></feature> 17404 <threshold>-0.0153155000880361</threshold> 17405 <left_val>-0.1505279988050461</left_val> 17406 <right_val>0.0201943702995777</right_val></_></_> 17407 <_> 17408 <!-- tree 14 --> 17409 <_> 17410 <!-- root node --> 17411 <feature> 17412 <rects> 17413 <_>1 10 6 8 -1.</_> 17414 <_>1 10 3 4 2.</_> 17415 <_>4 14 3 4 2.</_></rects> 17416 <tilted>0</tilted></feature> 17417 <threshold>0.0290019698441029</threshold> 17418 <left_val>-0.0207389891147614</left_val> 17419 <right_val>0.4564509987831116</right_val></_></_> 17420 <_> 17421 <!-- tree 15 --> 17422 <_> 17423 <!-- root node --> 17424 <feature> 17425 <rects> 17426 <_>14 12 8 6 -1.</_> 17427 <_>18 12 4 3 2.</_> 17428 <_>14 15 4 3 2.</_></rects> 17429 <tilted>0</tilted></feature> 17430 <threshold>-0.0232647694647312</threshold> 17431 <left_val>0.1467252969741821</left_val> 17432 <right_val>-0.0380813516676426</right_val></_></_> 17433 <_> 17434 <!-- tree 16 --> 17435 <_> 17436 <!-- root node --> 17437 <feature> 17438 <rects> 17439 <_>9 3 12 3 -1.</_> 17440 <_>13 7 4 3 3.</_></rects> 17441 <tilted>1</tilted></feature> 17442 <threshold>0.0190631095319986</threshold> 17443 <left_val>0.0729212388396263</left_val> 17444 <right_val>-0.2272370010614395</right_val></_></_> 17445 <_> 17446 <!-- tree 17 --> 17447 <_> 17448 <!-- root node --> 17449 <feature> 17450 <rects> 17451 <_>8 12 6 6 -1.</_> 17452 <_>8 12 3 6 2.</_></rects> 17453 <tilted>0</tilted></feature> 17454 <threshold>1.2208239641040564e-003</threshold> 17455 <left_val>0.0734713226556778</left_val> 17456 <right_val>-0.1912292987108231</right_val></_></_> 17457 <_> 17458 <!-- tree 18 --> 17459 <_> 17460 <!-- root node --> 17461 <feature> 17462 <rects> 17463 <_>4 8 14 10 -1.</_> 17464 <_>4 13 14 5 2.</_></rects> 17465 <tilted>0</tilted></feature> 17466 <threshold>-0.1756591051816940</threshold> 17467 <left_val>0.2592468857765198</left_val> 17468 <right_val>-0.0560151189565659</right_val></_></_> 17469 <_> 17470 <!-- tree 19 --> 17471 <_> 17472 <!-- root node --> 17473 <feature> 17474 <rects> 17475 <_>11 2 8 8 -1.</_> 17476 <_>11 2 4 8 2.</_></rects> 17477 <tilted>1</tilted></feature> 17478 <threshold>-0.0380421318113804</threshold> 17479 <left_val>0.1611361056566238</left_val> 17480 <right_val>-0.0437588207423687</right_val></_></_> 17481 <_> 17482 <!-- tree 20 --> 17483 <_> 17484 <!-- root node --> 17485 <feature> 17486 <rects> 17487 <_>9 6 4 8 -1.</_> 17488 <_>9 6 4 4 2.</_></rects> 17489 <tilted>1</tilted></feature> 17490 <threshold>0.0301302596926689</threshold> 17491 <left_val>0.0578308291733265</left_val> 17492 <right_val>-0.2977417111396790</right_val></_></_> 17493 <_> 17494 <!-- tree 21 --> 17495 <_> 17496 <!-- root node --> 17497 <feature> 17498 <rects> 17499 <_>18 3 4 10 -1.</_> 17500 <_>18 3 4 5 2.</_></rects> 17501 <tilted>1</tilted></feature> 17502 <threshold>0.0200892202556133</threshold> 17503 <left_val>-0.0605096295475960</left_val> 17504 <right_val>0.0334416814148426</right_val></_></_> 17505 <_> 17506 <!-- tree 22 --> 17507 <_> 17508 <!-- root node --> 17509 <feature> 17510 <rects> 17511 <_>5 15 12 3 -1.</_> 17512 <_>9 15 4 3 3.</_></rects> 17513 <tilted>0</tilted></feature> 17514 <threshold>2.6193389203399420e-004</threshold> 17515 <left_val>-0.1517544984817505</left_val> 17516 <right_val>0.1109410971403122</right_val></_></_> 17517 <_> 17518 <!-- tree 23 --> 17519 <_> 17520 <!-- root node --> 17521 <feature> 17522 <rects> 17523 <_>11 8 4 6 -1.</_> 17524 <_>11 8 4 3 2.</_></rects> 17525 <tilted>1</tilted></feature> 17526 <threshold>0.0403106287121773</threshold> 17527 <left_val>0.0174771193414927</left_val> 17528 <right_val>-0.1418537944555283</right_val></_></_> 17529 <_> 17530 <!-- tree 24 --> 17531 <_> 17532 <!-- root node --> 17533 <feature> 17534 <rects> 17535 <_>11 8 6 4 -1.</_> 17536 <_>11 8 3 4 2.</_></rects> 17537 <tilted>1</tilted></feature> 17538 <threshold>-2.9343019705265760e-003</threshold> 17539 <left_val>-0.1696013957262039</left_val> 17540 <right_val>0.0935302525758743</right_val></_></_> 17541 <_> 17542 <!-- tree 25 --> 17543 <_> 17544 <!-- root node --> 17545 <feature> 17546 <rects> 17547 <_>3 13 16 5 -1.</_> 17548 <_>7 13 8 5 2.</_></rects> 17549 <tilted>0</tilted></feature> 17550 <threshold>0.0145545201376081</threshold> 17551 <left_val>-0.0758445262908936</left_val> 17552 <right_val>0.2777166068553925</right_val></_></_> 17553 <_> 17554 <!-- tree 26 --> 17555 <_> 17556 <!-- root node --> 17557 <feature> 17558 <rects> 17559 <_>6 2 4 12 -1.</_> 17560 <_>6 2 2 6 2.</_> 17561 <_>8 8 2 6 2.</_></rects> 17562 <tilted>0</tilted></feature> 17563 <threshold>3.4086001105606556e-003</threshold> 17564 <left_val>0.0739333108067513</left_val> 17565 <right_val>-0.1962659060955048</right_val></_></_> 17566 <_> 17567 <!-- tree 27 --> 17568 <_> 17569 <!-- root node --> 17570 <feature> 17571 <rects> 17572 <_>2 14 18 4 -1.</_> 17573 <_>11 14 9 2 2.</_> 17574 <_>2 16 9 2 2.</_></rects> 17575 <tilted>0</tilted></feature> 17576 <threshold>-6.7988429218530655e-003</threshold> 17577 <left_val>-0.2013248056173325</left_val> 17578 <right_val>0.0582760386168957</right_val></_></_> 17579 <_> 17580 <!-- tree 28 --> 17581 <_> 17582 <!-- root node --> 17583 <feature> 17584 <rects> 17585 <_>3 1 12 3 -1.</_> 17586 <_>3 2 12 1 3.</_></rects> 17587 <tilted>0</tilted></feature> 17588 <threshold>-5.0457930192351341e-003</threshold> 17589 <left_val>0.1944606006145477</left_val> 17590 <right_val>-0.0716915801167488</right_val></_></_> 17591 <_> 17592 <!-- tree 29 --> 17593 <_> 17594 <!-- root node --> 17595 <feature> 17596 <rects> 17597 <_>6 1 16 3 -1.</_> 17598 <_>6 2 16 1 3.</_></rects> 17599 <tilted>0</tilted></feature> 17600 <threshold>0.0104650100693107</threshold> 17601 <left_val>-0.0473145917057991</left_val> 17602 <right_val>0.1931611001491547</right_val></_></_> 17603 <_> 17604 <!-- tree 30 --> 17605 <_> 17606 <!-- root node --> 17607 <feature> 17608 <rects> 17609 <_>5 3 8 3 -1.</_> 17610 <_>9 3 4 3 2.</_></rects> 17611 <tilted>0</tilted></feature> 17612 <threshold>-1.6713530058041215e-003</threshold> 17613 <left_val>0.0929151475429535</left_val> 17614 <right_val>-0.1189012974500656</right_val></_></_> 17615 <_> 17616 <!-- tree 31 --> 17617 <_> 17618 <!-- root node --> 17619 <feature> 17620 <rects> 17621 <_>16 3 4 6 -1.</_> 17622 <_>16 3 4 3 2.</_></rects> 17623 <tilted>1</tilted></feature> 17624 <threshold>-0.0427043586969376</threshold> 17625 <left_val>0.1696103960275650</left_val> 17626 <right_val>-0.0206326507031918</right_val></_></_> 17627 <_> 17628 <!-- tree 32 --> 17629 <_> 17630 <!-- root node --> 17631 <feature> 17632 <rects> 17633 <_>4 3 10 4 -1.</_> 17634 <_>4 3 5 4 2.</_></rects> 17635 <tilted>1</tilted></feature> 17636 <threshold>0.2036782950162888</threshold> 17637 <left_val>0.0232468992471695</left_val> 17638 <right_val>-0.4942026138305664</right_val></_></_> 17639 <_> 17640 <!-- tree 33 --> 17641 <_> 17642 <!-- root node --> 17643 <feature> 17644 <rects> 17645 <_>14 5 6 8 -1.</_> 17646 <_>17 5 3 4 2.</_> 17647 <_>14 9 3 4 2.</_></rects> 17648 <tilted>0</tilted></feature> 17649 <threshold>-8.3379482384771109e-004</threshold> 17650 <left_val>0.0500010699033737</left_val> 17651 <right_val>-0.0737798064947128</right_val></_></_> 17652 <_> 17653 <!-- tree 34 --> 17654 <_> 17655 <!-- root node --> 17656 <feature> 17657 <rects> 17658 <_>1 2 14 12 -1.</_> 17659 <_>1 5 14 6 2.</_></rects> 17660 <tilted>0</tilted></feature> 17661 <threshold>0.1785476952791214</threshold> 17662 <left_val>0.0155882900580764</left_val> 17663 <right_val>-0.7765008211135864</right_val></_></_> 17664 <_> 17665 <!-- tree 35 --> 17666 <_> 17667 <!-- root node --> 17668 <feature> 17669 <rects> 17670 <_>11 2 6 12 -1.</_> 17671 <_>11 5 6 6 2.</_></rects> 17672 <tilted>0</tilted></feature> 17673 <threshold>-0.1353528946638107</threshold> 17674 <left_val>-0.5229911208152771</left_val> 17675 <right_val>3.1595760956406593e-003</right_val></_></_> 17676 <_> 17677 <!-- tree 36 --> 17678 <_> 17679 <!-- root node --> 17680 <feature> 17681 <rects> 17682 <_>5 2 6 12 -1.</_> 17683 <_>5 5 6 6 2.</_></rects> 17684 <tilted>0</tilted></feature> 17685 <threshold>0.0465552695095539</threshold> 17686 <left_val>-0.0418910607695580</left_val> 17687 <right_val>0.3032479882240295</right_val></_></_> 17688 <_> 17689 <!-- tree 37 --> 17690 <_> 17691 <!-- root node --> 17692 <feature> 17693 <rects> 17694 <_>11 5 8 5 -1.</_> 17695 <_>11 5 4 5 2.</_></rects> 17696 <tilted>1</tilted></feature> 17697 <threshold>0.0226636491715908</threshold> 17698 <left_val>0.0388511605560780</left_val> 17699 <right_val>-0.0851962268352509</right_val></_></_> 17700 <_> 17701 <!-- tree 38 --> 17702 <_> 17703 <!-- root node --> 17704 <feature> 17705 <rects> 17706 <_>4 0 9 18 -1.</_> 17707 <_>7 0 3 18 3.</_></rects> 17708 <tilted>0</tilted></feature> 17709 <threshold>-0.2302772998809815</threshold> 17710 <left_val>-0.9350309967994690</left_val> 17711 <right_val>0.0139423497021198</right_val></_></_> 17712 <_> 17713 <!-- tree 39 --> 17714 <_> 17715 <!-- root node --> 17716 <feature> 17717 <rects> 17718 <_>11 14 6 4 -1.</_> 17719 <_>11 16 6 2 2.</_></rects> 17720 <tilted>0</tilted></feature> 17721 <threshold>0.0257141403853893</threshold> 17722 <left_val>-9.1460775583982468e-003</left_val> 17723 <right_val>0.7806320190429688</right_val></_></_> 17724 <_> 17725 <!-- tree 40 --> 17726 <_> 17727 <!-- root node --> 17728 <feature> 17729 <rects> 17730 <_>5 14 6 4 -1.</_> 17731 <_>5 16 6 2 2.</_></rects> 17732 <tilted>0</tilted></feature> 17733 <threshold>-7.3728510869841557e-006</threshold> 17734 <left_val>0.0627309232950211</left_val> 17735 <right_val>-0.2004217058420181</right_val></_></_> 17736 <_> 17737 <!-- tree 41 --> 17738 <_> 17739 <!-- root node --> 17740 <feature> 17741 <rects> 17742 <_>12 13 6 4 -1.</_> 17743 <_>12 15 6 2 2.</_></rects> 17744 <tilted>0</tilted></feature> 17745 <threshold>-0.0197578892111778</threshold> 17746 <left_val>-0.2343472987413406</left_val> 17747 <right_val>0.0146009000018239</right_val></_></_> 17748 <_> 17749 <!-- tree 42 --> 17750 <_> 17751 <!-- root node --> 17752 <feature> 17753 <rects> 17754 <_>1 6 13 3 -1.</_> 17755 <_>1 7 13 1 3.</_></rects> 17756 <tilted>0</tilted></feature> 17757 <threshold>-4.1893101297318935e-003</threshold> 17758 <left_val>0.1497139930725098</left_val> 17759 <right_val>-0.0693688690662384</right_val></_></_> 17760 <_> 17761 <!-- tree 43 --> 17762 <_> 17763 <!-- root node --> 17764 <feature> 17765 <rects> 17766 <_>10 6 12 3 -1.</_> 17767 <_>10 7 12 1 3.</_></rects> 17768 <tilted>0</tilted></feature> 17769 <threshold>1.1314969742670655e-003</threshold> 17770 <left_val>-0.0692035928368568</left_val> 17771 <right_val>0.1044744029641151</right_val></_></_> 17772 <_> 17773 <!-- tree 44 --> 17774 <_> 17775 <!-- root node --> 17776 <feature> 17777 <rects> 17778 <_>1 8 6 4 -1.</_> 17779 <_>4 8 3 4 2.</_></rects> 17780 <tilted>0</tilted></feature> 17781 <threshold>6.3914088532328606e-003</threshold> 17782 <left_val>0.0561340302228928</left_val> 17783 <right_val>-0.1986276954412460</right_val></_></_> 17784 <_> 17785 <!-- tree 45 --> 17786 <_> 17787 <!-- root node --> 17788 <feature> 17789 <rects> 17790 <_>14 12 6 6 -1.</_> 17791 <_>16 12 2 6 3.</_></rects> 17792 <tilted>0</tilted></feature> 17793 <threshold>-3.7047569639980793e-003</threshold> 17794 <left_val>0.0968172922730446</left_val> 17795 <right_val>-0.0952822864055634</right_val></_></_> 17796 <_> 17797 <!-- tree 46 --> 17798 <_> 17799 <!-- root node --> 17800 <feature> 17801 <rects> 17802 <_>2 12 6 6 -1.</_> 17803 <_>4 12 2 6 3.</_></rects> 17804 <tilted>0</tilted></feature> 17805 <threshold>0.0306274592876434</threshold> 17806 <left_val>-0.0500796400010586</left_val> 17807 <right_val>0.2602388858795166</right_val></_></_> 17808 <_> 17809 <!-- tree 47 --> 17810 <_> 17811 <!-- root node --> 17812 <feature> 17813 <rects> 17814 <_>7 15 12 3 -1.</_> 17815 <_>11 15 4 3 3.</_></rects> 17816 <tilted>0</tilted></feature> 17817 <threshold>0.0324444398283958</threshold> 17818 <left_val>0.0310999397188425</left_val> 17819 <right_val>-0.2078860998153687</right_val></_></_> 17820 <_> 17821 <!-- tree 48 --> 17822 <_> 17823 <!-- root node --> 17824 <feature> 17825 <rects> 17826 <_>1 12 8 5 -1.</_> 17827 <_>5 12 4 5 2.</_></rects> 17828 <tilted>0</tilted></feature> 17829 <threshold>0.0116515597328544</threshold> 17830 <left_val>-0.0583119504153728</left_val> 17831 <right_val>0.2537410855293274</right_val></_></_> 17832 <_> 17833 <!-- tree 49 --> 17834 <_> 17835 <!-- root node --> 17836 <feature> 17837 <rects> 17838 <_>14 5 6 8 -1.</_> 17839 <_>17 5 3 4 2.</_> 17840 <_>14 9 3 4 2.</_></rects> 17841 <tilted>0</tilted></feature> 17842 <threshold>-0.0365152209997177</threshold> 17843 <left_val>-0.2674919068813324</left_val> 17844 <right_val>0.0205362495034933</right_val></_></_> 17845 <_> 17846 <!-- tree 50 --> 17847 <_> 17848 <!-- root node --> 17849 <feature> 17850 <rects> 17851 <_>2 5 6 8 -1.</_> 17852 <_>2 5 3 4 2.</_> 17853 <_>5 9 3 4 2.</_></rects> 17854 <tilted>0</tilted></feature> 17855 <threshold>0.0174746308475733</threshold> 17856 <left_val>0.0474169813096523</left_val> 17857 <right_val>-0.3371900916099548</right_val></_></_> 17858 <_> 17859 <!-- tree 51 --> 17860 <_> 17861 <!-- root node --> 17862 <feature> 17863 <rects> 17864 <_>14 11 8 6 -1.</_> 17865 <_>18 11 4 3 2.</_> 17866 <_>14 14 4 3 2.</_></rects> 17867 <tilted>0</tilted></feature> 17868 <threshold>-1.5204170485958457e-003</threshold> 17869 <left_val>0.0589338093996048</left_val> 17870 <right_val>-0.0958449468016624</right_val></_></_> 17871 <_> 17872 <!-- tree 52 --> 17873 <_> 17874 <!-- root node --> 17875 <feature> 17876 <rects> 17877 <_>4 0 8 6 -1.</_> 17878 <_>4 0 4 3 2.</_> 17879 <_>8 3 4 3 2.</_></rects> 17880 <tilted>0</tilted></feature> 17881 <threshold>0.0477611795067787</threshold> 17882 <left_val>0.0108497003093362</left_val> 17883 <right_val>-0.8663501739501953</right_val></_></_> 17884 <_> 17885 <!-- tree 53 --> 17886 <_> 17887 <!-- root node --> 17888 <feature> 17889 <rects> 17890 <_>14 3 7 4 -1.</_> 17891 <_>14 3 7 2 2.</_></rects> 17892 <tilted>1</tilted></feature> 17893 <threshold>-0.0635691136121750</threshold> 17894 <left_val>0.2585859894752502</left_val> 17895 <right_val>-0.0181565806269646</right_val></_></_> 17896 <_> 17897 <!-- tree 54 --> 17898 <_> 17899 <!-- root node --> 17900 <feature> 17901 <rects> 17902 <_>0 11 8 6 -1.</_> 17903 <_>0 11 4 3 2.</_> 17904 <_>4 14 4 3 2.</_></rects> 17905 <tilted>0</tilted></feature> 17906 <threshold>-1.7476839711889625e-003</threshold> 17907 <left_val>0.0757502466440201</left_val> 17908 <right_val>-0.1429527997970581</right_val></_></_> 17909 <_> 17910 <!-- tree 55 --> 17911 <_> 17912 <!-- root node --> 17913 <feature> 17914 <rects> 17915 <_>4 13 14 4 -1.</_> 17916 <_>4 15 14 2 2.</_></rects> 17917 <tilted>0</tilted></feature> 17918 <threshold>-4.6762558631598949e-003</threshold> 17919 <left_val>-0.0912233963608742</left_val> 17920 <right_val>0.1313527971506119</right_val></_></_> 17921 <_> 17922 <!-- tree 56 --> 17923 <_> 17924 <!-- root node --> 17925 <feature> 17926 <rects> 17927 <_>5 3 9 8 -1.</_> 17928 <_>8 3 3 8 3.</_></rects> 17929 <tilted>0</tilted></feature> 17930 <threshold>0.0222021006047726</threshold> 17931 <left_val>-0.0533974505960941</left_val> 17932 <right_val>0.2074397951364517</right_val></_></_> 17933 <_> 17934 <!-- tree 57 --> 17935 <_> 17936 <!-- root node --> 17937 <feature> 17938 <rects> 17939 <_>5 0 15 8 -1.</_> 17940 <_>10 0 5 8 3.</_></rects> 17941 <tilted>0</tilted></feature> 17942 <threshold>-0.2464735954999924</threshold> 17943 <left_val>-0.4561021924018860</left_val> 17944 <right_val>3.5777890589088202e-003</right_val></_></_> 17945 <_> 17946 <!-- tree 58 --> 17947 <_> 17948 <!-- root node --> 17949 <feature> 17950 <rects> 17951 <_>2 0 15 8 -1.</_> 17952 <_>7 0 5 8 3.</_></rects> 17953 <tilted>0</tilted></feature> 17954 <threshold>5.0148782320320606e-003</threshold> 17955 <left_val>0.0888718292117119</left_val> 17956 <right_val>-0.1623649001121521</right_val></_></_> 17957 <_> 17958 <!-- tree 59 --> 17959 <_> 17960 <!-- root node --> 17961 <feature> 17962 <rects> 17963 <_>14 0 6 11 -1.</_> 17964 <_>16 0 2 11 3.</_></rects> 17965 <tilted>0</tilted></feature> 17966 <threshold>-0.0420239716768265</threshold> 17967 <left_val>0.1280557960271835</left_val> 17968 <right_val>-0.0119267599657178</right_val></_></_> 17969 <_> 17970 <!-- tree 60 --> 17971 <_> 17972 <!-- root node --> 17973 <feature> 17974 <rects> 17975 <_>0 16 18 2 -1.</_> 17976 <_>6 16 6 2 3.</_></rects> 17977 <tilted>0</tilted></feature> 17978 <threshold>-0.1089551970362663</threshold> 17979 <left_val>-0.6646612286567688</left_val> 17980 <right_val>0.0159055497497320</right_val></_></_> 17981 <_> 17982 <!-- tree 61 --> 17983 <_> 17984 <!-- root node --> 17985 <feature> 17986 <rects> 17987 <_>5 3 12 9 -1.</_> 17988 <_>9 6 4 3 9.</_></rects> 17989 <tilted>0</tilted></feature> 17990 <threshold>-0.3667292892932892</threshold> 17991 <left_val>0.3637480139732361</left_val> 17992 <right_val>-0.0312062297016382</right_val></_></_> 17993 <_> 17994 <!-- tree 62 --> 17995 <_> 17996 <!-- root node --> 17997 <feature> 17998 <rects> 17999 <_>8 3 4 7 -1.</_> 18000 <_>8 3 2 7 2.</_></rects> 18001 <tilted>1</tilted></feature> 18002 <threshold>9.5884501934051514e-003</threshold> 18003 <left_val>0.0910735502839088</left_val> 18004 <right_val>-0.1249236017465591</right_val></_></_> 18005 <_> 18006 <!-- tree 63 --> 18007 <_> 18008 <!-- root node --> 18009 <feature> 18010 <rects> 18011 <_>10 3 6 8 -1.</_> 18012 <_>12 3 2 8 3.</_></rects> 18013 <tilted>0</tilted></feature> 18014 <threshold>1.6124530229717493e-003</threshold> 18015 <left_val>0.0337519794702530</left_val> 18016 <right_val>-0.0587492398917675</right_val></_></_> 18017 <_> 18018 <!-- tree 64 --> 18019 <_> 18020 <!-- root node --> 18021 <feature> 18022 <rects> 18023 <_>6 3 6 8 -1.</_> 18024 <_>8 3 2 8 3.</_></rects> 18025 <tilted>0</tilted></feature> 18026 <threshold>-0.0178824309259653</threshold> 18027 <left_val>0.2099276930093765</left_val> 18028 <right_val>-0.0632152333855629</right_val></_></_> 18029 <_> 18030 <!-- tree 65 --> 18031 <_> 18032 <!-- root node --> 18033 <feature> 18034 <rects> 18035 <_>7 13 12 4 -1.</_> 18036 <_>7 15 12 2 2.</_></rects> 18037 <tilted>0</tilted></feature> 18038 <threshold>-6.6655018599703908e-005</threshold> 18039 <left_val>0.0550200305879116</left_val> 18040 <right_val>-0.1790881007909775</right_val></_></_> 18041 <_> 18042 <!-- tree 66 --> 18043 <_> 18044 <!-- root node --> 18045 <feature> 18046 <rects> 18047 <_>3 9 16 8 -1.</_> 18048 <_>3 9 8 4 2.</_> 18049 <_>11 13 8 4 2.</_></rects> 18050 <tilted>0</tilted></feature> 18051 <threshold>-0.0109126102179289</threshold> 18052 <left_val>-0.1787886023521423</left_val> 18053 <right_val>0.0640889033675194</right_val></_></_> 18054 <_> 18055 <!-- tree 67 --> 18056 <_> 18057 <!-- root node --> 18058 <feature> 18059 <rects> 18060 <_>9 0 13 3 -1.</_> 18061 <_>9 1 13 1 3.</_></rects> 18062 <tilted>0</tilted></feature> 18063 <threshold>-1.9031569827347994e-003</threshold> 18064 <left_val>0.1101256012916565</left_val> 18065 <right_val>-0.0625764429569244</right_val></_></_> 18066 <_> 18067 <!-- tree 68 --> 18068 <_> 18069 <!-- root node --> 18070 <feature> 18071 <rects> 18072 <_>4 0 4 12 -1.</_> 18073 <_>4 0 2 6 2.</_> 18074 <_>6 6 2 6 2.</_></rects> 18075 <tilted>0</tilted></feature> 18076 <threshold>4.7322059981524944e-003</threshold> 18077 <left_val>0.0606118105351925</left_val> 18078 <right_val>-0.1752125024795532</right_val></_></_> 18079 <_> 18080 <!-- tree 69 --> 18081 <_> 18082 <!-- root node --> 18083 <feature> 18084 <rects> 18085 <_>1 11 20 4 -1.</_> 18086 <_>6 11 10 4 2.</_></rects> 18087 <tilted>0</tilted></feature> 18088 <threshold>0.1795500069856644</threshold> 18089 <left_val>-0.0264137107878923</left_val> 18090 <right_val>0.5146319866180420</right_val></_></_> 18091 <_> 18092 <!-- tree 70 --> 18093 <_> 18094 <!-- root node --> 18095 <feature> 18096 <rects> 18097 <_>3 14 6 4 -1.</_> 18098 <_>6 14 3 4 2.</_></rects> 18099 <tilted>0</tilted></feature> 18100 <threshold>-1.8869279883801937e-003</threshold> 18101 <left_val>0.0707328692078590</left_val> 18102 <right_val>-0.1897756010293961</right_val></_></_> 18103 <_> 18104 <!-- tree 71 --> 18105 <_> 18106 <!-- root node --> 18107 <feature> 18108 <rects> 18109 <_>10 6 12 3 -1.</_> 18110 <_>10 7 12 1 3.</_></rects> 18111 <tilted>0</tilted></feature> 18112 <threshold>-3.5322420299053192e-003</threshold> 18113 <left_val>0.0958002880215645</left_val> 18114 <right_val>-0.0492516607046127</right_val></_></_> 18115 <_> 18116 <!-- tree 72 --> 18117 <_> 18118 <!-- root node --> 18119 <feature> 18120 <rects> 18121 <_>0 6 12 3 -1.</_> 18122 <_>0 7 12 1 3.</_></rects> 18123 <tilted>0</tilted></feature> 18124 <threshold>1.0818409500643611e-003</threshold> 18125 <left_val>-0.0970824882388115</left_val> 18126 <right_val>0.1409244984388351</right_val></_></_> 18127 <_> 18128 <!-- tree 73 --> 18129 <_> 18130 <!-- root node --> 18131 <feature> 18132 <rects> 18133 <_>6 2 14 6 -1.</_> 18134 <_>6 4 14 2 3.</_></rects> 18135 <tilted>0</tilted></feature> 18136 <threshold>-0.0954552590847015</threshold> 18137 <left_val>-0.6837651729583740</left_val> 18138 <right_val>8.8187018409371376e-003</right_val></_></_> 18139 <_> 18140 <!-- tree 74 --> 18141 <_> 18142 <!-- root node --> 18143 <feature> 18144 <rects> 18145 <_>4 1 6 4 -1.</_> 18146 <_>4 1 6 2 2.</_></rects> 18147 <tilted>1</tilted></feature> 18148 <threshold>1.6179149970412254e-003</threshold> 18149 <left_val>-0.0951295793056488</left_val> 18150 <right_val>0.1135148033499718</right_val></_></_> 18151 <_> 18152 <!-- tree 75 --> 18153 <_> 18154 <!-- root node --> 18155 <feature> 18156 <rects> 18157 <_>1 0 21 18 -1.</_> 18158 <_>8 0 7 18 3.</_></rects> 18159 <tilted>0</tilted></feature> 18160 <threshold>0.6554787755012512</threshold> 18161 <left_val>9.7635984420776367e-003</left_val> 18162 <right_val>-0.5658118724822998</right_val></_></_> 18163 <_> 18164 <!-- tree 76 --> 18165 <_> 18166 <!-- root node --> 18167 <feature> 18168 <rects> 18169 <_>5 0 14 2 -1.</_> 18170 <_>5 0 7 2 2.</_></rects> 18171 <tilted>1</tilted></feature> 18172 <threshold>-0.0779737234115601</threshold> 18173 <left_val>0.3557372987270355</left_val> 18174 <right_val>-0.0331261307001114</right_val></_></_> 18175 <_> 18176 <!-- tree 77 --> 18177 <_> 18178 <!-- root node --> 18179 <feature> 18180 <rects> 18181 <_>14 8 4 9 -1.</_> 18182 <_>14 11 4 3 3.</_></rects> 18183 <tilted>0</tilted></feature> 18184 <threshold>0.0202090293169022</threshold> 18185 <left_val>0.0393016114830971</left_val> 18186 <right_val>-0.1358025074005127</right_val></_></_> 18187 <_> 18188 <!-- tree 78 --> 18189 <_> 18190 <!-- root node --> 18191 <feature> 18192 <rects> 18193 <_>2 0 6 10 -1.</_> 18194 <_>4 0 2 10 3.</_></rects> 18195 <tilted>0</tilted></feature> 18196 <threshold>0.0903235897421837</threshold> 18197 <left_val>-0.0159329306334257</left_val> 18198 <right_val>0.6940913200378418</right_val></_></_> 18199 <_> 18200 <!-- tree 79 --> 18201 <_> 18202 <!-- root node --> 18203 <feature> 18204 <rects> 18205 <_>5 11 12 4 -1.</_> 18206 <_>11 11 6 2 2.</_> 18207 <_>5 13 6 2 2.</_></rects> 18208 <tilted>0</tilted></feature> 18209 <threshold>-6.2048831023275852e-003</threshold> 18210 <left_val>-0.1703765988349915</left_val> 18211 <right_val>0.0680906772613525</right_val></_></_> 18212 <_> 18213 <!-- tree 80 --> 18214 <_> 18215 <!-- root node --> 18216 <feature> 18217 <rects> 18218 <_>8 5 4 6 -1.</_> 18219 <_>10 5 2 6 2.</_></rects> 18220 <tilted>0</tilted></feature> 18221 <threshold>-0.0157372504472733</threshold> 18222 <left_val>0.1625010967254639</left_val> 18223 <right_val>-0.0665289387106895</right_val></_></_> 18224 <_> 18225 <!-- tree 81 --> 18226 <_> 18227 <!-- root node --> 18228 <feature> 18229 <rects> 18230 <_>7 1 15 9 -1.</_> 18231 <_>12 4 5 3 9.</_></rects> 18232 <tilted>0</tilted></feature> 18233 <threshold>-0.0353970415890217</threshold> 18234 <left_val>-0.0897665470838547</left_val> 18235 <right_val>0.0491357408463955</right_val></_></_> 18236 <_> 18237 <!-- tree 82 --> 18238 <_> 18239 <!-- root node --> 18240 <feature> 18241 <rects> 18242 <_>0 1 15 9 -1.</_> 18243 <_>5 4 5 3 9.</_></rects> 18244 <tilted>0</tilted></feature> 18245 <threshold>0.0328508615493774</threshold> 18246 <left_val>0.0851581394672394</left_val> 18247 <right_val>-0.1300231963396072</right_val></_></_> 18248 <_> 18249 <!-- tree 83 --> 18250 <_> 18251 <!-- root node --> 18252 <feature> 18253 <rects> 18254 <_>5 0 12 16 -1.</_> 18255 <_>11 0 6 8 2.</_> 18256 <_>5 8 6 8 2.</_></rects> 18257 <tilted>0</tilted></feature> 18258 <threshold>-0.0840240567922592</threshold> 18259 <left_val>0.3065848946571350</left_val> 18260 <right_val>-0.0393136218190193</right_val></_></_> 18261 <_> 18262 <!-- tree 84 --> 18263 <_> 18264 <!-- root node --> 18265 <feature> 18266 <rects> 18267 <_>8 10 6 5 -1.</_> 18268 <_>11 10 3 5 2.</_></rects> 18269 <tilted>0</tilted></feature> 18270 <threshold>2.1347659640014172e-003</threshold> 18271 <left_val>0.0833869501948357</left_val> 18272 <right_val>-0.1223948001861572</right_val></_></_> 18273 <_> 18274 <!-- tree 85 --> 18275 <_> 18276 <!-- root node --> 18277 <feature> 18278 <rects> 18279 <_>10 4 8 9 -1.</_> 18280 <_>10 7 8 3 3.</_></rects> 18281 <tilted>0</tilted></feature> 18282 <threshold>0.1792261004447937</threshold> 18283 <left_val>2.6004109531641006e-003</left_val> 18284 <right_val>-0.9998909235000610</right_val></_></_> 18285 <_> 18286 <!-- tree 86 --> 18287 <_> 18288 <!-- root node --> 18289 <feature> 18290 <rects> 18291 <_>4 4 8 9 -1.</_> 18292 <_>4 7 8 3 3.</_></rects> 18293 <tilted>0</tilted></feature> 18294 <threshold>0.1185439005494118</threshold> 18295 <left_val>0.0110983699560165</left_val> 18296 <right_val>-0.8962950706481934</right_val></_></_> 18297 <_> 18298 <!-- tree 87 --> 18299 <_> 18300 <!-- root node --> 18301 <feature> 18302 <rects> 18303 <_>8 3 12 3 -1.</_> 18304 <_>8 4 12 1 3.</_></rects> 18305 <tilted>0</tilted></feature> 18306 <threshold>-2.7351840399205685e-003</threshold> 18307 <left_val>0.1158913001418114</left_val> 18308 <right_val>-0.0635892078280449</right_val></_></_> 18309 <_> 18310 <!-- tree 88 --> 18311 <_> 18312 <!-- root node --> 18313 <feature> 18314 <rects> 18315 <_>0 3 13 3 -1.</_> 18316 <_>0 4 13 1 3.</_></rects> 18317 <tilted>0</tilted></feature> 18318 <threshold>6.6092880442738533e-003</threshold> 18319 <left_val>-0.0794914290308952</left_val> 18320 <right_val>0.1850122958421707</right_val></_></_> 18321 <_> 18322 <!-- tree 89 --> 18323 <_> 18324 <!-- root node --> 18325 <feature> 18326 <rects> 18327 <_>10 1 12 3 -1.</_> 18328 <_>14 1 4 3 3.</_></rects> 18329 <tilted>0</tilted></feature> 18330 <threshold>-0.0210720095783472</threshold> 18331 <left_val>-0.1470849961042404</left_val> 18332 <right_val>0.0260712802410126</right_val></_></_> 18333 <_> 18334 <!-- tree 90 --> 18335 <_> 18336 <!-- root node --> 18337 <feature> 18338 <rects> 18339 <_>0 1 12 3 -1.</_> 18340 <_>4 1 4 3 3.</_></rects> 18341 <tilted>0</tilted></feature> 18342 <threshold>0.0134116197004914</threshold> 18343 <left_val>0.0486455895006657</left_val> 18344 <right_val>-0.2204180061817169</right_val></_></_> 18345 <_> 18346 <!-- tree 91 --> 18347 <_> 18348 <!-- root node --> 18349 <feature> 18350 <rects> 18351 <_>8 3 12 3 -1.</_> 18352 <_>8 4 12 1 3.</_></rects> 18353 <tilted>0</tilted></feature> 18354 <threshold>-0.0206615403294563</threshold> 18355 <left_val>0.2137404978275299</left_val> 18356 <right_val>-0.0222432296723127</right_val></_></_> 18357 <_> 18358 <!-- tree 92 --> 18359 <_> 18360 <!-- root node --> 18361 <feature> 18362 <rects> 18363 <_>8 4 6 4 -1.</_> 18364 <_>8 4 3 4 2.</_></rects> 18365 <tilted>1</tilted></feature> 18366 <threshold>-0.1093925014138222</threshold> 18367 <left_val>-0.7923508882522583</left_val> 18368 <right_val>0.0119324997067451</right_val></_></_> 18369 <_> 18370 <!-- tree 93 --> 18371 <_> 18372 <!-- root node --> 18373 <feature> 18374 <rects> 18375 <_>13 2 2 11 -1.</_> 18376 <_>13 2 1 11 2.</_></rects> 18377 <tilted>1</tilted></feature> 18378 <threshold>0.0545732714235783</threshold> 18379 <left_val>-8.7064085528254509e-003</left_val> 18380 <right_val>0.3822610974311829</right_val></_></_> 18381 <_> 18382 <!-- tree 94 --> 18383 <_> 18384 <!-- root node --> 18385 <feature> 18386 <rects> 18387 <_>9 2 11 2 -1.</_> 18388 <_>9 2 11 1 2.</_></rects> 18389 <tilted>1</tilted></feature> 18390 <threshold>-0.0278459899127483</threshold> 18391 <left_val>0.4209634065628052</left_val> 18392 <right_val>-0.0343008190393448</right_val></_></_> 18393 <_> 18394 <!-- tree 95 --> 18395 <_> 18396 <!-- root node --> 18397 <feature> 18398 <rects> 18399 <_>11 1 3 16 -1.</_> 18400 <_>11 9 3 8 2.</_></rects> 18401 <tilted>0</tilted></feature> 18402 <threshold>0.1497317999601364</threshold> 18403 <left_val>5.5857440456748009e-003</left_val> 18404 <right_val>-0.7102707028388977</right_val></_></_> 18405 <_> 18406 <!-- tree 96 --> 18407 <_> 18408 <!-- root node --> 18409 <feature> 18410 <rects> 18411 <_>7 1 4 9 -1.</_> 18412 <_>7 4 4 3 3.</_></rects> 18413 <tilted>0</tilted></feature> 18414 <threshold>0.0545480214059353</threshold> 18415 <left_val>0.0192897692322731</left_val> 18416 <right_val>-0.5506185293197632</right_val></_></_> 18417 <_> 18418 <!-- tree 97 --> 18419 <_> 18420 <!-- root node --> 18421 <feature> 18422 <rects> 18423 <_>12 4 4 8 -1.</_> 18424 <_>12 8 4 4 2.</_></rects> 18425 <tilted>0</tilted></feature> 18426 <threshold>5.4990737698972225e-003</threshold> 18427 <left_val>0.0436438918113709</left_val> 18428 <right_val>-0.1223369985818863</right_val></_></_> 18429 <_> 18430 <!-- tree 98 --> 18431 <_> 18432 <!-- root node --> 18433 <feature> 18434 <rects> 18435 <_>1 7 6 4 -1.</_> 18436 <_>1 9 6 2 2.</_></rects> 18437 <tilted>0</tilted></feature> 18438 <threshold>3.5988059244118631e-004</threshold> 18439 <left_val>-0.0950050204992294</left_val> 18440 <right_val>0.1250164061784744</right_val></_></_> 18441 <_> 18442 <!-- tree 99 --> 18443 <_> 18444 <!-- root node --> 18445 <feature> 18446 <rects> 18447 <_>12 4 4 8 -1.</_> 18448 <_>12 8 4 4 2.</_></rects> 18449 <tilted>0</tilted></feature> 18450 <threshold>-0.0510030686855316</threshold> 18451 <left_val>-0.3464818894863129</left_val> 18452 <right_val>0.0141243999823928</right_val></_></_> 18453 <_> 18454 <!-- tree 100 --> 18455 <_> 18456 <!-- root node --> 18457 <feature> 18458 <rects> 18459 <_>6 4 4 8 -1.</_> 18460 <_>6 8 4 4 2.</_></rects> 18461 <tilted>0</tilted></feature> 18462 <threshold>-0.0593791306018829</threshold> 18463 <left_val>0.6884043216705322</left_val> 18464 <right_val>-0.0207809992134571</right_val></_></_> 18465 <_> 18466 <!-- tree 101 --> 18467 <_> 18468 <!-- root node --> 18469 <feature> 18470 <rects> 18471 <_>19 3 3 12 -1.</_> 18472 <_>20 4 1 12 3.</_></rects> 18473 <tilted>1</tilted></feature> 18474 <threshold>0.0689760372042656</threshold> 18475 <left_val>8.5678137838840485e-003</left_val> 18476 <right_val>-0.6909855008125305</right_val></_></_> 18477 <_> 18478 <!-- tree 102 --> 18479 <_> 18480 <!-- root node --> 18481 <feature> 18482 <rects> 18483 <_>3 3 12 3 -1.</_> 18484 <_>2 4 12 1 3.</_></rects> 18485 <tilted>1</tilted></feature> 18486 <threshold>-4.3954830616712570e-003</threshold> 18487 <left_val>-0.1738288998603821</left_val> 18488 <right_val>0.0691059902310371</right_val></_></_> 18489 <_> 18490 <!-- tree 103 --> 18491 <_> 18492 <!-- root node --> 18493 <feature> 18494 <rects> 18495 <_>13 6 3 7 -1.</_> 18496 <_>14 7 1 7 3.</_></rects> 18497 <tilted>1</tilted></feature> 18498 <threshold>0.0138380303978920</threshold> 18499 <left_val>-0.0293981190770864</left_val> 18500 <right_val>0.1968578994274139</right_val></_></_> 18501 <_> 18502 <!-- tree 104 --> 18503 <_> 18504 <!-- root node --> 18505 <feature> 18506 <rects> 18507 <_>8 12 6 4 -1.</_> 18508 <_>11 12 3 4 2.</_></rects> 18509 <tilted>0</tilted></feature> 18510 <threshold>-7.5316978618502617e-003</threshold> 18511 <left_val>-0.3579084873199463</left_val> 18512 <right_val>0.0396854504942894</right_val></_></_> 18513 <_> 18514 <!-- tree 105 --> 18515 <_> 18516 <!-- root node --> 18517 <feature> 18518 <rects> 18519 <_>10 8 10 10 -1.</_> 18520 <_>15 8 5 5 2.</_> 18521 <_>10 13 5 5 2.</_></rects> 18522 <tilted>0</tilted></feature> 18523 <threshold>-0.0882997065782547</threshold> 18524 <left_val>-0.2377042025327683</left_val> 18525 <right_val>3.0232321005314589e-003</right_val></_></_> 18526 <_> 18527 <!-- tree 106 --> 18528 <_> 18529 <!-- root node --> 18530 <feature> 18531 <rects> 18532 <_>2 8 10 10 -1.</_> 18533 <_>2 8 5 5 2.</_> 18534 <_>7 13 5 5 2.</_></rects> 18535 <tilted>0</tilted></feature> 18536 <threshold>-0.0441387593746185</threshold> 18537 <left_val>0.2654140889644623</left_val> 18538 <right_val>-0.0518651790916920</right_val></_></_></trees> 18539 <stage_threshold>-0.6068928837776184</stage_threshold> 18540 <parent>21</parent> 18541 <next>-1</next></_> 18542 <_> 18543 <!-- stage 23 --> 18544 <trees> 18545 <_> 18546 <!-- tree 0 --> 18547 <_> 18548 <!-- root node --> 18549 <feature> 18550 <rects> 18551 <_>1 11 20 3 -1.</_> 18552 <_>6 11 10 3 2.</_></rects> 18553 <tilted>0</tilted></feature> 18554 <threshold>-0.0925825834274292</threshold> 18555 <left_val>0.3618328869342804</left_val> 18556 <right_val>-0.0782759636640549</right_val></_></_> 18557 <_> 18558 <!-- tree 1 --> 18559 <_> 18560 <!-- root node --> 18561 <feature> 18562 <rects> 18563 <_>13 8 6 4 -1.</_> 18564 <_>13 8 3 4 2.</_></rects> 18565 <tilted>1</tilted></feature> 18566 <threshold>-4.8143980093300343e-003</threshold> 18567 <left_val>-0.1268171966075897</left_val> 18568 <right_val>0.0677237883210182</right_val></_></_> 18569 <_> 18570 <!-- tree 2 --> 18571 <_> 18572 <!-- root node --> 18573 <feature> 18574 <rects> 18575 <_>4 11 8 4 -1.</_> 18576 <_>8 11 4 4 2.</_></rects> 18577 <tilted>0</tilted></feature> 18578 <threshold>0.0323651283979416</threshold> 18579 <left_val>-0.0460871085524559</left_val> 18580 <right_val>0.3269202113151550</right_val></_></_> 18581 <_> 18582 <!-- tree 3 --> 18583 <_> 18584 <!-- root node --> 18585 <feature> 18586 <rects> 18587 <_>9 5 10 6 -1.</_> 18588 <_>9 5 5 6 2.</_></rects> 18589 <tilted>0</tilted></feature> 18590 <threshold>-0.0170285701751709</threshold> 18591 <left_val>0.0913064032793045</left_val> 18592 <right_val>-0.1166059002280235</right_val></_></_> 18593 <_> 18594 <!-- tree 4 --> 18595 <_> 18596 <!-- root node --> 18597 <feature> 18598 <rects> 18599 <_>4 8 6 9 -1.</_> 18600 <_>7 8 3 9 2.</_></rects> 18601 <tilted>0</tilted></feature> 18602 <threshold>-0.1130862012505531</threshold> 18603 <left_val>-0.7963135838508606</left_val> 18604 <right_val>0.0584269911050797</right_val></_></_> 18605 <_> 18606 <!-- tree 5 --> 18607 <_> 18608 <!-- root node --> 18609 <feature> 18610 <rects> 18611 <_>4 5 16 4 -1.</_> 18612 <_>4 5 8 4 2.</_></rects> 18613 <tilted>0</tilted></feature> 18614 <threshold>-3.5633759107440710e-003</threshold> 18615 <left_val>-0.0826106220483780</left_val> 18616 <right_val>0.1016670018434525</right_val></_></_> 18617 <_> 18618 <!-- tree 6 --> 18619 <_> 18620 <!-- root node --> 18621 <feature> 18622 <rects> 18623 <_>2 4 18 6 -1.</_> 18624 <_>8 6 6 2 9.</_></rects> 18625 <tilted>0</tilted></feature> 18626 <threshold>-0.2410956025123596</threshold> 18627 <left_val>0.2792722880840302</left_val> 18628 <right_val>-0.0807449668645859</right_val></_></_> 18629 <_> 18630 <!-- tree 7 --> 18631 <_> 18632 <!-- root node --> 18633 <feature> 18634 <rects> 18635 <_>11 1 2 11 -1.</_> 18636 <_>11 1 1 11 2.</_></rects> 18637 <tilted>1</tilted></feature> 18638 <threshold>0.0225992891937494</threshold> 18639 <left_val>0.0517445988953114</left_val> 18640 <right_val>-0.2886540889739990</right_val></_></_> 18641 <_> 18642 <!-- tree 8 --> 18643 <_> 18644 <!-- root node --> 18645 <feature> 18646 <rects> 18647 <_>7 1 6 8 -1.</_> 18648 <_>7 1 3 4 2.</_> 18649 <_>10 5 3 4 2.</_></rects> 18650 <tilted>0</tilted></feature> 18651 <threshold>0.0200022701174021</threshold> 18652 <left_val>-0.0579623617231846</left_val> 18653 <right_val>0.2904478907585144</right_val></_></_> 18654 <_> 18655 <!-- tree 9 --> 18656 <_> 18657 <!-- root node --> 18658 <feature> 18659 <rects> 18660 <_>7 10 8 6 -1.</_> 18661 <_>9 10 4 6 2.</_></rects> 18662 <tilted>0</tilted></feature> 18663 <threshold>-1.9348099594935775e-003</threshold> 18664 <left_val>0.0988086834549904</left_val> 18665 <right_val>-0.1236845999956131</right_val></_></_> 18666 <_> 18667 <!-- tree 10 --> 18668 <_> 18669 <!-- root node --> 18670 <feature> 18671 <rects> 18672 <_>6 12 9 4 -1.</_> 18673 <_>9 12 3 4 3.</_></rects> 18674 <tilted>0</tilted></feature> 18675 <threshold>-7.5757717713713646e-003</threshold> 18676 <left_val>-0.2007191032171249</left_val> 18677 <right_val>0.0927412882447243</right_val></_></_> 18678 <_> 18679 <!-- tree 11 --> 18680 <_> 18681 <!-- root node --> 18682 <feature> 18683 <rects> 18684 <_>10 12 9 4 -1.</_> 18685 <_>13 12 3 4 3.</_></rects> 18686 <tilted>0</tilted></feature> 18687 <threshold>0.0333818197250366</threshold> 18688 <left_val>-0.0345307588577271</left_val> 18689 <right_val>0.3087649941444397</right_val></_></_> 18690 <_> 18691 <!-- tree 12 --> 18692 <_> 18693 <!-- root node --> 18694 <feature> 18695 <rects> 18696 <_>8 0 10 8 -1.</_> 18697 <_>8 0 5 8 2.</_></rects> 18698 <tilted>1</tilted></feature> 18699 <threshold>0.0474189817905426</threshold> 18700 <left_val>-0.1356326937675476</left_val> 18701 <right_val>0.1101675033569336</right_val></_></_> 18702 <_> 18703 <!-- tree 13 --> 18704 <_> 18705 <!-- root node --> 18706 <feature> 18707 <rects> 18708 <_>9 6 12 4 -1.</_> 18709 <_>15 6 6 2 2.</_> 18710 <_>9 8 6 2 2.</_></rects> 18711 <tilted>0</tilted></feature> 18712 <threshold>-5.4173129610717297e-003</threshold> 18713 <left_val>-0.1605008989572525</left_val> 18714 <right_val>0.0726122930645943</right_val></_></_> 18715 <_> 18716 <!-- tree 14 --> 18717 <_> 18718 <!-- root node --> 18719 <feature> 18720 <rects> 18721 <_>4 9 14 5 -1.</_> 18722 <_>11 9 7 5 2.</_></rects> 18723 <tilted>0</tilted></feature> 18724 <threshold>-9.6942558884620667e-003</threshold> 18725 <left_val>-0.1637648940086365</left_val> 18726 <right_val>0.0844264701008797</right_val></_></_> 18727 <_> 18728 <!-- tree 15 --> 18729 <_> 18730 <!-- root node --> 18731 <feature> 18732 <rects> 18733 <_>14 6 6 6 -1.</_> 18734 <_>12 8 6 2 3.</_></rects> 18735 <tilted>1</tilted></feature> 18736 <threshold>-0.0606321692466736</threshold> 18737 <left_val>0.1647441983222961</left_val> 18738 <right_val>-0.0269814003258944</right_val></_></_> 18739 <_> 18740 <!-- tree 16 --> 18741 <_> 18742 <!-- root node --> 18743 <feature> 18744 <rects> 18745 <_>6 4 6 7 -1.</_> 18746 <_>8 4 2 7 3.</_></rects> 18747 <tilted>0</tilted></feature> 18748 <threshold>5.0302860327064991e-003</threshold> 18749 <left_val>-0.1099682971835136</left_val> 18750 <right_val>0.1348073035478592</right_val></_></_> 18751 <_> 18752 <!-- tree 17 --> 18753 <_> 18754 <!-- root node --> 18755 <feature> 18756 <rects> 18757 <_>14 9 6 6 -1.</_> 18758 <_>14 12 6 3 2.</_></rects> 18759 <tilted>0</tilted></feature> 18760 <threshold>-0.0877922028303146</threshold> 18761 <left_val>-0.6831796765327454</left_val> 18762 <right_val>0.0108346100896597</right_val></_></_> 18763 <_> 18764 <!-- tree 18 --> 18765 <_> 18766 <!-- root node --> 18767 <feature> 18768 <rects> 18769 <_>2 9 6 6 -1.</_> 18770 <_>2 12 6 3 2.</_></rects> 18771 <tilted>0</tilted></feature> 18772 <threshold>0.0303904097527266</threshold> 18773 <left_val>-0.0424505695700645</left_val> 18774 <right_val>0.3077059984207153</right_val></_></_> 18775 <_> 18776 <!-- tree 19 --> 18777 <_> 18778 <!-- root node --> 18779 <feature> 18780 <rects> 18781 <_>13 8 4 8 -1.</_> 18782 <_>13 8 2 8 2.</_></rects> 18783 <tilted>0</tilted></feature> 18784 <threshold>-0.0515663400292397</threshold> 18785 <left_val>-0.6284000873565674</left_val> 18786 <right_val>9.7069833427667618e-003</right_val></_></_> 18787 <_> 18788 <!-- tree 20 --> 18789 <_> 18790 <!-- root node --> 18791 <feature> 18792 <rects> 18793 <_>5 8 4 9 -1.</_> 18794 <_>7 8 2 9 2.</_></rects> 18795 <tilted>0</tilted></feature> 18796 <threshold>-4.2446999577805400e-004</threshold> 18797 <left_val>0.0845956131815910</left_val> 18798 <right_val>-0.1807512938976288</right_val></_></_> 18799 <_> 18800 <!-- tree 21 --> 18801 <_> 18802 <!-- root node --> 18803 <feature> 18804 <rects> 18805 <_>2 4 18 12 -1.</_> 18806 <_>8 8 6 4 9.</_></rects> 18807 <tilted>0</tilted></feature> 18808 <threshold>-0.1213535964488983</threshold> 18809 <left_val>-0.1271748989820480</left_val> 18810 <right_val>0.0965750589966774</right_val></_></_> 18811 <_> 18812 <!-- tree 22 --> 18813 <_> 18814 <!-- root node --> 18815 <feature> 18816 <rects> 18817 <_>3 5 10 6 -1.</_> 18818 <_>8 5 5 6 2.</_></rects> 18819 <tilted>0</tilted></feature> 18820 <threshold>-0.0151505600661039</threshold> 18821 <left_val>0.0930375531315804</left_val> 18822 <right_val>-0.1312790066003799</right_val></_></_> 18823 <_> 18824 <!-- tree 23 --> 18825 <_> 18826 <!-- root node --> 18827 <feature> 18828 <rects> 18829 <_>6 0 12 8 -1.</_> 18830 <_>6 0 6 8 2.</_></rects> 18831 <tilted>0</tilted></feature> 18832 <threshold>0.0394464097917080</threshold> 18833 <left_val>0.0255436394363642</left_val> 18834 <right_val>-0.1146064028143883</right_val></_></_> 18835 <_> 18836 <!-- tree 24 --> 18837 <_> 18838 <!-- root node --> 18839 <feature> 18840 <rects> 18841 <_>0 11 8 7 -1.</_> 18842 <_>2 11 4 7 2.</_></rects> 18843 <tilted>0</tilted></feature> 18844 <threshold>-8.2465475425124168e-003</threshold> 18845 <left_val>0.2400871068239212</left_val> 18846 <right_val>-0.0516802482306957</right_val></_></_> 18847 <_> 18848 <!-- tree 25 --> 18849 <_> 18850 <!-- root node --> 18851 <feature> 18852 <rects> 18853 <_>15 11 6 7 -1.</_> 18854 <_>17 11 2 7 3.</_></rects> 18855 <tilted>0</tilted></feature> 18856 <threshold>0.0352623611688614</threshold> 18857 <left_val>-0.0335550494492054</left_val> 18858 <right_val>0.2057549953460693</right_val></_></_> 18859 <_> 18860 <!-- tree 26 --> 18861 <_> 18862 <!-- root node --> 18863 <feature> 18864 <rects> 18865 <_>3 16 14 2 -1.</_> 18866 <_>3 17 14 1 2.</_></rects> 18867 <tilted>0</tilted></feature> 18868 <threshold>0.0117030600085855</threshold> 18869 <left_val>0.0235292501747608</left_val> 18870 <right_val>-0.4998390078544617</right_val></_></_> 18871 <_> 18872 <!-- tree 27 --> 18873 <_> 18874 <!-- root node --> 18875 <feature> 18876 <rects> 18877 <_>9 15 13 3 -1.</_> 18878 <_>9 16 13 1 3.</_></rects> 18879 <tilted>0</tilted></feature> 18880 <threshold>0.0429699681699276</threshold> 18881 <left_val>-0.0126833301037550</left_val> 18882 <right_val>0.5404338836669922</right_val></_></_> 18883 <_> 18884 <!-- tree 28 --> 18885 <_> 18886 <!-- root node --> 18887 <feature> 18888 <rects> 18889 <_>0 15 13 3 -1.</_> 18890 <_>0 16 13 1 3.</_></rects> 18891 <tilted>0</tilted></feature> 18892 <threshold>-0.0158117990940809</threshold> 18893 <left_val>0.3956415057182312</left_val> 18894 <right_val>-0.0355683900415897</right_val></_></_> 18895 <_> 18896 <!-- tree 29 --> 18897 <_> 18898 <!-- root node --> 18899 <feature> 18900 <rects> 18901 <_>5 13 12 3 -1.</_> 18902 <_>5 14 12 1 3.</_></rects> 18903 <tilted>0</tilted></feature> 18904 <threshold>4.6253358013927937e-003</threshold> 18905 <left_val>0.0523705407977104</left_val> 18906 <right_val>-0.2298993021249771</right_val></_></_> 18907 <_> 18908 <!-- tree 30 --> 18909 <_> 18910 <!-- root node --> 18911 <feature> 18912 <rects> 18913 <_>0 14 14 3 -1.</_> 18914 <_>0 15 14 1 3.</_></rects> 18915 <tilted>0</tilted></feature> 18916 <threshold>-1.5898230485618114e-003</threshold> 18917 <left_val>0.1379200965166092</left_val> 18918 <right_val>-0.0867831930518150</right_val></_></_> 18919 <_> 18920 <!-- tree 31 --> 18921 <_> 18922 <!-- root node --> 18923 <feature> 18924 <rects> 18925 <_>13 5 6 6 -1.</_> 18926 <_>15 5 2 6 3.</_></rects> 18927 <tilted>0</tilted></feature> 18928 <threshold>6.2329089269042015e-004</threshold> 18929 <left_val>-0.0866438299417496</left_val> 18930 <right_val>0.0577100291848183</right_val></_></_> 18931 <_> 18932 <!-- tree 32 --> 18933 <_> 18934 <!-- root node --> 18935 <feature> 18936 <rects> 18937 <_>3 5 6 6 -1.</_> 18938 <_>5 5 2 6 3.</_></rects> 18939 <tilted>0</tilted></feature> 18940 <threshold>7.0994929410517216e-003</threshold> 18941 <left_val>0.0757976174354553</left_val> 18942 <right_val>-0.1689887046813965</right_val></_></_> 18943 <_> 18944 <!-- tree 33 --> 18945 <_> 18946 <!-- root node --> 18947 <feature> 18948 <rects> 18949 <_>2 3 20 4 -1.</_> 18950 <_>7 3 10 4 2.</_></rects> 18951 <tilted>0</tilted></feature> 18952 <threshold>0.0696087777614594</threshold> 18953 <left_val>-0.0124546997249126</left_val> 18954 <right_val>0.2084520012140274</right_val></_></_> 18955 <_> 18956 <!-- tree 34 --> 18957 <_> 18958 <!-- root node --> 18959 <feature> 18960 <rects> 18961 <_>4 13 12 2 -1.</_> 18962 <_>4 14 12 1 2.</_></rects> 18963 <tilted>0</tilted></feature> 18964 <threshold>-0.0187595207244158</threshold> 18965 <left_val>-0.5500862002372742</left_val> 18966 <right_val>0.0210402794182301</right_val></_></_> 18967 <_> 18968 <!-- tree 35 --> 18969 <_> 18970 <!-- root node --> 18971 <feature> 18972 <rects> 18973 <_>9 6 9 6 -1.</_> 18974 <_>12 6 3 6 3.</_></rects> 18975 <tilted>0</tilted></feature> 18976 <threshold>0.0465137884020805</threshold> 18977 <left_val>-0.0259040091186762</left_val> 18978 <right_val>0.1832201927900314</right_val></_></_> 18979 <_> 18980 <!-- tree 36 --> 18981 <_> 18982 <!-- root node --> 18983 <feature> 18984 <rects> 18985 <_>8 5 6 7 -1.</_> 18986 <_>10 5 2 7 3.</_></rects> 18987 <tilted>0</tilted></feature> 18988 <threshold>0.0216385796666145</threshold> 18989 <left_val>-0.0388739109039307</left_val> 18990 <right_val>0.2991969883441925</right_val></_></_> 18991 <_> 18992 <!-- tree 37 --> 18993 <_> 18994 <!-- root node --> 18995 <feature> 18996 <rects> 18997 <_>15 0 3 10 -1.</_> 18998 <_>16 1 1 10 3.</_></rects> 18999 <tilted>1</tilted></feature> 19000 <threshold>-0.0767725706100464</threshold> 19001 <left_val>-1.</left_val> 19002 <right_val>3.9020550902932882e-003</right_val></_></_> 19003 <_> 19004 <!-- tree 38 --> 19005 <_> 19006 <!-- root node --> 19007 <feature> 19008 <rects> 19009 <_>7 0 10 3 -1.</_> 19010 <_>6 1 10 1 3.</_></rects> 19011 <tilted>1</tilted></feature> 19012 <threshold>0.0405355282127857</threshold> 19013 <left_val>0.0188806802034378</left_val> 19014 <right_val>-0.6603388786315918</right_val></_></_> 19015 <_> 19016 <!-- tree 39 --> 19017 <_> 19018 <!-- root node --> 19019 <feature> 19020 <rects> 19021 <_>11 4 8 6 -1.</_> 19022 <_>15 4 4 3 2.</_> 19023 <_>11 7 4 3 2.</_></rects> 19024 <tilted>0</tilted></feature> 19025 <threshold>0.0403387583792210</threshold> 19026 <left_val>9.2877401039004326e-003</left_val> 19027 <right_val>-0.3442203104496002</right_val></_></_> 19028 <_> 19029 <!-- tree 40 --> 19030 <_> 19031 <!-- root node --> 19032 <feature> 19033 <rects> 19034 <_>7 0 12 3 -1.</_> 19035 <_>6 1 12 1 3.</_></rects> 19036 <tilted>1</tilted></feature> 19037 <threshold>0.0434042401611805</threshold> 19038 <left_val>-0.0221117790788412</left_val> 19039 <right_val>0.5122771263122559</right_val></_></_> 19040 <_> 19041 <!-- tree 41 --> 19042 <_> 19043 <!-- root node --> 19044 <feature> 19045 <rects> 19046 <_>19 4 3 11 -1.</_> 19047 <_>20 5 1 11 3.</_></rects> 19048 <tilted>1</tilted></feature> 19049 <threshold>0.0168951302766800</threshold> 19050 <left_val>0.0300584807991982</left_val> 19051 <right_val>-0.1864860057830811</right_val></_></_> 19052 <_> 19053 <!-- tree 42 --> 19054 <_> 19055 <!-- root node --> 19056 <feature> 19057 <rects> 19058 <_>1 11 6 7 -1.</_> 19059 <_>3 11 2 7 3.</_></rects> 19060 <tilted>0</tilted></feature> 19061 <threshold>3.0269259586930275e-003</threshold> 19062 <left_val>-0.1397909969091415</left_val> 19063 <right_val>0.0875445604324341</right_val></_></_> 19064 <_> 19065 <!-- tree 43 --> 19066 <_> 19067 <!-- root node --> 19068 <feature> 19069 <rects> 19070 <_>7 4 15 14 -1.</_> 19071 <_>7 11 15 7 2.</_></rects> 19072 <tilted>0</tilted></feature> 19073 <threshold>-0.3717184066772461</threshold> 19074 <left_val>-0.2967667877674103</left_val> 19075 <right_val>0.0162415504455566</right_val></_></_> 19076 <_> 19077 <!-- tree 44 --> 19078 <_> 19079 <!-- root node --> 19080 <feature> 19081 <rects> 19082 <_>3 4 11 3 -1.</_> 19083 <_>2 5 11 1 3.</_></rects> 19084 <tilted>1</tilted></feature> 19085 <threshold>-0.0257987398654222</threshold> 19086 <left_val>-0.4371350109577179</left_val> 19087 <right_val>0.0267681498080492</right_val></_></_> 19088 <_> 19089 <!-- tree 45 --> 19090 <_> 19091 <!-- root node --> 19092 <feature> 19093 <rects> 19094 <_>14 6 3 8 -1.</_> 19095 <_>15 7 1 8 3.</_></rects> 19096 <tilted>1</tilted></feature> 19097 <threshold>-9.0826600790023804e-003</threshold> 19098 <left_val>0.0995484963059425</left_val> 19099 <right_val>-0.0385005399584770</right_val></_></_> 19100 <_> 19101 <!-- tree 46 --> 19102 <_> 19103 <!-- root node --> 19104 <feature> 19105 <rects> 19106 <_>3 0 3 18 -1.</_> 19107 <_>4 0 1 18 3.</_></rects> 19108 <tilted>0</tilted></feature> 19109 <threshold>-1.7977179959416389e-003</threshold> 19110 <left_val>0.1381019949913025</left_val> 19111 <right_val>-0.0753872320055962</right_val></_></_> 19112 <_> 19113 <!-- tree 47 --> 19114 <_> 19115 <!-- root node --> 19116 <feature> 19117 <rects> 19118 <_>14 3 8 4 -1.</_> 19119 <_>14 3 8 2 2.</_></rects> 19120 <tilted>1</tilted></feature> 19121 <threshold>0.1243569999933243</threshold> 19122 <left_val>4.6064029447734356e-003</left_val> 19123 <right_val>-0.3690980076789856</right_val></_></_> 19124 <_> 19125 <!-- tree 48 --> 19126 <_> 19127 <!-- root node --> 19128 <feature> 19129 <rects> 19130 <_>8 3 4 8 -1.</_> 19131 <_>8 3 2 8 2.</_></rects> 19132 <tilted>1</tilted></feature> 19133 <threshold>-0.0129014896228909</threshold> 19134 <left_val>-0.2043330073356628</left_val> 19135 <right_val>0.0531336106359959</right_val></_></_> 19136 <_> 19137 <!-- tree 49 --> 19138 <_> 19139 <!-- root node --> 19140 <feature> 19141 <rects> 19142 <_>18 2 4 12 -1.</_> 19143 <_>15 5 4 6 2.</_></rects> 19144 <tilted>1</tilted></feature> 19145 <threshold>-0.0133520998060703</threshold> 19146 <left_val>-0.1051217019557953</left_val> 19147 <right_val>0.0597462393343449</right_val></_></_> 19148 <_> 19149 <!-- tree 50 --> 19150 <_> 19151 <!-- root node --> 19152 <feature> 19153 <rects> 19154 <_>2 9 17 3 -1.</_> 19155 <_>2 10 17 1 3.</_></rects> 19156 <tilted>0</tilted></feature> 19157 <threshold>-0.0306505206972361</threshold> 19158 <left_val>0.3436650037765503</left_val> 19159 <right_val>-0.0396178103983402</right_val></_></_> 19160 <_> 19161 <!-- tree 51 --> 19162 <_> 19163 <!-- root node --> 19164 <feature> 19165 <rects> 19166 <_>7 9 14 3 -1.</_> 19167 <_>7 10 14 1 3.</_></rects> 19168 <tilted>0</tilted></feature> 19169 <threshold>2.0778391044586897e-003</threshold> 19170 <left_val>-0.0507552884519100</left_val> 19171 <right_val>0.0729307532310486</right_val></_></_> 19172 <_> 19173 <!-- tree 52 --> 19174 <_> 19175 <!-- root node --> 19176 <feature> 19177 <rects> 19178 <_>8 2 6 8 -1.</_> 19179 <_>8 2 3 4 2.</_> 19180 <_>11 6 3 4 2.</_></rects> 19181 <tilted>0</tilted></feature> 19182 <threshold>-0.0611611790955067</threshold> 19183 <left_val>0.7837166786193848</left_val> 19184 <right_val>-0.0139401303604245</right_val></_></_> 19185 <_> 19186 <!-- tree 53 --> 19187 <_> 19188 <!-- root node --> 19189 <feature> 19190 <rects> 19191 <_>11 4 8 6 -1.</_> 19192 <_>15 4 4 3 2.</_> 19193 <_>11 7 4 3 2.</_></rects> 19194 <tilted>0</tilted></feature> 19195 <threshold>-0.0666819736361504</threshold> 19196 <left_val>-0.6701030731201172</left_val> 19197 <right_val>4.2770858854055405e-003</right_val></_></_> 19198 <_> 19199 <!-- tree 54 --> 19200 <_> 19201 <!-- root node --> 19202 <feature> 19203 <rects> 19204 <_>3 4 8 6 -1.</_> 19205 <_>3 4 4 3 2.</_> 19206 <_>7 7 4 3 2.</_></rects> 19207 <tilted>0</tilted></feature> 19208 <threshold>0.0273598507046700</threshold> 19209 <left_val>0.0242531802505255</left_val> 19210 <right_val>-0.4267185926437378</right_val></_></_> 19211 <_> 19212 <!-- tree 55 --> 19213 <_> 19214 <!-- root node --> 19215 <feature> 19216 <rects> 19217 <_>3 1 18 3 -1.</_> 19218 <_>3 2 18 1 3.</_></rects> 19219 <tilted>0</tilted></feature> 19220 <threshold>-2.4731201119720936e-003</threshold> 19221 <left_val>0.0964932367205620</left_val> 19222 <right_val>-0.0574338398873806</right_val></_></_> 19223 <_> 19224 <!-- tree 56 --> 19225 <_> 19226 <!-- root node --> 19227 <feature> 19228 <rects> 19229 <_>0 9 8 3 -1.</_> 19230 <_>4 9 4 3 2.</_></rects> 19231 <tilted>0</tilted></feature> 19232 <threshold>-0.0107214897871017</threshold> 19233 <left_val>-0.2157561033964157</left_val> 19234 <right_val>0.0442569702863693</right_val></_></_> 19235 <_> 19236 <!-- tree 57 --> 19237 <_> 19238 <!-- root node --> 19239 <feature> 19240 <rects> 19241 <_>13 2 9 10 -1.</_> 19242 <_>13 7 9 5 2.</_></rects> 19243 <tilted>0</tilted></feature> 19244 <threshold>-0.1393698006868362</threshold> 19245 <left_val>-0.3637753129005432</left_val> 19246 <right_val>0.0100051397457719</right_val></_></_> 19247 <_> 19248 <!-- tree 58 --> 19249 <_> 19250 <!-- root node --> 19251 <feature> 19252 <rects> 19253 <_>1 2 8 12 -1.</_> 19254 <_>1 2 4 6 2.</_> 19255 <_>5 8 4 6 2.</_></rects> 19256 <tilted>0</tilted></feature> 19257 <threshold>-0.0568677112460136</threshold> 19258 <left_val>0.3032726943492889</left_val> 19259 <right_val>-0.0372307896614075</right_val></_></_> 19260 <_> 19261 <!-- tree 59 --> 19262 <_> 19263 <!-- root node --> 19264 <feature> 19265 <rects> 19266 <_>12 5 8 6 -1.</_> 19267 <_>16 5 4 3 2.</_> 19268 <_>12 8 4 3 2.</_></rects> 19269 <tilted>0</tilted></feature> 19270 <threshold>-0.0657765120267868</threshold> 19271 <left_val>-1.</left_val> 19272 <right_val>1.2443619780242443e-003</right_val></_></_> 19273 <_> 19274 <!-- tree 60 --> 19275 <_> 19276 <!-- root node --> 19277 <feature> 19278 <rects> 19279 <_>1 0 17 3 -1.</_> 19280 <_>1 1 17 1 3.</_></rects> 19281 <tilted>0</tilted></feature> 19282 <threshold>-1.5500129666179419e-003</threshold> 19283 <left_val>0.1289858072996140</left_val> 19284 <right_val>-0.0855282470583916</right_val></_></_> 19285 <_> 19286 <!-- tree 61 --> 19287 <_> 19288 <!-- root node --> 19289 <feature> 19290 <rects> 19291 <_>4 0 15 2 -1.</_> 19292 <_>4 1 15 1 2.</_></rects> 19293 <tilted>0</tilted></feature> 19294 <threshold>8.7909551803022623e-004</threshold> 19295 <left_val>-0.0799063816666603</left_val> 19296 <right_val>0.1284713000059128</right_val></_></_> 19297 <_> 19298 <!-- tree 62 --> 19299 <_> 19300 <!-- root node --> 19301 <feature> 19302 <rects> 19303 <_>5 0 12 4 -1.</_> 19304 <_>5 2 12 2 2.</_></rects> 19305 <tilted>0</tilted></feature> 19306 <threshold>2.9614660888910294e-003</threshold> 19307 <left_val>0.0894338414072990</left_val> 19308 <right_val>-0.1704798042774200</right_val></_></_> 19309 <_> 19310 <!-- tree 63 --> 19311 <_> 19312 <!-- root node --> 19313 <feature> 19314 <rects> 19315 <_>7 4 15 14 -1.</_> 19316 <_>7 11 15 7 2.</_></rects> 19317 <tilted>0</tilted></feature> 19318 <threshold>-0.5073503851890564</threshold> 19319 <left_val>-0.8419762849807739</left_val> 19320 <right_val>2.3592109791934490e-003</right_val></_></_> 19321 <_> 19322 <!-- tree 64 --> 19323 <_> 19324 <!-- root node --> 19325 <feature> 19326 <rects> 19327 <_>8 2 9 2 -1.</_> 19328 <_>8 2 9 1 2.</_></rects> 19329 <tilted>1</tilted></feature> 19330 <threshold>0.0354092009365559</threshold> 19331 <left_val>0.0171374902129173</left_val> 19332 <right_val>-0.5905207991600037</right_val></_></_> 19333 <_> 19334 <!-- tree 65 --> 19335 <_> 19336 <!-- root node --> 19337 <feature> 19338 <rects> 19339 <_>16 0 2 13 -1.</_> 19340 <_>16 0 1 13 2.</_></rects> 19341 <tilted>1</tilted></feature> 19342 <threshold>-0.0462202392518520</threshold> 19343 <left_val>0.4738368988037109</left_val> 19344 <right_val>-0.0114230895414948</right_val></_></_> 19345 <_> 19346 <!-- tree 66 --> 19347 <_> 19348 <!-- root node --> 19349 <feature> 19350 <rects> 19351 <_>6 0 13 2 -1.</_> 19352 <_>6 0 13 1 2.</_></rects> 19353 <tilted>1</tilted></feature> 19354 <threshold>0.0408750995993614</threshold> 19355 <left_val>-0.0267140790820122</left_val> 19356 <right_val>0.4213987886905670</right_val></_></_> 19357 <_> 19358 <!-- tree 67 --> 19359 <_> 19360 <!-- root node --> 19361 <feature> 19362 <rects> 19363 <_>12 7 2 9 -1.</_> 19364 <_>12 7 1 9 2.</_></rects> 19365 <tilted>1</tilted></feature> 19366 <threshold>-0.0576518103480339</threshold> 19367 <left_val>0.5602129101753235</left_val> 19368 <right_val>-9.5757292583584785e-003</right_val></_></_> 19369 <_> 19370 <!-- tree 68 --> 19371 <_> 19372 <!-- root node --> 19373 <feature> 19374 <rects> 19375 <_>10 7 9 2 -1.</_> 19376 <_>10 7 9 1 2.</_></rects> 19377 <tilted>1</tilted></feature> 19378 <threshold>3.3733060117810965e-003</threshold> 19379 <left_val>0.0723236203193665</left_val> 19380 <right_val>-0.1551048010587692</right_val></_></_> 19381 <_> 19382 <!-- tree 69 --> 19383 <_> 19384 <!-- root node --> 19385 <feature> 19386 <rects> 19387 <_>9 0 11 10 -1.</_> 19388 <_>9 5 11 5 2.</_></rects> 19389 <tilted>0</tilted></feature> 19390 <threshold>-0.3409616053104401</threshold> 19391 <left_val>-1.</left_val> 19392 <right_val>-3.1605950789526105e-004</right_val></_></_> 19393 <_> 19394 <!-- tree 70 --> 19395 <_> 19396 <!-- root node --> 19397 <feature> 19398 <rects> 19399 <_>8 5 9 2 -1.</_> 19400 <_>8 5 9 1 2.</_></rects> 19401 <tilted>1</tilted></feature> 19402 <threshold>-5.5850511416792870e-003</threshold> 19403 <left_val>-0.1576807051897049</left_val> 19404 <right_val>0.0736257433891296</right_val></_></_> 19405 <_> 19406 <!-- tree 71 --> 19407 <_> 19408 <!-- root node --> 19409 <feature> 19410 <rects> 19411 <_>13 2 9 10 -1.</_> 19412 <_>13 7 9 5 2.</_></rects> 19413 <tilted>0</tilted></feature> 19414 <threshold>-0.1106723994016647</threshold> 19415 <left_val>0.2364044040441513</left_val> 19416 <right_val>-0.0126707796007395</right_val></_></_> 19417 <_> 19418 <!-- tree 72 --> 19419 <_> 19420 <!-- root node --> 19421 <feature> 19422 <rects> 19423 <_>0 2 9 10 -1.</_> 19424 <_>0 7 9 5 2.</_></rects> 19425 <tilted>0</tilted></feature> 19426 <threshold>0.0432464107871056</threshold> 19427 <left_val>-0.0493464209139347</left_val> 19428 <right_val>0.3011310100555420</right_val></_></_> 19429 <_> 19430 <!-- tree 73 --> 19431 <_> 19432 <!-- root node --> 19433 <feature> 19434 <rects> 19435 <_>17 2 3 8 -1.</_> 19436 <_>17 6 3 4 2.</_></rects> 19437 <tilted>0</tilted></feature> 19438 <threshold>-5.8916499838232994e-003</threshold> 19439 <left_val>-0.1472765058279038</left_val> 19440 <right_val>0.0613457001745701</right_val></_></_> 19441 <_> 19442 <!-- tree 74 --> 19443 <_> 19444 <!-- root node --> 19445 <feature> 19446 <rects> 19447 <_>2 2 3 8 -1.</_> 19448 <_>2 6 3 4 2.</_></rects> 19449 <tilted>0</tilted></feature> 19450 <threshold>-2.8674090572167188e-005</threshold> 19451 <left_val>0.1153924018144608</left_val> 19452 <right_val>-0.1469265073537827</right_val></_></_> 19453 <_> 19454 <!-- tree 75 --> 19455 <_> 19456 <!-- root node --> 19457 <feature> 19458 <rects> 19459 <_>4 4 18 4 -1.</_> 19460 <_>13 4 9 2 2.</_> 19461 <_>4 6 9 2 2.</_></rects> 19462 <tilted>0</tilted></feature> 19463 <threshold>0.0261749103665352</threshold> 19464 <left_val>-0.0229605808854103</left_val> 19465 <right_val>0.2100441008806229</right_val></_></_> 19466 <_> 19467 <!-- tree 76 --> 19468 <_> 19469 <!-- root node --> 19470 <feature> 19471 <rects> 19472 <_>0 4 18 4 -1.</_> 19473 <_>0 4 9 2 2.</_> 19474 <_>9 6 9 2 2.</_></rects> 19475 <tilted>0</tilted></feature> 19476 <threshold>-1.9902619533240795e-003</threshold> 19477 <left_val>0.0972506329417229</left_val> 19478 <right_val>-0.1324492990970612</right_val></_></_> 19479 <_> 19480 <!-- tree 77 --> 19481 <_> 19482 <!-- root node --> 19483 <feature> 19484 <rects> 19485 <_>4 1 14 4 -1.</_> 19486 <_>11 1 7 2 2.</_> 19487 <_>4 3 7 2 2.</_></rects> 19488 <tilted>0</tilted></feature> 19489 <threshold>-0.0169608406722546</threshold> 19490 <left_val>-0.3194906115531921</left_val> 19491 <right_val>0.0361882895231247</right_val></_></_> 19492 <_> 19493 <!-- tree 78 --> 19494 <_> 19495 <!-- root node --> 19496 <feature> 19497 <rects> 19498 <_>0 0 21 8 -1.</_> 19499 <_>7 0 7 8 3.</_></rects> 19500 <tilted>0</tilted></feature> 19501 <threshold>-0.1563473939895630</threshold> 19502 <left_val>0.3193452954292297</left_val> 19503 <right_val>-0.0419170707464218</right_val></_></_> 19504 <_> 19505 <!-- tree 79 --> 19506 <_> 19507 <!-- root node --> 19508 <feature> 19509 <rects> 19510 <_>5 0 14 18 -1.</_> 19511 <_>12 0 7 9 2.</_> 19512 <_>5 9 7 9 2.</_></rects> 19513 <tilted>0</tilted></feature> 19514 <threshold>-0.2386395037174225</threshold> 19515 <left_val>0.3818357884883881</left_val> 19516 <right_val>-8.6567532271146774e-003</right_val></_></_> 19517 <_> 19518 <!-- tree 80 --> 19519 <_> 19520 <!-- root node --> 19521 <feature> 19522 <rects> 19523 <_>1 11 16 4 -1.</_> 19524 <_>5 11 8 4 2.</_></rects> 19525 <tilted>0</tilted></feature> 19526 <threshold>-0.0776415020227432</threshold> 19527 <left_val>-0.3315665125846863</left_val> 19528 <right_val>0.0334911495447159</right_val></_></_> 19529 <_> 19530 <!-- tree 81 --> 19531 <_> 19532 <!-- root node --> 19533 <feature> 19534 <rects> 19535 <_>6 9 10 6 -1.</_> 19536 <_>6 11 10 2 3.</_></rects> 19537 <tilted>0</tilted></feature> 19538 <threshold>-0.0452578999102116</threshold> 19539 <left_val>0.4605852961540222</left_val> 19540 <right_val>-0.0313548594713211</right_val></_></_> 19541 <_> 19542 <!-- tree 82 --> 19543 <_> 19544 <!-- root node --> 19545 <feature> 19546 <rects> 19547 <_>5 10 12 4 -1.</_> 19548 <_>5 11 12 2 2.</_></rects> 19549 <tilted>0</tilted></feature> 19550 <threshold>-0.0333907902240753</threshold> 19551 <left_val>-0.7297474741935730</left_val> 19552 <right_val>0.0162069909274578</right_val></_></_> 19553 <_> 19554 <!-- tree 83 --> 19555 <_> 19556 <!-- root node --> 19557 <feature> 19558 <rects> 19559 <_>15 4 6 6 -1.</_> 19560 <_>15 4 3 6 2.</_></rects> 19561 <tilted>1</tilted></feature> 19562 <threshold>0.0730794668197632</threshold> 19563 <left_val>-0.0192014500498772</left_val> 19564 <right_val>0.3401190936565399</right_val></_></_> 19565 <_> 19566 <!-- tree 84 --> 19567 <_> 19568 <!-- root node --> 19569 <feature> 19570 <rects> 19571 <_>7 4 6 6 -1.</_> 19572 <_>7 4 6 3 2.</_></rects> 19573 <tilted>1</tilted></feature> 19574 <threshold>-0.0545362308621407</threshold> 19575 <left_val>0.3322716057300568</left_val> 19576 <right_val>-0.0331634283065796</right_val></_></_> 19577 <_> 19578 <!-- tree 85 --> 19579 <_> 19580 <!-- root node --> 19581 <feature> 19582 <rects> 19583 <_>12 5 8 6 -1.</_> 19584 <_>16 5 4 3 2.</_> 19585 <_>12 8 4 3 2.</_></rects> 19586 <tilted>0</tilted></feature> 19587 <threshold>0.0395526885986328</threshold> 19588 <left_val>0.0118175595998764</left_val> 19589 <right_val>-0.3213171958923340</right_val></_></_> 19590 <_> 19591 <!-- tree 86 --> 19592 <_> 19593 <!-- root node --> 19594 <feature> 19595 <rects> 19596 <_>5 5 8 4 -1.</_> 19597 <_>5 5 8 2 2.</_></rects> 19598 <tilted>1</tilted></feature> 19599 <threshold>5.9160130331292748e-004</threshold> 19600 <left_val>-0.1176635026931763</left_val> 19601 <right_val>0.0880023613572121</right_val></_></_> 19602 <_> 19603 <!-- tree 87 --> 19604 <_> 19605 <!-- root node --> 19606 <feature> 19607 <rects> 19608 <_>17 6 3 12 -1.</_> 19609 <_>17 10 3 4 3.</_></rects> 19610 <tilted>0</tilted></feature> 19611 <threshold>0.0353797301650047</threshold> 19612 <left_val>0.0182861909270287</left_val> 19613 <right_val>-0.1620689034461975</right_val></_></_> 19614 <_> 19615 <!-- tree 88 --> 19616 <_> 19617 <!-- root node --> 19618 <feature> 19619 <rects> 19620 <_>5 7 9 2 -1.</_> 19621 <_>5 7 9 1 2.</_></rects> 19622 <tilted>1</tilted></feature> 19623 <threshold>0.0201524905860424</threshold> 19624 <left_val>0.0228259395807981</left_val> 19625 <right_val>-0.4303478896617889</right_val></_></_> 19626 <_> 19627 <!-- tree 89 --> 19628 <_> 19629 <!-- root node --> 19630 <feature> 19631 <rects> 19632 <_>14 6 3 8 -1.</_> 19633 <_>15 7 1 8 3.</_></rects> 19634 <tilted>1</tilted></feature> 19635 <threshold>-0.0291852895170450</threshold> 19636 <left_val>0.1825695931911469</left_val> 19637 <right_val>-0.0163763090968132</right_val></_></_> 19638 <_> 19639 <!-- tree 90 --> 19640 <_> 19641 <!-- root node --> 19642 <feature> 19643 <rects> 19644 <_>5 7 12 2 -1.</_> 19645 <_>5 8 12 1 2.</_></rects> 19646 <tilted>0</tilted></feature> 19647 <threshold>-0.0217057801783085</threshold> 19648 <left_val>-0.6697772145271301</left_val> 19649 <right_val>0.0167823601514101</right_val></_></_> 19650 <_> 19651 <!-- tree 91 --> 19652 <_> 19653 <!-- root node --> 19654 <feature> 19655 <rects> 19656 <_>4 5 18 3 -1.</_> 19657 <_>4 6 18 1 3.</_></rects> 19658 <tilted>0</tilted></feature> 19659 <threshold>0.0425842702388763</threshold> 19660 <left_val>-0.0168524999171495</left_val> 19661 <right_val>0.3436039984226227</right_val></_></_> 19662 <_> 19663 <!-- tree 92 --> 19664 <_> 19665 <!-- root node --> 19666 <feature> 19667 <rects> 19668 <_>1 6 15 9 -1.</_> 19669 <_>6 6 5 9 3.</_></rects> 19670 <tilted>0</tilted></feature> 19671 <threshold>-0.1266373991966248</threshold> 19672 <left_val>0.2674858868122101</left_val> 19673 <right_val>-0.0361077897250652</right_val></_></_> 19674 <_> 19675 <!-- tree 93 --> 19676 <_> 19677 <!-- root node --> 19678 <feature> 19679 <rects> 19680 <_>19 4 3 10 -1.</_> 19681 <_>19 4 3 5 2.</_></rects> 19682 <tilted>1</tilted></feature> 19683 <threshold>0.1426007002592087</threshold> 19684 <left_val>0.0144452704116702</left_val> 19685 <right_val>-0.1972950994968414</right_val></_></_> 19686 <_> 19687 <!-- tree 94 --> 19688 <_> 19689 <!-- root node --> 19690 <feature> 19691 <rects> 19692 <_>0 12 18 6 -1.</_> 19693 <_>0 15 18 3 2.</_></rects> 19694 <tilted>0</tilted></feature> 19695 <threshold>0.0535609312355518</threshold> 19696 <left_val>0.0173247996717691</left_val> 19697 <right_val>-0.5960922241210938</right_val></_></_> 19698 <_> 19699 <!-- tree 95 --> 19700 <_> 19701 <!-- root node --> 19702 <feature> 19703 <rects> 19704 <_>6 13 13 4 -1.</_> 19705 <_>6 15 13 2 2.</_></rects> 19706 <tilted>0</tilted></feature> 19707 <threshold>-5.9380959719419479e-003</threshold> 19708 <left_val>-0.0651562735438347</left_val> 19709 <right_val>0.0596456006169319</right_val></_></_> 19710 <_> 19711 <!-- tree 96 --> 19712 <_> 19713 <!-- root node --> 19714 <feature> 19715 <rects> 19716 <_>3 5 8 9 -1.</_> 19717 <_>3 8 8 3 3.</_></rects> 19718 <tilted>0</tilted></feature> 19719 <threshold>-6.6497321240603924e-003</threshold> 19720 <left_val>0.1427001953125000</left_val> 19721 <right_val>-0.0796698182821274</right_val></_></_> 19722 <_> 19723 <!-- tree 97 --> 19724 <_> 19725 <!-- root node --> 19726 <feature> 19727 <rects> 19728 <_>6 8 10 8 -1.</_> 19729 <_>6 10 10 4 2.</_></rects> 19730 <tilted>0</tilted></feature> 19731 <threshold>-3.0137640424072742e-003</threshold> 19732 <left_val>0.1399628967046738</left_val> 19733 <right_val>-0.0948317572474480</right_val></_></_> 19734 <_> 19735 <!-- tree 98 --> 19736 <_> 19737 <!-- root node --> 19738 <feature> 19739 <rects> 19740 <_>4 6 13 6 -1.</_> 19741 <_>4 9 13 3 2.</_></rects> 19742 <tilted>0</tilted></feature> 19743 <threshold>-0.0172130502760410</threshold> 19744 <left_val>-0.1726574003696442</left_val> 19745 <right_val>0.0694516524672508</right_val></_></_> 19746 <_> 19747 <!-- tree 99 --> 19748 <_> 19749 <!-- root node --> 19750 <feature> 19751 <rects> 19752 <_>14 3 2 12 -1.</_> 19753 <_>14 3 2 6 2.</_></rects> 19754 <tilted>1</tilted></feature> 19755 <threshold>0.1077570989727974</threshold> 19756 <left_val>-4.6757548116147518e-003</left_val> 19757 <right_val>0.9216187000274658</right_val></_></_> 19758 <_> 19759 <!-- tree 100 --> 19760 <_> 19761 <!-- root node --> 19762 <feature> 19763 <rects> 19764 <_>8 3 12 2 -1.</_> 19765 <_>8 3 6 2 2.</_></rects> 19766 <tilted>1</tilted></feature> 19767 <threshold>0.0587385408580303</threshold> 19768 <left_val>-0.0424589812755585</left_val> 19769 <right_val>0.2883234918117523</right_val></_></_> 19770 <_> 19771 <!-- tree 101 --> 19772 <_> 19773 <!-- root node --> 19774 <feature> 19775 <rects> 19776 <_>13 1 5 12 -1.</_> 19777 <_>13 1 5 6 2.</_></rects> 19778 <tilted>1</tilted></feature> 19779 <threshold>-0.3047547936439514</threshold> 19780 <left_val>-1.</left_val> 19781 <right_val>2.6918480216409080e-005</right_val></_></_> 19782 <_> 19783 <!-- tree 102 --> 19784 <_> 19785 <!-- root node --> 19786 <feature> 19787 <rects> 19788 <_>9 1 12 5 -1.</_> 19789 <_>9 1 6 5 2.</_></rects> 19790 <tilted>1</tilted></feature> 19791 <threshold>0.2039577960968018</threshold> 19792 <left_val>0.0253179892897606</left_val> 19793 <right_val>-0.5027515888214111</right_val></_></_> 19794 <_> 19795 <!-- tree 103 --> 19796 <_> 19797 <!-- root node --> 19798 <feature> 19799 <rects> 19800 <_>8 12 8 3 -1.</_> 19801 <_>8 12 4 3 2.</_></rects> 19802 <tilted>0</tilted></feature> 19803 <threshold>-9.7794281318783760e-003</threshold> 19804 <left_val>-0.1906087994575501</left_val> 19805 <right_val>0.0305771399289370</right_val></_></_> 19806 <_> 19807 <!-- tree 104 --> 19808 <_> 19809 <!-- root node --> 19810 <feature> 19811 <rects> 19812 <_>5 12 12 4 -1.</_> 19813 <_>8 12 6 4 2.</_></rects> 19814 <tilted>0</tilted></feature> 19815 <threshold>-0.0227754991501570</threshold> 19816 <left_val>0.2704837024211884</left_val> 19817 <right_val>-0.0510012097656727</right_val></_></_> 19818 <_> 19819 <!-- tree 105 --> 19820 <_> 19821 <!-- root node --> 19822 <feature> 19823 <rects> 19824 <_>13 8 6 4 -1.</_> 19825 <_>13 8 3 4 2.</_></rects> 19826 <tilted>1</tilted></feature> 19827 <threshold>9.8080374300479889e-003</threshold> 19828 <left_val>0.0241802502423525</left_val> 19829 <right_val>-0.0750008374452591</right_val></_></_> 19830 <_> 19831 <!-- tree 106 --> 19832 <_> 19833 <!-- root node --> 19834 <feature> 19835 <rects> 19836 <_>9 8 4 6 -1.</_> 19837 <_>9 8 4 3 2.</_></rects> 19838 <tilted>1</tilted></feature> 19839 <threshold>-0.0111309699714184</threshold> 19840 <left_val>-0.2382574975490570</left_val> 19841 <right_val>0.0643887221813202</right_val></_></_></trees> 19842 <stage_threshold>-0.5688105821609497</stage_threshold> 19843 <parent>22</parent> 19844 <next>-1</next></_> 19845 <_> 19846 <!-- stage 24 --> 19847 <trees> 19848 <_> 19849 <!-- tree 0 --> 19850 <_> 19851 <!-- root node --> 19852 <feature> 19853 <rects> 19854 <_>1 7 20 11 -1.</_> 19855 <_>6 7 10 11 2.</_></rects> 19856 <tilted>0</tilted></feature> 19857 <threshold>-0.2138068974018097</threshold> 19858 <left_val>0.2768664062023163</left_val> 19859 <right_val>-0.0927778184413910</right_val></_></_> 19860 <_> 19861 <!-- tree 1 --> 19862 <_> 19863 <!-- root node --> 19864 <feature> 19865 <rects> 19866 <_>10 13 12 3 -1.</_> 19867 <_>10 14 12 1 3.</_></rects> 19868 <tilted>0</tilted></feature> 19869 <threshold>-3.3374479971826077e-003</threshold> 19870 <left_val>0.1411923021078110</left_val> 19871 <right_val>-0.0519071593880653</right_val></_></_> 19872 <_> 19873 <!-- tree 2 --> 19874 <_> 19875 <!-- root node --> 19876 <feature> 19877 <rects> 19878 <_>1 10 6 4 -1.</_> 19879 <_>4 10 3 4 2.</_></rects> 19880 <tilted>0</tilted></feature> 19881 <threshold>-0.0287385508418083</threshold> 19882 <left_val>-0.3624325096607208</left_val> 19883 <right_val>0.0319380201399326</right_val></_></_> 19884 <_> 19885 <!-- tree 3 --> 19886 <_> 19887 <!-- root node --> 19888 <feature> 19889 <rects> 19890 <_>15 10 6 4 -1.</_> 19891 <_>15 10 3 4 2.</_></rects> 19892 <tilted>0</tilted></feature> 19893 <threshold>-3.5554158966988325e-003</threshold> 19894 <left_val>0.1196912005543709</left_val> 19895 <right_val>-0.0523067489266396</right_val></_></_> 19896 <_> 19897 <!-- tree 4 --> 19898 <_> 19899 <!-- root node --> 19900 <feature> 19901 <rects> 19902 <_>0 13 12 3 -1.</_> 19903 <_>0 14 12 1 3.</_></rects> 19904 <tilted>0</tilted></feature> 19905 <threshold>-0.0107324598357081</threshold> 19906 <left_val>0.2860266864299774</left_val> 19907 <right_val>-0.0605550594627857</right_val></_></_> 19908 <_> 19909 <!-- tree 5 --> 19910 <_> 19911 <!-- root node --> 19912 <feature> 19913 <rects> 19914 <_>4 10 14 8 -1.</_> 19915 <_>4 14 14 4 2.</_></rects> 19916 <tilted>0</tilted></feature> 19917 <threshold>0.0873102396726608</threshold> 19918 <left_val>-0.0336133912205696</left_val> 19919 <right_val>0.4778678119182587</right_val></_></_> 19920 <_> 19921 <!-- tree 6 --> 19922 <_> 19923 <!-- root node --> 19924 <feature> 19925 <rects> 19926 <_>5 14 12 4 -1.</_> 19927 <_>5 15 12 2 2.</_></rects> 19928 <tilted>0</tilted></feature> 19929 <threshold>2.1971999667584896e-003</threshold> 19930 <left_val>0.0602079704403877</left_val> 19931 <right_val>-0.2154375016689301</right_val></_></_> 19932 <_> 19933 <!-- tree 7 --> 19934 <_> 19935 <!-- root node --> 19936 <feature> 19937 <rects> 19938 <_>5 16 12 2 -1.</_> 19939 <_>5 17 12 1 2.</_></rects> 19940 <tilted>0</tilted></feature> 19941 <threshold>-7.4302748544141650e-005</threshold> 19942 <left_val>0.1414128988981247</left_val> 19943 <right_val>-0.1271156072616577</right_val></_></_> 19944 <_> 19945 <!-- tree 8 --> 19946 <_> 19947 <!-- root node --> 19948 <feature> 19949 <rects> 19950 <_>1 0 20 12 -1.</_> 19951 <_>6 0 10 12 2.</_></rects> 19952 <tilted>0</tilted></feature> 19953 <threshold>-0.2931401133537293</threshold> 19954 <left_val>-0.5559828877449036</left_val> 19955 <right_val>7.8105749562382698e-003</right_val></_></_> 19956 <_> 19957 <!-- tree 9 --> 19958 <_> 19959 <!-- root node --> 19960 <feature> 19961 <rects> 19962 <_>7 12 15 5 -1.</_> 19963 <_>12 12 5 5 3.</_></rects> 19964 <tilted>0</tilted></feature> 19965 <threshold>0.0779965370893478</threshold> 19966 <left_val>-0.0202381405979395</left_val> 19967 <right_val>0.2223376929759979</right_val></_></_> 19968 <_> 19969 <!-- tree 10 --> 19970 <_> 19971 <!-- root node --> 19972 <feature> 19973 <rects> 19974 <_>6 0 15 2 -1.</_> 19975 <_>6 0 15 1 2.</_></rects> 19976 <tilted>1</tilted></feature> 19977 <threshold>4.9733570776879787e-003</threshold> 19978 <left_val>-0.1541032940149307</left_val> 19979 <right_val>0.0988745167851448</right_val></_></_> 19980 <_> 19981 <!-- tree 11 --> 19982 <_> 19983 <!-- root node --> 19984 <feature> 19985 <rects> 19986 <_>6 5 12 8 -1.</_> 19987 <_>12 5 6 4 2.</_> 19988 <_>6 9 6 4 2.</_></rects> 19989 <tilted>0</tilted></feature> 19990 <threshold>-0.0622326508164406</threshold> 19991 <left_val>-0.2525390982627869</left_val> 19992 <right_val>0.0258643291890621</right_val></_></_> 19993 <_> 19994 <!-- tree 12 --> 19995 <_> 19996 <!-- root node --> 19997 <feature> 19998 <rects> 19999 <_>4 5 12 8 -1.</_> 20000 <_>4 5 6 4 2.</_> 20001 <_>10 9 6 4 2.</_></rects> 20002 <tilted>0</tilted></feature> 20003 <threshold>-7.4750548228621483e-003</threshold> 20004 <left_val>-0.1907179057598114</left_val> 20005 <right_val>0.0845282003283501</right_val></_></_> 20006 <_> 20007 <!-- tree 13 --> 20008 <_> 20009 <!-- root node --> 20010 <feature> 20011 <rects> 20012 <_>6 2 16 6 -1.</_> 20013 <_>14 2 8 3 2.</_> 20014 <_>6 5 8 3 2.</_></rects> 20015 <tilted>0</tilted></feature> 20016 <threshold>0.0222460106015205</threshold> 20017 <left_val>-0.0310246292501688</left_val> 20018 <right_val>0.1528923958539963</right_val></_></_> 20019 <_> 20020 <!-- tree 14 --> 20021 <_> 20022 <!-- root node --> 20023 <feature> 20024 <rects> 20025 <_>1 2 16 14 -1.</_> 20026 <_>1 2 8 7 2.</_> 20027 <_>9 9 8 7 2.</_></rects> 20028 <tilted>0</tilted></feature> 20029 <threshold>-0.0123052597045898</threshold> 20030 <left_val>0.1169324964284897</left_val> 20031 <right_val>-0.1109255999326706</right_val></_></_> 20032 <_> 20033 <!-- tree 15 --> 20034 <_> 20035 <!-- root node --> 20036 <feature> 20037 <rects> 20038 <_>11 14 6 4 -1.</_> 20039 <_>11 14 3 4 2.</_></rects> 20040 <tilted>0</tilted></feature> 20041 <threshold>-1.3985290424898267e-003</threshold> 20042 <left_val>-0.2043567001819611</left_val> 20043 <right_val>0.0875922590494156</right_val></_></_> 20044 <_> 20045 <!-- tree 16 --> 20046 <_> 20047 <!-- root node --> 20048 <feature> 20049 <rects> 20050 <_>3 8 12 9 -1.</_> 20051 <_>7 11 4 3 9.</_></rects> 20052 <tilted>0</tilted></feature> 20053 <threshold>0.3636125028133392</threshold> 20054 <left_val>-0.0187503192573786</left_val> 20055 <right_val>0.8505452871322632</right_val></_></_> 20056 <_> 20057 <!-- tree 17 --> 20058 <_> 20059 <!-- root node --> 20060 <feature> 20061 <rects> 20062 <_>8 3 14 4 -1.</_> 20063 <_>15 3 7 2 2.</_> 20064 <_>8 5 7 2 2.</_></rects> 20065 <tilted>0</tilted></feature> 20066 <threshold>-3.8815739098936319e-003</threshold> 20067 <left_val>0.0806438773870468</left_val> 20068 <right_val>-0.1052099987864494</right_val></_></_> 20069 <_> 20070 <!-- tree 18 --> 20071 <_> 20072 <!-- root node --> 20073 <feature> 20074 <rects> 20075 <_>9 0 6 8 -1.</_> 20076 <_>11 2 2 8 3.</_></rects> 20077 <tilted>1</tilted></feature> 20078 <threshold>-0.0525006316602230</threshold> 20079 <left_val>0.3800252079963684</left_val> 20080 <right_val>-0.0360490791499615</right_val></_></_> 20081 <_> 20082 <!-- tree 19 --> 20083 <_> 20084 <!-- root node --> 20085 <feature> 20086 <rects> 20087 <_>12 13 6 4 -1.</_> 20088 <_>12 15 6 2 2.</_></rects> 20089 <tilted>0</tilted></feature> 20090 <threshold>-7.9602311598137021e-004</threshold> 20091 <left_val>0.0337949693202972</left_val> 20092 <right_val>-0.0756038799881935</right_val></_></_> 20093 <_> 20094 <!-- tree 20 --> 20095 <_> 20096 <!-- root node --> 20097 <feature> 20098 <rects> 20099 <_>4 13 6 4 -1.</_> 20100 <_>4 15 6 2 2.</_></rects> 20101 <tilted>0</tilted></feature> 20102 <threshold>-0.0200660899281502</threshold> 20103 <left_val>-0.4384298920631409</left_val> 20104 <right_val>0.0333891995251179</right_val></_></_> 20105 <_> 20106 <!-- tree 21 --> 20107 <_> 20108 <!-- root node --> 20109 <feature> 20110 <rects> 20111 <_>6 16 16 2 -1.</_> 20112 <_>6 17 16 1 2.</_></rects> 20113 <tilted>0</tilted></feature> 20114 <threshold>-2.4233239237219095e-003</threshold> 20115 <left_val>-0.0930052474141121</left_val> 20116 <right_val>0.0497728288173676</right_val></_></_> 20117 <_> 20118 <!-- tree 22 --> 20119 <_> 20120 <!-- root node --> 20121 <feature> 20122 <rects> 20123 <_>0 3 12 3 -1.</_> 20124 <_>0 4 12 1 3.</_></rects> 20125 <tilted>0</tilted></feature> 20126 <threshold>-6.8737422116100788e-003</threshold> 20127 <left_val>0.2037483006715775</left_val> 20128 <right_val>-0.0581658482551575</right_val></_></_> 20129 <_> 20130 <!-- tree 23 --> 20131 <_> 20132 <!-- root node --> 20133 <feature> 20134 <rects> 20135 <_>8 3 14 3 -1.</_> 20136 <_>8 4 14 1 3.</_></rects> 20137 <tilted>0</tilted></feature> 20138 <threshold>6.5535600297152996e-003</threshold> 20139 <left_val>-0.0702933967113495</left_val> 20140 <right_val>0.1440014988183975</right_val></_></_> 20141 <_> 20142 <!-- tree 24 --> 20143 <_> 20144 <!-- root node --> 20145 <feature> 20146 <rects> 20147 <_>6 2 3 16 -1.</_> 20148 <_>6 6 3 8 2.</_></rects> 20149 <tilted>0</tilted></feature> 20150 <threshold>-0.0167806800454855</threshold> 20151 <left_val>-0.3222652077674866</left_val> 20152 <right_val>0.0437172502279282</right_val></_></_> 20153 <_> 20154 <!-- tree 25 --> 20155 <_> 20156 <!-- root node --> 20157 <feature> 20158 <rects> 20159 <_>5 2 14 14 -1.</_> 20160 <_>12 2 7 7 2.</_> 20161 <_>5 9 7 7 2.</_></rects> 20162 <tilted>0</tilted></feature> 20163 <threshold>0.0254480708390474</threshold> 20164 <left_val>0.0434619188308716</left_val> 20165 <right_val>-0.1537698954343796</right_val></_></_> 20166 <_> 20167 <!-- tree 26 --> 20168 <_> 20169 <!-- root node --> 20170 <feature> 20171 <rects> 20172 <_>5 8 3 8 -1.</_> 20173 <_>5 12 3 4 2.</_></rects> 20174 <tilted>0</tilted></feature> 20175 <threshold>3.4656568896025419e-003</threshold> 20176 <left_val>-0.0631199926137924</left_val> 20177 <right_val>0.2139452993869782</right_val></_></_> 20178 <_> 20179 <!-- tree 27 --> 20180 <_> 20181 <!-- root node --> 20182 <feature> 20183 <rects> 20184 <_>14 7 7 4 -1.</_> 20185 <_>14 7 7 2 2.</_></rects> 20186 <tilted>1</tilted></feature> 20187 <threshold>0.1013225018978119</threshold> 20188 <left_val>-0.0170958302915096</left_val> 20189 <right_val>0.1885329931974411</right_val></_></_> 20190 <_> 20191 <!-- tree 28 --> 20192 <_> 20193 <!-- root node --> 20194 <feature> 20195 <rects> 20196 <_>4 6 12 9 -1.</_> 20197 <_>8 9 4 3 9.</_></rects> 20198 <tilted>0</tilted></feature> 20199 <threshold>0.1071430966258049</threshold> 20200 <left_val>0.0354068912565708</left_val> 20201 <right_val>-0.3486903905868530</right_val></_></_> 20202 <_> 20203 <!-- tree 29 --> 20204 <_> 20205 <!-- root node --> 20206 <feature> 20207 <rects> 20208 <_>7 11 15 6 -1.</_> 20209 <_>12 11 5 6 3.</_></rects> 20210 <tilted>0</tilted></feature> 20211 <threshold>-0.0145009998232126</threshold> 20212 <left_val>0.0379035808146000</left_val> 20213 <right_val>-0.0491692088544369</right_val></_></_> 20214 <_> 20215 <!-- tree 30 --> 20216 <_> 20217 <!-- root node --> 20218 <feature> 20219 <rects> 20220 <_>0 11 15 6 -1.</_> 20221 <_>5 11 5 6 3.</_></rects> 20222 <tilted>0</tilted></feature> 20223 <threshold>-0.1535475999116898</threshold> 20224 <left_val>0.3504832088947296</left_val> 20225 <right_val>-0.0327740088105202</right_val></_></_> 20226 <_> 20227 <!-- tree 31 --> 20228 <_> 20229 <!-- root node --> 20230 <feature> 20231 <rects> 20232 <_>15 7 6 8 -1.</_> 20233 <_>18 7 3 4 2.</_> 20234 <_>15 11 3 4 2.</_></rects> 20235 <tilted>0</tilted></feature> 20236 <threshold>-0.0651375874876976</threshold> 20237 <left_val>-0.4138002097606659</left_val> 20238 <right_val>7.3137627914547920e-003</right_val></_></_> 20239 <_> 20240 <!-- tree 32 --> 20241 <_> 20242 <!-- root node --> 20243 <feature> 20244 <rects> 20245 <_>0 7 22 10 -1.</_> 20246 <_>0 7 11 5 2.</_> 20247 <_>11 12 11 5 2.</_></rects> 20248 <tilted>0</tilted></feature> 20249 <threshold>-2.9204839374870062e-003</threshold> 20250 <left_val>-0.1375668048858643</left_val> 20251 <right_val>0.0907953903079033</right_val></_></_> 20252 <_> 20253 <!-- tree 33 --> 20254 <_> 20255 <!-- root node --> 20256 <feature> 20257 <rects> 20258 <_>1 8 20 8 -1.</_> 20259 <_>6 8 10 8 2.</_></rects> 20260 <tilted>0</tilted></feature> 20261 <threshold>-0.3410457074642181</threshold> 20262 <left_val>-0.6725202798843384</left_val> 20263 <right_val>0.0152002302929759</right_val></_></_> 20264 <_> 20265 <!-- tree 34 --> 20266 <_> 20267 <!-- root node --> 20268 <feature> 20269 <rects> 20270 <_>2 5 7 6 -1.</_> 20271 <_>2 7 7 2 3.</_></rects> 20272 <tilted>0</tilted></feature> 20273 <threshold>-4.4478259951574728e-005</threshold> 20274 <left_val>0.0965799465775490</left_val> 20275 <right_val>-0.1040342003107071</right_val></_></_> 20276 <_> 20277 <!-- tree 35 --> 20278 <_> 20279 <!-- root node --> 20280 <feature> 20281 <rects> 20282 <_>7 2 15 8 -1.</_> 20283 <_>7 4 15 4 2.</_></rects> 20284 <tilted>0</tilted></feature> 20285 <threshold>-0.1117222979664803</threshold> 20286 <left_val>-0.4223442077636719</left_val> 20287 <right_val>4.9457307904958725e-003</right_val></_></_> 20288 <_> 20289 <!-- tree 36 --> 20290 <_> 20291 <!-- root node --> 20292 <feature> 20293 <rects> 20294 <_>3 1 14 8 -1.</_> 20295 <_>3 3 14 4 2.</_></rects> 20296 <tilted>0</tilted></feature> 20297 <threshold>2.0429869182407856e-003</threshold> 20298 <left_val>0.0994746983051300</left_val> 20299 <right_val>-0.1038454025983810</right_val></_></_> 20300 <_> 20301 <!-- tree 37 --> 20302 <_> 20303 <!-- root node --> 20304 <feature> 20305 <rects> 20306 <_>9 2 13 2 -1.</_> 20307 <_>9 3 13 1 2.</_></rects> 20308 <tilted>0</tilted></feature> 20309 <threshold>-7.2571309283375740e-003</threshold> 20310 <left_val>-0.1504963040351868</left_val> 20311 <right_val>0.0297248400747776</right_val></_></_> 20312 <_> 20313 <!-- tree 38 --> 20314 <_> 20315 <!-- root node --> 20316 <feature> 20317 <rects> 20318 <_>8 3 6 8 -1.</_> 20319 <_>10 3 2 8 3.</_></rects> 20320 <tilted>0</tilted></feature> 20321 <threshold>-8.4451176226139069e-003</threshold> 20322 <left_val>0.0956485792994499</left_val> 20323 <right_val>-0.1180536970496178</right_val></_></_> 20324 <_> 20325 <!-- tree 39 --> 20326 <_> 20327 <!-- root node --> 20328 <feature> 20329 <rects> 20330 <_>7 1 15 2 -1.</_> 20331 <_>7 2 15 1 2.</_></rects> 20332 <tilted>0</tilted></feature> 20333 <threshold>-0.0301949698477983</threshold> 20334 <left_val>0.4657062888145447</left_val> 20335 <right_val>-0.0143868997693062</right_val></_></_> 20336 <_> 20337 <!-- tree 40 --> 20338 <_> 20339 <!-- root node --> 20340 <feature> 20341 <rects> 20342 <_>0 1 15 2 -1.</_> 20343 <_>0 2 15 1 2.</_></rects> 20344 <tilted>0</tilted></feature> 20345 <threshold>5.7423918042331934e-004</threshold> 20346 <left_val>-0.1038231030106545</left_val> 20347 <right_val>0.1505282968282700</right_val></_></_> 20348 <_> 20349 <!-- tree 41 --> 20350 <_> 20351 <!-- root node --> 20352 <feature> 20353 <rects> 20354 <_>6 0 12 3 -1.</_> 20355 <_>6 1 12 1 3.</_></rects> 20356 <tilted>0</tilted></feature> 20357 <threshold>8.2014611689373851e-004</threshold> 20358 <left_val>-0.0751325264573097</left_val> 20359 <right_val>0.1036375984549522</right_val></_></_> 20360 <_> 20361 <!-- tree 42 --> 20362 <_> 20363 <!-- root node --> 20364 <feature> 20365 <rects> 20366 <_>4 0 9 4 -1.</_> 20367 <_>7 0 3 4 3.</_></rects> 20368 <tilted>0</tilted></feature> 20369 <threshold>7.0748180150985718e-003</threshold> 20370 <left_val>0.0660621672868729</left_val> 20371 <right_val>-0.1763841956853867</right_val></_></_> 20372 <_> 20373 <!-- tree 43 --> 20374 <_> 20375 <!-- root node --> 20376 <feature> 20377 <rects> 20378 <_>12 3 8 3 -1.</_> 20379 <_>12 3 4 3 2.</_></rects> 20380 <tilted>1</tilted></feature> 20381 <threshold>0.0483046695590019</threshold> 20382 <left_val>-0.0177676603198051</left_val> 20383 <right_val>0.2682015895843506</right_val></_></_> 20384 <_> 20385 <!-- tree 44 --> 20386 <_> 20387 <!-- root node --> 20388 <feature> 20389 <rects> 20390 <_>8 12 6 4 -1.</_> 20391 <_>11 12 3 4 2.</_></rects> 20392 <tilted>0</tilted></feature> 20393 <threshold>7.9041812568902969e-003</threshold> 20394 <left_val>0.0515227392315865</left_val> 20395 <right_val>-0.2063236981630325</right_val></_></_> 20396 <_> 20397 <!-- tree 45 --> 20398 <_> 20399 <!-- root node --> 20400 <feature> 20401 <rects> 20402 <_>12 1 10 4 -1.</_> 20403 <_>12 1 5 4 2.</_></rects> 20404 <tilted>0</tilted></feature> 20405 <threshold>0.0847054868936539</threshold> 20406 <left_val>7.2250380180776119e-003</left_val> 20407 <right_val>-0.5951473712921143</right_val></_></_> 20408 <_> 20409 <!-- tree 46 --> 20410 <_> 20411 <!-- root node --> 20412 <feature> 20413 <rects> 20414 <_>0 1 10 4 -1.</_> 20415 <_>5 1 5 4 2.</_></rects> 20416 <tilted>0</tilted></feature> 20417 <threshold>3.9120440487749875e-004</threshold> 20418 <left_val>-0.1066353023052216</left_val> 20419 <right_val>0.1110381036996841</right_val></_></_> 20420 <_> 20421 <!-- tree 47 --> 20422 <_> 20423 <!-- root node --> 20424 <feature> 20425 <rects> 20426 <_>16 13 6 5 -1.</_> 20427 <_>16 13 3 5 2.</_></rects> 20428 <tilted>0</tilted></feature> 20429 <threshold>0.0159593205899000</threshold> 20430 <left_val>-0.0485736913979054</left_val> 20431 <right_val>0.2583200931549072</right_val></_></_> 20432 <_> 20433 <!-- tree 48 --> 20434 <_> 20435 <!-- root node --> 20436 <feature> 20437 <rects> 20438 <_>0 13 6 5 -1.</_> 20439 <_>3 13 3 5 2.</_></rects> 20440 <tilted>0</tilted></feature> 20441 <threshold>-1.8649259582161903e-003</threshold> 20442 <left_val>0.1155126988887787</left_val> 20443 <right_val>-0.1504859030246735</right_val></_></_> 20444 <_> 20445 <!-- tree 49 --> 20446 <_> 20447 <!-- root node --> 20448 <feature> 20449 <rects> 20450 <_>18 11 4 7 -1.</_> 20451 <_>18 11 2 7 2.</_></rects> 20452 <tilted>0</tilted></feature> 20453 <threshold>0.0127279795706272</threshold> 20454 <left_val>0.0479302406311035</left_val> 20455 <right_val>-0.3031023144721985</right_val></_></_> 20456 <_> 20457 <!-- tree 50 --> 20458 <_> 20459 <!-- root node --> 20460 <feature> 20461 <rects> 20462 <_>0 11 4 7 -1.</_> 20463 <_>2 11 2 7 2.</_></rects> 20464 <tilted>0</tilted></feature> 20465 <threshold>-1.5954229747876525e-003</threshold> 20466 <left_val>-0.1553757041692734</left_val> 20467 <right_val>0.0832148864865303</right_val></_></_> 20468 <_> 20469 <!-- tree 51 --> 20470 <_> 20471 <!-- root node --> 20472 <feature> 20473 <rects> 20474 <_>15 0 6 14 -1.</_> 20475 <_>17 0 2 14 3.</_></rects> 20476 <tilted>0</tilted></feature> 20477 <threshold>0.2023489028215408</threshold> 20478 <left_val>1.1625860352069139e-003</left_val> 20479 <right_val>-1.0000209808349609</right_val></_></_> 20480 <_> 20481 <!-- tree 52 --> 20482 <_> 20483 <!-- root node --> 20484 <feature> 20485 <rects> 20486 <_>1 0 6 14 -1.</_> 20487 <_>3 0 2 14 3.</_></rects> 20488 <tilted>0</tilted></feature> 20489 <threshold>-0.0391968712210655</threshold> 20490 <left_val>0.3088454902172089</left_val> 20491 <right_val>-0.0445240214467049</right_val></_></_> 20492 <_> 20493 <!-- tree 53 --> 20494 <_> 20495 <!-- root node --> 20496 <feature> 20497 <rects> 20498 <_>13 0 4 14 -1.</_> 20499 <_>15 0 2 7 2.</_> 20500 <_>13 7 2 7 2.</_></rects> 20501 <tilted>0</tilted></feature> 20502 <threshold>0.0158106405287981</threshold> 20503 <left_val>-0.0159273296594620</left_val> 20504 <right_val>0.1014444977045059</right_val></_></_> 20505 <_> 20506 <!-- tree 54 --> 20507 <_> 20508 <!-- root node --> 20509 <feature> 20510 <rects> 20511 <_>5 0 4 14 -1.</_> 20512 <_>5 0 2 7 2.</_> 20513 <_>7 7 2 7 2.</_></rects> 20514 <tilted>0</tilted></feature> 20515 <threshold>-2.1568681113421917e-003</threshold> 20516 <left_val>0.0952053815126419</left_val> 20517 <right_val>-0.1291096061468124</right_val></_></_> 20518 <_> 20519 <!-- tree 55 --> 20520 <_> 20521 <!-- root node --> 20522 <feature> 20523 <rects> 20524 <_>13 2 6 4 -1.</_> 20525 <_>13 2 3 4 2.</_></rects> 20526 <tilted>0</tilted></feature> 20527 <threshold>-0.0346043594181538</threshold> 20528 <left_val>0.2784355878829956</left_val> 20529 <right_val>-0.0107750603929162</right_val></_></_> 20530 <_> 20531 <!-- tree 56 --> 20532 <_> 20533 <!-- root node --> 20534 <feature> 20535 <rects> 20536 <_>1 7 12 4 -1.</_> 20537 <_>1 7 6 2 2.</_> 20538 <_>7 9 6 2 2.</_></rects> 20539 <tilted>0</tilted></feature> 20540 <threshold>-2.6206790935248137e-003</threshold> 20541 <left_val>-0.1374453008174896</left_val> 20542 <right_val>0.0929454565048218</right_val></_></_> 20543 <_> 20544 <!-- tree 57 --> 20545 <_> 20546 <!-- root node --> 20547 <feature> 20548 <rects> 20549 <_>4 13 18 3 -1.</_> 20550 <_>4 14 18 1 3.</_></rects> 20551 <tilted>0</tilted></feature> 20552 <threshold>4.6692821197211742e-003</threshold> 20553 <left_val>-0.0583318211138248</left_val> 20554 <right_val>0.1573383957147598</right_val></_></_> 20555 <_> 20556 <!-- tree 58 --> 20557 <_> 20558 <!-- root node --> 20559 <feature> 20560 <rects> 20561 <_>2 6 2 12 -1.</_> 20562 <_>2 12 2 6 2.</_></rects> 20563 <tilted>0</tilted></feature> 20564 <threshold>0.0786235332489014</threshold> 20565 <left_val>0.0111308302730322</left_val> 20566 <right_val>-0.9713814854621887</right_val></_></_> 20567 <_> 20568 <!-- tree 59 --> 20569 <_> 20570 <!-- root node --> 20571 <feature> 20572 <rects> 20573 <_>4 11 16 4 -1.</_> 20574 <_>12 11 8 2 2.</_> 20575 <_>4 13 8 2 2.</_></rects> 20576 <tilted>0</tilted></feature> 20577 <threshold>0.0395567305386066</threshold> 20578 <left_val>2.1708509884774685e-003</left_val> 20579 <right_val>-0.4342544972896576</right_val></_></_> 20580 <_> 20581 <!-- tree 60 --> 20582 <_> 20583 <!-- root node --> 20584 <feature> 20585 <rects> 20586 <_>2 11 16 4 -1.</_> 20587 <_>2 11 8 2 2.</_> 20588 <_>10 13 8 2 2.</_></rects> 20589 <tilted>0</tilted></feature> 20590 <threshold>4.0571438148617744e-003</threshold> 20591 <left_val>0.0861207172274590</left_val> 20592 <right_val>-0.1557939946651459</right_val></_></_> 20593 <_> 20594 <!-- tree 61 --> 20595 <_> 20596 <!-- root node --> 20597 <feature> 20598 <rects> 20599 <_>10 12 12 4 -1.</_> 20600 <_>16 12 6 2 2.</_> 20601 <_>10 14 6 2 2.</_></rects> 20602 <tilted>0</tilted></feature> 20603 <threshold>-0.0150146698579192</threshold> 20604 <left_val>0.1352397948503494</left_val> 20605 <right_val>-0.0257240198552608</right_val></_></_> 20606 <_> 20607 <!-- tree 62 --> 20608 <_> 20609 <!-- root node --> 20610 <feature> 20611 <rects> 20612 <_>0 12 12 4 -1.</_> 20613 <_>0 12 6 2 2.</_> 20614 <_>6 14 6 2 2.</_></rects> 20615 <tilted>0</tilted></feature> 20616 <threshold>4.6183250378817320e-004</threshold> 20617 <left_val>-0.1076688989996910</left_val> 20618 <right_val>0.1363386958837509</right_val></_></_> 20619 <_> 20620 <!-- tree 63 --> 20621 <_> 20622 <!-- root node --> 20623 <feature> 20624 <rects> 20625 <_>12 12 10 6 -1.</_> 20626 <_>17 12 5 3 2.</_> 20627 <_>12 15 5 3 2.</_></rects> 20628 <tilted>0</tilted></feature> 20629 <threshold>0.0528752095997334</threshold> 20630 <left_val>5.4555749520659447e-003</left_val> 20631 <right_val>-0.3938291072845459</right_val></_></_> 20632 <_> 20633 <!-- tree 64 --> 20634 <_> 20635 <!-- root node --> 20636 <feature> 20637 <rects> 20638 <_>0 10 10 8 -1.</_> 20639 <_>0 10 5 4 2.</_> 20640 <_>5 14 5 4 2.</_></rects> 20641 <tilted>0</tilted></feature> 20642 <threshold>-0.0595108605921268</threshold> 20643 <left_val>0.2869082093238831</left_val> 20644 <right_val>-0.0428760796785355</right_val></_></_> 20645 <_> 20646 <!-- tree 65 --> 20647 <_> 20648 <!-- root node --> 20649 <feature> 20650 <rects> 20651 <_>8 0 7 4 -1.</_> 20652 <_>8 2 7 2 2.</_></rects> 20653 <tilted>0</tilted></feature> 20654 <threshold>0.0166503600776196</threshold> 20655 <left_val>0.0286052990704775</left_val> 20656 <right_val>-0.3034949004650116</right_val></_></_> 20657 <_> 20658 <!-- tree 66 --> 20659 <_> 20660 <!-- root node --> 20661 <feature> 20662 <rects> 20663 <_>0 3 14 3 -1.</_> 20664 <_>0 4 14 1 3.</_></rects> 20665 <tilted>0</tilted></feature> 20666 <threshold>0.0149596296250820</threshold> 20667 <left_val>-0.0526990294456482</left_val> 20668 <right_val>0.2182525992393494</right_val></_></_> 20669 <_> 20670 <!-- tree 67 --> 20671 <_> 20672 <!-- root node --> 20673 <feature> 20674 <rects> 20675 <_>15 1 6 8 -1.</_> 20676 <_>18 1 3 4 2.</_> 20677 <_>15 5 3 4 2.</_></rects> 20678 <tilted>0</tilted></feature> 20679 <threshold>-9.6224267035722733e-003</threshold> 20680 <left_val>-0.2143145054578781</left_val> 20681 <right_val>0.0483506284654140</right_val></_></_> 20682 <_> 20683 <!-- tree 68 --> 20684 <_> 20685 <!-- root node --> 20686 <feature> 20687 <rects> 20688 <_>2 3 7 4 -1.</_> 20689 <_>2 5 7 2 2.</_></rects> 20690 <tilted>0</tilted></feature> 20691 <threshold>-0.0453042611479759</threshold> 20692 <left_val>-0.8730847835540772</left_val> 20693 <right_val>0.0124497702345252</right_val></_></_> 20694 <_> 20695 <!-- tree 69 --> 20696 <_> 20697 <!-- root node --> 20698 <feature> 20699 <rects> 20700 <_>13 2 6 4 -1.</_> 20701 <_>13 2 3 4 2.</_></rects> 20702 <tilted>0</tilted></feature> 20703 <threshold>-7.4465242214500904e-003</threshold> 20704 <left_val>-0.1358620971441269</left_val> 20705 <right_val>0.0330873206257820</right_val></_></_> 20706 <_> 20707 <!-- tree 70 --> 20708 <_> 20709 <!-- root node --> 20710 <feature> 20711 <rects> 20712 <_>3 2 6 4 -1.</_> 20713 <_>6 2 3 4 2.</_></rects> 20714 <tilted>0</tilted></feature> 20715 <threshold>-1.1953880311921239e-003</threshold> 20716 <left_val>0.1484857052564621</left_val> 20717 <right_val>-0.0852916464209557</right_val></_></_> 20718 <_> 20719 <!-- tree 71 --> 20720 <_> 20721 <!-- root node --> 20722 <feature> 20723 <rects> 20724 <_>5 1 16 4 -1.</_> 20725 <_>5 2 16 2 2.</_></rects> 20726 <tilted>0</tilted></feature> 20727 <threshold>5.6622507981956005e-003</threshold> 20728 <left_val>-0.0532124489545822</left_val> 20729 <right_val>0.1296795010566711</right_val></_></_> 20730 <_> 20731 <!-- tree 72 --> 20732 <_> 20733 <!-- root node --> 20734 <feature> 20735 <rects> 20736 <_>4 15 13 3 -1.</_> 20737 <_>4 16 13 1 3.</_></rects> 20738 <tilted>0</tilted></feature> 20739 <threshold>0.0139713604003191</threshold> 20740 <left_val>0.0253388304263353</left_val> 20741 <right_val>-0.4209741055965424</right_val></_></_> 20742 <_> 20743 <!-- tree 73 --> 20744 <_> 20745 <!-- root node --> 20746 <feature> 20747 <rects> 20748 <_>12 6 3 12 -1.</_> 20749 <_>13 6 1 12 3.</_></rects> 20750 <tilted>0</tilted></feature> 20751 <threshold>-4.5216218568384647e-003</threshold> 20752 <left_val>0.1262152940034866</left_val> 20753 <right_val>-0.0631354302167892</right_val></_></_> 20754 <_> 20755 <!-- tree 74 --> 20756 <_> 20757 <!-- root node --> 20758 <feature> 20759 <rects> 20760 <_>0 16 16 2 -1.</_> 20761 <_>8 16 8 2 2.</_></rects> 20762 <tilted>0</tilted></feature> 20763 <threshold>4.7776158899068832e-003</threshold> 20764 <left_val>-0.0628999173641205</left_val> 20765 <right_val>0.1772444993257523</right_val></_></_> 20766 <_> 20767 <!-- tree 75 --> 20768 <_> 20769 <!-- root node --> 20770 <feature> 20771 <rects> 20772 <_>3 2 16 10 -1.</_> 20773 <_>3 7 16 5 2.</_></rects> 20774 <tilted>0</tilted></feature> 20775 <threshold>-5.8305878192186356e-003</threshold> 20776 <left_val>0.0879060029983521</left_val> 20777 <right_val>-0.1555338054895401</right_val></_></_> 20778 <_> 20779 <!-- tree 76 --> 20780 <_> 20781 <!-- root node --> 20782 <feature> 20783 <rects> 20784 <_>7 1 12 4 -1.</_> 20785 <_>10 4 6 4 2.</_></rects> 20786 <tilted>1</tilted></feature> 20787 <threshold>-0.0158792808651924</threshold> 20788 <left_val>-0.1269443035125732</left_val> 20789 <right_val>0.1028029993176460</right_val></_></_> 20790 <_> 20791 <!-- tree 77 --> 20792 <_> 20793 <!-- root node --> 20794 <feature> 20795 <rects> 20796 <_>14 1 2 9 -1.</_> 20797 <_>14 1 1 9 2.</_></rects> 20798 <tilted>1</tilted></feature> 20799 <threshold>1.9526369869709015e-003</threshold> 20800 <left_val>-0.0768034532666206</left_val> 20801 <right_val>0.0472977496683598</right_val></_></_> 20802 <_> 20803 <!-- tree 78 --> 20804 <_> 20805 <!-- root node --> 20806 <feature> 20807 <rects> 20808 <_>4 10 3 8 -1.</_> 20809 <_>4 14 3 4 2.</_></rects> 20810 <tilted>0</tilted></feature> 20811 <threshold>0.0245216507464647</threshold> 20812 <left_val>-0.0277146808803082</left_val> 20813 <right_val>0.4035046994686127</right_val></_></_> 20814 <_> 20815 <!-- tree 79 --> 20816 <_> 20817 <!-- root node --> 20818 <feature> 20819 <rects> 20820 <_>11 12 6 6 -1.</_> 20821 <_>11 14 6 2 3.</_></rects> 20822 <tilted>0</tilted></feature> 20823 <threshold>-0.0845293998718262</threshold> 20824 <left_val>1.</left_val> 20825 <right_val>-2.1367999725043774e-003</right_val></_></_> 20826 <_> 20827 <!-- tree 80 --> 20828 <_> 20829 <!-- root node --> 20830 <feature> 20831 <rects> 20832 <_>5 12 6 6 -1.</_> 20833 <_>5 14 6 2 3.</_></rects> 20834 <tilted>0</tilted></feature> 20835 <threshold>1.6844070050865412e-003</threshold> 20836 <left_val>0.0740434005856514</left_val> 20837 <right_val>-0.1633481979370117</right_val></_></_> 20838 <_> 20839 <!-- tree 81 --> 20840 <_> 20841 <!-- root node --> 20842 <feature> 20843 <rects> 20844 <_>12 6 3 12 -1.</_> 20845 <_>13 6 1 12 3.</_></rects> 20846 <tilted>0</tilted></feature> 20847 <threshold>0.0133990598842502</threshold> 20848 <left_val>-0.0424531809985638</left_val> 20849 <right_val>0.2416412979364395</right_val></_></_> 20850 <_> 20851 <!-- tree 82 --> 20852 <_> 20853 <!-- root node --> 20854 <feature> 20855 <rects> 20856 <_>10 6 8 3 -1.</_> 20857 <_>9 7 8 1 3.</_></rects> 20858 <tilted>1</tilted></feature> 20859 <threshold>0.0441826395690441</threshold> 20860 <left_val>0.0180395692586899</left_val> 20861 <right_val>-0.6439684033393860</right_val></_></_> 20862 <_> 20863 <!-- tree 83 --> 20864 <_> 20865 <!-- root node --> 20866 <feature> 20867 <rects> 20868 <_>12 6 3 12 -1.</_> 20869 <_>13 6 1 12 3.</_></rects> 20870 <tilted>0</tilted></feature> 20871 <threshold>0.0383272394537926</threshold> 20872 <left_val>7.5849238783121109e-003</left_val> 20873 <right_val>-0.3653421103954315</right_val></_></_> 20874 <_> 20875 <!-- tree 84 --> 20876 <_> 20877 <!-- root node --> 20878 <feature> 20879 <rects> 20880 <_>7 6 3 12 -1.</_> 20881 <_>8 6 1 12 3.</_></rects> 20882 <tilted>0</tilted></feature> 20883 <threshold>2.5997089687734842e-003</threshold> 20884 <left_val>-0.0885534808039665</left_val> 20885 <right_val>0.1376366019248962</right_val></_></_> 20886 <_> 20887 <!-- tree 85 --> 20888 <_> 20889 <!-- root node --> 20890 <feature> 20891 <rects> 20892 <_>14 1 2 9 -1.</_> 20893 <_>14 1 1 9 2.</_></rects> 20894 <tilted>1</tilted></feature> 20895 <threshold>0.0107754804193974</threshold> 20896 <left_val>0.0457531698048115</left_val> 20897 <right_val>-0.1195600032806397</right_val></_></_> 20898 <_> 20899 <!-- tree 86 --> 20900 <_> 20901 <!-- root node --> 20902 <feature> 20903 <rects> 20904 <_>11 4 10 3 -1.</_> 20905 <_>10 5 10 1 3.</_></rects> 20906 <tilted>1</tilted></feature> 20907 <threshold>-0.0204336494207382</threshold> 20908 <left_val>0.2202017009258270</left_val> 20909 <right_val>-0.0519258417189121</right_val></_></_> 20910 <_> 20911 <!-- tree 87 --> 20912 <_> 20913 <!-- root node --> 20914 <feature> 20915 <rects> 20916 <_>8 11 9 4 -1.</_> 20917 <_>11 11 3 4 3.</_></rects> 20918 <tilted>0</tilted></feature> 20919 <threshold>-0.1240272969007492</threshold> 20920 <left_val>0.8884658217430115</left_val> 20921 <right_val>-5.1234480924904346e-003</right_val></_></_> 20922 <_> 20923 <!-- tree 88 --> 20924 <_> 20925 <!-- root node --> 20926 <feature> 20927 <rects> 20928 <_>7 5 2 12 -1.</_> 20929 <_>8 5 1 12 2.</_></rects> 20930 <tilted>0</tilted></feature> 20931 <threshold>4.7838478349149227e-003</threshold> 20932 <left_val>0.0530470311641693</left_val> 20933 <right_val>-0.2108590006828308</right_val></_></_> 20934 <_> 20935 <!-- tree 89 --> 20936 <_> 20937 <!-- root node --> 20938 <feature> 20939 <rects> 20940 <_>13 1 3 16 -1.</_> 20941 <_>14 1 1 16 3.</_></rects> 20942 <tilted>0</tilted></feature> 20943 <threshold>-0.0458953492343426</threshold> 20944 <left_val>0.4448269009590149</left_val> 20945 <right_val>-0.0151171199977398</right_val></_></_> 20946 <_> 20947 <!-- tree 90 --> 20948 <_> 20949 <!-- root node --> 20950 <feature> 20951 <rects> 20952 <_>7 4 6 6 -1.</_> 20953 <_>9 4 2 6 3.</_></rects> 20954 <tilted>0</tilted></feature> 20955 <threshold>0.0144737903028727</threshold> 20956 <left_val>-0.0452014096081257</left_val> 20957 <right_val>0.2355625033378601</right_val></_></_> 20958 <_> 20959 <!-- tree 91 --> 20960 <_> 20961 <!-- root node --> 20962 <feature> 20963 <rects> 20964 <_>10 4 2 12 -1.</_> 20965 <_>10 4 1 12 2.</_></rects> 20966 <tilted>0</tilted></feature> 20967 <threshold>1.8887920305132866e-003</threshold> 20968 <left_val>0.0764433816075325</left_val> 20969 <right_val>-0.1638537049293518</right_val></_></_> 20970 <_> 20971 <!-- tree 92 --> 20972 <_> 20973 <!-- root node --> 20974 <feature> 20975 <rects> 20976 <_>0 0 18 5 -1.</_> 20977 <_>9 0 9 5 2.</_></rects> 20978 <tilted>0</tilted></feature> 20979 <threshold>-0.1908206939697266</threshold> 20980 <left_val>0.6466202139854431</left_val> 20981 <right_val>-0.0182426199316978</right_val></_></_> 20982 <_> 20983 <!-- tree 93 --> 20984 <_> 20985 <!-- root node --> 20986 <feature> 20987 <rects> 20988 <_>16 3 2 12 -1.</_> 20989 <_>16 3 1 12 2.</_></rects> 20990 <tilted>1</tilted></feature> 20991 <threshold>0.0721584632992744</threshold> 20992 <left_val>6.2836478464305401e-003</left_val> 20993 <right_val>-0.7482234835624695</right_val></_></_> 20994 <_> 20995 <!-- tree 94 --> 20996 <_> 20997 <!-- root node --> 20998 <feature> 20999 <rects> 21000 <_>6 3 12 2 -1.</_> 21001 <_>6 3 12 1 2.</_></rects> 21002 <tilted>1</tilted></feature> 21003 <threshold>9.7802944947034121e-004</threshold> 21004 <left_val>0.0790631026029587</left_val> 21005 <right_val>-0.1316365003585815</right_val></_></_> 21006 <_> 21007 <!-- tree 95 --> 21008 <_> 21009 <!-- root node --> 21010 <feature> 21011 <rects> 21012 <_>13 6 4 7 -1.</_> 21013 <_>14 7 2 7 2.</_></rects> 21014 <tilted>1</tilted></feature> 21015 <threshold>4.8602250171825290e-004</threshold> 21016 <left_val>-0.0425949096679688</left_val> 21017 <right_val>0.0694627612829208</right_val></_></_> 21018 <_> 21019 <!-- tree 96 --> 21020 <_> 21021 <!-- root node --> 21022 <feature> 21023 <rects> 21024 <_>7 3 13 2 -1.</_> 21025 <_>7 3 13 1 2.</_></rects> 21026 <tilted>1</tilted></feature> 21027 <threshold>-0.0108828004449606</threshold> 21028 <left_val>-0.2450307011604309</left_val> 21029 <right_val>0.0523261614143848</right_val></_></_> 21030 <_> 21031 <!-- tree 97 --> 21032 <_> 21033 <!-- root node --> 21034 <feature> 21035 <rects> 21036 <_>5 14 17 4 -1.</_> 21037 <_>5 15 17 2 2.</_></rects> 21038 <tilted>0</tilted></feature> 21039 <threshold>1.1573769734241068e-004</threshold> 21040 <left_val>-0.0667293071746826</left_val> 21041 <right_val>0.0870889127254486</right_val></_></_> 21042 <_> 21043 <!-- tree 98 --> 21044 <_> 21045 <!-- root node --> 21046 <feature> 21047 <rects> 21048 <_>0 13 18 3 -1.</_> 21049 <_>0 14 18 1 3.</_></rects> 21050 <tilted>0</tilted></feature> 21051 <threshold>2.0960739348083735e-003</threshold> 21052 <left_val>-0.0761545673012733</left_val> 21053 <right_val>0.1359816938638687</right_val></_></_> 21054 <_> 21055 <!-- tree 99 --> 21056 <_> 21057 <!-- root node --> 21058 <feature> 21059 <rects> 21060 <_>6 13 14 3 -1.</_> 21061 <_>6 14 14 1 3.</_></rects> 21062 <tilted>0</tilted></feature> 21063 <threshold>0.0436643511056900</threshold> 21064 <left_val>8.4812156856060028e-003</left_val> 21065 <right_val>-0.8109716773033142</right_val></_></_> 21066 <_> 21067 <!-- tree 100 --> 21068 <_> 21069 <!-- root node --> 21070 <feature> 21071 <rects> 21072 <_>2 13 14 3 -1.</_> 21073 <_>2 14 14 1 3.</_></rects> 21074 <tilted>0</tilted></feature> 21075 <threshold>-1.1464370181784034e-003</threshold> 21076 <left_val>0.1272123008966446</left_val> 21077 <right_val>-0.0847834199666977</right_val></_></_> 21078 <_> 21079 <!-- tree 101 --> 21080 <_> 21081 <!-- root node --> 21082 <feature> 21083 <rects> 21084 <_>5 13 12 2 -1.</_> 21085 <_>5 14 12 1 2.</_></rects> 21086 <tilted>0</tilted></feature> 21087 <threshold>-5.5613541044294834e-003</threshold> 21088 <left_val>-0.1972253024578095</left_val> 21089 <right_val>0.0544110685586929</right_val></_></_> 21090 <_> 21091 <!-- tree 102 --> 21092 <_> 21093 <!-- root node --> 21094 <feature> 21095 <rects> 21096 <_>0 5 4 8 -1.</_> 21097 <_>0 9 4 4 2.</_></rects> 21098 <tilted>0</tilted></feature> 21099 <threshold>0.0340838506817818</threshold> 21100 <left_val>-0.0323385484516621</left_val> 21101 <right_val>0.3406228125095367</right_val></_></_> 21102 <_> 21103 <!-- tree 103 --> 21104 <_> 21105 <!-- root node --> 21106 <feature> 21107 <rects> 21108 <_>15 7 6 8 -1.</_> 21109 <_>18 7 3 4 2.</_> 21110 <_>15 11 3 4 2.</_></rects> 21111 <tilted>0</tilted></feature> 21112 <threshold>0.0512270815670490</threshold> 21113 <left_val>-0.0132620399817824</left_val> 21114 <right_val>0.2395363003015518</right_val></_></_> 21115 <_> 21116 <!-- tree 104 --> 21117 <_> 21118 <!-- root node --> 21119 <feature> 21120 <rects> 21121 <_>9 2 4 7 -1.</_> 21122 <_>11 2 2 7 2.</_></rects> 21123 <tilted>0</tilted></feature> 21124 <threshold>0.0335317291319370</threshold> 21125 <left_val>0.0202799197286367</left_val> 21126 <right_val>-0.4833905100822449</right_val></_></_> 21127 <_> 21128 <!-- tree 105 --> 21129 <_> 21130 <!-- root node --> 21131 <feature> 21132 <rects> 21133 <_>8 4 14 3 -1.</_> 21134 <_>8 5 14 1 3.</_></rects> 21135 <tilted>0</tilted></feature> 21136 <threshold>0.0153962196782231</threshold> 21137 <left_val>-0.0293201897293329</left_val> 21138 <right_val>0.1586609929800034</right_val></_></_> 21139 <_> 21140 <!-- tree 106 --> 21141 <_> 21142 <!-- root node --> 21143 <feature> 21144 <rects> 21145 <_>0 4 12 3 -1.</_> 21146 <_>0 5 12 1 3.</_></rects> 21147 <tilted>0</tilted></feature> 21148 <threshold>-0.0175507701933384</threshold> 21149 <left_val>0.2748897075653076</left_val> 21150 <right_val>-0.0377983190119267</right_val></_></_> 21151 <_> 21152 <!-- tree 107 --> 21153 <_> 21154 <!-- root node --> 21155 <feature> 21156 <rects> 21157 <_>13 2 4 9 -1.</_> 21158 <_>13 5 4 3 3.</_></rects> 21159 <tilted>0</tilted></feature> 21160 <threshold>-0.0757056474685669</threshold> 21161 <left_val>-0.8221439719200134</left_val> 21162 <right_val>3.8814740255475044e-003</right_val></_></_> 21163 <_> 21164 <!-- tree 108 --> 21165 <_> 21166 <!-- root node --> 21167 <feature> 21168 <rects> 21169 <_>5 2 4 9 -1.</_> 21170 <_>5 5 4 3 3.</_></rects> 21171 <tilted>0</tilted></feature> 21172 <threshold>-5.3475350141525269e-003</threshold> 21173 <left_val>-0.1671075969934464</left_val> 21174 <right_val>0.0771806165575981</right_val></_></_> 21175 <_> 21176 <!-- tree 109 --> 21177 <_> 21178 <!-- root node --> 21179 <feature> 21180 <rects> 21181 <_>12 6 6 4 -1.</_> 21182 <_>12 8 6 2 2.</_></rects> 21183 <tilted>0</tilted></feature> 21184 <threshold>-3.3435279037803411e-003</threshold> 21185 <left_val>-0.1067349016666412</left_val> 21186 <right_val>0.0475754700601101</right_val></_></_> 21187 <_> 21188 <!-- tree 110 --> 21189 <_> 21190 <!-- root node --> 21191 <feature> 21192 <rects> 21193 <_>5 5 12 3 -1.</_> 21194 <_>11 5 6 3 2.</_></rects> 21195 <tilted>0</tilted></feature> 21196 <threshold>0.0193282701075077</threshold> 21197 <left_val>-0.0465632900595665</left_val> 21198 <right_val>0.2471656054258347</right_val></_></_> 21199 <_> 21200 <!-- tree 111 --> 21201 <_> 21202 <!-- root node --> 21203 <feature> 21204 <rects> 21205 <_>7 1 8 12 -1.</_> 21206 <_>7 4 8 6 2.</_></rects> 21207 <tilted>0</tilted></feature> 21208 <threshold>0.0853689834475517</threshold> 21209 <left_val>0.0232969205826521</left_val> 21210 <right_val>-0.5000224709510803</right_val></_></_> 21211 <_> 21212 <!-- tree 112 --> 21213 <_> 21214 <!-- root node --> 21215 <feature> 21216 <rects> 21217 <_>9 3 6 7 -1.</_> 21218 <_>11 5 2 7 3.</_></rects> 21219 <tilted>1</tilted></feature> 21220 <threshold>2.5927850510925055e-003</threshold> 21221 <left_val>-0.1118225008249283</left_val> 21222 <right_val>0.1104608997702599</right_val></_></_> 21223 <_> 21224 <!-- tree 113 --> 21225 <_> 21226 <!-- root node --> 21227 <feature> 21228 <rects> 21229 <_>12 1 9 6 -1.</_> 21230 <_>10 3 9 2 3.</_></rects> 21231 <tilted>1</tilted></feature> 21232 <threshold>-9.1061238199472427e-003</threshold> 21233 <left_val>0.0471070110797882</left_val> 21234 <right_val>-0.0558076612651348</right_val></_></_> 21235 <_> 21236 <!-- tree 114 --> 21237 <_> 21238 <!-- root node --> 21239 <feature> 21240 <rects> 21241 <_>11 7 8 3 -1.</_> 21242 <_>11 7 4 3 2.</_></rects> 21243 <tilted>1</tilted></feature> 21244 <threshold>0.1017069965600967</threshold> 21245 <left_val>-0.0159666091203690</left_val> 21246 <right_val>0.6985731720924377</right_val></_></_> 21247 <_> 21248 <!-- tree 115 --> 21249 <_> 21250 <!-- root node --> 21251 <feature> 21252 <rects> 21253 <_>14 1 2 9 -1.</_> 21254 <_>14 1 1 9 2.</_></rects> 21255 <tilted>1</tilted></feature> 21256 <threshold>0.0228549800813198</threshold> 21257 <left_val>-0.0172262191772461</left_val> 21258 <right_val>0.1222568973898888</right_val></_></_> 21259 <_> 21260 <!-- tree 116 --> 21261 <_> 21262 <!-- root node --> 21263 <feature> 21264 <rects> 21265 <_>1 7 6 8 -1.</_> 21266 <_>1 7 3 4 2.</_> 21267 <_>4 11 3 4 2.</_></rects> 21268 <tilted>0</tilted></feature> 21269 <threshold>-0.0165770798921585</threshold> 21270 <left_val>-0.2222582995891571</left_val> 21271 <right_val>0.0565783008933067</right_val></_></_> 21272 <_> 21273 <!-- tree 117 --> 21274 <_> 21275 <!-- root node --> 21276 <feature> 21277 <rects> 21278 <_>11 0 4 6 -1.</_> 21279 <_>11 0 2 6 2.</_></rects> 21280 <tilted>0</tilted></feature> 21281 <threshold>-0.0236414205282927</threshold> 21282 <left_val>-0.2773405015468597</left_val> 21283 <right_val>0.0160768907517195</right_val></_></_> 21284 <_> 21285 <!-- tree 118 --> 21286 <_> 21287 <!-- root node --> 21288 <feature> 21289 <rects> 21290 <_>7 0 4 6 -1.</_> 21291 <_>9 0 2 6 2.</_></rects> 21292 <tilted>0</tilted></feature> 21293 <threshold>5.6385230273008347e-003</threshold> 21294 <left_val>0.0454392805695534</left_val> 21295 <right_val>-0.2254963070154190</right_val></_></_> 21296 <_> 21297 <!-- tree 119 --> 21298 <_> 21299 <!-- root node --> 21300 <feature> 21301 <rects> 21302 <_>0 7 22 4 -1.</_> 21303 <_>11 7 11 2 2.</_> 21304 <_>0 9 11 2 2.</_></rects> 21305 <tilted>0</tilted></feature> 21306 <threshold>5.7422029785811901e-003</threshold> 21307 <left_val>-0.0785687789320946</left_val> 21308 <right_val>0.1523496061563492</right_val></_></_> 21309 <_> 21310 <!-- tree 120 --> 21311 <_> 21312 <!-- root node --> 21313 <feature> 21314 <rects> 21315 <_>3 5 4 8 -1.</_> 21316 <_>3 9 4 4 2.</_></rects> 21317 <tilted>0</tilted></feature> 21318 <threshold>-4.3363519944250584e-004</threshold> 21319 <left_val>0.0959209501743317</left_val> 21320 <right_val>-0.1127424016594887</right_val></_></_> 21321 <_> 21322 <!-- tree 121 --> 21323 <_> 21324 <!-- root node --> 21325 <feature> 21326 <rects> 21327 <_>5 4 12 3 -1.</_> 21328 <_>9 4 4 3 3.</_></rects> 21329 <tilted>0</tilted></feature> 21330 <threshold>0.0102679198607802</threshold> 21331 <left_val>-0.0493329912424088</left_val> 21332 <right_val>0.2481082975864410</right_val></_></_> 21333 <_> 21334 <!-- tree 122 --> 21335 <_> 21336 <!-- root node --> 21337 <feature> 21338 <rects> 21339 <_>10 2 12 3 -1.</_> 21340 <_>10 2 6 3 2.</_></rects> 21341 <tilted>1</tilted></feature> 21342 <threshold>0.0138657195493579</threshold> 21343 <left_val>0.0705479383468628</left_val> 21344 <right_val>-0.1859433054924011</right_val></_></_></trees> 21345 <stage_threshold>-0.6582424044609070</stage_threshold> 21346 <parent>23</parent> 21347 <next>-1</next></_> 21348 <_> 21349 <!-- stage 25 --> 21350 <trees> 21351 <_> 21352 <!-- tree 0 --> 21353 <_> 21354 <!-- root node --> 21355 <feature> 21356 <rects> 21357 <_>5 2 6 16 -1.</_> 21358 <_>5 10 6 8 2.</_></rects> 21359 <tilted>0</tilted></feature> 21360 <threshold>-0.0469806306064129</threshold> 21361 <left_val>0.1707855015993118</left_val> 21362 <right_val>-0.1568731069564819</right_val></_></_> 21363 <_> 21364 <!-- tree 1 --> 21365 <_> 21366 <!-- root node --> 21367 <feature> 21368 <rects> 21369 <_>12 6 8 4 -1.</_> 21370 <_>12 6 8 2 2.</_></rects> 21371 <tilted>1</tilted></feature> 21372 <threshold>-0.1196796000003815</threshold> 21373 <left_val>0.5173841714859009</left_val> 21374 <right_val>-0.0117475902661681</right_val></_></_> 21375 <_> 21376 <!-- tree 2 --> 21377 <_> 21378 <!-- root node --> 21379 <feature> 21380 <rects> 21381 <_>3 12 6 6 -1.</_> 21382 <_>5 12 2 6 3.</_></rects> 21383 <tilted>0</tilted></feature> 21384 <threshold>-0.0284771807491779</threshold> 21385 <left_val>0.2350520044565201</left_val> 21386 <right_val>-0.0574244111776352</right_val></_></_> 21387 <_> 21388 <!-- tree 3 --> 21389 <_> 21390 <!-- root node --> 21391 <feature> 21392 <rects> 21393 <_>12 1 3 12 -1.</_> 21394 <_>12 1 3 6 2.</_></rects> 21395 <tilted>1</tilted></feature> 21396 <threshold>0.1969747990369797</threshold> 21397 <left_val>-9.3123828992247581e-004</left_val> 21398 <right_val>1.0037239789962769</right_val></_></_> 21399 <_> 21400 <!-- tree 4 --> 21401 <_> 21402 <!-- root node --> 21403 <feature> 21404 <rects> 21405 <_>10 1 12 3 -1.</_> 21406 <_>10 1 6 3 2.</_></rects> 21407 <tilted>1</tilted></feature> 21408 <threshold>7.9039083793759346e-003</threshold> 21409 <left_val>0.0833574980497360</left_val> 21410 <right_val>-0.1652749925851822</right_val></_></_> 21411 <_> 21412 <!-- tree 5 --> 21413 <_> 21414 <!-- root node --> 21415 <feature> 21416 <rects> 21417 <_>4 8 16 4 -1.</_> 21418 <_>8 8 8 4 2.</_></rects> 21419 <tilted>0</tilted></feature> 21420 <threshold>0.0393389798700809</threshold> 21421 <left_val>-6.5605872077867389e-004</left_val> 21422 <right_val>0.3236146867275238</right_val></_></_> 21423 <_> 21424 <!-- tree 6 --> 21425 <_> 21426 <!-- root node --> 21427 <feature> 21428 <rects> 21429 <_>6 10 4 6 -1.</_> 21430 <_>8 10 2 6 2.</_></rects> 21431 <tilted>0</tilted></feature> 21432 <threshold>-1.5762429684400558e-003</threshold> 21433 <left_val>0.0911294668912888</left_val> 21434 <right_val>-0.1416433006525040</right_val></_></_> 21435 <_> 21436 <!-- tree 7 --> 21437 <_> 21438 <!-- root node --> 21439 <feature> 21440 <rects> 21441 <_>7 14 9 4 -1.</_> 21442 <_>10 14 3 4 3.</_></rects> 21443 <tilted>0</tilted></feature> 21444 <threshold>2.0851049339398742e-004</threshold> 21445 <left_val>-0.1380268037319183</left_val> 21446 <right_val>0.0772129893302917</right_val></_></_> 21447 <_> 21448 <!-- tree 8 --> 21449 <_> 21450 <!-- root node --> 21451 <feature> 21452 <rects> 21453 <_>8 10 4 7 -1.</_> 21454 <_>10 10 2 7 2.</_></rects> 21455 <tilted>0</tilted></feature> 21456 <threshold>-2.6843539671972394e-004</threshold> 21457 <left_val>0.1364672034978867</left_val> 21458 <right_val>-0.0942557528614998</right_val></_></_> 21459 <_> 21460 <!-- tree 9 --> 21461 <_> 21462 <!-- root node --> 21463 <feature> 21464 <rects> 21465 <_>12 12 4 6 -1.</_> 21466 <_>12 12 2 6 2.</_></rects> 21467 <tilted>0</tilted></feature> 21468 <threshold>8.8506387546658516e-003</threshold> 21469 <left_val>0.0246034208685160</left_val> 21470 <right_val>-0.1688468009233475</right_val></_></_> 21471 <_> 21472 <!-- tree 10 --> 21473 <_> 21474 <!-- root node --> 21475 <feature> 21476 <rects> 21477 <_>6 12 4 6 -1.</_> 21478 <_>8 12 2 6 2.</_></rects> 21479 <tilted>0</tilted></feature> 21480 <threshold>-8.4813922876492143e-004</threshold> 21481 <left_val>-0.1397240012884140</left_val> 21482 <right_val>0.1156672984361649</right_val></_></_> 21483 <_> 21484 <!-- tree 11 --> 21485 <_> 21486 <!-- root node --> 21487 <feature> 21488 <rects> 21489 <_>9 12 4 6 -1.</_> 21490 <_>9 15 4 3 2.</_></rects> 21491 <tilted>0</tilted></feature> 21492 <threshold>-3.7090150726726279e-005</threshold> 21493 <left_val>0.0752842724323273</left_val> 21494 <right_val>-0.1770814955234528</right_val></_></_> 21495 <_> 21496 <!-- tree 12 --> 21497 <_> 21498 <!-- root node --> 21499 <feature> 21500 <rects> 21501 <_>5 12 6 6 -1.</_> 21502 <_>7 12 2 6 3.</_></rects> 21503 <tilted>0</tilted></feature> 21504 <threshold>-0.0215339101850986</threshold> 21505 <left_val>0.2023303061723709</left_val> 21506 <right_val>-0.0669784769415855</right_val></_></_> 21507 <_> 21508 <!-- tree 13 --> 21509 <_> 21510 <!-- root node --> 21511 <feature> 21512 <rects> 21513 <_>6 2 11 16 -1.</_> 21514 <_>6 6 11 8 2.</_></rects> 21515 <tilted>0</tilted></feature> 21516 <threshold>0.0117136603221297</threshold> 21517 <left_val>0.0868534892797470</left_val> 21518 <right_val>-0.1125181019306183</right_val></_></_> 21519 <_> 21520 <!-- tree 14 --> 21521 <_> 21522 <!-- root node --> 21523 <feature> 21524 <rects> 21525 <_>11 2 6 2 -1.</_> 21526 <_>11 2 6 1 2.</_></rects> 21527 <tilted>1</tilted></feature> 21528 <threshold>-9.8365638405084610e-003</threshold> 21529 <left_val>0.3016479015350342</left_val> 21530 <right_val>-0.0501796603202820</right_val></_></_> 21531 <_> 21532 <!-- tree 15 --> 21533 <_> 21534 <!-- root node --> 21535 <feature> 21536 <rects> 21537 <_>10 1 6 8 -1.</_> 21538 <_>13 1 3 4 2.</_> 21539 <_>10 5 3 4 2.</_></rects> 21540 <tilted>0</tilted></feature> 21541 <threshold>-6.2104999087750912e-003</threshold> 21542 <left_val>0.0682242289185524</left_val> 21543 <right_val>-0.0944418236613274</right_val></_></_> 21544 <_> 21545 <!-- tree 16 --> 21546 <_> 21547 <!-- root node --> 21548 <feature> 21549 <rects> 21550 <_>5 2 12 2 -1.</_> 21551 <_>11 2 6 2 2.</_></rects> 21552 <tilted>0</tilted></feature> 21553 <threshold>-0.0200343001633883</threshold> 21554 <left_val>-0.2865754961967468</left_val> 21555 <right_val>0.0457285009324551</right_val></_></_> 21556 <_> 21557 <!-- tree 17 --> 21558 <_> 21559 <!-- root node --> 21560 <feature> 21561 <rects> 21562 <_>10 13 8 3 -1.</_> 21563 <_>10 13 4 3 2.</_></rects> 21564 <tilted>0</tilted></feature> 21565 <threshold>-2.2154829639475793e-004</threshold> 21566 <left_val>0.0716037601232529</left_val> 21567 <right_val>-0.0871150493621826</right_val></_></_> 21568 <_> 21569 <!-- tree 18 --> 21570 <_> 21571 <!-- root node --> 21572 <feature> 21573 <rects> 21574 <_>5 0 12 6 -1.</_> 21575 <_>11 0 6 6 2.</_></rects> 21576 <tilted>0</tilted></feature> 21577 <threshold>-5.2436119876801968e-003</threshold> 21578 <left_val>0.1343950033187866</left_val> 21579 <right_val>-0.0902889072895050</right_val></_></_> 21580 <_> 21581 <!-- tree 19 --> 21582 <_> 21583 <!-- root node --> 21584 <feature> 21585 <rects> 21586 <_>10 7 12 3 -1.</_> 21587 <_>10 8 12 1 3.</_></rects> 21588 <tilted>0</tilted></feature> 21589 <threshold>-0.0117112295702100</threshold> 21590 <left_val>0.1487469971179962</left_val> 21591 <right_val>-0.0259517803788185</right_val></_></_> 21592 <_> 21593 <!-- tree 20 --> 21594 <_> 21595 <!-- root node --> 21596 <feature> 21597 <rects> 21598 <_>0 7 12 3 -1.</_> 21599 <_>0 8 12 1 3.</_></rects> 21600 <tilted>0</tilted></feature> 21601 <threshold>5.8587929233908653e-003</threshold> 21602 <left_val>-0.0669820234179497</left_val> 21603 <right_val>0.1809632927179337</right_val></_></_> 21604 <_> 21605 <!-- tree 21 --> 21606 <_> 21607 <!-- root node --> 21608 <feature> 21609 <rects> 21610 <_>20 0 2 18 -1.</_> 21611 <_>20 9 2 9 2.</_></rects> 21612 <tilted>0</tilted></feature> 21613 <threshold>0.1043256968259811</threshold> 21614 <left_val>0.0102093303576112</left_val> 21615 <right_val>-0.7954081296920776</right_val></_></_> 21616 <_> 21617 <!-- tree 22 --> 21618 <_> 21619 <!-- root node --> 21620 <feature> 21621 <rects> 21622 <_>0 0 2 18 -1.</_> 21623 <_>0 9 2 9 2.</_></rects> 21624 <tilted>0</tilted></feature> 21625 <threshold>-0.0170491300523281</threshold> 21626 <left_val>-0.2051631063222885</left_val> 21627 <right_val>0.0644709914922714</right_val></_></_> 21628 <_> 21629 <!-- tree 23 --> 21630 <_> 21631 <!-- root node --> 21632 <feature> 21633 <rects> 21634 <_>14 6 6 12 -1.</_> 21635 <_>17 6 3 6 2.</_> 21636 <_>14 12 3 6 2.</_></rects> 21637 <tilted>0</tilted></feature> 21638 <threshold>0.0258776992559433</threshold> 21639 <left_val>-0.0300797205418348</left_val> 21640 <right_val>0.1604197025299072</right_val></_></_> 21641 <_> 21642 <!-- tree 24 --> 21643 <_> 21644 <!-- root node --> 21645 <feature> 21646 <rects> 21647 <_>1 5 6 10 -1.</_> 21648 <_>1 10 6 5 2.</_></rects> 21649 <tilted>0</tilted></feature> 21650 <threshold>-4.0637338533997536e-003</threshold> 21651 <left_val>0.1087096035480499</left_val> 21652 <right_val>-0.1166540011763573</right_val></_></_> 21653 <_> 21654 <!-- tree 25 --> 21655 <_> 21656 <!-- root node --> 21657 <feature> 21658 <rects> 21659 <_>16 1 4 12 -1.</_> 21660 <_>16 5 4 4 3.</_></rects> 21661 <tilted>0</tilted></feature> 21662 <threshold>-0.0192867200821638</threshold> 21663 <left_val>-0.1250395029783249</left_val> 21664 <right_val>0.0280551891773939</right_val></_></_> 21665 <_> 21666 <!-- tree 26 --> 21667 <_> 21668 <!-- root node --> 21669 <feature> 21670 <rects> 21671 <_>2 1 4 12 -1.</_> 21672 <_>2 5 4 4 3.</_></rects> 21673 <tilted>0</tilted></feature> 21674 <threshold>-7.2130301305151079e-006</threshold> 21675 <left_val>0.1184526011347771</left_val> 21676 <right_val>-0.1236701980233192</right_val></_></_> 21677 <_> 21678 <!-- tree 27 --> 21679 <_> 21680 <!-- root node --> 21681 <feature> 21682 <rects> 21683 <_>3 12 16 4 -1.</_> 21684 <_>11 12 8 2 2.</_> 21685 <_>3 14 8 2 2.</_></rects> 21686 <tilted>0</tilted></feature> 21687 <threshold>-2.6098350062966347e-003</threshold> 21688 <left_val>-0.1449867039918900</left_val> 21689 <right_val>0.0823187604546547</right_val></_></_> 21690 <_> 21691 <!-- tree 28 --> 21692 <_> 21693 <!-- root node --> 21694 <feature> 21695 <rects> 21696 <_>0 2 12 2 -1.</_> 21697 <_>0 3 12 1 2.</_></rects> 21698 <tilted>0</tilted></feature> 21699 <threshold>3.2303779153153300e-004</threshold> 21700 <left_val>-0.0958554968237877</left_val> 21701 <right_val>0.1199266016483307</right_val></_></_> 21702 <_> 21703 <!-- tree 29 --> 21704 <_> 21705 <!-- root node --> 21706 <feature> 21707 <rects> 21708 <_>6 2 13 3 -1.</_> 21709 <_>6 3 13 1 3.</_></rects> 21710 <tilted>0</tilted></feature> 21711 <threshold>-1.1308960383757949e-003</threshold> 21712 <left_val>0.1288295984268189</left_val> 21713 <right_val>-0.0826974734663963</right_val></_></_> 21714 <_> 21715 <!-- tree 30 --> 21716 <_> 21717 <!-- root node --> 21718 <feature> 21719 <rects> 21720 <_>1 0 10 6 -1.</_> 21721 <_>1 0 5 3 2.</_> 21722 <_>6 3 5 3 2.</_></rects> 21723 <tilted>0</tilted></feature> 21724 <threshold>0.0171764697879553</threshold> 21725 <left_val>0.0360246598720551</left_val> 21726 <right_val>-0.3087381124496460</right_val></_></_> 21727 <_> 21728 <!-- tree 31 --> 21729 <_> 21730 <!-- root node --> 21731 <feature> 21732 <rects> 21733 <_>9 11 12 5 -1.</_> 21734 <_>13 11 4 5 3.</_></rects> 21735 <tilted>0</tilted></feature> 21736 <threshold>-0.0105153303593397</threshold> 21737 <left_val>0.0963303372263908</left_val> 21738 <right_val>-0.1078578010201454</right_val></_></_> 21739 <_> 21740 <!-- tree 32 --> 21741 <_> 21742 <!-- root node --> 21743 <feature> 21744 <rects> 21745 <_>2 6 6 12 -1.</_> 21746 <_>2 6 3 6 2.</_> 21747 <_>5 12 3 6 2.</_></rects> 21748 <tilted>0</tilted></feature> 21749 <threshold>0.0505835004150867</threshold> 21750 <left_val>-0.0347158014774323</left_val> 21751 <right_val>0.4513450860977173</right_val></_></_> 21752 <_> 21753 <!-- tree 33 --> 21754 <_> 21755 <!-- root node --> 21756 <feature> 21757 <rects> 21758 <_>9 12 8 6 -1.</_> 21759 <_>13 12 4 3 2.</_> 21760 <_>9 15 4 3 2.</_></rects> 21761 <tilted>0</tilted></feature> 21762 <threshold>8.7582931155338883e-004</threshold> 21763 <left_val>-0.0956771522760391</left_val> 21764 <right_val>0.0736316889524460</right_val></_></_> 21765 <_> 21766 <!-- tree 34 --> 21767 <_> 21768 <!-- root node --> 21769 <feature> 21770 <rects> 21771 <_>1 7 6 8 -1.</_> 21772 <_>1 7 3 4 2.</_> 21773 <_>4 11 3 4 2.</_></rects> 21774 <tilted>0</tilted></feature> 21775 <threshold>-0.0319572202861309</threshold> 21776 <left_val>-0.3147349059581757</left_val> 21777 <right_val>0.0363292805850506</right_val></_></_> 21778 <_> 21779 <!-- tree 35 --> 21780 <_> 21781 <!-- root node --> 21782 <feature> 21783 <rects> 21784 <_>14 6 3 8 -1.</_> 21785 <_>15 7 1 8 3.</_></rects> 21786 <tilted>1</tilted></feature> 21787 <threshold>5.9863331262022257e-004</threshold> 21788 <left_val>-0.0426766909658909</left_val> 21789 <right_val>0.0543428994715214</right_val></_></_> 21790 <_> 21791 <!-- tree 36 --> 21792 <_> 21793 <!-- root node --> 21794 <feature> 21795 <rects> 21796 <_>2 14 12 4 -1.</_> 21797 <_>6 14 4 4 3.</_></rects> 21798 <tilted>0</tilted></feature> 21799 <threshold>-6.6270949319005013e-003</threshold> 21800 <left_val>0.0735109224915504</left_val> 21801 <right_val>-0.1730908006429672</right_val></_></_> 21802 <_> 21803 <!-- tree 37 --> 21804 <_> 21805 <!-- root node --> 21806 <feature> 21807 <rects> 21808 <_>14 4 2 11 -1.</_> 21809 <_>14 4 1 11 2.</_></rects> 21810 <tilted>1</tilted></feature> 21811 <threshold>-0.0731865167617798</threshold> 21812 <left_val>0.6877769231796265</left_val> 21813 <right_val>-5.6781149469316006e-003</right_val></_></_> 21814 <_> 21815 <!-- tree 38 --> 21816 <_> 21817 <!-- root node --> 21818 <feature> 21819 <rects> 21820 <_>8 6 8 3 -1.</_> 21821 <_>7 7 8 1 3.</_></rects> 21822 <tilted>1</tilted></feature> 21823 <threshold>0.0202908404171467</threshold> 21824 <left_val>-0.0407205410301685</left_val> 21825 <right_val>0.3045086860656738</right_val></_></_> 21826 <_> 21827 <!-- tree 39 --> 21828 <_> 21829 <!-- root node --> 21830 <feature> 21831 <rects> 21832 <_>6 12 12 3 -1.</_> 21833 <_>6 13 12 1 3.</_></rects> 21834 <tilted>0</tilted></feature> 21835 <threshold>-3.0989840161055326e-003</threshold> 21836 <left_val>-0.1278737038373947</left_val> 21837 <right_val>0.0543296895921230</right_val></_></_> 21838 <_> 21839 <!-- tree 40 --> 21840 <_> 21841 <!-- root node --> 21842 <feature> 21843 <rects> 21844 <_>2 3 18 3 -1.</_> 21845 <_>2 4 18 1 3.</_></rects> 21846 <tilted>0</tilted></feature> 21847 <threshold>-1.1258859885856509e-003</threshold> 21848 <left_val>0.1198007985949516</left_val> 21849 <right_val>-0.0834772363305092</right_val></_></_> 21850 <_> 21851 <!-- tree 41 --> 21852 <_> 21853 <!-- root node --> 21854 <feature> 21855 <rects> 21856 <_>11 6 9 9 -1.</_> 21857 <_>14 6 3 9 3.</_></rects> 21858 <tilted>0</tilted></feature> 21859 <threshold>3.9993048994801939e-004</threshold> 21860 <left_val>-0.0954270735383034</left_val> 21861 <right_val>0.0769529119133949</right_val></_></_> 21862 <_> 21863 <!-- tree 42 --> 21864 <_> 21865 <!-- root node --> 21866 <feature> 21867 <rects> 21868 <_>3 13 11 4 -1.</_> 21869 <_>3 15 11 2 2.</_></rects> 21870 <tilted>0</tilted></feature> 21871 <threshold>0.0112025402486324</threshold> 21872 <left_val>0.0251253098249435</left_val> 21873 <right_val>-0.4031470119953156</right_val></_></_> 21874 <_> 21875 <!-- tree 43 --> 21876 <_> 21877 <!-- root node --> 21878 <feature> 21879 <rects> 21880 <_>17 5 4 6 -1.</_> 21881 <_>17 5 2 6 2.</_></rects> 21882 <tilted>0</tilted></feature> 21883 <threshold>-0.0217539705336094</threshold> 21884 <left_val>-0.2304240018129349</left_val> 21885 <right_val>0.0153385195881128</right_val></_></_> 21886 <_> 21887 <!-- tree 44 --> 21888 <_> 21889 <!-- root node --> 21890 <feature> 21891 <rects> 21892 <_>1 5 4 6 -1.</_> 21893 <_>3 5 2 6 2.</_></rects> 21894 <tilted>0</tilted></feature> 21895 <threshold>7.6912459917366505e-005</threshold> 21896 <left_val>-0.0955814868211746</left_val> 21897 <right_val>0.1038817018270493</right_val></_></_> 21898 <_> 21899 <!-- tree 45 --> 21900 <_> 21901 <!-- root node --> 21902 <feature> 21903 <rects> 21904 <_>6 0 16 3 -1.</_> 21905 <_>10 0 8 3 2.</_></rects> 21906 <tilted>0</tilted></feature> 21907 <threshold>0.0910115391016006</threshold> 21908 <left_val>-8.7168300524353981e-003</left_val> 21909 <right_val>0.7559375166893005</right_val></_></_> 21910 <_> 21911 <!-- tree 46 --> 21912 <_> 21913 <!-- root node --> 21914 <feature> 21915 <rects> 21916 <_>8 6 3 12 -1.</_> 21917 <_>9 6 1 12 3.</_></rects> 21918 <tilted>0</tilted></feature> 21919 <threshold>-4.3160789646208286e-003</threshold> 21920 <left_val>0.1349443942308426</left_val> 21921 <right_val>-0.0701520964503288</right_val></_></_> 21922 <_> 21923 <!-- tree 47 --> 21924 <_> 21925 <!-- root node --> 21926 <feature> 21927 <rects> 21928 <_>14 2 2 8 -1.</_> 21929 <_>14 2 1 8 2.</_></rects> 21930 <tilted>1</tilted></feature> 21931 <threshold>-0.0505811907351017</threshold> 21932 <left_val>-0.6611269116401672</left_val> 21933 <right_val>2.2676400840282440e-003</right_val></_></_> 21934 <_> 21935 <!-- tree 48 --> 21936 <_> 21937 <!-- root node --> 21938 <feature> 21939 <rects> 21940 <_>9 0 12 3 -1.</_> 21941 <_>9 0 6 3 2.</_></rects> 21942 <tilted>1</tilted></feature> 21943 <threshold>-8.3926003426313400e-003</threshold> 21944 <left_val>-0.1288360953330994</left_val> 21945 <right_val>0.0779204815626144</right_val></_></_> 21946 <_> 21947 <!-- tree 49 --> 21948 <_> 21949 <!-- root node --> 21950 <feature> 21951 <rects> 21952 <_>6 0 16 3 -1.</_> 21953 <_>10 0 8 3 2.</_></rects> 21954 <tilted>0</tilted></feature> 21955 <threshold>0.0550406612455845</threshold> 21956 <left_val>7.7853789553046227e-003</left_val> 21957 <right_val>-0.2782005071640015</right_val></_></_> 21958 <_> 21959 <!-- tree 50 --> 21960 <_> 21961 <!-- root node --> 21962 <feature> 21963 <rects> 21964 <_>0 0 16 3 -1.</_> 21965 <_>4 0 8 3 2.</_></rects> 21966 <tilted>0</tilted></feature> 21967 <threshold>-0.0418625511229038</threshold> 21968 <left_val>0.4333544969558716</left_val> 21969 <right_val>-0.0291946399956942</right_val></_></_> 21970 <_> 21971 <!-- tree 51 --> 21972 <_> 21973 <!-- root node --> 21974 <feature> 21975 <rects> 21976 <_>8 12 14 3 -1.</_> 21977 <_>8 13 14 1 3.</_></rects> 21978 <tilted>0</tilted></feature> 21979 <threshold>-7.4230520986020565e-003</threshold> 21980 <left_val>0.1315450072288513</left_val> 21981 <right_val>-0.0320475101470947</right_val></_></_> 21982 <_> 21983 <!-- tree 52 --> 21984 <_> 21985 <!-- root node --> 21986 <feature> 21987 <rects> 21988 <_>8 4 11 2 -1.</_> 21989 <_>8 4 11 1 2.</_></rects> 21990 <tilted>1</tilted></feature> 21991 <threshold>1.9948489498347044e-003</threshold> 21992 <left_val>0.0832996889948845</left_val> 21993 <right_val>-0.1166255995631218</right_val></_></_> 21994 <_> 21995 <!-- tree 53 --> 21996 <_> 21997 <!-- root node --> 21998 <feature> 21999 <rects> 22000 <_>2 5 20 13 -1.</_> 22001 <_>2 5 10 13 2.</_></rects> 22002 <tilted>0</tilted></feature> 22003 <threshold>0.0418514311313629</threshold> 22004 <left_val>0.0414611697196960</left_val> 22005 <right_val>-0.1281515955924988</right_val></_></_> 22006 <_> 22007 <!-- tree 54 --> 22008 <_> 22009 <!-- root node --> 22010 <feature> 22011 <rects> 22012 <_>0 2 18 9 -1.</_> 22013 <_>6 5 6 3 9.</_></rects> 22014 <tilted>0</tilted></feature> 22015 <threshold>0.2784438133239746</threshold> 22016 <left_val>-0.0226128101348877</left_val> 22017 <right_val>0.5223631858825684</right_val></_></_> 22018 <_> 22019 <!-- tree 55 --> 22020 <_> 22021 <!-- root node --> 22022 <feature> 22023 <rects> 22024 <_>10 13 12 3 -1.</_> 22025 <_>10 14 12 1 3.</_></rects> 22026 <tilted>0</tilted></feature> 22027 <threshold>-7.1095931343734264e-003</threshold> 22028 <left_val>0.1290251016616821</left_val> 22029 <right_val>-0.0279447995126247</right_val></_></_> 22030 <_> 22031 <!-- tree 56 --> 22032 <_> 22033 <!-- root node --> 22034 <feature> 22035 <rects> 22036 <_>8 11 6 7 -1.</_> 22037 <_>10 11 2 7 3.</_></rects> 22038 <tilted>0</tilted></feature> 22039 <threshold>0.0111756101250649</threshold> 22040 <left_val>0.0513666607439518</left_val> 22041 <right_val>-0.1955953985452652</right_val></_></_> 22042 <_> 22043 <!-- tree 57 --> 22044 <_> 22045 <!-- root node --> 22046 <feature> 22047 <rects> 22048 <_>5 6 12 11 -1.</_> 22049 <_>9 6 4 11 3.</_></rects> 22050 <tilted>0</tilted></feature> 22051 <threshold>-0.0103642102330923</threshold> 22052 <left_val>-0.0726313814520836</left_val> 22053 <right_val>0.1519950926303864</right_val></_></_> 22054 <_> 22055 <!-- tree 58 --> 22056 <_> 22057 <!-- root node --> 22058 <feature> 22059 <rects> 22060 <_>3 6 6 6 -1.</_> 22061 <_>5 6 2 6 3.</_></rects> 22062 <tilted>0</tilted></feature> 22063 <threshold>-9.4094304367899895e-003</threshold> 22064 <left_val>-0.2099336981773377</left_val> 22065 <right_val>0.0533468611538410</right_val></_></_> 22066 <_> 22067 <!-- tree 59 --> 22068 <_> 22069 <!-- root node --> 22070 <feature> 22071 <rects> 22072 <_>13 4 6 13 -1.</_> 22073 <_>15 4 2 13 3.</_></rects> 22074 <tilted>0</tilted></feature> 22075 <threshold>-0.1037501022219658</threshold> 22076 <left_val>-0.3369319140911102</left_val> 22077 <right_val>3.9442018605768681e-003</right_val></_></_> 22078 <_> 22079 <!-- tree 60 --> 22080 <_> 22081 <!-- root node --> 22082 <feature> 22083 <rects> 22084 <_>3 4 6 13 -1.</_> 22085 <_>5 4 2 13 3.</_></rects> 22086 <tilted>0</tilted></feature> 22087 <threshold>-9.5977628370746970e-004</threshold> 22088 <left_val>0.1030761003494263</left_val> 22089 <right_val>-0.1057410016655922</right_val></_></_> 22090 <_> 22091 <!-- tree 61 --> 22092 <_> 22093 <!-- root node --> 22094 <feature> 22095 <rects> 22096 <_>5 10 12 3 -1.</_> 22097 <_>9 10 4 3 3.</_></rects> 22098 <tilted>0</tilted></feature> 22099 <threshold>-0.0558168105781078</threshold> 22100 <left_val>0.2607400119304657</left_val> 22101 <right_val>-0.0448851808905602</right_val></_></_> 22102 <_> 22103 <!-- tree 62 --> 22104 <_> 22105 <!-- root node --> 22106 <feature> 22107 <rects> 22108 <_>5 8 12 6 -1.</_> 22109 <_>8 8 6 6 2.</_></rects> 22110 <tilted>0</tilted></feature> 22111 <threshold>-0.1343093961477280</threshold> 22112 <left_val>-0.8166074752807617</left_val> 22113 <right_val>0.0154108600690961</right_val></_></_> 22114 <_> 22115 <!-- tree 63 --> 22116 <_> 22117 <!-- root node --> 22118 <feature> 22119 <rects> 22120 <_>14 2 2 8 -1.</_> 22121 <_>14 2 1 8 2.</_></rects> 22122 <tilted>1</tilted></feature> 22123 <threshold>0.0604569502174854</threshold> 22124 <left_val>-3.0265029054135084e-003</left_val> 22125 <right_val>-0.9999178051948547</right_val></_></_> 22126 <_> 22127 <!-- tree 64 --> 22128 <_> 22129 <!-- root node --> 22130 <feature> 22131 <rects> 22132 <_>8 2 8 2 -1.</_> 22133 <_>8 2 8 1 2.</_></rects> 22134 <tilted>1</tilted></feature> 22135 <threshold>0.0243590790778399</threshold> 22136 <left_val>0.0241913106292486</left_val> 22137 <right_val>-0.4663215875625610</right_val></_></_> 22138 <_> 22139 <!-- tree 65 --> 22140 <_> 22141 <!-- root node --> 22142 <feature> 22143 <rects> 22144 <_>8 6 9 5 -1.</_> 22145 <_>11 6 3 5 3.</_></rects> 22146 <tilted>0</tilted></feature> 22147 <threshold>0.0527357794344425</threshold> 22148 <left_val>-0.0242667607963085</left_val> 22149 <right_val>0.2146047949790955</right_val></_></_> 22150 <_> 22151 <!-- tree 66 --> 22152 <_> 22153 <!-- root node --> 22154 <feature> 22155 <rects> 22156 <_>0 3 14 4 -1.</_> 22157 <_>0 3 7 2 2.</_> 22158 <_>7 5 7 2 2.</_></rects> 22159 <tilted>0</tilted></feature> 22160 <threshold>-5.5626039393246174e-003</threshold> 22161 <left_val>0.1087993979454041</left_val> 22162 <right_val>-0.1212090998888016</right_val></_></_> 22163 <_> 22164 <!-- tree 67 --> 22165 <_> 22166 <!-- root node --> 22167 <feature> 22168 <rects> 22169 <_>12 1 3 8 -1.</_> 22170 <_>13 2 1 8 3.</_></rects> 22171 <tilted>1</tilted></feature> 22172 <threshold>0.0908552631735802</threshold> 22173 <left_val>1.0956900223391131e-004</left_val> 22174 <right_val>-0.9997577071189880</right_val></_></_> 22175 <_> 22176 <!-- tree 68 --> 22177 <_> 22178 <!-- root node --> 22179 <feature> 22180 <rects> 22181 <_>10 1 8 3 -1.</_> 22182 <_>9 2 8 1 3.</_></rects> 22183 <tilted>1</tilted></feature> 22184 <threshold>-0.0346811898052692</threshold> 22185 <left_val>-0.4540998041629791</left_val> 22186 <right_val>0.0236911494284868</right_val></_></_> 22187 <_> 22188 <!-- tree 69 --> 22189 <_> 22190 <!-- root node --> 22191 <feature> 22192 <rects> 22193 <_>14 3 6 6 -1.</_> 22194 <_>14 5 6 2 3.</_></rects> 22195 <tilted>0</tilted></feature> 22196 <threshold>-2.9579090551123954e-005</threshold> 22197 <left_val>0.0480313189327717</left_val> 22198 <right_val>-0.0498729683458805</right_val></_></_> 22199 <_> 22200 <!-- tree 70 --> 22201 <_> 22202 <!-- root node --> 22203 <feature> 22204 <rects> 22205 <_>4 1 6 10 -1.</_> 22206 <_>4 1 3 5 2.</_> 22207 <_>7 6 3 5 2.</_></rects> 22208 <tilted>0</tilted></feature> 22209 <threshold>0.0262771304696798</threshold> 22210 <left_val>-0.0294567607343197</left_val> 22211 <right_val>0.3397437036037445</right_val></_></_> 22212 <_> 22213 <!-- tree 71 --> 22214 <_> 22215 <!-- root node --> 22216 <feature> 22217 <rects> 22218 <_>18 1 3 13 -1.</_> 22219 <_>19 1 1 13 3.</_></rects> 22220 <tilted>0</tilted></feature> 22221 <threshold>-0.0462760217487812</threshold> 22222 <left_val>0.4549660980701447</left_val> 22223 <right_val>-0.0103595796972513</right_val></_></_> 22224 <_> 22225 <!-- tree 72 --> 22226 <_> 22227 <!-- root node --> 22228 <feature> 22229 <rects> 22230 <_>1 1 3 13 -1.</_> 22231 <_>2 1 1 13 3.</_></rects> 22232 <tilted>0</tilted></feature> 22233 <threshold>1.2048200005665421e-004</threshold> 22234 <left_val>-0.1057519987225533</left_val> 22235 <right_val>0.1009673029184341</right_val></_></_> 22236 <_> 22237 <!-- tree 73 --> 22238 <_> 22239 <!-- root node --> 22240 <feature> 22241 <rects> 22242 <_>11 1 2 8 -1.</_> 22243 <_>11 1 1 8 2.</_></rects> 22244 <tilted>1</tilted></feature> 22245 <threshold>6.8154390901327133e-003</threshold> 22246 <left_val>0.0284956097602844</left_val> 22247 <right_val>-0.0997650697827339</right_val></_></_> 22248 <_> 22249 <!-- tree 74 --> 22250 <_> 22251 <!-- root node --> 22252 <feature> 22253 <rects> 22254 <_>11 1 8 2 -1.</_> 22255 <_>11 1 8 1 2.</_></rects> 22256 <tilted>1</tilted></feature> 22257 <threshold>1.6169620212167501e-003</threshold> 22258 <left_val>-0.1325616985559464</left_val> 22259 <right_val>0.0878289788961411</right_val></_></_> 22260 <_> 22261 <!-- tree 75 --> 22262 <_> 22263 <!-- root node --> 22264 <feature> 22265 <rects> 22266 <_>8 4 6 6 -1.</_> 22267 <_>8 6 6 2 3.</_></rects> 22268 <tilted>0</tilted></feature> 22269 <threshold>0.0145633798092604</threshold> 22270 <left_val>-0.0430799014866352</left_val> 22271 <right_val>0.2511326074600220</right_val></_></_> 22272 <_> 22273 <!-- tree 76 --> 22274 <_> 22275 <!-- root node --> 22276 <feature> 22277 <rects> 22278 <_>5 4 7 6 -1.</_> 22279 <_>5 6 7 2 3.</_></rects> 22280 <tilted>0</tilted></feature> 22281 <threshold>0.0203529093414545</threshold> 22282 <left_val>0.0394636392593384</left_val> 22283 <right_val>-0.3251897096633911</right_val></_></_> 22284 <_> 22285 <!-- tree 77 --> 22286 <_> 22287 <!-- root node --> 22288 <feature> 22289 <rects> 22290 <_>9 11 13 3 -1.</_> 22291 <_>9 12 13 1 3.</_></rects> 22292 <tilted>0</tilted></feature> 22293 <threshold>-0.0207892693579197</threshold> 22294 <left_val>0.1899335980415344</left_val> 22295 <right_val>-0.0212719999253750</right_val></_></_> 22296 <_> 22297 <!-- tree 78 --> 22298 <_> 22299 <!-- root node --> 22300 <feature> 22301 <rects> 22302 <_>0 11 13 3 -1.</_> 22303 <_>0 12 13 1 3.</_></rects> 22304 <tilted>0</tilted></feature> 22305 <threshold>0.0317801013588905</threshold> 22306 <left_val>-0.0237682200968266</left_val> 22307 <right_val>0.4395782947540283</right_val></_></_> 22308 <_> 22309 <!-- tree 79 --> 22310 <_> 22311 <!-- root node --> 22312 <feature> 22313 <rects> 22314 <_>12 10 9 8 -1.</_> 22315 <_>12 14 9 4 2.</_></rects> 22316 <tilted>0</tilted></feature> 22317 <threshold>0.1245922967791557</threshold> 22318 <left_val>6.5275398083031178e-003</left_val> 22319 <right_val>-0.9999179840087891</right_val></_></_> 22320 <_> 22321 <!-- tree 80 --> 22322 <_> 22323 <!-- root node --> 22324 <feature> 22325 <rects> 22326 <_>1 10 9 8 -1.</_> 22327 <_>1 14 9 4 2.</_></rects> 22328 <tilted>0</tilted></feature> 22329 <threshold>-0.0840070396661758</threshold> 22330 <left_val>-0.3562028110027313</left_val> 22331 <right_val>0.0289165601134300</right_val></_></_> 22332 <_> 22333 <!-- tree 81 --> 22334 <_> 22335 <!-- root node --> 22336 <feature> 22337 <rects> 22338 <_>4 10 18 8 -1.</_> 22339 <_>13 10 9 4 2.</_> 22340 <_>4 14 9 4 2.</_></rects> 22341 <tilted>0</tilted></feature> 22342 <threshold>9.6772145479917526e-003</threshold> 22343 <left_val>0.0640739426016808</left_val> 22344 <right_val>-0.1548271030187607</right_val></_></_> 22345 <_> 22346 <!-- tree 82 --> 22347 <_> 22348 <!-- root node --> 22349 <feature> 22350 <rects> 22351 <_>0 10 18 8 -1.</_> 22352 <_>0 10 9 4 2.</_> 22353 <_>9 14 9 4 2.</_></rects> 22354 <tilted>0</tilted></feature> 22355 <threshold>0.1040503978729248</threshold> 22356 <left_val>-0.0226520504802465</left_val> 22357 <right_val>0.5762320756912231</right_val></_></_> 22358 <_> 22359 <!-- tree 83 --> 22360 <_> 22361 <!-- root node --> 22362 <feature> 22363 <rects> 22364 <_>12 2 4 12 -1.</_> 22365 <_>12 2 2 12 2.</_></rects> 22366 <tilted>1</tilted></feature> 22367 <threshold>0.0408144108951092</threshold> 22368 <left_val>-0.0373685695230961</left_val> 22369 <right_val>0.0772985070943832</right_val></_></_> 22370 <_> 22371 <!-- tree 84 --> 22372 <_> 22373 <!-- root node --> 22374 <feature> 22375 <rects> 22376 <_>0 5 20 13 -1.</_> 22377 <_>10 5 10 13 2.</_></rects> 22378 <tilted>0</tilted></feature> 22379 <threshold>-0.4691618978977203</threshold> 22380 <left_val>-0.7730463147163391</left_val> 22381 <right_val>0.0136070800945163</right_val></_></_> 22382 <_> 22383 <!-- tree 85 --> 22384 <_> 22385 <!-- root node --> 22386 <feature> 22387 <rects> 22388 <_>10 6 9 6 -1.</_> 22389 <_>10 8 9 2 3.</_></rects> 22390 <tilted>0</tilted></feature> 22391 <threshold>-0.1372341960668564</threshold> 22392 <left_val>-1.</left_val> 22393 <right_val>-1.7328710528090596e-003</right_val></_></_> 22394 <_> 22395 <!-- tree 86 --> 22396 <_> 22397 <!-- root node --> 22398 <feature> 22399 <rects> 22400 <_>3 6 9 6 -1.</_> 22401 <_>3 8 9 2 3.</_></rects> 22402 <tilted>0</tilted></feature> 22403 <threshold>0.0375694483518600</threshold> 22404 <left_val>0.0314127095043659</left_val> 22405 <right_val>-0.3551242947578430</right_val></_></_> 22406 <_> 22407 <!-- tree 87 --> 22408 <_> 22409 <!-- root node --> 22410 <feature> 22411 <rects> 22412 <_>7 4 15 8 -1.</_> 22413 <_>7 6 15 4 2.</_></rects> 22414 <tilted>0</tilted></feature> 22415 <threshold>-0.0126453796401620</threshold> 22416 <left_val>-0.0713228806853294</left_val> 22417 <right_val>0.0418895483016968</right_val></_></_> 22418 <_> 22419 <!-- tree 88 --> 22420 <_> 22421 <!-- root node --> 22422 <feature> 22423 <rects> 22424 <_>9 2 12 2 -1.</_> 22425 <_>9 2 12 1 2.</_></rects> 22426 <tilted>1</tilted></feature> 22427 <threshold>0.0399338603019714</threshold> 22428 <left_val>-0.0334470011293888</left_val> 22429 <right_val>0.3593294024467468</right_val></_></_> 22430 <_> 22431 <!-- tree 89 --> 22432 <_> 22433 <!-- root node --> 22434 <feature> 22435 <rects> 22436 <_>12 6 6 4 -1.</_> 22437 <_>12 6 6 2 2.</_></rects> 22438 <tilted>1</tilted></feature> 22439 <threshold>0.0172074399888515</threshold> 22440 <left_val>0.0261265300214291</left_val> 22441 <right_val>-0.0776343792676926</right_val></_></_> 22442 <_> 22443 <!-- tree 90 --> 22444 <_> 22445 <!-- root node --> 22446 <feature> 22447 <rects> 22448 <_>7 0 13 3 -1.</_> 22449 <_>6 1 13 1 3.</_></rects> 22450 <tilted>1</tilted></feature> 22451 <threshold>0.0597022287547588</threshold> 22452 <left_val>-0.0237179808318615</left_val> 22453 <right_val>0.5732179880142212</right_val></_></_> 22454 <_> 22455 <!-- tree 91 --> 22456 <_> 22457 <!-- root node --> 22458 <feature> 22459 <rects> 22460 <_>3 0 18 2 -1.</_> 22461 <_>3 0 9 2 2.</_></rects> 22462 <tilted>0</tilted></feature> 22463 <threshold>0.0799178034067154</threshold> 22464 <left_val>-9.7547564655542374e-003</left_val> 22465 <right_val>0.4346744120121002</right_val></_></_> 22466 <_> 22467 <!-- tree 92 --> 22468 <_> 22469 <!-- root node --> 22470 <feature> 22471 <rects> 22472 <_>4 5 13 12 -1.</_> 22473 <_>4 9 13 4 3.</_></rects> 22474 <tilted>0</tilted></feature> 22475 <threshold>0.1135172024369240</threshold> 22476 <left_val>-0.0389219708740711</left_val> 22477 <right_val>0.2612080872058868</right_val></_></_> 22478 <_> 22479 <!-- tree 93 --> 22480 <_> 22481 <!-- root node --> 22482 <feature> 22483 <rects> 22484 <_>4 6 18 9 -1.</_> 22485 <_>10 9 6 3 9.</_></rects> 22486 <tilted>0</tilted></feature> 22487 <threshold>0.4837945103645325</threshold> 22488 <left_val>7.8452667221426964e-003</left_val> 22489 <right_val>-0.6502416133880615</right_val></_></_> 22490 <_> 22491 <!-- tree 94 --> 22492 <_> 22493 <!-- root node --> 22494 <feature> 22495 <rects> 22496 <_>8 5 6 11 -1.</_> 22497 <_>10 5 2 11 3.</_></rects> 22498 <tilted>0</tilted></feature> 22499 <threshold>-0.1004507020115852</threshold> 22500 <left_val>-0.8007202148437500</left_val> 22501 <right_val>0.0122501999139786</right_val></_></_> 22502 <_> 22503 <!-- tree 95 --> 22504 <_> 22505 <!-- root node --> 22506 <feature> 22507 <rects> 22508 <_>6 2 16 16 -1.</_> 22509 <_>6 6 16 8 2.</_></rects> 22510 <tilted>0</tilted></feature> 22511 <threshold>0.2717601954936981</threshold> 22512 <left_val>4.4636582024395466e-003</left_val> 22513 <right_val>-0.6939312219619751</right_val></_></_> 22514 <_> 22515 <!-- tree 96 --> 22516 <_> 22517 <!-- root node --> 22518 <feature> 22519 <rects> 22520 <_>0 2 16 16 -1.</_> 22521 <_>0 6 16 8 2.</_></rects> 22522 <tilted>0</tilted></feature> 22523 <threshold>-0.1230124980211258</threshold> 22524 <left_val>0.3248383998870850</left_val> 22525 <right_val>-0.0338415503501892</right_val></_></_> 22526 <_> 22527 <!-- tree 97 --> 22528 <_> 22529 <!-- root node --> 22530 <feature> 22531 <rects> 22532 <_>18 1 2 12 -1.</_> 22533 <_>18 7 2 6 2.</_></rects> 22534 <tilted>0</tilted></feature> 22535 <threshold>0.0611887499690056</threshold> 22536 <left_val>7.1536018513143063e-003</left_val> 22537 <right_val>-0.7781751751899719</right_val></_></_> 22538 <_> 22539 <!-- tree 98 --> 22540 <_> 22541 <!-- root node --> 22542 <feature> 22543 <rects> 22544 <_>2 1 2 12 -1.</_> 22545 <_>2 7 2 6 2.</_></rects> 22546 <tilted>0</tilted></feature> 22547 <threshold>-7.8828241676092148e-003</threshold> 22548 <left_val>-0.1975423991680145</left_val> 22549 <right_val>0.0677954331040382</right_val></_></_> 22550 <_> 22551 <!-- tree 99 --> 22552 <_> 22553 <!-- root node --> 22554 <feature> 22555 <rects> 22556 <_>8 3 14 9 -1.</_> 22557 <_>8 6 14 3 3.</_></rects> 22558 <tilted>0</tilted></feature> 22559 <threshold>-0.2558487951755524</threshold> 22560 <left_val>-1.</left_val> 22561 <right_val>1.4300020411610603e-003</right_val></_></_> 22562 <_> 22563 <!-- tree 100 --> 22564 <_> 22565 <!-- root node --> 22566 <feature> 22567 <rects> 22568 <_>0 3 14 9 -1.</_> 22569 <_>0 6 14 3 3.</_></rects> 22570 <tilted>0</tilted></feature> 22571 <threshold>0.1309846937656403</threshold> 22572 <left_val>-0.0166683103889227</left_val> 22573 <right_val>0.7454720735549927</right_val></_></_> 22574 <_> 22575 <!-- tree 101 --> 22576 <_> 22577 <!-- root node --> 22578 <feature> 22579 <rects> 22580 <_>10 6 4 9 -1.</_> 22581 <_>10 9 4 3 3.</_></rects> 22582 <tilted>0</tilted></feature> 22583 <threshold>-0.0845530778169632</threshold> 22584 <left_val>-0.6342390179634094</left_val> 22585 <right_val>8.3142798393964767e-003</right_val></_></_> 22586 <_> 22587 <!-- tree 102 --> 22588 <_> 22589 <!-- root node --> 22590 <feature> 22591 <rects> 22592 <_>0 6 3 12 -1.</_> 22593 <_>0 12 3 6 2.</_></rects> 22594 <tilted>0</tilted></feature> 22595 <threshold>-0.0882977172732353</threshold> 22596 <left_val>-0.8570597171783447</left_val> 22597 <right_val>0.0105499401688576</right_val></_></_> 22598 <_> 22599 <!-- tree 103 --> 22600 <_> 22601 <!-- root node --> 22602 <feature> 22603 <rects> 22604 <_>16 2 6 9 -1.</_> 22605 <_>13 5 6 3 3.</_></rects> 22606 <tilted>1</tilted></feature> 22607 <threshold>-0.1037487983703613</threshold> 22608 <left_val>0.1207318007946014</left_val> 22609 <right_val>-0.0224885791540146</right_val></_></_> 22610 <_> 22611 <!-- tree 104 --> 22612 <_> 22613 <!-- root node --> 22614 <feature> 22615 <rects> 22616 <_>10 0 12 4 -1.</_> 22617 <_>9 1 12 2 2.</_></rects> 22618 <tilted>1</tilted></feature> 22619 <threshold>1.4872249448671937e-003</threshold> 22620 <left_val>-0.1109644025564194</left_val> 22621 <right_val>0.1040541008114815</right_val></_></_> 22622 <_> 22623 <!-- tree 105 --> 22624 <_> 22625 <!-- root node --> 22626 <feature> 22627 <rects> 22628 <_>11 0 10 18 -1.</_> 22629 <_>16 0 5 9 2.</_> 22630 <_>11 9 5 9 2.</_></rects> 22631 <tilted>0</tilted></feature> 22632 <threshold>0.2136403024196625</threshold> 22633 <left_val>7.3841079138219357e-003</left_val> 22634 <right_val>-0.4976033866405487</right_val></_></_> 22635 <_> 22636 <!-- tree 106 --> 22637 <_> 22638 <!-- root node --> 22639 <feature> 22640 <rects> 22641 <_>1 0 10 18 -1.</_> 22642 <_>1 0 5 9 2.</_> 22643 <_>6 9 5 9 2.</_></rects> 22644 <tilted>0</tilted></feature> 22645 <threshold>0.0262943096458912</threshold> 22646 <left_val>-0.0632127001881599</left_val> 22647 <right_val>0.2628476023674011</right_val></_></_> 22648 <_> 22649 <!-- tree 107 --> 22650 <_> 22651 <!-- root node --> 22652 <feature> 22653 <rects> 22654 <_>7 12 14 3 -1.</_> 22655 <_>7 12 7 3 2.</_></rects> 22656 <tilted>0</tilted></feature> 22657 <threshold>-2.6777000166475773e-003</threshold> 22658 <left_val>0.0564883500337601</left_val> 22659 <right_val>-0.1017431020736694</right_val></_></_> 22660 <_> 22661 <!-- tree 108 --> 22662 <_> 22663 <!-- root node --> 22664 <feature> 22665 <rects> 22666 <_>7 11 8 3 -1.</_> 22667 <_>11 11 4 3 2.</_></rects> 22668 <tilted>0</tilted></feature> 22669 <threshold>-2.1261540241539478e-003</threshold> 22670 <left_val>-0.1644288003444672</left_val> 22671 <right_val>0.0661599636077881</right_val></_></_> 22672 <_> 22673 <!-- tree 109 --> 22674 <_> 22675 <!-- root node --> 22676 <feature> 22677 <rects> 22678 <_>2 13 18 4 -1.</_> 22679 <_>2 13 9 4 2.</_></rects> 22680 <tilted>0</tilted></feature> 22681 <threshold>-8.2200914621353149e-003</threshold> 22682 <left_val>-0.1613277941942215</left_val> 22683 <right_val>0.0835154727101326</right_val></_></_> 22684 <_> 22685 <!-- tree 110 --> 22686 <_> 22687 <!-- root node --> 22688 <feature> 22689 <rects> 22690 <_>10 6 4 6 -1.</_> 22691 <_>10 6 2 6 2.</_></rects> 22692 <tilted>1</tilted></feature> 22693 <threshold>-0.0117018800228834</threshold> 22694 <left_val>0.2151619940996170</left_val> 22695 <right_val>-0.0591160506010056</right_val></_></_> 22696 <_> 22697 <!-- tree 111 --> 22698 <_> 22699 <!-- root node --> 22700 <feature> 22701 <rects> 22702 <_>8 9 6 9 -1.</_> 22703 <_>10 9 2 9 3.</_></rects> 22704 <tilted>0</tilted></feature> 22705 <threshold>-7.0460740244016051e-004</threshold> 22706 <left_val>0.0961422994732857</left_val> 22707 <right_val>-0.1300875991582871</right_val></_></_> 22708 <_> 22709 <!-- tree 112 --> 22710 <_> 22711 <!-- root node --> 22712 <feature> 22713 <rects> 22714 <_>3 11 13 3 -1.</_> 22715 <_>3 12 13 1 3.</_></rects> 22716 <tilted>0</tilted></feature> 22717 <threshold>-1.9671309273689985e-003</threshold> 22718 <left_val>0.1260503977537155</left_val> 22719 <right_val>-0.0885426402091980</right_val></_></_> 22720 <_> 22721 <!-- tree 113 --> 22722 <_> 22723 <!-- root node --> 22724 <feature> 22725 <rects> 22726 <_>18 10 4 6 -1.</_> 22727 <_>18 10 2 6 2.</_></rects> 22728 <tilted>0</tilted></feature> 22729 <threshold>-9.5004076138138771e-003</threshold> 22730 <left_val>-0.2360457926988602</left_val> 22731 <right_val>0.0459226295351982</right_val></_></_> 22732 <_> 22733 <!-- tree 114 --> 22734 <_> 22735 <!-- root node --> 22736 <feature> 22737 <rects> 22738 <_>5 5 9 5 -1.</_> 22739 <_>8 5 3 5 3.</_></rects> 22740 <tilted>0</tilted></feature> 22741 <threshold>0.0268023703247309</threshold> 22742 <left_val>-0.0489667691290379</left_val> 22743 <right_val>0.2388713061809540</right_val></_></_> 22744 <_> 22745 <!-- tree 115 --> 22746 <_> 22747 <!-- root node --> 22748 <feature> 22749 <rects> 22750 <_>13 0 2 14 -1.</_> 22751 <_>13 0 1 14 2.</_></rects> 22752 <tilted>0</tilted></feature> 22753 <threshold>0.0221774205565453</threshold> 22754 <left_val>-0.0125605901703238</left_val> 22755 <right_val>0.2708427011966705</right_val></_></_> 22756 <_> 22757 <!-- tree 116 --> 22758 <_> 22759 <!-- root node --> 22760 <feature> 22761 <rects> 22762 <_>2 0 18 7 -1.</_> 22763 <_>8 0 6 7 3.</_></rects> 22764 <tilted>0</tilted></feature> 22765 <threshold>0.0933828800916672</threshold> 22766 <left_val>0.0338358506560326</left_val> 22767 <right_val>-0.3970789015293121</right_val></_></_> 22768 <_> 22769 <!-- tree 117 --> 22770 <_> 22771 <!-- root node --> 22772 <feature> 22773 <rects> 22774 <_>13 4 6 8 -1.</_> 22775 <_>16 4 3 4 2.</_> 22776 <_>13 8 3 4 2.</_></rects> 22777 <tilted>0</tilted></feature> 22778 <threshold>-0.0131510803475976</threshold> 22779 <left_val>-0.1136426031589508</left_val> 22780 <right_val>0.0259307399392128</right_val></_></_> 22781 <_> 22782 <!-- tree 118 --> 22783 <_> 22784 <!-- root node --> 22785 <feature> 22786 <rects> 22787 <_>3 4 6 8 -1.</_> 22788 <_>3 4 3 4 2.</_> 22789 <_>6 8 3 4 2.</_></rects> 22790 <tilted>0</tilted></feature> 22791 <threshold>2.6929581072181463e-003</threshold> 22792 <left_val>0.0682023465633392</left_val> 22793 <right_val>-0.1629091054201126</right_val></_></_> 22794 <_> 22795 <!-- tree 119 --> 22796 <_> 22797 <!-- root node --> 22798 <feature> 22799 <rects> 22800 <_>8 5 12 2 -1.</_> 22801 <_>8 6 12 1 2.</_></rects> 22802 <tilted>0</tilted></feature> 22803 <threshold>-5.7519129477441311e-003</threshold> 22804 <left_val>0.1319772005081177</left_val> 22805 <right_val>-0.0577118992805481</right_val></_></_> 22806 <_> 22807 <!-- tree 120 --> 22808 <_> 22809 <!-- root node --> 22810 <feature> 22811 <rects> 22812 <_>7 0 3 12 -1.</_> 22813 <_>8 0 1 12 3.</_></rects> 22814 <tilted>0</tilted></feature> 22815 <threshold>-1.1071159970015287e-003</threshold> 22816 <left_val>0.1455008983612061</left_val> 22817 <right_val>-0.0773000419139862</right_val></_></_> 22818 <_> 22819 <!-- tree 121 --> 22820 <_> 22821 <!-- root node --> 22822 <feature> 22823 <rects> 22824 <_>15 0 3 10 -1.</_> 22825 <_>16 1 1 10 3.</_></rects> 22826 <tilted>1</tilted></feature> 22827 <threshold>0.0318051800131798</threshold> 22828 <left_val>0.0141812795773149</left_val> 22829 <right_val>-0.2180342972278595</right_val></_></_> 22830 <_> 22831 <!-- tree 122 --> 22832 <_> 22833 <!-- root node --> 22834 <feature> 22835 <rects> 22836 <_>2 4 12 12 -1.</_> 22837 <_>6 8 4 4 9.</_></rects> 22838 <tilted>0</tilted></feature> 22839 <threshold>0.4072949886322022</threshold> 22840 <left_val>-0.0137729402631521</left_val> 22841 <right_val>0.7485334873199463</right_val></_></_> 22842 <_> 22843 <!-- tree 123 --> 22844 <_> 22845 <!-- root node --> 22846 <feature> 22847 <rects> 22848 <_>5 10 13 3 -1.</_> 22849 <_>5 11 13 1 3.</_></rects> 22850 <tilted>0</tilted></feature> 22851 <threshold>0.0701730772852898</threshold> 22852 <left_val>0.0115358103066683</left_val> 22853 <right_val>-0.8609462976455689</right_val></_></_> 22854 <_> 22855 <!-- tree 124 --> 22856 <_> 22857 <!-- root node --> 22858 <feature> 22859 <rects> 22860 <_>5 15 12 2 -1.</_> 22861 <_>5 16 12 1 2.</_></rects> 22862 <tilted>0</tilted></feature> 22863 <threshold>-1.9437450100667775e-004</threshold> 22864 <left_val>0.0630099922418594</left_val> 22865 <right_val>-0.1511144042015076</right_val></_></_> 22866 <_> 22867 <!-- tree 125 --> 22868 <_> 22869 <!-- root node --> 22870 <feature> 22871 <rects> 22872 <_>17 8 5 6 -1.</_> 22873 <_>17 11 5 3 2.</_></rects> 22874 <tilted>0</tilted></feature> 22875 <threshold>0.0394255593419075</threshold> 22876 <left_val>0.0241153296083212</left_val> 22877 <right_val>-0.4725382030010223</right_val></_></_> 22878 <_> 22879 <!-- tree 126 --> 22880 <_> 22881 <!-- root node --> 22882 <feature> 22883 <rects> 22884 <_>5 12 6 6 -1.</_> 22885 <_>5 14 6 2 3.</_></rects> 22886 <tilted>0</tilted></feature> 22887 <threshold>2.6128459721803665e-003</threshold> 22888 <left_val>0.0539631508290768</left_val> 22889 <right_val>-0.1742976009845734</right_val></_></_></trees> 22890 <stage_threshold>-30.6205997467041020</stage_threshold> 22891 <parent>24</parent> 22892 <next>-1</next></_> 22893 <_> 22894 <!-- stage 26 --> 22895 <trees> 22896 <_> 22897 <!-- tree 0 --> 22898 <_> 22899 <!-- root node --> 22900 <feature> 22901 <rects> 22902 <_>10 6 4 7 -1.</_> 22903 <_>10 6 2 7 2.</_></rects> 22904 <tilted>1</tilted></feature> 22905 <threshold>0.1046843007206917</threshold> 22906 <left_val>-0.0475701093673706</left_val> 22907 <right_val>0.4245404899120331</right_val></_></_> 22908 <_> 22909 <!-- tree 1 --> 22910 <_> 22911 <!-- root node --> 22912 <feature> 22913 <rects> 22914 <_>12 3 4 10 -1.</_> 22915 <_>13 4 2 10 2.</_></rects> 22916 <tilted>1</tilted></feature> 22917 <threshold>-0.0429464206099510</threshold> 22918 <left_val>0.1632889062166214</left_val> 22919 <right_val>-0.0126551697030663</right_val></_></_> 22920 <_> 22921 <!-- tree 2 --> 22922 <_> 22923 <!-- root node --> 22924 <feature> 22925 <rects> 22926 <_>10 3 10 4 -1.</_> 22927 <_>9 4 10 2 2.</_></rects> 22928 <tilted>1</tilted></feature> 22929 <threshold>-8.1577729433774948e-003</threshold> 22930 <left_val>0.1023579984903336</left_val> 22931 <right_val>-0.1087663024663925</right_val></_></_> 22932 <_> 22933 <!-- tree 3 --> 22934 <_> 22935 <!-- root node --> 22936 <feature> 22937 <rects> 22938 <_>12 4 2 12 -1.</_> 22939 <_>12 4 1 12 2.</_></rects> 22940 <tilted>1</tilted></feature> 22941 <threshold>2.1813691128045321e-003</threshold> 22942 <left_val>0.0879852473735809</left_val> 22943 <right_val>-0.0558997616171837</right_val></_></_> 22944 <_> 22945 <!-- tree 4 --> 22946 <_> 22947 <!-- root node --> 22948 <feature> 22949 <rects> 22950 <_>1 11 15 3 -1.</_> 22951 <_>6 11 5 3 3.</_></rects> 22952 <tilted>0</tilted></feature> 22953 <threshold>-6.5157511271536350e-003</threshold> 22954 <left_val>0.0828638523817062</left_val> 22955 <right_val>-0.1373631954193115</right_val></_></_> 22956 <_> 22957 <!-- tree 5 --> 22958 <_> 22959 <!-- root node --> 22960 <feature> 22961 <rects> 22962 <_>11 6 6 9 -1.</_> 22963 <_>13 6 2 9 3.</_></rects> 22964 <tilted>0</tilted></feature> 22965 <threshold>0.0247165001928806</threshold> 22966 <left_val>0.0167552102357149</left_val> 22967 <right_val>0.1337125003337860</right_val></_></_> 22968 <_> 22969 <!-- tree 6 --> 22970 <_> 22971 <!-- root node --> 22972 <feature> 22973 <rects> 22974 <_>5 6 6 9 -1.</_> 22975 <_>7 6 2 9 3.</_></rects> 22976 <tilted>0</tilted></feature> 22977 <threshold>-5.9396267170086503e-004</threshold> 22978 <left_val>-0.1377137005329132</left_val> 22979 <right_val>0.1050129011273384</right_val></_></_> 22980 <_> 22981 <!-- tree 7 --> 22982 <_> 22983 <!-- root node --> 22984 <feature> 22985 <rects> 22986 <_>8 5 6 6 -1.</_> 22987 <_>10 5 2 6 3.</_></rects> 22988 <tilted>0</tilted></feature> 22989 <threshold>0.0293738208711147</threshold> 22990 <left_val>-0.0445813983678818</left_val> 22991 <right_val>0.4273186028003693</right_val></_></_> 22992 <_> 22993 <!-- tree 8 --> 22994 <_> 22995 <!-- root node --> 22996 <feature> 22997 <rects> 22998 <_>1 2 6 8 -1.</_> 22999 <_>1 2 3 4 2.</_> 23000 <_>4 6 3 4 2.</_></rects> 23001 <tilted>0</tilted></feature> 23002 <threshold>-0.0165769197046757</threshold> 23003 <left_val>-0.2982746064662933</left_val> 23004 <right_val>0.0297183692455292</right_val></_></_> 23005 <_> 23006 <!-- tree 9 --> 23007 <_> 23008 <!-- root node --> 23009 <feature> 23010 <rects> 23011 <_>14 0 4 9 -1.</_> 23012 <_>14 3 4 3 3.</_></rects> 23013 <tilted>0</tilted></feature> 23014 <threshold>9.4569493085145950e-003</threshold> 23015 <left_val>0.0536169484257698</left_val> 23016 <right_val>-0.0766755267977715</right_val></_></_> 23017 <_> 23018 <!-- tree 10 --> 23019 <_> 23020 <!-- root node --> 23021 <feature> 23022 <rects> 23023 <_>0 0 18 9 -1.</_> 23024 <_>0 3 18 3 3.</_></rects> 23025 <tilted>0</tilted></feature> 23026 <threshold>0.0745819136500359</threshold> 23027 <left_val>-0.0465544089674950</left_val> 23028 <right_val>0.3017961084842682</right_val></_></_> 23029 <_> 23030 <!-- tree 11 --> 23031 <_> 23032 <!-- root node --> 23033 <feature> 23034 <rects> 23035 <_>9 5 5 12 -1.</_> 23036 <_>9 8 5 6 2.</_></rects> 23037 <tilted>0</tilted></feature> 23038 <threshold>-0.0380556210875511</threshold> 23039 <left_val>-0.2825511991977692</left_val> 23040 <right_val>0.0203556902706623</right_val></_></_> 23041 <_> 23042 <!-- tree 12 --> 23043 <_> 23044 <!-- root node --> 23045 <feature> 23046 <rects> 23047 <_>3 5 16 3 -1.</_> 23048 <_>3 6 16 1 3.</_></rects> 23049 <tilted>0</tilted></feature> 23050 <threshold>0.0110655399039388</threshold> 23051 <left_val>-0.0539425984025002</left_val> 23052 <right_val>0.2313262969255447</right_val></_></_> 23053 <_> 23054 <!-- tree 13 --> 23055 <_> 23056 <!-- root node --> 23057 <feature> 23058 <rects> 23059 <_>16 2 6 8 -1.</_> 23060 <_>19 2 3 4 2.</_> 23061 <_>16 6 3 4 2.</_></rects> 23062 <tilted>0</tilted></feature> 23063 <threshold>0.0135382199659944</threshold> 23064 <left_val>0.0281029809266329</left_val> 23065 <right_val>-0.2180289030075073</right_val></_></_> 23066 <_> 23067 <!-- tree 14 --> 23068 <_> 23069 <!-- root node --> 23070 <feature> 23071 <rects> 23072 <_>0 2 6 8 -1.</_> 23073 <_>0 2 3 4 2.</_> 23074 <_>3 6 3 4 2.</_></rects> 23075 <tilted>0</tilted></feature> 23076 <threshold>4.6914750710129738e-003</threshold> 23077 <left_val>0.0636170208454132</left_val> 23078 <right_val>-0.1746082007884979</right_val></_></_> 23079 <_> 23080 <!-- tree 15 --> 23081 <_> 23082 <!-- root node --> 23083 <feature> 23084 <rects> 23085 <_>5 2 12 16 -1.</_> 23086 <_>5 10 12 8 2.</_></rects> 23087 <tilted>0</tilted></feature> 23088 <threshold>0.4305444061756134</threshold> 23089 <left_val>-0.0210623797029257</left_val> 23090 <right_val>0.5719779729843140</right_val></_></_> 23091 <_> 23092 <!-- tree 16 --> 23093 <_> 23094 <!-- root node --> 23095 <feature> 23096 <rects> 23097 <_>5 11 8 6 -1.</_> 23098 <_>5 11 4 3 2.</_> 23099 <_>9 14 4 3 2.</_></rects> 23100 <tilted>0</tilted></feature> 23101 <threshold>1.4298999449238181e-003</threshold> 23102 <left_val>-0.1678003966808319</left_val> 23103 <right_val>0.0768510624766350</right_val></_></_> 23104 <_> 23105 <!-- tree 17 --> 23106 <_> 23107 <!-- root node --> 23108 <feature> 23109 <rects> 23110 <_>8 2 6 8 -1.</_> 23111 <_>11 2 3 4 2.</_> 23112 <_>8 6 3 4 2.</_></rects> 23113 <tilted>0</tilted></feature> 23114 <threshold>0.0278552304953337</threshold> 23115 <left_val>-0.0356479696929455</left_val> 23116 <right_val>0.2895691096782684</right_val></_></_> 23117 <_> 23118 <!-- tree 18 --> 23119 <_> 23120 <!-- root node --> 23121 <feature> 23122 <rects> 23123 <_>0 6 7 12 -1.</_> 23124 <_>0 10 7 4 3.</_></rects> 23125 <tilted>0</tilted></feature> 23126 <threshold>0.0143916700035334</threshold> 23127 <left_val>0.0833004266023636</left_val> 23128 <right_val>-0.1295132040977478</right_val></_></_> 23129 <_> 23130 <!-- tree 19 --> 23131 <_> 23132 <!-- root node --> 23133 <feature> 23134 <rects> 23135 <_>16 8 6 8 -1.</_> 23136 <_>16 10 6 4 2.</_></rects> 23137 <tilted>0</tilted></feature> 23138 <threshold>-0.0776373818516731</threshold> 23139 <left_val>-1.</left_val> 23140 <right_val>8.1426621181890368e-004</right_val></_></_> 23141 <_> 23142 <!-- tree 20 --> 23143 <_> 23144 <!-- root node --> 23145 <feature> 23146 <rects> 23147 <_>0 8 6 8 -1.</_> 23148 <_>0 10 6 4 2.</_></rects> 23149 <tilted>0</tilted></feature> 23150 <threshold>0.0160511992871761</threshold> 23151 <left_val>-0.0540085881948471</left_val> 23152 <right_val>0.2196779996156693</right_val></_></_> 23153 <_> 23154 <!-- tree 21 --> 23155 <_> 23156 <!-- root node --> 23157 <feature> 23158 <rects> 23159 <_>4 0 17 3 -1.</_> 23160 <_>4 1 17 1 3.</_></rects> 23161 <tilted>0</tilted></feature> 23162 <threshold>-0.0709887295961380</threshold> 23163 <left_val>0.6160213947296143</left_val> 23164 <right_val>-0.0164764001965523</right_val></_></_> 23165 <_> 23166 <!-- tree 22 --> 23167 <_> 23168 <!-- root node --> 23169 <feature> 23170 <rects> 23171 <_>7 4 4 14 -1.</_> 23172 <_>8 4 2 14 2.</_></rects> 23173 <tilted>0</tilted></feature> 23174 <threshold>-0.0583109892904758</threshold> 23175 <left_val>-0.9595535993576050</left_val> 23176 <right_val>0.0125171002000570</right_val></_></_> 23177 <_> 23178 <!-- tree 23 --> 23179 <_> 23180 <!-- root node --> 23181 <feature> 23182 <rects> 23183 <_>9 5 5 12 -1.</_> 23184 <_>9 8 5 6 2.</_></rects> 23185 <tilted>0</tilted></feature> 23186 <threshold>-7.9547446221113205e-003</threshold> 23187 <left_val>-0.0936840027570724</left_val> 23188 <right_val>0.0338969603180885</right_val></_></_> 23189 <_> 23190 <!-- tree 24 --> 23191 <_> 23192 <!-- root node --> 23193 <feature> 23194 <rects> 23195 <_>10 4 10 4 -1.</_> 23196 <_>9 5 10 2 2.</_></rects> 23197 <tilted>1</tilted></feature> 23198 <threshold>-0.0496857985854149</threshold> 23199 <left_val>0.3146679997444153</left_val> 23200 <right_val>-0.0297160502523184</right_val></_></_> 23201 <_> 23202 <!-- tree 25 --> 23203 <_> 23204 <!-- root node --> 23205 <feature> 23206 <rects> 23207 <_>13 1 3 13 -1.</_> 23208 <_>14 2 1 13 3.</_></rects> 23209 <tilted>1</tilted></feature> 23210 <threshold>0.0977515280246735</threshold> 23211 <left_val>7.5905729318037629e-004</left_val> 23212 <right_val>-0.6700987219810486</right_val></_></_> 23213 <_> 23214 <!-- tree 26 --> 23215 <_> 23216 <!-- root node --> 23217 <feature> 23218 <rects> 23219 <_>9 1 13 3 -1.</_> 23220 <_>8 2 13 1 3.</_></rects> 23221 <tilted>1</tilted></feature> 23222 <threshold>0.0759088024497032</threshold> 23223 <left_val>0.0160733293741941</left_val> 23224 <right_val>-0.6625136137008667</right_val></_></_> 23225 <_> 23226 <!-- tree 27 --> 23227 <_> 23228 <!-- root node --> 23229 <feature> 23230 <rects> 23231 <_>4 16 14 2 -1.</_> 23232 <_>4 17 14 1 2.</_></rects> 23233 <tilted>0</tilted></feature> 23234 <threshold>1.3333460083231330e-003</threshold> 23235 <left_val>0.0522413998842239</left_val> 23236 <right_val>-0.1880871057510376</right_val></_></_> 23237 <_> 23238 <!-- tree 28 --> 23239 <_> 23240 <!-- root node --> 23241 <feature> 23242 <rects> 23243 <_>0 16 15 2 -1.</_> 23244 <_>0 17 15 1 2.</_></rects> 23245 <tilted>0</tilted></feature> 23246 <threshold>6.9728610105812550e-004</threshold> 23247 <left_val>-0.0890448018908501</left_val> 23248 <right_val>0.1664233952760696</right_val></_></_> 23249 <_> 23250 <!-- tree 29 --> 23251 <_> 23252 <!-- root node --> 23253 <feature> 23254 <rects> 23255 <_>11 4 2 6 -1.</_> 23256 <_>11 4 1 6 2.</_></rects> 23257 <tilted>1</tilted></feature> 23258 <threshold>0.0208895094692707</threshold> 23259 <left_val>0.0213687196373940</left_val> 23260 <right_val>-0.1608344018459320</right_val></_></_> 23261 <_> 23262 <!-- tree 30 --> 23263 <_> 23264 <!-- root node --> 23265 <feature> 23266 <rects> 23267 <_>0 6 4 9 -1.</_> 23268 <_>0 9 4 3 3.</_></rects> 23269 <tilted>0</tilted></feature> 23270 <threshold>-1.7649700166657567e-003</threshold> 23271 <left_val>0.1239852979779244</left_val> 23272 <right_val>-0.0859223976731300</right_val></_></_> 23273 <_> 23274 <!-- tree 31 --> 23275 <_> 23276 <!-- root node --> 23277 <feature> 23278 <rects> 23279 <_>14 0 7 6 -1.</_> 23280 <_>12 2 7 2 3.</_></rects> 23281 <tilted>1</tilted></feature> 23282 <threshold>2.7779850643128157e-003</threshold> 23283 <left_val>-0.0443661510944366</left_val> 23284 <right_val>0.0293225497007370</right_val></_></_> 23285 <_> 23286 <!-- tree 32 --> 23287 <_> 23288 <!-- root node --> 23289 <feature> 23290 <rects> 23291 <_>8 4 6 10 -1.</_> 23292 <_>8 4 3 5 2.</_> 23293 <_>11 9 3 5 2.</_></rects> 23294 <tilted>0</tilted></feature> 23295 <threshold>7.9974532127380371e-004</threshold> 23296 <left_val>-0.1235152035951614</left_val> 23297 <right_val>0.0888182967901230</right_val></_></_> 23298 <_> 23299 <!-- tree 33 --> 23300 <_> 23301 <!-- root node --> 23302 <feature> 23303 <rects> 23304 <_>7 7 8 10 -1.</_> 23305 <_>11 7 4 5 2.</_> 23306 <_>7 12 4 5 2.</_></rects> 23307 <tilted>0</tilted></feature> 23308 <threshold>7.0215959567576647e-004</threshold> 23309 <left_val>-0.0801541805267334</left_val> 23310 <right_val>0.1454429030418396</right_val></_></_> 23311 <_> 23312 <!-- tree 34 --> 23313 <_> 23314 <!-- root node --> 23315 <feature> 23316 <rects> 23317 <_>5 6 12 8 -1.</_> 23318 <_>5 6 6 4 2.</_> 23319 <_>11 10 6 4 2.</_></rects> 23320 <tilted>0</tilted></feature> 23321 <threshold>-0.0406044200062752</threshold> 23322 <left_val>-0.3604758083820343</left_val> 23323 <right_val>0.0343148596584797</right_val></_></_> 23324 <_> 23325 <!-- tree 35 --> 23326 <_> 23327 <!-- root node --> 23328 <feature> 23329 <rects> 23330 <_>8 6 8 8 -1.</_> 23331 <_>12 6 4 4 2.</_> 23332 <_>8 10 4 4 2.</_></rects> 23333 <tilted>0</tilted></feature> 23334 <threshold>-0.0416868515312672</threshold> 23335 <left_val>-0.2092776000499725</left_val> 23336 <right_val>8.5808392614126205e-003</right_val></_></_> 23337 <_> 23338 <!-- tree 36 --> 23339 <_> 23340 <!-- root node --> 23341 <feature> 23342 <rects> 23343 <_>6 6 8 8 -1.</_> 23344 <_>6 6 4 4 2.</_> 23345 <_>10 10 4 4 2.</_></rects> 23346 <tilted>0</tilted></feature> 23347 <threshold>-0.0463901981711388</threshold> 23348 <left_val>0.5376852750778198</left_val> 23349 <right_val>-0.0226325001567602</right_val></_></_> 23350 <_> 23351 <!-- tree 37 --> 23352 <_> 23353 <!-- root node --> 23354 <feature> 23355 <rects> 23356 <_>12 4 6 6 -1.</_> 23357 <_>10 6 6 2 3.</_></rects> 23358 <tilted>1</tilted></feature> 23359 <threshold>-0.1582203060388565</threshold> 23360 <left_val>-1.</left_val> 23361 <right_val>1.4312319690361619e-003</right_val></_></_> 23362 <_> 23363 <!-- tree 38 --> 23364 <_> 23365 <!-- root node --> 23366 <feature> 23367 <rects> 23368 <_>5 7 10 8 -1.</_> 23369 <_>5 7 5 4 2.</_> 23370 <_>10 11 5 4 2.</_></rects> 23371 <tilted>0</tilted></feature> 23372 <threshold>-0.0756833702325821</threshold> 23373 <left_val>-0.8050302863121033</left_val> 23374 <right_val>0.0128438398241997</right_val></_></_> 23375 <_> 23376 <!-- tree 39 --> 23377 <_> 23378 <!-- root node --> 23379 <feature> 23380 <rects> 23381 <_>4 5 18 3 -1.</_> 23382 <_>4 6 18 1 3.</_></rects> 23383 <tilted>0</tilted></feature> 23384 <threshold>-0.0578083284199238</threshold> 23385 <left_val>0.3867568075656891</left_val> 23386 <right_val>-0.0126303201541305</right_val></_></_> 23387 <_> 23388 <!-- tree 40 --> 23389 <_> 23390 <!-- root node --> 23391 <feature> 23392 <rects> 23393 <_>3 16 15 2 -1.</_> 23394 <_>3 17 15 1 2.</_></rects> 23395 <tilted>0</tilted></feature> 23396 <threshold>-4.5112581574358046e-005</threshold> 23397 <left_val>0.0749589875340462</left_val> 23398 <right_val>-0.1343374997377396</right_val></_></_> 23399 <_> 23400 <!-- tree 41 --> 23401 <_> 23402 <!-- root node --> 23403 <feature> 23404 <rects> 23405 <_>3 10 16 2 -1.</_> 23406 <_>3 11 16 1 2.</_></rects> 23407 <tilted>0</tilted></feature> 23408 <threshold>0.0392054803669453</threshold> 23409 <left_val>0.0219805799424648</left_val> 23410 <right_val>-0.4574862122535706</right_val></_></_> 23411 <_> 23412 <!-- tree 42 --> 23413 <_> 23414 <!-- root node --> 23415 <feature> 23416 <rects> 23417 <_>3 12 6 6 -1.</_> 23418 <_>5 12 2 6 3.</_></rects> 23419 <tilted>0</tilted></feature> 23420 <threshold>0.0449452400207520</threshold> 23421 <left_val>-0.0237634591758251</left_val> 23422 <right_val>0.4871528148651123</right_val></_></_> 23423 <_> 23424 <!-- tree 43 --> 23425 <_> 23426 <!-- root node --> 23427 <feature> 23428 <rects> 23429 <_>18 2 3 13 -1.</_> 23430 <_>19 2 1 13 3.</_></rects> 23431 <tilted>0</tilted></feature> 23432 <threshold>-0.0578491911292076</threshold> 23433 <left_val>0.3556363880634308</left_val> 23434 <right_val>-6.2380530871450901e-003</right_val></_></_> 23435 <_> 23436 <!-- tree 44 --> 23437 <_> 23438 <!-- root node --> 23439 <feature> 23440 <rects> 23441 <_>4 10 12 4 -1.</_> 23442 <_>8 10 4 4 3.</_></rects> 23443 <tilted>0</tilted></feature> 23444 <threshold>-0.1039723977446556</threshold> 23445 <left_val>-0.6226279139518738</left_val> 23446 <right_val>0.0150228803977370</right_val></_></_> 23447 <_> 23448 <!-- tree 45 --> 23449 <_> 23450 <!-- root node --> 23451 <feature> 23452 <rects> 23453 <_>7 7 14 7 -1.</_> 23454 <_>7 7 7 7 2.</_></rects> 23455 <tilted>0</tilted></feature> 23456 <threshold>-0.2523828148841858</threshold> 23457 <left_val>-0.5905948281288147</left_val> 23458 <right_val>-1.9238379900343716e-004</right_val></_></_> 23459 <_> 23460 <!-- tree 46 --> 23461 <_> 23462 <!-- root node --> 23463 <feature> 23464 <rects> 23465 <_>1 7 14 7 -1.</_> 23466 <_>8 7 7 7 2.</_></rects> 23467 <tilted>0</tilted></feature> 23468 <threshold>0.1967588067054749</threshold> 23469 <left_val>0.0126251596957445</left_val> 23470 <right_val>-0.7275320887565613</right_val></_></_> 23471 <_> 23472 <!-- tree 47 --> 23473 <_> 23474 <!-- root node --> 23475 <feature> 23476 <rects> 23477 <_>11 0 8 13 -1.</_> 23478 <_>11 0 4 13 2.</_></rects> 23479 <tilted>0</tilted></feature> 23480 <threshold>0.0374124199151993</threshold> 23481 <left_val>-0.0234783403575420</left_val> 23482 <right_val>0.1214763969182968</right_val></_></_> 23483 <_> 23484 <!-- tree 48 --> 23485 <_> 23486 <!-- root node --> 23487 <feature> 23488 <rects> 23489 <_>0 6 4 12 -1.</_> 23490 <_>0 6 2 6 2.</_> 23491 <_>2 12 2 6 2.</_></rects> 23492 <tilted>0</tilted></feature> 23493 <threshold>-8.0470675602555275e-003</threshold> 23494 <left_val>-0.1816778928041458</left_val> 23495 <right_val>0.0497434996068478</right_val></_></_> 23496 <_> 23497 <!-- tree 49 --> 23498 <_> 23499 <!-- root node --> 23500 <feature> 23501 <rects> 23502 <_>14 2 2 12 -1.</_> 23503 <_>14 2 1 12 2.</_></rects> 23504 <tilted>1</tilted></feature> 23505 <threshold>0.0412974916398525</threshold> 23506 <left_val>0.0102590499445796</left_val> 23507 <right_val>-0.1467950046062470</right_val></_></_> 23508 <_> 23509 <!-- tree 50 --> 23510 <_> 23511 <!-- root node --> 23512 <feature> 23513 <rects> 23514 <_>2 2 8 12 -1.</_> 23515 <_>2 2 4 6 2.</_> 23516 <_>6 8 4 6 2.</_></rects> 23517 <tilted>0</tilted></feature> 23518 <threshold>-0.0507357306778431</threshold> 23519 <left_val>0.2267964035272598</left_val> 23520 <right_val>-0.0498070493340492</right_val></_></_> 23521 <_> 23522 <!-- tree 51 --> 23523 <_> 23524 <!-- root node --> 23525 <feature> 23526 <rects> 23527 <_>17 0 4 16 -1.</_> 23528 <_>17 8 4 8 2.</_></rects> 23529 <tilted>0</tilted></feature> 23530 <threshold>-3.6145109334029257e-004</threshold> 23531 <left_val>0.0417982786893845</left_val> 23532 <right_val>-0.0704108327627182</right_val></_></_> 23533 <_> 23534 <!-- tree 52 --> 23535 <_> 23536 <!-- root node --> 23537 <feature> 23538 <rects> 23539 <_>1 0 4 16 -1.</_> 23540 <_>1 8 4 8 2.</_></rects> 23541 <tilted>0</tilted></feature> 23542 <threshold>-0.1235945001244545</threshold> 23543 <left_val>0.5828350186347961</left_val> 23544 <right_val>-0.0168224293738604</right_val></_></_> 23545 <_> 23546 <!-- tree 53 --> 23547 <_> 23548 <!-- root node --> 23549 <feature> 23550 <rects> 23551 <_>6 1 16 16 -1.</_> 23552 <_>6 9 16 8 2.</_></rects> 23553 <tilted>0</tilted></feature> 23554 <threshold>0.0570716187357903</threshold> 23555 <left_val>-0.0405320711433887</left_val> 23556 <right_val>0.1707827001810074</right_val></_></_> 23557 <_> 23558 <!-- tree 54 --> 23559 <_> 23560 <!-- root node --> 23561 <feature> 23562 <rects> 23563 <_>8 0 6 7 -1.</_> 23564 <_>10 2 2 7 3.</_></rects> 23565 <tilted>1</tilted></feature> 23566 <threshold>5.8561540208756924e-003</threshold> 23567 <left_val>-0.1382790058851242</left_val> 23568 <right_val>0.0825652331113815</right_val></_></_> 23569 <_> 23570 <!-- tree 55 --> 23571 <_> 23572 <!-- root node --> 23573 <feature> 23574 <rects> 23575 <_>15 1 6 6 -1.</_> 23576 <_>13 3 6 2 3.</_></rects> 23577 <tilted>1</tilted></feature> 23578 <threshold>-0.1147285029292107</threshold> 23579 <left_val>-0.4675404131412506</left_val> 23580 <right_val>3.4348990302532911e-003</right_val></_></_> 23581 <_> 23582 <!-- tree 56 --> 23583 <_> 23584 <!-- root node --> 23585 <feature> 23586 <rects> 23587 <_>7 1 6 6 -1.</_> 23588 <_>9 3 2 6 3.</_></rects> 23589 <tilted>1</tilted></feature> 23590 <threshold>0.0205186996608973</threshold> 23591 <left_val>0.0815079435706139</left_val> 23592 <right_val>-0.1689410954713821</right_val></_></_> 23593 <_> 23594 <!-- tree 57 --> 23595 <_> 23596 <!-- root node --> 23597 <feature> 23598 <rects> 23599 <_>14 2 2 12 -1.</_> 23600 <_>14 2 1 12 2.</_></rects> 23601 <tilted>1</tilted></feature> 23602 <threshold>0.0546297691762447</threshold> 23603 <left_val>-7.4763749726116657e-003</left_val> 23604 <right_val>0.2364037930965424</right_val></_></_> 23605 <_> 23606 <!-- tree 58 --> 23607 <_> 23608 <!-- root node --> 23609 <feature> 23610 <rects> 23611 <_>5 11 12 6 -1.</_> 23612 <_>5 14 12 3 2.</_></rects> 23613 <tilted>0</tilted></feature> 23614 <threshold>-0.0693129673600197</threshold> 23615 <left_val>0.3007157146930695</left_val> 23616 <right_val>-0.0347853004932404</right_val></_></_> 23617 <_> 23618 <!-- tree 59 --> 23619 <_> 23620 <!-- root node --> 23621 <feature> 23622 <rects> 23623 <_>5 13 12 4 -1.</_> 23624 <_>5 14 12 2 2.</_></rects> 23625 <tilted>0</tilted></feature> 23626 <threshold>-7.4176848866045475e-003</threshold> 23627 <left_val>-0.2876656055450440</left_val> 23628 <right_val>0.0475318208336830</right_val></_></_> 23629 <_> 23630 <!-- tree 60 --> 23631 <_> 23632 <!-- root node --> 23633 <feature> 23634 <rects> 23635 <_>2 15 18 2 -1.</_> 23636 <_>2 16 18 1 2.</_></rects> 23637 <tilted>0</tilted></feature> 23638 <threshold>0.0102232601493597</threshold> 23639 <left_val>-0.0308347996324301</left_val> 23640 <right_val>0.3924953937530518</right_val></_></_> 23641 <_> 23642 <!-- tree 61 --> 23643 <_> 23644 <!-- root node --> 23645 <feature> 23646 <rects> 23647 <_>18 4 4 14 -1.</_> 23648 <_>20 4 2 7 2.</_> 23649 <_>18 11 2 7 2.</_></rects> 23650 <tilted>0</tilted></feature> 23651 <threshold>-0.0273466594517231</threshold> 23652 <left_val>-0.1569548994302750</left_val> 23653 <right_val>0.0139675298705697</right_val></_></_> 23654 <_> 23655 <!-- tree 62 --> 23656 <_> 23657 <!-- root node --> 23658 <feature> 23659 <rects> 23660 <_>0 4 4 14 -1.</_> 23661 <_>0 4 2 7 2.</_> 23662 <_>2 11 2 7 2.</_></rects> 23663 <tilted>0</tilted></feature> 23664 <threshold>0.0338751003146172</threshold> 23665 <left_val>0.0260633099824190</left_val> 23666 <right_val>-0.3900640904903412</right_val></_></_> 23667 <_> 23668 <!-- tree 63 --> 23669 <_> 23670 <!-- root node --> 23671 <feature> 23672 <rects> 23673 <_>11 0 3 12 -1.</_> 23674 <_>12 0 1 12 3.</_></rects> 23675 <tilted>0</tilted></feature> 23676 <threshold>0.0451747216284275</threshold> 23677 <left_val>8.9199207723140717e-003</left_val> 23678 <right_val>-0.5676915049552918</right_val></_></_> 23679 <_> 23680 <!-- tree 64 --> 23681 <_> 23682 <!-- root node --> 23683 <feature> 23684 <rects> 23685 <_>9 3 4 6 -1.</_> 23686 <_>9 6 4 3 2.</_></rects> 23687 <tilted>0</tilted></feature> 23688 <threshold>0.0114882299676538</threshold> 23689 <left_val>-0.0454914197325706</left_val> 23690 <right_val>0.2510992884635925</right_val></_></_> 23691 <_> 23692 <!-- tree 65 --> 23693 <_> 23694 <!-- root node --> 23695 <feature> 23696 <rects> 23697 <_>7 4 15 10 -1.</_> 23698 <_>7 9 15 5 2.</_></rects> 23699 <tilted>0</tilted></feature> 23700 <threshold>-0.0104961497709155</threshold> 23701 <left_val>0.0648954436182976</left_val> 23702 <right_val>-0.1062353998422623</right_val></_></_> 23703 <_> 23704 <!-- tree 66 --> 23705 <_> 23706 <!-- root node --> 23707 <feature> 23708 <rects> 23709 <_>4 2 9 12 -1.</_> 23710 <_>4 6 9 4 3.</_></rects> 23711 <tilted>0</tilted></feature> 23712 <threshold>6.0881208628416061e-003</threshold> 23713 <left_val>0.0809291824698448</left_val> 23714 <right_val>-0.1477614939212799</right_val></_></_> 23715 <_> 23716 <!-- tree 67 --> 23717 <_> 23718 <!-- root node --> 23719 <feature> 23720 <rects> 23721 <_>3 1 17 3 -1.</_> 23722 <_>3 2 17 1 3.</_></rects> 23723 <tilted>0</tilted></feature> 23724 <threshold>-2.6524660643190145e-003</threshold> 23725 <left_val>0.1206251978874207</left_val> 23726 <right_val>-0.0726748630404472</right_val></_></_> 23727 <_> 23728 <!-- tree 68 --> 23729 <_> 23730 <!-- root node --> 23731 <feature> 23732 <rects> 23733 <_>0 1 16 3 -1.</_> 23734 <_>0 2 16 1 3.</_></rects> 23735 <tilted>0</tilted></feature> 23736 <threshold>2.3559860419481993e-003</threshold> 23737 <left_val>-0.0818112716078758</left_val> 23738 <right_val>0.1412654072046280</right_val></_></_> 23739 <_> 23740 <!-- tree 69 --> 23741 <_> 23742 <!-- root node --> 23743 <feature> 23744 <rects> 23745 <_>7 4 15 10 -1.</_> 23746 <_>7 9 15 5 2.</_></rects> 23747 <tilted>0</tilted></feature> 23748 <threshold>-0.2677721977233887</threshold> 23749 <left_val>-0.7808383107185364</left_val> 23750 <right_val>4.4526048004627228e-003</right_val></_></_> 23751 <_> 23752 <!-- tree 70 --> 23753 <_> 23754 <!-- root node --> 23755 <feature> 23756 <rects> 23757 <_>0 4 15 10 -1.</_> 23758 <_>0 9 15 5 2.</_></rects> 23759 <tilted>0</tilted></feature> 23760 <threshold>0.1596579998731613</threshold> 23761 <left_val>0.0283816494047642</left_val> 23762 <right_val>-0.3896783888339996</right_val></_></_> 23763 <_> 23764 <!-- tree 71 --> 23765 <_> 23766 <!-- root node --> 23767 <feature> 23768 <rects> 23769 <_>15 0 6 18 -1.</_> 23770 <_>15 9 6 9 2.</_></rects> 23771 <tilted>0</tilted></feature> 23772 <threshold>0.0518993698060513</threshold> 23773 <left_val>-0.0343053191900253</left_val> 23774 <right_val>0.1592101007699966</right_val></_></_> 23775 <_> 23776 <!-- tree 72 --> 23777 <_> 23778 <!-- root node --> 23779 <feature> 23780 <rects> 23781 <_>3 14 12 4 -1.</_> 23782 <_>3 14 6 2 2.</_> 23783 <_>9 16 6 2 2.</_></rects> 23784 <tilted>0</tilted></feature> 23785 <threshold>-1.3652780326083302e-003</threshold> 23786 <left_val>-0.1375547945499420</left_val> 23787 <right_val>0.0727199986577034</right_val></_></_> 23788 <_> 23789 <!-- tree 73 --> 23790 <_> 23791 <!-- root node --> 23792 <feature> 23793 <rects> 23794 <_>13 0 9 5 -1.</_> 23795 <_>16 3 3 5 3.</_></rects> 23796 <tilted>1</tilted></feature> 23797 <threshold>0.2249729931354523</threshold> 23798 <left_val>-4.8017292283475399e-003</left_val> 23799 <right_val>0.9999485015869141</right_val></_></_> 23800 <_> 23801 <!-- tree 74 --> 23802 <_> 23803 <!-- root node --> 23804 <feature> 23805 <rects> 23806 <_>9 7 9 2 -1.</_> 23807 <_>9 7 9 1 2.</_></rects> 23808 <tilted>1</tilted></feature> 23809 <threshold>3.1434150878340006e-003</threshold> 23810 <left_val>0.0551515705883503</left_val> 23811 <right_val>-0.1664316058158875</right_val></_></_> 23812 <_> 23813 <!-- tree 75 --> 23814 <_> 23815 <!-- root node --> 23816 <feature> 23817 <rects> 23818 <_>12 6 3 7 -1.</_> 23819 <_>13 7 1 7 3.</_></rects> 23820 <tilted>1</tilted></feature> 23821 <threshold>-6.2940339557826519e-003</threshold> 23822 <left_val>0.0628960281610489</left_val> 23823 <right_val>-0.0604363791644573</right_val></_></_> 23824 <_> 23825 <!-- tree 76 --> 23826 <_> 23827 <!-- root node --> 23828 <feature> 23829 <rects> 23830 <_>3 4 8 8 -1.</_> 23831 <_>7 4 4 8 2.</_></rects> 23832 <tilted>0</tilted></feature> 23833 <threshold>0.0513019114732742</threshold> 23834 <left_val>-0.0316718108952045</left_val> 23835 <right_val>0.3853493928909302</right_val></_></_> 23836 <_> 23837 <!-- tree 77 --> 23838 <_> 23839 <!-- root node --> 23840 <feature> 23841 <rects> 23842 <_>7 8 12 3 -1.</_> 23843 <_>11 8 4 3 3.</_></rects> 23844 <tilted>0</tilted></feature> 23845 <threshold>-0.0669808089733124</threshold> 23846 <left_val>-0.1092590019106865</left_val> 23847 <right_val>8.9958757162094116e-003</right_val></_></_> 23848 <_> 23849 <!-- tree 78 --> 23850 <_> 23851 <!-- root node --> 23852 <feature> 23853 <rects> 23854 <_>8 6 5 6 -1.</_> 23855 <_>8 6 5 3 2.</_></rects> 23856 <tilted>1</tilted></feature> 23857 <threshold>0.0514647588133812</threshold> 23858 <left_val>0.0262100193649530</left_val> 23859 <right_val>-0.4215933978557587</right_val></_></_> 23860 <_> 23861 <!-- tree 79 --> 23862 <_> 23863 <!-- root node --> 23864 <feature> 23865 <rects> 23866 <_>10 7 10 6 -1.</_> 23867 <_>10 10 10 3 2.</_></rects> 23868 <tilted>0</tilted></feature> 23869 <threshold>-0.0909821391105652</threshold> 23870 <left_val>0.3276037871837616</left_val> 23871 <right_val>-7.8134387731552124e-003</right_val></_></_> 23872 <_> 23873 <!-- tree 80 --> 23874 <_> 23875 <!-- root node --> 23876 <feature> 23877 <rects> 23878 <_>0 9 16 3 -1.</_> 23879 <_>0 10 16 1 3.</_></rects> 23880 <tilted>0</tilted></feature> 23881 <threshold>5.2848970517516136e-003</threshold> 23882 <left_val>-0.0793995708227158</left_val> 23883 <right_val>0.1499817967414856</right_val></_></_> 23884 <_> 23885 <!-- tree 81 --> 23886 <_> 23887 <!-- root node --> 23888 <feature> 23889 <rects> 23890 <_>7 9 12 3 -1.</_> 23891 <_>7 10 12 1 3.</_></rects> 23892 <tilted>0</tilted></feature> 23893 <threshold>-1.5017699915915728e-003</threshold> 23894 <left_val>0.0977031067013741</left_val> 23895 <right_val>-0.0735320374369621</right_val></_></_> 23896 <_> 23897 <!-- tree 82 --> 23898 <_> 23899 <!-- root node --> 23900 <feature> 23901 <rects> 23902 <_>2 10 8 6 -1.</_> 23903 <_>2 13 8 3 2.</_></rects> 23904 <tilted>0</tilted></feature> 23905 <threshold>-2.5415199343115091e-003</threshold> 23906 <left_val>0.0678011327981949</left_val> 23907 <right_val>-0.1488324999809265</right_val></_></_> 23908 <_> 23909 <!-- tree 83 --> 23910 <_> 23911 <!-- root node --> 23912 <feature> 23913 <rects> 23914 <_>16 6 4 12 -1.</_> 23915 <_>16 9 4 6 2.</_></rects> 23916 <tilted>0</tilted></feature> 23917 <threshold>0.0442528203129768</threshold> 23918 <left_val>0.0164758302271366</left_val> 23919 <right_val>-0.2288018018007278</right_val></_></_> 23920 <_> 23921 <!-- tree 84 --> 23922 <_> 23923 <!-- root node --> 23924 <feature> 23925 <rects> 23926 <_>3 11 8 6 -1.</_> 23927 <_>3 11 4 3 2.</_> 23928 <_>7 14 4 3 2.</_></rects> 23929 <tilted>0</tilted></feature> 23930 <threshold>-0.0334571599960327</threshold> 23931 <left_val>0.4196678996086121</left_val> 23932 <right_val>-0.0325535312294960</right_val></_></_> 23933 <_> 23934 <!-- tree 85 --> 23935 <_> 23936 <!-- root node --> 23937 <feature> 23938 <rects> 23939 <_>4 5 16 10 -1.</_> 23940 <_>12 5 8 5 2.</_> 23941 <_>4 10 8 5 2.</_></rects> 23942 <tilted>0</tilted></feature> 23943 <threshold>0.1352989971637726</threshold> 23944 <left_val>9.0894084423780441e-003</left_val> 23945 <right_val>-0.7383912205696106</right_val></_></_> 23946 <_> 23947 <!-- tree 86 --> 23948 <_> 23949 <!-- root node --> 23950 <feature> 23951 <rects> 23952 <_>7 10 3 8 -1.</_> 23953 <_>7 14 3 4 2.</_></rects> 23954 <tilted>0</tilted></feature> 23955 <threshold>-0.0374409705400467</threshold> 23956 <left_val>-0.4261302053928375</left_val> 23957 <right_val>0.0239723902195692</right_val></_></_> 23958 <_> 23959 <!-- tree 87 --> 23960 <_> 23961 <!-- root node --> 23962 <feature> 23963 <rects> 23964 <_>9 14 6 4 -1.</_> 23965 <_>9 16 6 2 2.</_></rects> 23966 <tilted>0</tilted></feature> 23967 <threshold>-1.4479730452876538e-005</threshold> 23968 <left_val>0.0567837804555893</left_val> 23969 <right_val>-0.1588882952928543</right_val></_></_> 23970 <_> 23971 <!-- tree 88 --> 23972 <_> 23973 <!-- root node --> 23974 <feature> 23975 <rects> 23976 <_>2 9 15 9 -1.</_> 23977 <_>2 12 15 3 3.</_></rects> 23978 <tilted>0</tilted></feature> 23979 <threshold>-0.1183928027749062</threshold> 23980 <left_val>0.5050063133239746</left_val> 23981 <right_val>-0.0218596495687962</right_val></_></_> 23982 <_> 23983 <!-- tree 89 --> 23984 <_> 23985 <!-- root node --> 23986 <feature> 23987 <rects> 23988 <_>11 2 8 6 -1.</_> 23989 <_>15 2 4 3 2.</_> 23990 <_>11 5 4 3 2.</_></rects> 23991 <tilted>0</tilted></feature> 23992 <threshold>-8.5000684484839439e-003</threshold> 23993 <left_val>0.0523399300873280</left_val> 23994 <right_val>-0.0459250211715698</right_val></_></_> 23995 <_> 23996 <!-- tree 90 --> 23997 <_> 23998 <!-- root node --> 23999 <feature> 24000 <rects> 24001 <_>4 11 8 6 -1.</_> 24002 <_>4 13 8 2 3.</_></rects> 24003 <tilted>0</tilted></feature> 24004 <threshold>-0.0141895096749067</threshold> 24005 <left_val>-0.2359706014394760</left_val> 24006 <right_val>0.0403583496809006</right_val></_></_> 24007 <_> 24008 <!-- tree 91 --> 24009 <_> 24010 <!-- root node --> 24011 <feature> 24012 <rects> 24013 <_>16 0 2 14 -1.</_> 24014 <_>16 0 1 14 2.</_></rects> 24015 <tilted>1</tilted></feature> 24016 <threshold>0.0735994204878807</threshold> 24017 <left_val>3.2680039294064045e-003</left_val> 24018 <right_val>-0.5885360240936279</right_val></_></_> 24019 <_> 24020 <!-- tree 92 --> 24021 <_> 24022 <!-- root node --> 24023 <feature> 24024 <rects> 24025 <_>6 0 14 2 -1.</_> 24026 <_>6 0 14 1 2.</_></rects> 24027 <tilted>1</tilted></feature> 24028 <threshold>0.0549712702631950</threshold> 24029 <left_val>-0.0201965197920799</left_val> 24030 <right_val>0.5548272728919983</right_val></_></_> 24031 <_> 24032 <!-- tree 93 --> 24033 <_> 24034 <!-- root node --> 24035 <feature> 24036 <rects> 24037 <_>13 9 7 6 -1.</_> 24038 <_>13 11 7 2 3.</_></rects> 24039 <tilted>0</tilted></feature> 24040 <threshold>-0.0228161606937647</threshold> 24041 <left_val>-0.1758957952260971</left_val> 24042 <right_val>0.0178517401218414</right_val></_></_> 24043 <_> 24044 <!-- tree 94 --> 24045 <_> 24046 <!-- root node --> 24047 <feature> 24048 <rects> 24049 <_>10 6 7 3 -1.</_> 24050 <_>9 7 7 1 3.</_></rects> 24051 <tilted>1</tilted></feature> 24052 <threshold>2.3204670287668705e-003</threshold> 24053 <left_val>-0.0817499235272408</left_val> 24054 <right_val>0.1283307969570160</right_val></_></_> 24055 <_> 24056 <!-- tree 95 --> 24057 <_> 24058 <!-- root node --> 24059 <feature> 24060 <rects> 24061 <_>18 2 3 13 -1.</_> 24062 <_>19 2 1 13 3.</_></rects> 24063 <tilted>0</tilted></feature> 24064 <threshold>-0.1079790964722633</threshold> 24065 <left_val>-1.</left_val> 24066 <right_val>1.7423679819330573e-003</right_val></_></_> 24067 <_> 24068 <!-- tree 96 --> 24069 <_> 24070 <!-- root node --> 24071 <feature> 24072 <rects> 24073 <_>1 2 3 13 -1.</_> 24074 <_>2 2 1 13 3.</_></rects> 24075 <tilted>0</tilted></feature> 24076 <threshold>-0.0411119312047958</threshold> 24077 <left_val>0.5843269824981690</left_val> 24078 <right_val>-0.0188788697123528</right_val></_></_> 24079 <_> 24080 <!-- tree 97 --> 24081 <_> 24082 <!-- root node --> 24083 <feature> 24084 <rects> 24085 <_>5 1 12 4 -1.</_> 24086 <_>11 1 6 2 2.</_> 24087 <_>5 3 6 2 2.</_></rects> 24088 <tilted>0</tilted></feature> 24089 <threshold>-3.5695650149136782e-003</threshold> 24090 <left_val>-0.1755847036838532</left_val> 24091 <right_val>0.0647314265370369</right_val></_></_> 24092 <_> 24093 <!-- tree 98 --> 24094 <_> 24095 <!-- root node --> 24096 <feature> 24097 <rects> 24098 <_>7 8 6 6 -1.</_> 24099 <_>7 10 6 2 3.</_></rects> 24100 <tilted>0</tilted></feature> 24101 <threshold>-0.0663586705923080</threshold> 24102 <left_val>-1.</left_val> 24103 <right_val>9.2067662626504898e-003</right_val></_></_> 24104 <_> 24105 <!-- tree 99 --> 24106 <_> 24107 <!-- root node --> 24108 <feature> 24109 <rects> 24110 <_>8 13 14 3 -1.</_> 24111 <_>8 14 14 1 3.</_></rects> 24112 <tilted>0</tilted></feature> 24113 <threshold>-0.0189445801079273</threshold> 24114 <left_val>0.2578308880329132</left_val> 24115 <right_val>-0.0189449395984411</right_val></_></_> 24116 <_> 24117 <!-- tree 100 --> 24118 <_> 24119 <!-- root node --> 24120 <feature> 24121 <rects> 24122 <_>10 5 6 6 -1.</_> 24123 <_>12 7 2 6 3.</_></rects> 24124 <tilted>1</tilted></feature> 24125 <threshold>-0.1287126988172531</threshold> 24126 <left_val>-0.5847725868225098</left_val> 24127 <right_val>0.0144664896652102</right_val></_></_> 24128 <_> 24129 <!-- tree 101 --> 24130 <_> 24131 <!-- root node --> 24132 <feature> 24133 <rects> 24134 <_>15 6 4 8 -1.</_> 24135 <_>16 7 2 8 2.</_></rects> 24136 <tilted>1</tilted></feature> 24137 <threshold>2.4218629114329815e-003</threshold> 24138 <left_val>-0.0735908970236778</left_val> 24139 <right_val>0.0703321024775505</right_val></_></_> 24140 <_> 24141 <!-- tree 102 --> 24142 <_> 24143 <!-- root node --> 24144 <feature> 24145 <rects> 24146 <_>0 13 14 4 -1.</_> 24147 <_>0 13 7 2 2.</_> 24148 <_>7 15 7 2 2.</_></rects> 24149 <tilted>0</tilted></feature> 24150 <threshold>0.0297184605151415</threshold> 24151 <left_val>-0.0230119694024324</left_val> 24152 <right_val>0.4054276943206787</right_val></_></_> 24153 <_> 24154 <!-- tree 103 --> 24155 <_> 24156 <!-- root node --> 24157 <feature> 24158 <rects> 24159 <_>1 7 21 6 -1.</_> 24160 <_>8 9 7 2 9.</_></rects> 24161 <tilted>0</tilted></feature> 24162 <threshold>0.1755502969026566</threshold> 24163 <left_val>0.0208087302744389</left_val> 24164 <right_val>-0.3728564977645874</right_val></_></_> 24165 <_> 24166 <!-- tree 104 --> 24167 <_> 24168 <!-- root node --> 24169 <feature> 24170 <rects> 24171 <_>7 4 6 8 -1.</_> 24172 <_>7 4 3 4 2.</_> 24173 <_>10 8 3 4 2.</_></rects> 24174 <tilted>0</tilted></feature> 24175 <threshold>0.0371224507689476</threshold> 24176 <left_val>-0.0279596298933029</left_val> 24177 <right_val>0.3590877950191498</right_val></_></_> 24178 <_> 24179 <!-- tree 105 --> 24180 <_> 24181 <!-- root node --> 24182 <feature> 24183 <rects> 24184 <_>7 4 8 8 -1.</_> 24185 <_>11 4 4 4 2.</_> 24186 <_>7 8 4 4 2.</_></rects> 24187 <tilted>0</tilted></feature> 24188 <threshold>-3.8044541142880917e-003</threshold> 24189 <left_val>-0.1333799064159393</left_val> 24190 <right_val>0.0920613482594490</right_val></_></_> 24191 <_> 24192 <!-- tree 106 --> 24193 <_> 24194 <!-- root node --> 24195 <feature> 24196 <rects> 24197 <_>10 6 7 4 -1.</_> 24198 <_>9 7 7 2 2.</_></rects> 24199 <tilted>1</tilted></feature> 24200 <threshold>-0.0109307002276182</threshold> 24201 <left_val>0.2319630980491638</left_val> 24202 <right_val>-0.0445358790457249</right_val></_></_> 24203 <_> 24204 <!-- tree 107 --> 24205 <_> 24206 <!-- root node --> 24207 <feature> 24208 <rects> 24209 <_>11 2 6 7 -1.</_> 24210 <_>11 2 3 7 2.</_></rects> 24211 <tilted>1</tilted></feature> 24212 <threshold>0.1610362976789475</threshold> 24213 <left_val>-8.7691349908709526e-003</left_val> 24214 <right_val>0.2204516977071762</right_val></_></_> 24215 <_> 24216 <!-- tree 108 --> 24217 <_> 24218 <!-- root node --> 24219 <feature> 24220 <rects> 24221 <_>11 2 7 6 -1.</_> 24222 <_>11 2 7 3 2.</_></rects> 24223 <tilted>1</tilted></feature> 24224 <threshold>0.0259712301194668</threshold> 24225 <left_val>0.0644210129976273</left_val> 24226 <right_val>-0.1891908049583435</right_val></_></_> 24227 <_> 24228 <!-- tree 109 --> 24229 <_> 24230 <!-- root node --> 24231 <feature> 24232 <rects> 24233 <_>11 4 8 6 -1.</_> 24234 <_>11 4 4 6 2.</_></rects> 24235 <tilted>1</tilted></feature> 24236 <threshold>0.1263820976018906</threshold> 24237 <left_val>-0.0103621799498796</left_val> 24238 <right_val>0.1705718934535980</right_val></_></_> 24239 <_> 24240 <!-- tree 110 --> 24241 <_> 24242 <!-- root node --> 24243 <feature> 24244 <rects> 24245 <_>11 4 6 8 -1.</_> 24246 <_>11 4 6 4 2.</_></rects> 24247 <tilted>1</tilted></feature> 24248 <threshold>-9.1393403708934784e-003</threshold> 24249 <left_val>-0.1382824927568436</left_val> 24250 <right_val>0.0867900624871254</right_val></_></_> 24251 <_> 24252 <!-- tree 111 --> 24253 <_> 24254 <!-- root node --> 24255 <feature> 24256 <rects> 24257 <_>12 3 8 5 -1.</_> 24258 <_>12 3 4 5 2.</_></rects> 24259 <tilted>1</tilted></feature> 24260 <threshold>0.0177220907062292</threshold> 24261 <left_val>0.0397198908030987</left_val> 24262 <right_val>-0.1229425966739655</right_val></_></_> 24263 <_> 24264 <!-- tree 112 --> 24265 <_> 24266 <!-- root node --> 24267 <feature> 24268 <rects> 24269 <_>10 3 5 8 -1.</_> 24270 <_>10 3 5 4 2.</_></rects> 24271 <tilted>1</tilted></feature> 24272 <threshold>-0.0824257507920265</threshold> 24273 <left_val>0.3002310097217560</left_val> 24274 <right_val>-0.0331659205257893</right_val></_></_> 24275 <_> 24276 <!-- tree 113 --> 24277 <_> 24278 <!-- root node --> 24279 <feature> 24280 <rects> 24281 <_>13 0 9 5 -1.</_> 24282 <_>16 3 3 5 3.</_></rects> 24283 <tilted>1</tilted></feature> 24284 <threshold>0.0438925288617611</threshold> 24285 <left_val>-0.0130563396960497</left_val> 24286 <right_val>0.0987286865711212</right_val></_></_> 24287 <_> 24288 <!-- tree 114 --> 24289 <_> 24290 <!-- root node --> 24291 <feature> 24292 <rects> 24293 <_>2 6 10 12 -1.</_> 24294 <_>2 9 10 6 2.</_></rects> 24295 <tilted>0</tilted></feature> 24296 <threshold>3.5575369838625193e-003</threshold> 24297 <left_val>0.1118628010153770</left_val> 24298 <right_val>-0.0927978232502937</right_val></_></_> 24299 <_> 24300 <!-- tree 115 --> 24301 <_> 24302 <!-- root node --> 24303 <feature> 24304 <rects> 24305 <_>15 6 5 12 -1.</_> 24306 <_>15 9 5 6 2.</_></rects> 24307 <tilted>0</tilted></feature> 24308 <threshold>-0.0152988201007247</threshold> 24309 <left_val>-0.1300787925720215</left_val> 24310 <right_val>0.0231590103358030</right_val></_></_> 24311 <_> 24312 <!-- tree 116 --> 24313 <_> 24314 <!-- root node --> 24315 <feature> 24316 <rects> 24317 <_>3 7 13 3 -1.</_> 24318 <_>3 8 13 1 3.</_></rects> 24319 <tilted>0</tilted></feature> 24320 <threshold>-2.6504450943320990e-003</threshold> 24321 <left_val>0.1352628022432327</left_val> 24322 <right_val>-0.0733554586768150</right_val></_></_> 24323 <_> 24324 <!-- tree 117 --> 24325 <_> 24326 <!-- root node --> 24327 <feature> 24328 <rects> 24329 <_>4 7 17 3 -1.</_> 24330 <_>4 8 17 1 3.</_></rects> 24331 <tilted>0</tilted></feature> 24332 <threshold>0.0416368618607521</threshold> 24333 <left_val>-0.0190689805895090</left_val> 24334 <right_val>0.3585799932479858</right_val></_></_> 24335 <_> 24336 <!-- tree 118 --> 24337 <_> 24338 <!-- root node --> 24339 <feature> 24340 <rects> 24341 <_>2 9 7 6 -1.</_> 24342 <_>2 11 7 2 3.</_></rects> 24343 <tilted>0</tilted></feature> 24344 <threshold>-7.5290258973836899e-003</threshold> 24345 <left_val>-0.1867236047983170</left_val> 24346 <right_val>0.0582484491169453</right_val></_></_> 24347 <_> 24348 <!-- tree 119 --> 24349 <_> 24350 <!-- root node --> 24351 <feature> 24352 <rects> 24353 <_>13 9 9 4 -1.</_> 24354 <_>13 11 9 2 2.</_></rects> 24355 <tilted>0</tilted></feature> 24356 <threshold>-0.0400314889848232</threshold> 24357 <left_val>0.2296977937221527</left_val> 24358 <right_val>-0.0146082304418087</right_val></_></_> 24359 <_> 24360 <!-- tree 120 --> 24361 <_> 24362 <!-- root node --> 24363 <feature> 24364 <rects> 24365 <_>9 0 5 9 -1.</_> 24366 <_>6 3 5 3 3.</_></rects> 24367 <tilted>1</tilted></feature> 24368 <threshold>-0.1362470984458923</threshold> 24369 <left_val>-0.8708646297454834</left_val> 24370 <right_val>0.0112111996859312</right_val></_></_> 24371 <_> 24372 <!-- tree 121 --> 24373 <_> 24374 <!-- root node --> 24375 <feature> 24376 <rects> 24377 <_>9 3 8 3 -1.</_> 24378 <_>9 3 4 3 2.</_></rects> 24379 <tilted>0</tilted></feature> 24380 <threshold>4.5124008320271969e-003</threshold> 24381 <left_val>-0.0356449596583843</left_val> 24382 <right_val>0.1010309979319572</right_val></_></_> 24383 <_> 24384 <!-- tree 122 --> 24385 <_> 24386 <!-- root node --> 24387 <feature> 24388 <rects> 24389 <_>3 0 4 13 -1.</_> 24390 <_>4 0 2 13 2.</_></rects> 24391 <tilted>0</tilted></feature> 24392 <threshold>0.0541180707514286</threshold> 24393 <left_val>-0.0146894101053476</left_val> 24394 <right_val>0.6765226721763611</right_val></_></_> 24395 <_> 24396 <!-- tree 123 --> 24397 <_> 24398 <!-- root node --> 24399 <feature> 24400 <rects> 24401 <_>13 0 8 6 -1.</_> 24402 <_>15 0 4 6 2.</_></rects> 24403 <tilted>0</tilted></feature> 24404 <threshold>-0.0345539599657059</threshold> 24405 <left_val>0.2185456007719040</left_val> 24406 <right_val>-9.7846649587154388e-003</right_val></_></_> 24407 <_> 24408 <!-- tree 124 --> 24409 <_> 24410 <!-- root node --> 24411 <feature> 24412 <rects> 24413 <_>3 0 6 5 -1.</_> 24414 <_>6 0 3 5 2.</_></rects> 24415 <tilted>0</tilted></feature> 24416 <threshold>-0.0255208406597376</threshold> 24417 <left_val>-0.4689800143241882</left_val> 24418 <right_val>0.0240603704005480</right_val></_></_> 24419 <_> 24420 <!-- tree 125 --> 24421 <_> 24422 <!-- root node --> 24423 <feature> 24424 <rects> 24425 <_>9 0 12 5 -1.</_> 24426 <_>9 0 6 5 2.</_></rects> 24427 <tilted>0</tilted></feature> 24428 <threshold>-0.0354737006127834</threshold> 24429 <left_val>0.1342754960060120</left_val> 24430 <right_val>-0.0214386992156506</right_val></_></_> 24431 <_> 24432 <!-- tree 126 --> 24433 <_> 24434 <!-- root node --> 24435 <feature> 24436 <rects> 24437 <_>1 2 6 8 -1.</_> 24438 <_>3 2 2 8 3.</_></rects> 24439 <tilted>0</tilted></feature> 24440 <threshold>2.8683411073870957e-004</threshold> 24441 <left_val>-0.0973002836108208</left_val> 24442 <right_val>0.1076093986630440</right_val></_></_> 24443 <_> 24444 <!-- tree 127 --> 24445 <_> 24446 <!-- root node --> 24447 <feature> 24448 <rects> 24449 <_>18 2 4 6 -1.</_> 24450 <_>18 2 2 6 2.</_></rects> 24451 <tilted>0</tilted></feature> 24452 <threshold>-0.0787175893783569</threshold> 24453 <left_val>-1.</left_val> 24454 <right_val>2.7187850791960955e-003</right_val></_></_> 24455 <_> 24456 <!-- tree 128 --> 24457 <_> 24458 <!-- root node --> 24459 <feature> 24460 <rects> 24461 <_>0 2 4 6 -1.</_> 24462 <_>2 2 2 6 2.</_></rects> 24463 <tilted>0</tilted></feature> 24464 <threshold>-1.5701749362051487e-004</threshold> 24465 <left_val>0.1119965985417366</left_val> 24466 <right_val>-0.0994413793087006</right_val></_></_> 24467 <_> 24468 <!-- tree 129 --> 24469 <_> 24470 <!-- root node --> 24471 <feature> 24472 <rects> 24473 <_>16 9 6 6 -1.</_> 24474 <_>16 11 6 2 3.</_></rects> 24475 <tilted>0</tilted></feature> 24476 <threshold>0.0160265695303679</threshold> 24477 <left_val>0.0341982617974281</left_val> 24478 <right_val>-0.1910049021244049</right_val></_></_> 24479 <_> 24480 <!-- tree 130 --> 24481 <_> 24482 <!-- root node --> 24483 <feature> 24484 <rects> 24485 <_>10 0 12 6 -1.</_> 24486 <_>13 3 6 6 2.</_></rects> 24487 <tilted>1</tilted></feature> 24488 <threshold>-0.0191647298634052</threshold> 24489 <left_val>0.0890248268842697</left_val> 24490 <right_val>-0.1191970035433769</right_val></_></_> 24491 <_> 24492 <!-- tree 131 --> 24493 <_> 24494 <!-- root node --> 24495 <feature> 24496 <rects> 24497 <_>14 2 3 12 -1.</_> 24498 <_>10 6 3 4 3.</_></rects> 24499 <tilted>1</tilted></feature> 24500 <threshold>-0.0394451506435871</threshold> 24501 <left_val>-0.1071799024939537</left_val> 24502 <right_val>0.0376152098178864</right_val></_></_> 24503 <_> 24504 <!-- tree 132 --> 24505 <_> 24506 <!-- root node --> 24507 <feature> 24508 <rects> 24509 <_>8 3 6 7 -1.</_> 24510 <_>11 3 3 7 2.</_></rects> 24511 <tilted>0</tilted></feature> 24512 <threshold>2.2417430300265551e-003</threshold> 24513 <left_val>-0.0905810073018074</left_val> 24514 <right_val>0.1754747033119202</right_val></_></_> 24515 <_> 24516 <!-- tree 133 --> 24517 <_> 24518 <!-- root node --> 24519 <feature> 24520 <rects> 24521 <_>16 1 3 15 -1.</_> 24522 <_>17 1 1 15 3.</_></rects> 24523 <tilted>0</tilted></feature> 24524 <threshold>-3.8842540234327316e-003</threshold> 24525 <left_val>0.0926973298192024</left_val> 24526 <right_val>-0.0424313694238663</right_val></_></_> 24527 <_> 24528 <!-- tree 134 --> 24529 <_> 24530 <!-- root node --> 24531 <feature> 24532 <rects> 24533 <_>0 1 6 8 -1.</_> 24534 <_>2 1 2 8 3.</_></rects> 24535 <tilted>0</tilted></feature> 24536 <threshold>-0.0219146292656660</threshold> 24537 <left_val>-0.2801750898361206</left_val> 24538 <right_val>0.0375376716256142</right_val></_></_> 24539 <_> 24540 <!-- tree 135 --> 24541 <_> 24542 <!-- root node --> 24543 <feature> 24544 <rects> 24545 <_>13 0 3 14 -1.</_> 24546 <_>14 0 1 14 3.</_></rects> 24547 <tilted>0</tilted></feature> 24548 <threshold>-0.0375121198594570</threshold> 24549 <left_val>0.3621852099895477</left_val> 24550 <right_val>-0.0175074506551027</right_val></_></_> 24551 <_> 24552 <!-- tree 136 --> 24553 <_> 24554 <!-- root node --> 24555 <feature> 24556 <rects> 24557 <_>6 0 3 14 -1.</_> 24558 <_>7 0 1 14 3.</_></rects> 24559 <tilted>0</tilted></feature> 24560 <threshold>-8.4374047582969069e-004</threshold> 24561 <left_val>0.1234840005636215</left_val> 24562 <right_val>-0.0802458673715591</right_val></_></_> 24563 <_> 24564 <!-- tree 137 --> 24565 <_> 24566 <!-- root node --> 24567 <feature> 24568 <rects> 24569 <_>4 13 18 2 -1.</_> 24570 <_>4 13 9 2 2.</_></rects> 24571 <tilted>0</tilted></feature> 24572 <threshold>-2.6424999814480543e-003</threshold> 24573 <left_val>0.0525657385587692</left_val> 24574 <right_val>-0.0833354368805885</right_val></_></_> 24575 <_> 24576 <!-- tree 138 --> 24577 <_> 24578 <!-- root node --> 24579 <feature> 24580 <rects> 24581 <_>2 9 15 3 -1.</_> 24582 <_>7 9 5 3 3.</_></rects> 24583 <tilted>0</tilted></feature> 24584 <threshold>-0.0928368121385574</threshold> 24585 <left_val>-0.4206038117408752</left_val> 24586 <right_val>0.0233604293316603</right_val></_></_> 24587 <_> 24588 <!-- tree 139 --> 24589 <_> 24590 <!-- root node --> 24591 <feature> 24592 <rects> 24593 <_>9 5 10 6 -1.</_> 24594 <_>14 5 5 3 2.</_> 24595 <_>9 8 5 3 2.</_></rects> 24596 <tilted>0</tilted></feature> 24597 <threshold>0.0824630707502365</threshold> 24598 <left_val>-2.9815400484949350e-003</left_val> 24599 <right_val>0.7899919748306274</right_val></_></_> 24600 <_> 24601 <!-- tree 140 --> 24602 <_> 24603 <!-- root node --> 24604 <feature> 24605 <rects> 24606 <_>3 5 10 6 -1.</_> 24607 <_>3 5 5 3 2.</_> 24608 <_>8 8 5 3 2.</_></rects> 24609 <tilted>0</tilted></feature> 24610 <threshold>-0.0698649510741234</threshold> 24611 <left_val>0.7380297183990479</left_val> 24612 <right_val>-0.0140212997794151</right_val></_></_> 24613 <_> 24614 <!-- tree 141 --> 24615 <_> 24616 <!-- root node --> 24617 <feature> 24618 <rects> 24619 <_>14 3 2 12 -1.</_> 24620 <_>14 3 1 12 2.</_></rects> 24621 <tilted>1</tilted></feature> 24622 <threshold>0.0454393401741982</threshold> 24623 <left_val>-0.0113211600109935</left_val> 24624 <right_val>0.1997369974851608</right_val></_></_> 24625 <_> 24626 <!-- tree 142 --> 24627 <_> 24628 <!-- root node --> 24629 <feature> 24630 <rects> 24631 <_>8 3 12 2 -1.</_> 24632 <_>8 3 12 1 2.</_></rects> 24633 <tilted>1</tilted></feature> 24634 <threshold>-0.0502977892756462</threshold> 24635 <left_val>0.6076467037200928</left_val> 24636 <right_val>-0.0176328904926777</right_val></_></_> 24637 <_> 24638 <!-- tree 143 --> 24639 <_> 24640 <!-- root node --> 24641 <feature> 24642 <rects> 24643 <_>12 7 6 6 -1.</_> 24644 <_>14 7 2 6 3.</_></rects> 24645 <tilted>0</tilted></feature> 24646 <threshold>0.0604561492800713</threshold> 24647 <left_val>-5.9354598633944988e-003</left_val> 24648 <right_val>0.3162288963794708</right_val></_></_> 24649 <_> 24650 <!-- tree 144 --> 24651 <_> 24652 <!-- root node --> 24653 <feature> 24654 <rects> 24655 <_>4 7 6 6 -1.</_> 24656 <_>6 7 2 6 3.</_></rects> 24657 <tilted>0</tilted></feature> 24658 <threshold>-4.6769347973167896e-003</threshold> 24659 <left_val>-0.1809061020612717</left_val> 24660 <right_val>0.0596601888537407</right_val></_></_> 24661 <_> 24662 <!-- tree 145 --> 24663 <_> 24664 <!-- root node --> 24665 <feature> 24666 <rects> 24667 <_>7 0 8 3 -1.</_> 24668 <_>7 0 4 3 2.</_></rects> 24669 <tilted>0</tilted></feature> 24670 <threshold>3.6530068609863520e-004</threshold> 24671 <left_val>-0.0912200435996056</left_val> 24672 <right_val>0.1109272986650467</right_val></_></_> 24673 <_> 24674 <!-- tree 146 --> 24675 <_> 24676 <!-- root node --> 24677 <feature> 24678 <rects> 24679 <_>9 0 4 6 -1.</_> 24680 <_>11 0 2 6 2.</_></rects> 24681 <tilted>0</tilted></feature> 24682 <threshold>-0.0194912608712912</threshold> 24683 <left_val>-0.3707557022571564</left_val> 24684 <right_val>0.0284163095057011</right_val></_></_> 24685 <_> 24686 <!-- tree 147 --> 24687 <_> 24688 <!-- root node --> 24689 <feature> 24690 <rects> 24691 <_>10 0 12 12 -1.</_> 24692 <_>13 0 6 12 2.</_></rects> 24693 <tilted>0</tilted></feature> 24694 <threshold>0.0200564507395029</threshold> 24695 <left_val>-0.0581596791744232</left_val> 24696 <right_val>0.0781052336096764</right_val></_></_> 24697 <_> 24698 <!-- tree 148 --> 24699 <_> 24700 <!-- root node --> 24701 <feature> 24702 <rects> 24703 <_>0 0 12 12 -1.</_> 24704 <_>3 0 6 12 2.</_></rects> 24705 <tilted>0</tilted></feature> 24706 <threshold>-0.0393711812794209</threshold> 24707 <left_val>0.2901248931884766</left_val> 24708 <right_val>-0.0418756604194641</right_val></_></_> 24709 <_> 24710 <!-- tree 149 --> 24711 <_> 24712 <!-- root node --> 24713 <feature> 24714 <rects> 24715 <_>16 5 6 4 -1.</_> 24716 <_>16 5 3 4 2.</_></rects> 24717 <tilted>0</tilted></feature> 24718 <threshold>0.0215236507356167</threshold> 24719 <left_val>0.0165730807930231</left_val> 24720 <right_val>-0.2361485064029694</right_val></_></_> 24721 <_> 24722 <!-- tree 150 --> 24723 <_> 24724 <!-- root node --> 24725 <feature> 24726 <rects> 24727 <_>0 5 6 4 -1.</_> 24728 <_>3 5 3 4 2.</_></rects> 24729 <tilted>0</tilted></feature> 24730 <threshold>-3.1294699292629957e-003</threshold> 24731 <left_val>-0.1646640002727509</left_val> 24732 <right_val>0.0622338093817234</right_val></_></_> 24733 <_> 24734 <!-- tree 151 --> 24735 <_> 24736 <!-- root node --> 24737 <feature> 24738 <rects> 24739 <_>9 0 12 5 -1.</_> 24740 <_>9 0 6 5 2.</_></rects> 24741 <tilted>0</tilted></feature> 24742 <threshold>2.8589619323611259e-003</threshold> 24743 <left_val>-0.0380984097719193</left_val> 24744 <right_val>0.0557516291737556</right_val></_></_></trees> 24745 <stage_threshold>-30.6916007995605470</stage_threshold> 24746 <parent>25</parent> 24747 <next>-1</next></_> 24748 <_> 24749 <!-- stage 27 --> 24750 <trees> 24751 <_> 24752 <!-- tree 0 --> 24753 <_> 24754 <!-- root node --> 24755 <feature> 24756 <rects> 24757 <_>1 8 8 10 -1.</_> 24758 <_>1 8 4 5 2.</_> 24759 <_>5 13 4 5 2.</_></rects> 24760 <tilted>0</tilted></feature> 24761 <threshold>-0.0205761305987835</threshold> 24762 <left_val>0.1735112965106964</left_val> 24763 <right_val>-0.1505803018808365</right_val></_></_> 24764 <_> 24765 <!-- tree 1 --> 24766 <_> 24767 <!-- root node --> 24768 <feature> 24769 <rects> 24770 <_>8 16 14 2 -1.</_> 24771 <_>8 16 7 2 2.</_></rects> 24772 <tilted>0</tilted></feature> 24773 <threshold>0.0161259490996599</threshold> 24774 <left_val>-0.0416123718023300</left_val> 24775 <right_val>0.2398445010185242</right_val></_></_> 24776 <_> 24777 <!-- tree 2 --> 24778 <_> 24779 <!-- root node --> 24780 <feature> 24781 <rects> 24782 <_>0 11 16 3 -1.</_> 24783 <_>8 11 8 3 2.</_></rects> 24784 <tilted>0</tilted></feature> 24785 <threshold>-0.0123525802046061</threshold> 24786 <left_val>0.0977808535099030</left_val> 24787 <right_val>-0.1239183023571968</right_val></_></_> 24788 <_> 24789 <!-- tree 3 --> 24790 <_> 24791 <!-- root node --> 24792 <feature> 24793 <rects> 24794 <_>10 16 12 2 -1.</_> 24795 <_>10 16 6 2 2.</_></rects> 24796 <tilted>0</tilted></feature> 24797 <threshold>-5.7473899796605110e-003</threshold> 24798 <left_val>0.0776152089238167</left_val> 24799 <right_val>-0.0962367281317711</right_val></_></_> 24800 <_> 24801 <!-- tree 4 --> 24802 <_> 24803 <!-- root node --> 24804 <feature> 24805 <rects> 24806 <_>0 16 12 2 -1.</_> 24807 <_>6 16 6 2 2.</_></rects> 24808 <tilted>0</tilted></feature> 24809 <threshold>2.9579061083495617e-003</threshold> 24810 <left_val>-0.0676837190985680</left_val> 24811 <right_val>0.2659420967102051</right_val></_></_> 24812 <_> 24813 <!-- tree 5 --> 24814 <_> 24815 <!-- root node --> 24816 <feature> 24817 <rects> 24818 <_>3 11 18 6 -1.</_> 24819 <_>12 11 9 3 2.</_> 24820 <_>3 14 9 3 2.</_></rects> 24821 <tilted>0</tilted></feature> 24822 <threshold>-8.3472225815057755e-003</threshold> 24823 <left_val>-0.1118817999958992</left_val> 24824 <right_val>0.1373637020587921</right_val></_></_> 24825 <_> 24826 <!-- tree 6 --> 24827 <_> 24828 <!-- root node --> 24829 <feature> 24830 <rects> 24831 <_>7 13 6 4 -1.</_> 24832 <_>7 15 6 2 2.</_></rects> 24833 <tilted>0</tilted></feature> 24834 <threshold>-5.8408780023455620e-004</threshold> 24835 <left_val>0.0459431111812592</left_val> 24836 <right_val>-0.1648653000593185</right_val></_></_> 24837 <_> 24838 <!-- tree 7 --> 24839 <_> 24840 <!-- root node --> 24841 <feature> 24842 <rects> 24843 <_>10 11 6 6 -1.</_> 24844 <_>10 13 6 2 3.</_></rects> 24845 <tilted>0</tilted></feature> 24846 <threshold>-3.5136839142069221e-004</threshold> 24847 <left_val>0.0977910086512566</left_val> 24848 <right_val>-0.0643578618764877</right_val></_></_> 24849 <_> 24850 <!-- tree 8 --> 24851 <_> 24852 <!-- root node --> 24853 <feature> 24854 <rects> 24855 <_>6 14 9 4 -1.</_> 24856 <_>9 14 3 4 3.</_></rects> 24857 <tilted>0</tilted></feature> 24858 <threshold>8.4126877482049167e-005</threshold> 24859 <left_val>-0.1384762972593308</left_val> 24860 <right_val>0.0887277424335480</right_val></_></_> 24861 <_> 24862 <!-- tree 9 --> 24863 <_> 24864 <!-- root node --> 24865 <feature> 24866 <rects> 24867 <_>5 4 16 10 -1.</_> 24868 <_>5 9 16 5 2.</_></rects> 24869 <tilted>0</tilted></feature> 24870 <threshold>-0.2659249007701874</threshold> 24871 <left_val>-0.6752539873123169</left_val> 24872 <right_val>0.0161886699497700</right_val></_></_> 24873 <_> 24874 <!-- tree 10 --> 24875 <_> 24876 <!-- root node --> 24877 <feature> 24878 <rects> 24879 <_>11 7 3 8 -1.</_> 24880 <_>11 7 3 4 2.</_></rects> 24881 <tilted>1</tilted></feature> 24882 <threshold>4.3727741576731205e-003</threshold> 24883 <left_val>0.0728847980499268</left_val> 24884 <right_val>-0.1256036013364792</right_val></_></_> 24885 <_> 24886 <!-- tree 11 --> 24887 <_> 24888 <!-- root node --> 24889 <feature> 24890 <rects> 24891 <_>13 10 6 6 -1.</_> 24892 <_>13 12 6 2 3.</_></rects> 24893 <tilted>0</tilted></feature> 24894 <threshold>-2.2660531103610992e-003</threshold> 24895 <left_val>0.0872692465782166</left_val> 24896 <right_val>-0.0683554336428642</right_val></_></_> 24897 <_> 24898 <!-- tree 12 --> 24899 <_> 24900 <!-- root node --> 24901 <feature> 24902 <rects> 24903 <_>0 6 22 12 -1.</_> 24904 <_>0 6 11 6 2.</_> 24905 <_>11 12 11 6 2.</_></rects> 24906 <tilted>0</tilted></feature> 24907 <threshold>-6.5290732309222221e-003</threshold> 24908 <left_val>-0.1219756007194519</left_val> 24909 <right_val>0.0809279307723045</right_val></_></_> 24910 <_> 24911 <!-- tree 13 --> 24912 <_> 24913 <!-- root node --> 24914 <feature> 24915 <rects> 24916 <_>9 5 6 12 -1.</_> 24917 <_>12 5 3 6 2.</_> 24918 <_>9 11 3 6 2.</_></rects> 24919 <tilted>0</tilted></feature> 24920 <threshold>0.0964362472295761</threshold> 24921 <left_val>-8.2637304440140724e-003</left_val> 24922 <right_val>0.4912739992141724</right_val></_></_> 24923 <_> 24924 <!-- tree 14 --> 24925 <_> 24926 <!-- root node --> 24927 <feature> 24928 <rects> 24929 <_>7 5 6 12 -1.</_> 24930 <_>7 5 3 6 2.</_> 24931 <_>10 11 3 6 2.</_></rects> 24932 <tilted>0</tilted></feature> 24933 <threshold>-0.0435948185622692</threshold> 24934 <left_val>0.4557530879974365</left_val> 24935 <right_val>-0.0256003905087709</right_val></_></_> 24936 <_> 24937 <!-- tree 15 --> 24938 <_> 24939 <!-- root node --> 24940 <feature> 24941 <rects> 24942 <_>14 1 6 9 -1.</_> 24943 <_>14 4 6 3 3.</_></rects> 24944 <tilted>0</tilted></feature> 24945 <threshold>-0.0210983194410801</threshold> 24946 <left_val>-0.1189275011420250</left_val> 24947 <right_val>0.0235395897179842</right_val></_></_> 24948 <_> 24949 <!-- tree 16 --> 24950 <_> 24951 <!-- root node --> 24952 <feature> 24953 <rects> 24954 <_>2 1 6 9 -1.</_> 24955 <_>2 4 6 3 3.</_></rects> 24956 <tilted>0</tilted></feature> 24957 <threshold>-2.5200019590556622e-003</threshold> 24958 <left_val>0.1272446960210800</left_val> 24959 <right_val>-0.0907517224550247</right_val></_></_> 24960 <_> 24961 <!-- tree 17 --> 24962 <_> 24963 <!-- root node --> 24964 <feature> 24965 <rects> 24966 <_>13 4 4 6 -1.</_> 24967 <_>13 7 4 3 2.</_></rects> 24968 <tilted>0</tilted></feature> 24969 <threshold>-8.9241685345768929e-003</threshold> 24970 <left_val>-0.1151432022452354</left_val> 24971 <right_val>0.0434970296919346</right_val></_></_> 24972 <_> 24973 <!-- tree 18 --> 24974 <_> 24975 <!-- root node --> 24976 <feature> 24977 <rects> 24978 <_>5 4 4 6 -1.</_> 24979 <_>5 7 4 3 2.</_></rects> 24980 <tilted>0</tilted></feature> 24981 <threshold>3.4590170253068209e-003</threshold> 24982 <left_val>0.0635371729731560</left_val> 24983 <right_val>-0.1826142966747284</right_val></_></_> 24984 <_> 24985 <!-- tree 19 --> 24986 <_> 24987 <!-- root node --> 24988 <feature> 24989 <rects> 24990 <_>10 13 12 3 -1.</_> 24991 <_>10 14 12 1 3.</_></rects> 24992 <tilted>0</tilted></feature> 24993 <threshold>-3.6076800897717476e-003</threshold> 24994 <left_val>0.1200591027736664</left_val> 24995 <right_val>-0.0524491108953953</right_val></_></_> 24996 <_> 24997 <!-- tree 20 --> 24998 <_> 24999 <!-- root node --> 25000 <feature> 25001 <rects> 25002 <_>3 3 15 3 -1.</_> 25003 <_>3 4 15 1 3.</_></rects> 25004 <tilted>0</tilted></feature> 25005 <threshold>0.0537788905203342</threshold> 25006 <left_val>-0.0186757892370224</left_val> 25007 <right_val>0.5231301784515381</right_val></_></_> 25008 <_> 25009 <!-- tree 21 --> 25010 <_> 25011 <!-- root node --> 25012 <feature> 25013 <rects> 25014 <_>13 5 2 9 -1.</_> 25015 <_>13 5 1 9 2.</_></rects> 25016 <tilted>1</tilted></feature> 25017 <threshold>0.0452451892197132</threshold> 25018 <left_val>-0.0175049193203449</left_val> 25019 <right_val>0.2187184989452362</right_val></_></_> 25020 <_> 25021 <!-- tree 22 --> 25022 <_> 25023 <!-- root node --> 25024 <feature> 25025 <rects> 25026 <_>9 5 9 2 -1.</_> 25027 <_>9 5 9 1 2.</_></rects> 25028 <tilted>1</tilted></feature> 25029 <threshold>1.3272929936647415e-003</threshold> 25030 <left_val>0.0786599591374397</left_val> 25031 <right_val>-0.1355167031288147</right_val></_></_> 25032 <_> 25033 <!-- tree 23 --> 25034 <_> 25035 <!-- root node --> 25036 <feature> 25037 <rects> 25038 <_>6 2 14 10 -1.</_> 25039 <_>6 2 7 10 2.</_></rects> 25040 <tilted>0</tilted></feature> 25041 <threshold>0.0123936403542757</threshold> 25042 <left_val>0.0289523005485535</left_val> 25043 <right_val>-0.0721495375037193</right_val></_></_> 25044 <_> 25045 <!-- tree 24 --> 25046 <_> 25047 <!-- root node --> 25048 <feature> 25049 <rects> 25050 <_>8 2 12 2 -1.</_> 25051 <_>8 2 12 1 2.</_></rects> 25052 <tilted>1</tilted></feature> 25053 <threshold>-0.0377027802169323</threshold> 25054 <left_val>0.4185005128383637</left_val> 25055 <right_val>-0.0303553491830826</right_val></_></_> 25056 <_> 25057 <!-- tree 25 --> 25058 <_> 25059 <!-- root node --> 25060 <feature> 25061 <rects> 25062 <_>17 0 2 13 -1.</_> 25063 <_>17 0 1 13 2.</_></rects> 25064 <tilted>1</tilted></feature> 25065 <threshold>-0.0489104092121124</threshold> 25066 <left_val>0.3736500144004822</left_val> 25067 <right_val>-5.6771109811961651e-003</right_val></_></_> 25068 <_> 25069 <!-- tree 26 --> 25070 <_> 25071 <!-- root node --> 25072 <feature> 25073 <rects> 25074 <_>5 0 13 2 -1.</_> 25075 <_>5 0 13 1 2.</_></rects> 25076 <tilted>1</tilted></feature> 25077 <threshold>-5.9961699880659580e-003</threshold> 25078 <left_val>-0.2075642049312592</left_val> 25079 <right_val>0.0704388469457626</right_val></_></_> 25080 <_> 25081 <!-- tree 27 --> 25082 <_> 25083 <!-- root node --> 25084 <feature> 25085 <rects> 25086 <_>12 4 3 10 -1.</_> 25087 <_>12 4 3 5 2.</_></rects> 25088 <tilted>1</tilted></feature> 25089 <threshold>0.0566319301724434</threshold> 25090 <left_val>-0.0172929391264915</left_val> 25091 <right_val>0.2549839913845062</right_val></_></_> 25092 <_> 25093 <!-- tree 28 --> 25094 <_> 25095 <!-- root node --> 25096 <feature> 25097 <rects> 25098 <_>0 6 12 3 -1.</_> 25099 <_>0 7 12 1 3.</_></rects> 25100 <tilted>0</tilted></feature> 25101 <threshold>0.0316502302885056</threshold> 25102 <left_val>-0.0206582508981228</left_val> 25103 <right_val>0.4839827120304108</right_val></_></_> 25104 <_> 25105 <!-- tree 29 --> 25106 <_> 25107 <!-- root node --> 25108 <feature> 25109 <rects> 25110 <_>6 6 15 3 -1.</_> 25111 <_>6 7 15 1 3.</_></rects> 25112 <tilted>0</tilted></feature> 25113 <threshold>-0.0211529899388552</threshold> 25114 <left_val>0.2002878934144974</left_val> 25115 <right_val>-0.0248726103454828</right_val></_></_> 25116 <_> 25117 <!-- tree 30 --> 25118 <_> 25119 <!-- root node --> 25120 <feature> 25121 <rects> 25122 <_>8 8 5 9 -1.</_> 25123 <_>8 11 5 3 3.</_></rects> 25124 <tilted>0</tilted></feature> 25125 <threshold>0.0876765325665474</threshold> 25126 <left_val>-0.0249997004866600</left_val> 25127 <right_val>0.4112659990787506</right_val></_></_> 25128 <_> 25129 <!-- tree 31 --> 25130 <_> 25131 <!-- root node --> 25132 <feature> 25133 <rects> 25134 <_>10 11 7 6 -1.</_> 25135 <_>10 13 7 2 3.</_></rects> 25136 <tilted>0</tilted></feature> 25137 <threshold>0.0532998815178871</threshold> 25138 <left_val>-8.6766229942440987e-003</left_val> 25139 <right_val>0.3744659125804901</right_val></_></_> 25140 <_> 25141 <!-- tree 32 --> 25142 <_> 25143 <!-- root node --> 25144 <feature> 25145 <rects> 25146 <_>5 11 7 6 -1.</_> 25147 <_>5 13 7 2 3.</_></rects> 25148 <tilted>0</tilted></feature> 25149 <threshold>-2.6251509552821517e-004</threshold> 25150 <left_val>0.0992318466305733</left_val> 25151 <right_val>-0.1198920011520386</right_val></_></_> 25152 <_> 25153 <!-- tree 33 --> 25154 <_> 25155 <!-- root node --> 25156 <feature> 25157 <rects> 25158 <_>5 12 13 4 -1.</_> 25159 <_>5 13 13 2 2.</_></rects> 25160 <tilted>0</tilted></feature> 25161 <threshold>-8.5897604003548622e-003</threshold> 25162 <left_val>-0.1859301030635834</left_val> 25163 <right_val>0.0343707799911499</right_val></_></_> 25164 <_> 25165 <!-- tree 34 --> 25166 <_> 25167 <!-- root node --> 25168 <feature> 25169 <rects> 25170 <_>9 4 4 6 -1.</_> 25171 <_>9 7 4 3 2.</_></rects> 25172 <tilted>0</tilted></feature> 25173 <threshold>0.0169404707849026</threshold> 25174 <left_val>-0.0347682610154152</left_val> 25175 <right_val>0.2728826105594635</right_val></_></_> 25176 <_> 25177 <!-- tree 35 --> 25178 <_> 25179 <!-- root node --> 25180 <feature> 25181 <rects> 25182 <_>13 1 2 9 -1.</_> 25183 <_>13 1 1 9 2.</_></rects> 25184 <tilted>1</tilted></feature> 25185 <threshold>0.0505961105227470</threshold> 25186 <left_val>3.6170349922031164e-003</left_val> 25187 <right_val>-0.3946076035499573</right_val></_></_> 25188 <_> 25189 <!-- tree 36 --> 25190 <_> 25191 <!-- root node --> 25192 <feature> 25193 <rects> 25194 <_>5 2 8 6 -1.</_> 25195 <_>5 2 4 3 2.</_> 25196 <_>9 5 4 3 2.</_></rects> 25197 <tilted>0</tilted></feature> 25198 <threshold>-8.3048436790704727e-003</threshold> 25199 <left_val>0.0985777974128723</left_val> 25200 <right_val>-0.1166628003120422</right_val></_></_> 25201 <_> 25202 <!-- tree 37 --> 25203 <_> 25204 <!-- root node --> 25205 <feature> 25206 <rects> 25207 <_>11 0 4 8 -1.</_> 25208 <_>12 1 2 8 2.</_></rects> 25209 <tilted>1</tilted></feature> 25210 <threshold>0.0105862701311708</threshold> 25211 <left_val>0.0391171500086784</left_val> 25212 <right_val>-0.0858436673879623</right_val></_></_> 25213 <_> 25214 <!-- tree 38 --> 25215 <_> 25216 <!-- root node --> 25217 <feature> 25218 <rects> 25219 <_>11 0 8 4 -1.</_> 25220 <_>10 1 8 2 2.</_></rects> 25221 <tilted>1</tilted></feature> 25222 <threshold>-0.0325586013495922</threshold> 25223 <left_val>-0.3735215067863464</left_val> 25224 <right_val>0.0254101008176804</right_val></_></_> 25225 <_> 25226 <!-- tree 39 --> 25227 <_> 25228 <!-- root node --> 25229 <feature> 25230 <rects> 25231 <_>7 9 15 3 -1.</_> 25232 <_>7 10 15 1 3.</_></rects> 25233 <tilted>0</tilted></feature> 25234 <threshold>-0.0323521308600903</threshold> 25235 <left_val>0.2612997889518738</left_val> 25236 <right_val>-0.0286310408264399</right_val></_></_> 25237 <_> 25238 <!-- tree 40 --> 25239 <_> 25240 <!-- root node --> 25241 <feature> 25242 <rects> 25243 <_>5 10 12 3 -1.</_> 25244 <_>5 11 12 1 3.</_></rects> 25245 <tilted>0</tilted></feature> 25246 <threshold>0.0255470499396324</threshold> 25247 <left_val>0.0338848903775215</left_val> 25248 <right_val>-0.3045232892036438</right_val></_></_> 25249 <_> 25250 <!-- tree 41 --> 25251 <_> 25252 <!-- root node --> 25253 <feature> 25254 <rects> 25255 <_>15 2 7 6 -1.</_> 25256 <_>15 4 7 2 3.</_></rects> 25257 <tilted>0</tilted></feature> 25258 <threshold>0.0422524400055408</threshold> 25259 <left_val>8.9510334655642509e-003</left_val> 25260 <right_val>-0.2409126013517380</right_val></_></_> 25261 <_> 25262 <!-- tree 42 --> 25263 <_> 25264 <!-- root node --> 25265 <feature> 25266 <rects> 25267 <_>0 2 7 6 -1.</_> 25268 <_>0 4 7 2 3.</_></rects> 25269 <tilted>0</tilted></feature> 25270 <threshold>3.8109479937702417e-003</threshold> 25271 <left_val>-0.0726389363408089</left_val> 25272 <right_val>0.1463439017534256</right_val></_></_> 25273 <_> 25274 <!-- tree 43 --> 25275 <_> 25276 <!-- root node --> 25277 <feature> 25278 <rects> 25279 <_>12 3 2 7 -1.</_> 25280 <_>12 3 1 7 2.</_></rects> 25281 <tilted>1</tilted></feature> 25282 <threshold>0.0208217091858387</threshold> 25283 <left_val>-0.0362719409167767</left_val> 25284 <right_val>0.1832471936941147</right_val></_></_> 25285 <_> 25286 <!-- tree 44 --> 25287 <_> 25288 <!-- root node --> 25289 <feature> 25290 <rects> 25291 <_>10 3 7 2 -1.</_> 25292 <_>10 3 7 1 2.</_></rects> 25293 <tilted>1</tilted></feature> 25294 <threshold>0.0264977905899286</threshold> 25295 <left_val>0.0281601101160049</left_val> 25296 <right_val>-0.3951719999313355</right_val></_></_> 25297 <_> 25298 <!-- tree 45 --> 25299 <_> 25300 <!-- root node --> 25301 <feature> 25302 <rects> 25303 <_>2 3 20 14 -1.</_> 25304 <_>12 3 10 7 2.</_> 25305 <_>2 10 10 7 2.</_></rects> 25306 <tilted>0</tilted></feature> 25307 <threshold>0.2028353065252304</threshold> 25308 <left_val>-9.3782292678952217e-003</left_val> 25309 <right_val>0.4486894905567169</right_val></_></_> 25310 <_> 25311 <!-- tree 46 --> 25312 <_> 25313 <!-- root node --> 25314 <feature> 25315 <rects> 25316 <_>5 2 12 8 -1.</_> 25317 <_>11 2 6 8 2.</_></rects> 25318 <tilted>0</tilted></feature> 25319 <threshold>-0.1799661070108414</threshold> 25320 <left_val>-0.7959595918655396</left_val> 25321 <right_val>0.0120278401300311</right_val></_></_> 25322 <_> 25323 <!-- tree 47 --> 25324 <_> 25325 <!-- root node --> 25326 <feature> 25327 <rects> 25328 <_>18 4 4 8 -1.</_> 25329 <_>18 8 4 4 2.</_></rects> 25330 <tilted>0</tilted></feature> 25331 <threshold>-0.0709680914878845</threshold> 25332 <left_val>-0.7695127725601196</left_val> 25333 <right_val>1.0918079642578959e-003</right_val></_></_> 25334 <_> 25335 <!-- tree 48 --> 25336 <_> 25337 <!-- root node --> 25338 <feature> 25339 <rects> 25340 <_>6 4 6 8 -1.</_> 25341 <_>6 4 3 4 2.</_> 25342 <_>9 8 3 4 2.</_></rects> 25343 <tilted>0</tilted></feature> 25344 <threshold>2.7555041015148163e-003</threshold> 25345 <left_val>0.0701502636075020</left_val> 25346 <right_val>-0.1291518062353134</right_val></_></_> 25347 <_> 25348 <!-- tree 49 --> 25349 <_> 25350 <!-- root node --> 25351 <feature> 25352 <rects> 25353 <_>12 2 4 6 -1.</_> 25354 <_>12 2 2 6 2.</_></rects> 25355 <tilted>1</tilted></feature> 25356 <threshold>-0.0770044028759003</threshold> 25357 <left_val>-0.4915507137775421</left_val> 25358 <right_val>2.8067480307072401e-003</right_val></_></_> 25359 <_> 25360 <!-- tree 50 --> 25361 <_> 25362 <!-- root node --> 25363 <feature> 25364 <rects> 25365 <_>10 2 6 4 -1.</_> 25366 <_>10 2 6 2 2.</_></rects> 25367 <tilted>1</tilted></feature> 25368 <threshold>-0.0202579107135534</threshold> 25369 <left_val>0.2356823980808258</left_val> 25370 <right_val>-0.0434327982366085</right_val></_></_> 25371 <_> 25372 <!-- tree 51 --> 25373 <_> 25374 <!-- root node --> 25375 <feature> 25376 <rects> 25377 <_>9 3 8 15 -1.</_> 25378 <_>11 3 4 15 2.</_></rects> 25379 <tilted>0</tilted></feature> 25380 <threshold>-0.0864218175411224</threshold> 25381 <left_val>-0.3454168140888214</left_val> 25382 <right_val>0.0112488502636552</right_val></_></_> 25383 <_> 25384 <!-- tree 52 --> 25385 <_> 25386 <!-- root node --> 25387 <feature> 25388 <rects> 25389 <_>1 11 8 7 -1.</_> 25390 <_>3 11 4 7 2.</_></rects> 25391 <tilted>0</tilted></feature> 25392 <threshold>-0.0672459527850151</threshold> 25393 <left_val>-0.6875290274620056</left_val> 25394 <right_val>0.0118686696514487</right_val></_></_> 25395 <_> 25396 <!-- tree 53 --> 25397 <_> 25398 <!-- root node --> 25399 <feature> 25400 <rects> 25401 <_>13 7 6 10 -1.</_> 25402 <_>15 7 2 10 3.</_></rects> 25403 <tilted>0</tilted></feature> 25404 <threshold>-0.1299038976430893</threshold> 25405 <left_val>-0.7906926870346069</left_val> 25406 <right_val>2.5537670589983463e-003</right_val></_></_> 25407 <_> 25408 <!-- tree 54 --> 25409 <_> 25410 <!-- root node --> 25411 <feature> 25412 <rects> 25413 <_>2 3 10 14 -1.</_> 25414 <_>7 3 5 14 2.</_></rects> 25415 <tilted>0</tilted></feature> 25416 <threshold>-0.3039467036724091</threshold> 25417 <left_val>-0.8998935222625732</left_val> 25418 <right_val>8.1501724198460579e-003</right_val></_></_> 25419 <_> 25420 <!-- tree 55 --> 25421 <_> 25422 <!-- root node --> 25423 <feature> 25424 <rects> 25425 <_>6 5 15 12 -1.</_> 25426 <_>11 5 5 12 3.</_></rects> 25427 <tilted>0</tilted></feature> 25428 <threshold>-0.4198854863643646</threshold> 25429 <left_val>-0.7730332016944885</left_val> 25430 <right_val>1.3665149454027414e-003</right_val></_></_> 25431 <_> 25432 <!-- tree 56 --> 25433 <_> 25434 <!-- root node --> 25435 <feature> 25436 <rects> 25437 <_>1 5 15 12 -1.</_> 25438 <_>6 5 5 12 3.</_></rects> 25439 <tilted>0</tilted></feature> 25440 <threshold>-0.1685128957033157</threshold> 25441 <left_val>0.2431939989328384</left_val> 25442 <right_val>-0.0412807390093803</right_val></_></_> 25443 <_> 25444 <!-- tree 57 --> 25445 <_> 25446 <!-- root node --> 25447 <feature> 25448 <rects> 25449 <_>9 14 8 4 -1.</_> 25450 <_>9 16 8 2 2.</_></rects> 25451 <tilted>0</tilted></feature> 25452 <threshold>2.8788880445063114e-003</threshold> 25453 <left_val>0.0205771699547768</left_val> 25454 <right_val>-0.1859090030193329</right_val></_></_> 25455 <_> 25456 <!-- tree 58 --> 25457 <_> 25458 <!-- root node --> 25459 <feature> 25460 <rects> 25461 <_>9 6 4 10 -1.</_> 25462 <_>11 6 2 10 2.</_></rects> 25463 <tilted>0</tilted></feature> 25464 <threshold>-0.0402238406240940</threshold> 25465 <left_val>0.4309926927089691</left_val> 25466 <right_val>-0.0231047105044127</right_val></_></_> 25467 <_> 25468 <!-- tree 59 --> 25469 <_> 25470 <!-- root node --> 25471 <feature> 25472 <rects> 25473 <_>8 6 10 4 -1.</_> 25474 <_>8 8 10 2 2.</_></rects> 25475 <tilted>0</tilted></feature> 25476 <threshold>3.9687040261924267e-003</threshold> 25477 <left_val>0.0436015203595161</left_val> 25478 <right_val>-0.0922335684299469</right_val></_></_> 25479 <_> 25480 <!-- tree 60 --> 25481 <_> 25482 <!-- root node --> 25483 <feature> 25484 <rects> 25485 <_>2 14 7 4 -1.</_> 25486 <_>2 16 7 2 2.</_></rects> 25487 <tilted>0</tilted></feature> 25488 <threshold>-0.0276507195085287</threshold> 25489 <left_val>-0.6170787215232849</left_val> 25490 <right_val>0.0146805699914694</right_val></_></_> 25491 <_> 25492 <!-- tree 61 --> 25493 <_> 25494 <!-- root node --> 25495 <feature> 25496 <rects> 25497 <_>7 9 15 3 -1.</_> 25498 <_>7 10 15 1 3.</_></rects> 25499 <tilted>0</tilted></feature> 25500 <threshold>-2.3034301120787859e-003</threshold> 25501 <left_val>0.0903495922684669</left_val> 25502 <right_val>-0.0616645514965057</right_val></_></_> 25503 <_> 25504 <!-- tree 62 --> 25505 <_> 25506 <!-- root node --> 25507 <feature> 25508 <rects> 25509 <_>0 10 16 4 -1.</_> 25510 <_>0 10 8 2 2.</_> 25511 <_>8 12 8 2 2.</_></rects> 25512 <tilted>0</tilted></feature> 25513 <threshold>-0.0290407892316580</threshold> 25514 <left_val>0.2773793935775757</left_val> 25515 <right_val>-0.0392188690602779</right_val></_></_> 25516 <_> 25517 <!-- tree 63 --> 25518 <_> 25519 <!-- root node --> 25520 <feature> 25521 <rects> 25522 <_>10 11 6 7 -1.</_> 25523 <_>12 11 2 7 3.</_></rects> 25524 <tilted>0</tilted></feature> 25525 <threshold>0.0132882604375482</threshold> 25526 <left_val>0.0311382599174976</left_val> 25527 <right_val>-0.1355874985456467</right_val></_></_> 25528 <_> 25529 <!-- tree 64 --> 25530 <_> 25531 <!-- root node --> 25532 <feature> 25533 <rects> 25534 <_>8 13 6 5 -1.</_> 25535 <_>11 13 3 5 2.</_></rects> 25536 <tilted>0</tilted></feature> 25537 <threshold>3.3968928619287908e-005</threshold> 25538 <left_val>-0.1356292963027954</left_val> 25539 <right_val>0.0764675810933113</right_val></_></_> 25540 <_> 25541 <!-- tree 65 --> 25542 <_> 25543 <!-- root node --> 25544 <feature> 25545 <rects> 25546 <_>10 11 6 7 -1.</_> 25547 <_>12 11 2 7 3.</_></rects> 25548 <tilted>0</tilted></feature> 25549 <threshold>-6.8583860993385315e-003</threshold> 25550 <left_val>-0.1036581024527550</left_val> 25551 <right_val>0.0259391590952873</right_val></_></_> 25552 <_> 25553 <!-- tree 66 --> 25554 <_> 25555 <!-- root node --> 25556 <feature> 25557 <rects> 25558 <_>6 11 6 7 -1.</_> 25559 <_>8 11 2 7 3.</_></rects> 25560 <tilted>0</tilted></feature> 25561 <threshold>-0.0143609195947647</threshold> 25562 <left_val>-0.2113649994134903</left_val> 25563 <right_val>0.0529731400310993</right_val></_></_> 25564 <_> 25565 <!-- tree 67 --> 25566 <_> 25567 <!-- root node --> 25568 <feature> 25569 <rects> 25570 <_>18 4 4 8 -1.</_> 25571 <_>18 8 4 4 2.</_></rects> 25572 <tilted>0</tilted></feature> 25573 <threshold>-0.0174686796963215</threshold> 25574 <left_val>-0.1051810979843140</left_val> 25575 <right_val>0.0177150797098875</right_val></_></_> 25576 <_> 25577 <!-- tree 68 --> 25578 <_> 25579 <!-- root node --> 25580 <feature> 25581 <rects> 25582 <_>4 6 8 11 -1.</_> 25583 <_>8 6 4 11 2.</_></rects> 25584 <tilted>0</tilted></feature> 25585 <threshold>-0.0985445678234100</threshold> 25586 <left_val>0.2564946115016937</left_val> 25587 <right_val>-0.0442296415567398</right_val></_></_> 25588 <_> 25589 <!-- tree 69 --> 25590 <_> 25591 <!-- root node --> 25592 <feature> 25593 <rects> 25594 <_>7 5 8 12 -1.</_> 25595 <_>9 5 4 12 2.</_></rects> 25596 <tilted>0</tilted></feature> 25597 <threshold>-2.8123459778726101e-003</threshold> 25598 <left_val>-0.0738003626465797</left_val> 25599 <right_val>0.1540094017982483</right_val></_></_> 25600 <_> 25601 <!-- tree 70 --> 25602 <_> 25603 <!-- root node --> 25604 <feature> 25605 <rects> 25606 <_>5 3 6 6 -1.</_> 25607 <_>7 3 2 6 3.</_></rects> 25608 <tilted>0</tilted></feature> 25609 <threshold>2.1941340528428555e-003</threshold> 25610 <left_val>-0.1421629935503006</left_val> 25611 <right_val>0.0891392230987549</right_val></_></_> 25612 <_> 25613 <!-- tree 71 --> 25614 <_> 25615 <!-- root node --> 25616 <feature> 25617 <rects> 25618 <_>11 2 10 6 -1.</_> 25619 <_>11 2 10 3 2.</_></rects> 25620 <tilted>1</tilted></feature> 25621 <threshold>0.0468207597732544</threshold> 25622 <left_val>0.0293640904128551</left_val> 25623 <right_val>-0.0627548918128014</right_val></_></_> 25624 <_> 25625 <!-- tree 72 --> 25626 <_> 25627 <!-- root node --> 25628 <feature> 25629 <rects> 25630 <_>11 1 8 9 -1.</_> 25631 <_>11 1 4 9 2.</_></rects> 25632 <tilted>1</tilted></feature> 25633 <threshold>0.3289175927639008</threshold> 25634 <left_val>0.0130156902596354</left_val> 25635 <right_val>-0.7834712862968445</right_val></_></_> 25636 <_> 25637 <!-- tree 73 --> 25638 <_> 25639 <!-- root node --> 25640 <feature> 25641 <rects> 25642 <_>12 4 3 10 -1.</_> 25643 <_>12 4 3 5 2.</_></rects> 25644 <tilted>1</tilted></feature> 25645 <threshold>-0.0204705204814672</threshold> 25646 <left_val>-0.0768143534660339</left_val> 25647 <right_val>0.0398004688322544</right_val></_></_> 25648 <_> 25649 <!-- tree 74 --> 25650 <_> 25651 <!-- root node --> 25652 <feature> 25653 <rects> 25654 <_>11 1 11 4 -1.</_> 25655 <_>11 1 11 2 2.</_></rects> 25656 <tilted>1</tilted></feature> 25657 <threshold>0.0886770263314247</threshold> 25658 <left_val>-0.0403123684227467</left_val> 25659 <right_val>0.2845386862754822</right_val></_></_> 25660 <_> 25661 <!-- tree 75 --> 25662 <_> 25663 <!-- root node --> 25664 <feature> 25665 <rects> 25666 <_>18 4 4 8 -1.</_> 25667 <_>18 8 4 4 2.</_></rects> 25668 <tilted>0</tilted></feature> 25669 <threshold>-1.1557979742065072e-003</threshold> 25670 <left_val>0.0421993210911751</left_val> 25671 <right_val>-0.0414462089538574</right_val></_></_> 25672 <_> 25673 <!-- tree 76 --> 25674 <_> 25675 <!-- root node --> 25676 <feature> 25677 <rects> 25678 <_>0 4 4 8 -1.</_> 25679 <_>0 8 4 4 2.</_></rects> 25680 <tilted>0</tilted></feature> 25681 <threshold>0.0605245381593704</threshold> 25682 <left_val>-0.0169187001883984</left_val> 25683 <right_val>0.6723713874816895</right_val></_></_> 25684 <_> 25685 <!-- tree 77 --> 25686 <_> 25687 <!-- root node --> 25688 <feature> 25689 <rects> 25690 <_>12 2 2 12 -1.</_> 25691 <_>12 2 1 12 2.</_></rects> 25692 <tilted>1</tilted></feature> 25693 <threshold>0.0408304594457150</threshold> 25694 <left_val>0.0133648402988911</left_val> 25695 <right_val>-0.3111329972743988</right_val></_></_> 25696 <_> 25697 <!-- tree 78 --> 25698 <_> 25699 <!-- root node --> 25700 <feature> 25701 <rects> 25702 <_>4 12 12 3 -1.</_> 25703 <_>4 13 12 1 3.</_></rects> 25704 <tilted>0</tilted></feature> 25705 <threshold>-3.1132870353758335e-003</threshold> 25706 <left_val>-0.1726278066635132</left_val> 25707 <right_val>0.0593822188675404</right_val></_></_> 25708 <_> 25709 <!-- tree 79 --> 25710 <_> 25711 <!-- root node --> 25712 <feature> 25713 <rects> 25714 <_>2 12 18 3 -1.</_> 25715 <_>2 13 18 1 3.</_></rects> 25716 <tilted>0</tilted></feature> 25717 <threshold>-4.3638627976179123e-003</threshold> 25718 <left_val>0.1726533025503159</left_val> 25719 <right_val>-0.0624239705502987</right_val></_></_> 25720 <_> 25721 <!-- tree 80 --> 25722 <_> 25723 <!-- root node --> 25724 <feature> 25725 <rects> 25726 <_>0 0 16 3 -1.</_> 25727 <_>0 1 16 1 3.</_></rects> 25728 <tilted>0</tilted></feature> 25729 <threshold>-0.0328340902924538</threshold> 25730 <left_val>0.4027537107467651</left_val> 25731 <right_val>-0.0257990397512913</right_val></_></_> 25732 <_> 25733 <!-- tree 81 --> 25734 <_> 25735 <!-- root node --> 25736 <feature> 25737 <rects> 25738 <_>12 2 2 12 -1.</_> 25739 <_>12 2 1 12 2.</_></rects> 25740 <tilted>1</tilted></feature> 25741 <threshold>0.0643770024180412</threshold> 25742 <left_val>-4.7380630858242512e-003</left_val> 25743 <right_val>0.7522106766700745</right_val></_></_> 25744 <_> 25745 <!-- tree 82 --> 25746 <_> 25747 <!-- root node --> 25748 <feature> 25749 <rects> 25750 <_>10 2 12 2 -1.</_> 25751 <_>10 2 12 1 2.</_></rects> 25752 <tilted>1</tilted></feature> 25753 <threshold>0.0276427306234837</threshold> 25754 <left_val>0.0376444794237614</left_val> 25755 <right_val>-0.2922027111053467</right_val></_></_> 25756 <_> 25757 <!-- tree 83 --> 25758 <_> 25759 <!-- root node --> 25760 <feature> 25761 <rects> 25762 <_>13 10 6 7 -1.</_> 25763 <_>15 10 2 7 3.</_></rects> 25764 <tilted>0</tilted></feature> 25765 <threshold>0.0221711993217468</threshold> 25766 <left_val>-0.0246540699154139</left_val> 25767 <right_val>0.2053381055593491</right_val></_></_> 25768 <_> 25769 <!-- tree 84 --> 25770 <_> 25771 <!-- root node --> 25772 <feature> 25773 <rects> 25774 <_>5 13 12 2 -1.</_> 25775 <_>11 13 6 2 2.</_></rects> 25776 <tilted>0</tilted></feature> 25777 <threshold>1.5859310515224934e-003</threshold> 25778 <left_val>0.0894637927412987</left_val> 25779 <right_val>-0.1261173039674759</right_val></_></_> 25780 <_> 25781 <!-- tree 85 --> 25782 <_> 25783 <!-- root node --> 25784 <feature> 25785 <rects> 25786 <_>16 8 6 8 -1.</_> 25787 <_>19 8 3 4 2.</_> 25788 <_>16 12 3 4 2.</_></rects> 25789 <tilted>0</tilted></feature> 25790 <threshold>-0.0188720505684614</threshold> 25791 <left_val>0.1307265013456345</left_val> 25792 <right_val>-0.0369537100195885</right_val></_></_> 25793 <_> 25794 <!-- tree 86 --> 25795 <_> 25796 <!-- root node --> 25797 <feature> 25798 <rects> 25799 <_>4 1 8 6 -1.</_> 25800 <_>4 3 8 2 3.</_></rects> 25801 <tilted>0</tilted></feature> 25802 <threshold>-0.0133061697706580</threshold> 25803 <left_val>-0.2296320945024490</left_val> 25804 <right_val>0.0426871888339520</right_val></_></_> 25805 <_> 25806 <!-- tree 87 --> 25807 <_> 25808 <!-- root node --> 25809 <feature> 25810 <rects> 25811 <_>18 0 4 9 -1.</_> 25812 <_>18 3 4 3 3.</_></rects> 25813 <tilted>0</tilted></feature> 25814 <threshold>-0.0704071223735809</threshold> 25815 <left_val>-0.7111750841140747</left_val> 25816 <right_val>6.6957580856978893e-003</right_val></_></_> 25817 <_> 25818 <!-- tree 88 --> 25819 <_> 25820 <!-- root node --> 25821 <feature> 25822 <rects> 25823 <_>8 2 6 8 -1.</_> 25824 <_>8 6 6 4 2.</_></rects> 25825 <tilted>0</tilted></feature> 25826 <threshold>0.0417489297688007</threshold> 25827 <left_val>-0.0329278707504272</left_val> 25828 <right_val>0.3003528118133545</right_val></_></_> 25829 <_> 25830 <!-- tree 89 --> 25831 <_> 25832 <!-- root node --> 25833 <feature> 25834 <rects> 25835 <_>8 1 6 4 -1.</_> 25836 <_>8 3 6 2 2.</_></rects> 25837 <tilted>0</tilted></feature> 25838 <threshold>5.3282231092453003e-003</threshold> 25839 <left_val>0.0518117509782314</left_val> 25840 <right_val>-0.1906909048557282</right_val></_></_> 25841 <_> 25842 <!-- tree 90 --> 25843 <_> 25844 <!-- root node --> 25845 <feature> 25846 <rects> 25847 <_>1 2 12 3 -1.</_> 25848 <_>1 3 12 1 3.</_></rects> 25849 <tilted>0</tilted></feature> 25850 <threshold>2.4094989057630301e-003</threshold> 25851 <left_val>-0.0806879699230194</left_val> 25852 <right_val>0.1251012980937958</right_val></_></_> 25853 <_> 25854 <!-- tree 91 --> 25855 <_> 25856 <!-- root node --> 25857 <feature> 25858 <rects> 25859 <_>7 2 12 3 -1.</_> 25860 <_>7 3 12 1 3.</_></rects> 25861 <tilted>0</tilted></feature> 25862 <threshold>-6.2405979260802269e-003</threshold> 25863 <left_val>0.1074063032865524</left_val> 25864 <right_val>-0.0399790108203888</right_val></_></_> 25865 <_> 25866 <!-- tree 92 --> 25867 <_> 25868 <!-- root node --> 25869 <feature> 25870 <rects> 25871 <_>1 0 16 18 -1.</_> 25872 <_>1 9 16 9 2.</_></rects> 25873 <tilted>0</tilted></feature> 25874 <threshold>-0.6731246709823608</threshold> 25875 <left_val>-1.</left_val> 25876 <right_val>0.0100708100944757</right_val></_></_> 25877 <_> 25878 <!-- tree 93 --> 25879 <_> 25880 <!-- root node --> 25881 <feature> 25882 <rects> 25883 <_>16 8 6 8 -1.</_> 25884 <_>19 8 3 4 2.</_> 25885 <_>16 12 3 4 2.</_></rects> 25886 <tilted>0</tilted></feature> 25887 <threshold>-0.0929835587739944</threshold> 25888 <left_val>-1.</left_val> 25889 <right_val>-2.4261360522359610e-003</right_val></_></_> 25890 <_> 25891 <!-- tree 94 --> 25892 <_> 25893 <!-- root node --> 25894 <feature> 25895 <rects> 25896 <_>0 8 6 8 -1.</_> 25897 <_>0 8 3 4 2.</_> 25898 <_>3 12 3 4 2.</_></rects> 25899 <tilted>0</tilted></feature> 25900 <threshold>0.0336297601461411</threshold> 25901 <left_val>0.0241228695958853</left_val> 25902 <right_val>-0.4138790071010590</right_val></_></_> 25903 <_> 25904 <!-- tree 95 --> 25905 <_> 25906 <!-- root node --> 25907 <feature> 25908 <rects> 25909 <_>18 4 4 6 -1.</_> 25910 <_>18 7 4 3 2.</_></rects> 25911 <tilted>0</tilted></feature> 25912 <threshold>0.0238806195557117</threshold> 25913 <left_val>9.6614202484488487e-003</left_val> 25914 <right_val>-0.2197377979755402</right_val></_></_> 25915 <_> 25916 <!-- tree 96 --> 25917 <_> 25918 <!-- root node --> 25919 <feature> 25920 <rects> 25921 <_>0 12 14 3 -1.</_> 25922 <_>0 13 14 1 3.</_></rects> 25923 <tilted>0</tilted></feature> 25924 <threshold>1.2738780351355672e-003</threshold> 25925 <left_val>-0.0835551172494888</left_val> 25926 <right_val>0.1226968988776207</right_val></_></_> 25927 <_> 25928 <!-- tree 97 --> 25929 <_> 25930 <!-- root node --> 25931 <feature> 25932 <rects> 25933 <_>3 12 16 3 -1.</_> 25934 <_>3 13 16 1 3.</_></rects> 25935 <tilted>0</tilted></feature> 25936 <threshold>0.0184141397476196</threshold> 25937 <left_val>0.0307981409132481</left_val> 25938 <right_val>-0.3560917079448700</right_val></_></_> 25939 <_> 25940 <!-- tree 98 --> 25941 <_> 25942 <!-- root node --> 25943 <feature> 25944 <rects> 25945 <_>0 4 4 6 -1.</_> 25946 <_>0 7 4 3 2.</_></rects> 25947 <tilted>0</tilted></feature> 25948 <threshold>-0.0564695782959461</threshold> 25949 <left_val>0.8863177895545960</left_val> 25950 <right_val>-0.0126983001828194</right_val></_></_> 25951 <_> 25952 <!-- tree 99 --> 25953 <_> 25954 <!-- root node --> 25955 <feature> 25956 <rects> 25957 <_>9 14 8 4 -1.</_> 25958 <_>9 16 8 2 2.</_></rects> 25959 <tilted>0</tilted></feature> 25960 <threshold>-4.6219761134125292e-004</threshold> 25961 <left_val>0.0346819013357162</left_val> 25962 <right_val>-0.0828508287668228</right_val></_></_> 25963 <_> 25964 <!-- tree 100 --> 25965 <_> 25966 <!-- root node --> 25967 <feature> 25968 <rects> 25969 <_>0 13 14 3 -1.</_> 25970 <_>0 14 14 1 3.</_></rects> 25971 <tilted>0</tilted></feature> 25972 <threshold>-0.0190608594566584</threshold> 25973 <left_val>0.3536941111087799</left_val> 25974 <right_val>-0.0276117604225874</right_val></_></_> 25975 <_> 25976 <!-- tree 101 --> 25977 <_> 25978 <!-- root node --> 25979 <feature> 25980 <rects> 25981 <_>4 14 14 2 -1.</_> 25982 <_>4 15 14 1 2.</_></rects> 25983 <tilted>0</tilted></feature> 25984 <threshold>1.5762279508635402e-003</threshold> 25985 <left_val>0.0409399084746838</left_val> 25986 <right_val>-0.2251740992069244</right_val></_></_> 25987 <_> 25988 <!-- tree 102 --> 25989 <_> 25990 <!-- root node --> 25991 <feature> 25992 <rects> 25993 <_>3 12 15 6 -1.</_> 25994 <_>3 15 15 3 2.</_></rects> 25995 <tilted>0</tilted></feature> 25996 <threshold>0.0201018806546927</threshold> 25997 <left_val>-0.0239955503493547</left_val> 25998 <right_val>0.4109125137329102</right_val></_></_> 25999 <_> 26000 <!-- tree 103 --> 26001 <_> 26002 <!-- root node --> 26003 <feature> 26004 <rects> 26005 <_>7 12 14 6 -1.</_> 26006 <_>7 15 14 3 2.</_></rects> 26007 <tilted>0</tilted></feature> 26008 <threshold>2.7211669366806746e-003</threshold> 26009 <left_val>0.0281224492937326</left_val> 26010 <right_val>-0.1420011967420578</right_val></_></_> 26011 <_> 26012 <!-- tree 104 --> 26013 <_> 26014 <!-- root node --> 26015 <feature> 26016 <rects> 26017 <_>0 0 14 4 -1.</_> 26018 <_>0 2 14 2 2.</_></rects> 26019 <tilted>0</tilted></feature> 26020 <threshold>-0.1094442978501320</threshold> 26021 <left_val>0.9508574008941650</left_val> 26022 <right_val>-9.4355372712016106e-003</right_val></_></_> 26023 <_> 26024 <!-- tree 105 --> 26025 <_> 26026 <!-- root node --> 26027 <feature> 26028 <rects> 26029 <_>13 10 6 7 -1.</_> 26030 <_>15 10 2 7 3.</_></rects> 26031 <tilted>0</tilted></feature> 26032 <threshold>-1.2755279894918203e-003</threshold> 26033 <left_val>0.0569029003381729</left_val> 26034 <right_val>-0.0834297835826874</right_val></_></_> 26035 <_> 26036 <!-- tree 106 --> 26037 <_> 26038 <!-- root node --> 26039 <feature> 26040 <rects> 26041 <_>3 10 6 7 -1.</_> 26042 <_>5 10 2 7 3.</_></rects> 26043 <tilted>0</tilted></feature> 26044 <threshold>-0.0805784016847610</threshold> 26045 <left_val>-0.9513928890228272</left_val> 26046 <right_val>8.2268668338656425e-003</right_val></_></_> 26047 <_> 26048 <!-- tree 107 --> 26049 <_> 26050 <!-- root node --> 26051 <feature> 26052 <rects> 26053 <_>2 4 18 4 -1.</_> 26054 <_>8 4 6 4 3.</_></rects> 26055 <tilted>0</tilted></feature> 26056 <threshold>-0.1204798966646195</threshold> 26057 <left_val>-0.3027386963367462</left_val> 26058 <right_val>0.0284893400967121</right_val></_></_> 26059 <_> 26060 <!-- tree 108 --> 26061 <_> 26062 <!-- root node --> 26063 <feature> 26064 <rects> 26065 <_>5 3 12 9 -1.</_> 26066 <_>9 6 4 3 9.</_></rects> 26067 <tilted>0</tilted></feature> 26068 <threshold>-0.1829497069120407</threshold> 26069 <left_val>0.2386613041162491</left_val> 26070 <right_val>-0.0627739429473877</right_val></_></_> 26071 <_> 26072 <!-- tree 109 --> 26073 <_> 26074 <!-- root node --> 26075 <feature> 26076 <rects> 26077 <_>10 8 10 7 -1.</_> 26078 <_>10 8 5 7 2.</_></rects> 26079 <tilted>0</tilted></feature> 26080 <threshold>-0.1710640937089920</threshold> 26081 <left_val>-0.5939468145370483</left_val> 26082 <right_val>3.1515269074589014e-003</right_val></_></_> 26083 <_> 26084 <!-- tree 110 --> 26085 <_> 26086 <!-- root node --> 26087 <feature> 26088 <rects> 26089 <_>5 2 4 16 -1.</_> 26090 <_>5 6 4 8 2.</_></rects> 26091 <tilted>0</tilted></feature> 26092 <threshold>-0.0734148770570755</threshold> 26093 <left_val>-0.8693308234214783</left_val> 26094 <right_val>0.0100843897089362</right_val></_></_> 26095 <_> 26096 <!-- tree 111 --> 26097 <_> 26098 <!-- root node --> 26099 <feature> 26100 <rects> 26101 <_>16 8 6 8 -1.</_> 26102 <_>19 8 3 4 2.</_> 26103 <_>16 12 3 4 2.</_></rects> 26104 <tilted>0</tilted></feature> 26105 <threshold>0.0242382995784283</threshold> 26106 <left_val>-0.0217561107128859</left_val> 26107 <right_val>0.1621855944395065</right_val></_></_> 26108 <_> 26109 <!-- tree 112 --> 26110 <_> 26111 <!-- root node --> 26112 <feature> 26113 <rects> 26114 <_>0 12 17 4 -1.</_> 26115 <_>0 14 17 2 2.</_></rects> 26116 <tilted>0</tilted></feature> 26117 <threshold>-7.1713668294250965e-003</threshold> 26118 <left_val>-0.0973455905914307</left_val> 26119 <right_val>0.0921484977006912</right_val></_></_> 26120 <_> 26121 <!-- tree 113 --> 26122 <_> 26123 <!-- root node --> 26124 <feature> 26125 <rects> 26126 <_>7 12 14 6 -1.</_> 26127 <_>7 15 14 3 2.</_></rects> 26128 <tilted>0</tilted></feature> 26129 <threshold>-0.0333443991839886</threshold> 26130 <left_val>0.0746453925967216</left_val> 26131 <right_val>-0.0221606791019440</right_val></_></_> 26132 <_> 26133 <!-- tree 114 --> 26134 <_> 26135 <!-- root node --> 26136 <feature> 26137 <rects> 26138 <_>0 13 12 4 -1.</_> 26139 <_>0 13 6 2 2.</_> 26140 <_>6 15 6 2 2.</_></rects> 26141 <tilted>0</tilted></feature> 26142 <threshold>7.2907900903373957e-004</threshold> 26143 <left_val>-0.0949718132615089</left_val> 26144 <right_val>0.1182674020528793</right_val></_></_> 26145 <_> 26146 <!-- tree 115 --> 26147 <_> 26148 <!-- root node --> 26149 <feature> 26150 <rects> 26151 <_>10 13 12 3 -1.</_> 26152 <_>10 14 12 1 3.</_></rects> 26153 <tilted>0</tilted></feature> 26154 <threshold>-1.0217289673164487e-003</threshold> 26155 <left_val>0.0564262308180332</left_val> 26156 <right_val>-0.0375738292932510</right_val></_></_> 26157 <_> 26158 <!-- tree 116 --> 26159 <_> 26160 <!-- root node --> 26161 <feature> 26162 <rects> 26163 <_>7 11 8 6 -1.</_> 26164 <_>7 11 4 3 2.</_> 26165 <_>11 14 4 3 2.</_></rects> 26166 <tilted>0</tilted></feature> 26167 <threshold>-8.4900937508791685e-004</threshold> 26168 <left_val>-0.1388314962387085</left_val> 26169 <right_val>0.0700473263859749</right_val></_></_> 26170 <_> 26171 <!-- tree 117 --> 26172 <_> 26173 <!-- root node --> 26174 <feature> 26175 <rects> 26176 <_>9 6 12 9 -1.</_> 26177 <_>12 6 6 9 2.</_></rects> 26178 <tilted>0</tilted></feature> 26179 <threshold>0.0998505130410194</threshold> 26180 <left_val>-0.0140115898102522</left_val> 26181 <right_val>0.2611567974090576</right_val></_></_> 26182 <_> 26183 <!-- tree 118 --> 26184 <_> 26185 <!-- root node --> 26186 <feature> 26187 <rects> 26188 <_>1 6 12 8 -1.</_> 26189 <_>4 6 6 8 2.</_></rects> 26190 <tilted>0</tilted></feature> 26191 <threshold>-0.1309006959199905</threshold> 26192 <left_val>0.7137935161590576</left_val> 26193 <right_val>-0.0116437999531627</right_val></_></_> 26194 <_> 26195 <!-- tree 119 --> 26196 <_> 26197 <!-- root node --> 26198 <feature> 26199 <rects> 26200 <_>8 12 6 6 -1.</_> 26201 <_>8 14 6 2 3.</_></rects> 26202 <tilted>0</tilted></feature> 26203 <threshold>9.1210529208183289e-003</threshold> 26204 <left_val>0.0454028099775314</left_val> 26205 <right_val>-0.2183001041412354</right_val></_></_> 26206 <_> 26207 <!-- tree 120 --> 26208 <_> 26209 <!-- root node --> 26210 <feature> 26211 <rects> 26212 <_>1 4 20 14 -1.</_> 26213 <_>1 4 10 7 2.</_> 26214 <_>11 11 10 7 2.</_></rects> 26215 <tilted>0</tilted></feature> 26216 <threshold>0.2010647952556610</threshold> 26217 <left_val>-0.0207532700151205</left_val> 26218 <right_val>0.5123022198677063</right_val></_></_> 26219 <_> 26220 <!-- tree 121 --> 26221 <_> 26222 <!-- root node --> 26223 <feature> 26224 <rects> 26225 <_>18 0 4 10 -1.</_> 26226 <_>19 1 2 10 2.</_></rects> 26227 <tilted>1</tilted></feature> 26228 <threshold>0.0473893098533154</threshold> 26229 <left_val>9.4779124483466148e-003</left_val> 26230 <right_val>-0.4794239103794098</right_val></_></_> 26231 <_> 26232 <!-- tree 122 --> 26233 <_> 26234 <!-- root node --> 26235 <feature> 26236 <rects> 26237 <_>2 2 6 12 -1.</_> 26238 <_>2 5 6 6 2.</_></rects> 26239 <tilted>0</tilted></feature> 26240 <threshold>-0.0571185387670994</threshold> 26241 <left_val>0.3916605114936829</left_val> 26242 <right_val>-0.0267039109021425</right_val></_></_> 26243 <_> 26244 <!-- tree 123 --> 26245 <_> 26246 <!-- root node --> 26247 <feature> 26248 <rects> 26249 <_>16 5 4 9 -1.</_> 26250 <_>16 8 4 3 3.</_></rects> 26251 <tilted>0</tilted></feature> 26252 <threshold>-8.3700623363256454e-003</threshold> 26253 <left_val>-0.1339945942163467</left_val> 26254 <right_val>0.0484609007835388</right_val></_></_> 26255 <_> 26256 <!-- tree 124 --> 26257 <_> 26258 <!-- root node --> 26259 <feature> 26260 <rects> 26261 <_>6 9 8 4 -1.</_> 26262 <_>10 9 4 4 2.</_></rects> 26263 <tilted>0</tilted></feature> 26264 <threshold>4.0913890115916729e-003</threshold> 26265 <left_val>-0.0594897791743279</left_val> 26266 <right_val>0.1743853986263275</right_val></_></_> 26267 <_> 26268 <!-- tree 125 --> 26269 <_> 26270 <!-- root node --> 26271 <feature> 26272 <rects> 26273 <_>7 8 14 3 -1.</_> 26274 <_>7 8 7 3 2.</_></rects> 26275 <tilted>0</tilted></feature> 26276 <threshold>0.0718994885683060</threshold> 26277 <left_val>0.0117231803014874</left_val> 26278 <right_val>-0.3627477884292603</right_val></_></_> 26279 <_> 26280 <!-- tree 126 --> 26281 <_> 26282 <!-- root node --> 26283 <feature> 26284 <rects> 26285 <_>0 8 18 3 -1.</_> 26286 <_>9 8 9 3 2.</_></rects> 26287 <tilted>0</tilted></feature> 26288 <threshold>-3.6888250615447760e-003</threshold> 26289 <left_val>0.0757636278867722</left_val> 26290 <right_val>-0.1503359973430634</right_val></_></_> 26291 <_> 26292 <!-- tree 127 --> 26293 <_> 26294 <!-- root node --> 26295 <feature> 26296 <rects> 26297 <_>14 6 8 4 -1.</_> 26298 <_>14 6 8 2 2.</_></rects> 26299 <tilted>1</tilted></feature> 26300 <threshold>-7.4795219115912914e-003</threshold> 26301 <left_val>0.1502785980701447</left_val> 26302 <right_val>-0.0458704903721809</right_val></_></_> 26303 <_> 26304 <!-- tree 128 --> 26305 <_> 26306 <!-- root node --> 26307 <feature> 26308 <rects> 26309 <_>0 3 18 2 -1.</_> 26310 <_>9 3 9 2 2.</_></rects> 26311 <tilted>0</tilted></feature> 26312 <threshold>-0.0125825898721814</threshold> 26313 <left_val>-0.1991554945707321</left_val> 26314 <right_val>0.0639174506068230</right_val></_></_> 26315 <_> 26316 <!-- tree 129 --> 26317 <_> 26318 <!-- root node --> 26319 <feature> 26320 <rects> 26321 <_>6 6 10 8 -1.</_> 26322 <_>6 8 10 4 2.</_></rects> 26323 <tilted>0</tilted></feature> 26324 <threshold>3.5687079653143883e-003</threshold> 26325 <left_val>-0.1211723983287811</left_val> 26326 <right_val>0.1095608025789261</right_val></_></_> 26327 <_> 26328 <!-- tree 130 --> 26329 <_> 26330 <!-- root node --> 26331 <feature> 26332 <rects> 26333 <_>1 5 10 12 -1.</_> 26334 <_>1 8 10 6 2.</_></rects> 26335 <tilted>0</tilted></feature> 26336 <threshold>1.7363800434395671e-003</threshold> 26337 <left_val>0.1225852966308594</left_val> 26338 <right_val>-0.0935562625527382</right_val></_></_> 26339 <_> 26340 <!-- tree 131 --> 26341 <_> 26342 <!-- root node --> 26343 <feature> 26344 <rects> 26345 <_>11 6 3 12 -1.</_> 26346 <_>12 6 1 12 3.</_></rects> 26347 <tilted>0</tilted></feature> 26348 <threshold>-1.4523629797622561e-003</threshold> 26349 <left_val>0.0967225283384323</left_val> 26350 <right_val>-0.0807396993041039</right_val></_></_> 26351 <_> 26352 <!-- tree 132 --> 26353 <_> 26354 <!-- root node --> 26355 <feature> 26356 <rects> 26357 <_>8 6 3 12 -1.</_> 26358 <_>9 6 1 12 3.</_></rects> 26359 <tilted>0</tilted></feature> 26360 <threshold>3.1017749570310116e-003</threshold> 26361 <left_val>-0.0690764710307121</left_val> 26362 <right_val>0.1539645940065384</right_val></_></_> 26363 <_> 26364 <!-- tree 133 --> 26365 <_> 26366 <!-- root node --> 26367 <feature> 26368 <rects> 26369 <_>11 1 3 13 -1.</_> 26370 <_>12 1 1 13 3.</_></rects> 26371 <tilted>0</tilted></feature> 26372 <threshold>-8.5509587079286575e-003</threshold> 26373 <left_val>-0.1518629044294357</left_val> 26374 <right_val>0.0403469204902649</right_val></_></_> 26375 <_> 26376 <!-- tree 134 --> 26377 <_> 26378 <!-- root node --> 26379 <feature> 26380 <rects> 26381 <_>8 2 3 13 -1.</_> 26382 <_>9 2 1 13 3.</_></rects> 26383 <tilted>0</tilted></feature> 26384 <threshold>-1.8966189818456769e-003</threshold> 26385 <left_val>0.1217254996299744</left_val> 26386 <right_val>-0.0985434427857399</right_val></_></_></trees> 26387 <stage_threshold>-30.6093006134033200</stage_threshold> 26388 <parent>26</parent> 26389 <next>-1</next></_> 26390 <_> 26391 <!-- stage 28 --> 26392 <trees> 26393 <_> 26394 <!-- tree 0 --> 26395 <_> 26396 <!-- root node --> 26397 <feature> 26398 <rects> 26399 <_>6 6 2 12 -1.</_> 26400 <_>6 12 2 6 2.</_></rects> 26401 <tilted>0</tilted></feature> 26402 <threshold>-0.0237547401338816</threshold> 26403 <left_val>0.1709530055522919</left_val> 26404 <right_val>-0.1153428032994270</right_val></_></_> 26405 <_> 26406 <!-- tree 1 --> 26407 <_> 26408 <!-- root node --> 26409 <feature> 26410 <rects> 26411 <_>17 4 2 9 -1.</_> 26412 <_>17 4 1 9 2.</_></rects> 26413 <tilted>1</tilted></feature> 26414 <threshold>-7.3806629516184330e-003</threshold> 26415 <left_val>0.0880671963095665</left_val> 26416 <right_val>-0.0403177700936794</right_val></_></_> 26417 <_> 26418 <!-- tree 2 --> 26419 <_> 26420 <!-- root node --> 26421 <feature> 26422 <rects> 26423 <_>0 0 12 4 -1.</_> 26424 <_>0 1 12 2 2.</_></rects> 26425 <tilted>0</tilted></feature> 26426 <threshold>1.1198900174349546e-003</threshold> 26427 <left_val>-0.0798953026533127</left_val> 26428 <right_val>0.1344889998435974</right_val></_></_> 26429 <_> 26430 <!-- tree 3 --> 26431 <_> 26432 <!-- root node --> 26433 <feature> 26434 <rects> 26435 <_>8 4 12 4 -1.</_> 26436 <_>14 4 6 2 2.</_> 26437 <_>8 6 6 2 2.</_></rects> 26438 <tilted>0</tilted></feature> 26439 <threshold>0.0337187312543392</threshold> 26440 <left_val>-0.0152200302109122</left_val> 26441 <right_val>0.2991417050361633</right_val></_></_> 26442 <_> 26443 <!-- tree 4 --> 26444 <_> 26445 <!-- root node --> 26446 <feature> 26447 <rects> 26448 <_>6 13 6 4 -1.</_> 26449 <_>6 15 6 2 2.</_></rects> 26450 <tilted>0</tilted></feature> 26451 <threshold>-2.8022660990245640e-004</threshold> 26452 <left_val>0.0635997280478477</left_val> 26453 <right_val>-0.1561919003725052</right_val></_></_> 26454 <_> 26455 <!-- tree 5 --> 26456 <_> 26457 <!-- root node --> 26458 <feature> 26459 <rects> 26460 <_>7 13 12 4 -1.</_> 26461 <_>7 15 12 2 2.</_></rects> 26462 <tilted>0</tilted></feature> 26463 <threshold>-3.9523928426206112e-003</threshold> 26464 <left_val>-9.7961323335766792e-003</left_val> 26465 <right_val>0.1057164967060089</right_val></_></_> 26466 <_> 26467 <!-- tree 6 --> 26468 <_> 26469 <!-- root node --> 26470 <feature> 26471 <rects> 26472 <_>1 8 6 4 -1.</_> 26473 <_>4 8 3 4 2.</_></rects> 26474 <tilted>0</tilted></feature> 26475 <threshold>2.1397129166871309e-003</threshold> 26476 <left_val>0.0899535864591599</left_val> 26477 <right_val>-0.1448377966880798</right_val></_></_> 26478 <_> 26479 <!-- tree 7 --> 26480 <_> 26481 <!-- root node --> 26482 <feature> 26483 <rects> 26484 <_>15 8 6 10 -1.</_> 26485 <_>15 8 3 10 2.</_></rects> 26486 <tilted>0</tilted></feature> 26487 <threshold>-0.0675212964415550</threshold> 26488 <left_val>0.2093243002891541</left_val> 26489 <right_val>-0.0539238117635250</right_val></_></_> 26490 <_> 26491 <!-- tree 8 --> 26492 <_> 26493 <!-- root node --> 26494 <feature> 26495 <rects> 26496 <_>1 8 6 10 -1.</_> 26497 <_>4 8 3 10 2.</_></rects> 26498 <tilted>0</tilted></feature> 26499 <threshold>0.0103789502754807</threshold> 26500 <left_val>-0.0641771629452705</left_val> 26501 <right_val>0.2781462967395783</right_val></_></_> 26502 <_> 26503 <!-- tree 9 --> 26504 <_> 26505 <!-- root node --> 26506 <feature> 26507 <rects> 26508 <_>16 12 6 4 -1.</_> 26509 <_>16 12 3 4 2.</_></rects> 26510 <tilted>0</tilted></feature> 26511 <threshold>6.2903137877583504e-003</threshold> 26512 <left_val>-0.0492537207901478</left_val> 26513 <right_val>0.0821684226393700</right_val></_></_> 26514 <_> 26515 <!-- tree 10 --> 26516 <_> 26517 <!-- root node --> 26518 <feature> 26519 <rects> 26520 <_>1 6 6 8 -1.</_> 26521 <_>1 6 3 4 2.</_> 26522 <_>4 10 3 4 2.</_></rects> 26523 <tilted>0</tilted></feature> 26524 <threshold>9.3974275514483452e-003</threshold> 26525 <left_val>0.0845377370715141</left_val> 26526 <right_val>-0.2288530021905899</right_val></_></_> 26527 <_> 26528 <!-- tree 11 --> 26529 <_> 26530 <!-- root node --> 26531 <feature> 26532 <rects> 26533 <_>11 1 4 11 -1.</_> 26534 <_>12 2 2 11 2.</_></rects> 26535 <tilted>1</tilted></feature> 26536 <threshold>0.0101209301501513</threshold> 26537 <left_val>0.0333371199667454</left_val> 26538 <right_val>-0.0816642567515373</right_val></_></_> 26539 <_> 26540 <!-- tree 12 --> 26541 <_> 26542 <!-- root node --> 26543 <feature> 26544 <rects> 26545 <_>11 1 11 4 -1.</_> 26546 <_>10 2 11 2 2.</_></rects> 26547 <tilted>1</tilted></feature> 26548 <threshold>3.1531939748674631e-003</threshold> 26549 <left_val>-0.1022099032998085</left_val> 26550 <right_val>0.1183736026287079</right_val></_></_> 26551 <_> 26552 <!-- tree 13 --> 26553 <_> 26554 <!-- root node --> 26555 <feature> 26556 <rects> 26557 <_>12 0 4 7 -1.</_> 26558 <_>13 1 2 7 2.</_></rects> 26559 <tilted>1</tilted></feature> 26560 <threshold>0.0751372873783112</threshold> 26561 <left_val>2.7504051104187965e-003</left_val> 26562 <right_val>-1.0000959634780884</right_val></_></_> 26563 <_> 26564 <!-- tree 14 --> 26565 <_> 26566 <!-- root node --> 26567 <feature> 26568 <rects> 26569 <_>10 0 7 4 -1.</_> 26570 <_>9 1 7 2 2.</_></rects> 26571 <tilted>1</tilted></feature> 26572 <threshold>-2.3692219983786345e-003</threshold> 26573 <left_val>0.0990924835205078</left_val> 26574 <right_val>-0.1142518967390060</right_val></_></_> 26575 <_> 26576 <!-- tree 15 --> 26577 <_> 26578 <!-- root node --> 26579 <feature> 26580 <rects> 26581 <_>13 5 2 12 -1.</_> 26582 <_>13 5 1 12 2.</_></rects> 26583 <tilted>0</tilted></feature> 26584 <threshold>-0.0245103798806667</threshold> 26585 <left_val>0.2870832085609436</left_val> 26586 <right_val>-0.0161488000303507</right_val></_></_> 26587 <_> 26588 <!-- tree 16 --> 26589 <_> 26590 <!-- root node --> 26591 <feature> 26592 <rects> 26593 <_>7 5 2 12 -1.</_> 26594 <_>8 5 1 12 2.</_></rects> 26595 <tilted>0</tilted></feature> 26596 <threshold>-1.9670750480145216e-003</threshold> 26597 <left_val>-0.1153137013316155</left_val> 26598 <right_val>0.0868165567517281</right_val></_></_> 26599 <_> 26600 <!-- tree 17 --> 26601 <_> 26602 <!-- root node --> 26603 <feature> 26604 <rects> 26605 <_>8 5 9 4 -1.</_> 26606 <_>11 5 3 4 3.</_></rects> 26607 <tilted>0</tilted></feature> 26608 <threshold>0.0308453794568777</threshold> 26609 <left_val>-0.0240906104445457</left_val> 26610 <right_val>0.1960754990577698</right_val></_></_> 26611 <_> 26612 <!-- tree 18 --> 26613 <_> 26614 <!-- root node --> 26615 <feature> 26616 <rects> 26617 <_>7 0 10 3 -1.</_> 26618 <_>6 1 10 1 3.</_></rects> 26619 <tilted>1</tilted></feature> 26620 <threshold>0.0238163098692894</threshold> 26621 <left_val>0.0328240394592285</left_val> 26622 <right_val>-0.3571043908596039</right_val></_></_> 26623 <_> 26624 <!-- tree 19 --> 26625 <_> 26626 <!-- root node --> 26627 <feature> 26628 <rects> 26629 <_>17 4 2 9 -1.</_> 26630 <_>17 4 1 9 2.</_></rects> 26631 <tilted>1</tilted></feature> 26632 <threshold>-0.0401991307735443</threshold> 26633 <left_val>-0.5285078883171082</left_val> 26634 <right_val>6.0749719850718975e-003</right_val></_></_> 26635 <_> 26636 <!-- tree 20 --> 26637 <_> 26638 <!-- root node --> 26639 <feature> 26640 <rects> 26641 <_>5 4 9 2 -1.</_> 26642 <_>5 4 9 1 2.</_></rects> 26643 <tilted>1</tilted></feature> 26644 <threshold>-6.8876100704073906e-003</threshold> 26645 <left_val>0.2205885052680969</left_val> 26646 <right_val>-0.0591514892876148</right_val></_></_> 26647 <_> 26648 <!-- tree 21 --> 26649 <_> 26650 <!-- root node --> 26651 <feature> 26652 <rects> 26653 <_>12 10 4 8 -1.</_> 26654 <_>12 10 2 8 2.</_></rects> 26655 <tilted>0</tilted></feature> 26656 <threshold>-2.5466730585321784e-004</threshold> 26657 <left_val>0.0718978792428970</left_val> 26658 <right_val>-0.0849620327353477</right_val></_></_> 26659 <_> 26660 <!-- tree 22 --> 26661 <_> 26662 <!-- root node --> 26663 <feature> 26664 <rects> 26665 <_>2 0 12 4 -1.</_> 26666 <_>2 0 6 2 2.</_> 26667 <_>8 2 6 2 2.</_></rects> 26668 <tilted>0</tilted></feature> 26669 <threshold>9.8468195647001266e-003</threshold> 26670 <left_val>0.0413667596876621</left_val> 26671 <right_val>-0.2398452013731003</right_val></_></_> 26672 <_> 26673 <!-- tree 23 --> 26674 <_> 26675 <!-- root node --> 26676 <feature> 26677 <rects> 26678 <_>7 7 15 3 -1.</_> 26679 <_>7 8 15 1 3.</_></rects> 26680 <tilted>0</tilted></feature> 26681 <threshold>0.0279344003647566</threshold> 26682 <left_val>-0.0236471593379974</left_val> 26683 <right_val>0.2473800927400589</right_val></_></_> 26684 <_> 26685 <!-- tree 24 --> 26686 <_> 26687 <!-- root node --> 26688 <feature> 26689 <rects> 26690 <_>2 0 12 4 -1.</_> 26691 <_>2 0 6 2 2.</_> 26692 <_>8 2 6 2 2.</_></rects> 26693 <tilted>0</tilted></feature> 26694 <threshold>-0.0229603908956051</threshold> 26695 <left_val>-0.4518792927265167</left_val> 26696 <right_val>0.0223057791590691</right_val></_></_> 26697 <_> 26698 <!-- tree 25 --> 26699 <_> 26700 <!-- root node --> 26701 <feature> 26702 <rects> 26703 <_>10 14 6 4 -1.</_> 26704 <_>10 14 3 4 2.</_></rects> 26705 <tilted>0</tilted></feature> 26706 <threshold>3.2323438790626824e-004</threshold> 26707 <left_val>-0.0875360071659088</left_val> 26708 <right_val>0.0784909576177597</right_val></_></_> 26709 <_> 26710 <!-- tree 26 --> 26711 <_> 26712 <!-- root node --> 26713 <feature> 26714 <rects> 26715 <_>0 8 17 3 -1.</_> 26716 <_>0 9 17 1 3.</_></rects> 26717 <tilted>0</tilted></feature> 26718 <threshold>0.0319548994302750</threshold> 26719 <left_val>-0.0262023899704218</left_val> 26720 <right_val>0.3920490145683289</right_val></_></_> 26721 <_> 26722 <!-- tree 27 --> 26723 <_> 26724 <!-- root node --> 26725 <feature> 26726 <rects> 26727 <_>6 13 10 5 -1.</_> 26728 <_>6 13 5 5 2.</_></rects> 26729 <tilted>0</tilted></feature> 26730 <threshold>1.9027979578822851e-003</threshold> 26731 <left_val>0.0627627819776535</left_val> 26732 <right_val>-0.1610735058784485</right_val></_></_> 26733 <_> 26734 <!-- tree 28 --> 26735 <_> 26736 <!-- root node --> 26737 <feature> 26738 <rects> 26739 <_>5 11 8 5 -1.</_> 26740 <_>9 11 4 5 2.</_></rects> 26741 <tilted>0</tilted></feature> 26742 <threshold>-3.2691629603505135e-003</threshold> 26743 <left_val>0.1016800031065941</left_val> 26744 <right_val>-0.1043248027563095</right_val></_></_> 26745 <_> 26746 <!-- tree 29 --> 26747 <_> 26748 <!-- root node --> 26749 <feature> 26750 <rects> 26751 <_>14 8 4 6 -1.</_> 26752 <_>14 8 2 6 2.</_></rects> 26753 <tilted>0</tilted></feature> 26754 <threshold>0.0100402003154159</threshold> 26755 <left_val>-0.0280465800315142</left_val> 26756 <right_val>0.1211789995431900</right_val></_></_> 26757 <_> 26758 <!-- tree 30 --> 26759 <_> 26760 <!-- root node --> 26761 <feature> 26762 <rects> 26763 <_>0 10 5 8 -1.</_> 26764 <_>0 14 5 4 2.</_></rects> 26765 <tilted>0</tilted></feature> 26766 <threshold>-0.0341586805880070</threshold> 26767 <left_val>-0.2897444963455200</left_val> 26768 <right_val>0.0352826602756977</right_val></_></_> 26769 <_> 26770 <!-- tree 31 --> 26771 <_> 26772 <!-- root node --> 26773 <feature> 26774 <rects> 26775 <_>7 7 15 3 -1.</_> 26776 <_>7 8 15 1 3.</_></rects> 26777 <tilted>0</tilted></feature> 26778 <threshold>1.7615250544622540e-003</threshold> 26779 <left_val>-0.0555830709636211</left_val> 26780 <right_val>0.0741584524512291</right_val></_></_> 26781 <_> 26782 <!-- tree 32 --> 26783 <_> 26784 <!-- root node --> 26785 <feature> 26786 <rects> 26787 <_>2 11 7 4 -1.</_> 26788 <_>2 13 7 2 2.</_></rects> 26789 <tilted>0</tilted></feature> 26790 <threshold>-0.0211346503347158</threshold> 26791 <left_val>0.2513059079647064</left_val> 26792 <right_val>-0.0403546392917633</right_val></_></_> 26793 <_> 26794 <!-- tree 33 --> 26795 <_> 26796 <!-- root node --> 26797 <feature> 26798 <rects> 26799 <_>8 3 11 12 -1.</_> 26800 <_>8 6 11 6 2.</_></rects> 26801 <tilted>0</tilted></feature> 26802 <threshold>0.0297593697905540</threshold> 26803 <left_val>0.0380295403301716</left_val> 26804 <right_val>-0.1422636955976486</right_val></_></_> 26805 <_> 26806 <!-- tree 34 --> 26807 <_> 26808 <!-- root node --> 26809 <feature> 26810 <rects> 26811 <_>2 4 12 4 -1.</_> 26812 <_>2 4 6 2 2.</_> 26813 <_>8 6 6 2 2.</_></rects> 26814 <tilted>0</tilted></feature> 26815 <threshold>0.0148660801351070</threshold> 26816 <left_val>-0.0397216901183128</left_val> 26817 <right_val>0.2752254009246826</right_val></_></_> 26818 <_> 26819 <!-- tree 35 --> 26820 <_> 26821 <!-- root node --> 26822 <feature> 26823 <rects> 26824 <_>19 2 3 12 -1.</_> 26825 <_>20 3 1 12 3.</_></rects> 26826 <tilted>1</tilted></feature> 26827 <threshold>-0.0358294285833836</threshold> 26828 <left_val>-0.3345197141170502</left_val> 26829 <right_val>9.6839247271418571e-003</right_val></_></_> 26830 <_> 26831 <!-- tree 36 --> 26832 <_> 26833 <!-- root node --> 26834 <feature> 26835 <rects> 26836 <_>1 6 12 4 -1.</_> 26837 <_>1 6 6 2 2.</_> 26838 <_>7 8 6 2 2.</_></rects> 26839 <tilted>0</tilted></feature> 26840 <threshold>-3.2887340057641268e-003</threshold> 26841 <left_val>-0.1425821930170059</left_val> 26842 <right_val>0.0685762092471123</right_val></_></_> 26843 <_> 26844 <!-- tree 37 --> 26845 <_> 26846 <!-- root node --> 26847 <feature> 26848 <rects> 26849 <_>9 9 13 3 -1.</_> 26850 <_>9 10 13 1 3.</_></rects> 26851 <tilted>0</tilted></feature> 26852 <threshold>0.0427148789167404</threshold> 26853 <left_val>-0.0142404399812222</left_val> 26854 <right_val>0.3876529932022095</right_val></_></_> 26855 <_> 26856 <!-- tree 38 --> 26857 <_> 26858 <!-- root node --> 26859 <feature> 26860 <rects> 26861 <_>0 5 12 6 -1.</_> 26862 <_>0 5 6 3 2.</_> 26863 <_>6 8 6 3 2.</_></rects> 26864 <tilted>0</tilted></feature> 26865 <threshold>1.2328879674896598e-003</threshold> 26866 <left_val>0.0786238536238670</left_val> 26867 <right_val>-0.1186942011117935</right_val></_></_> 26868 <_> 26869 <!-- tree 39 --> 26870 <_> 26871 <!-- root node --> 26872 <feature> 26873 <rects> 26874 <_>11 0 3 13 -1.</_> 26875 <_>12 0 1 13 3.</_></rects> 26876 <tilted>0</tilted></feature> 26877 <threshold>-0.0104476204141974</threshold> 26878 <left_val>-0.1488299071788788</left_val> 26879 <right_val>0.0315711684525013</right_val></_></_> 26880 <_> 26881 <!-- tree 40 --> 26882 <_> 26883 <!-- root node --> 26884 <feature> 26885 <rects> 26886 <_>8 0 3 13 -1.</_> 26887 <_>9 0 1 13 3.</_></rects> 26888 <tilted>0</tilted></feature> 26889 <threshold>0.0126563599333167</threshold> 26890 <left_val>-0.0465724617242813</left_val> 26891 <right_val>0.2621260881423950</right_val></_></_> 26892 <_> 26893 <!-- tree 41 --> 26894 <_> 26895 <!-- root node --> 26896 <feature> 26897 <rects> 26898 <_>14 6 8 8 -1.</_> 26899 <_>14 10 8 4 2.</_></rects> 26900 <tilted>0</tilted></feature> 26901 <threshold>0.0498497188091278</threshold> 26902 <left_val>0.0170153398066759</left_val> 26903 <right_val>-0.1426873058080673</right_val></_></_> 26904 <_> 26905 <!-- tree 42 --> 26906 <_> 26907 <!-- root node --> 26908 <feature> 26909 <rects> 26910 <_>0 8 8 6 -1.</_> 26911 <_>0 10 8 2 3.</_></rects> 26912 <tilted>0</tilted></feature> 26913 <threshold>-0.0186072401702404</threshold> 26914 <left_val>0.2333865016698837</left_val> 26915 <right_val>-0.0470949411392212</right_val></_></_> 26916 <_> 26917 <!-- tree 43 --> 26918 <_> 26919 <!-- root node --> 26920 <feature> 26921 <rects> 26922 <_>9 9 13 3 -1.</_> 26923 <_>9 10 13 1 3.</_></rects> 26924 <tilted>0</tilted></feature> 26925 <threshold>-0.0543973706662655</threshold> 26926 <left_val>-0.4051130115985870</left_val> 26927 <right_val>8.1606470048427582e-003</right_val></_></_> 26928 <_> 26929 <!-- tree 44 --> 26930 <_> 26931 <!-- root node --> 26932 <feature> 26933 <rects> 26934 <_>0 9 13 3 -1.</_> 26935 <_>0 10 13 1 3.</_></rects> 26936 <tilted>0</tilted></feature> 26937 <threshold>2.9153900686651468e-003</threshold> 26938 <left_val>-0.0893139466643333</left_val> 26939 <right_val>0.1333537995815277</right_val></_></_> 26940 <_> 26941 <!-- tree 45 --> 26942 <_> 26943 <!-- root node --> 26944 <feature> 26945 <rects> 26946 <_>4 14 14 4 -1.</_> 26947 <_>11 14 7 2 2.</_> 26948 <_>4 16 7 2 2.</_></rects> 26949 <tilted>0</tilted></feature> 26950 <threshold>-5.9154080227017403e-003</threshold> 26951 <left_val>-0.2041452974081039</left_val> 26952 <right_val>0.0484757013618946</right_val></_></_> 26953 <_> 26954 <!-- tree 46 --> 26955 <_> 26956 <!-- root node --> 26957 <feature> 26958 <rects> 26959 <_>0 3 6 6 -1.</_> 26960 <_>2 3 2 6 3.</_></rects> 26961 <tilted>0</tilted></feature> 26962 <threshold>-1.9841329194605350e-003</threshold> 26963 <left_val>0.1342810988426209</left_val> 26964 <right_val>-0.0758927911520004</right_val></_></_> 26965 <_> 26966 <!-- tree 47 --> 26967 <_> 26968 <!-- root node --> 26969 <feature> 26970 <rects> 26971 <_>2 6 20 4 -1.</_> 26972 <_>7 6 10 4 2.</_></rects> 26973 <tilted>0</tilted></feature> 26974 <threshold>-4.4047520495951176e-003</threshold> 26975 <left_val>0.0418521389365196</left_val> 26976 <right_val>-0.1011909022927284</right_val></_></_> 26977 <_> 26978 <!-- tree 48 --> 26979 <_> 26980 <!-- root node --> 26981 <feature> 26982 <rects> 26983 <_>2 7 6 6 -1.</_> 26984 <_>4 7 2 6 3.</_></rects> 26985 <tilted>0</tilted></feature> 26986 <threshold>0.0179828796535730</threshold> 26987 <left_val>0.0439786799252033</left_val> 26988 <right_val>-0.2505401968955994</right_val></_></_> 26989 <_> 26990 <!-- tree 49 --> 26991 <_> 26992 <!-- root node --> 26993 <feature> 26994 <rects> 26995 <_>15 8 6 10 -1.</_> 26996 <_>17 8 2 10 3.</_></rects> 26997 <tilted>0</tilted></feature> 26998 <threshold>-0.0780595019459724</threshold> 26999 <left_val>-0.3302507102489471</left_val> 27000 <right_val>6.3089421018958092e-003</right_val></_></_> 27001 <_> 27002 <!-- tree 50 --> 27003 <_> 27004 <!-- root node --> 27005 <feature> 27006 <rects> 27007 <_>1 8 6 10 -1.</_> 27008 <_>3 8 2 10 3.</_></rects> 27009 <tilted>0</tilted></feature> 27010 <threshold>7.2548650205135345e-003</threshold> 27011 <left_val>-0.1087217032909393</left_val> 27012 <right_val>0.0994110181927681</right_val></_></_> 27013 <_> 27014 <!-- tree 51 --> 27015 <_> 27016 <!-- root node --> 27017 <feature> 27018 <rects> 27019 <_>9 9 13 3 -1.</_> 27020 <_>9 10 13 1 3.</_></rects> 27021 <tilted>0</tilted></feature> 27022 <threshold>-2.7871869970113039e-003</threshold> 27023 <left_val>0.1365929991006851</left_val> 27024 <right_val>-0.0847996398806572</right_val></_></_> 27025 <_> 27026 <!-- tree 52 --> 27027 <_> 27028 <!-- root node --> 27029 <feature> 27030 <rects> 27031 <_>6 8 4 6 -1.</_> 27032 <_>6 8 4 3 2.</_></rects> 27033 <tilted>1</tilted></feature> 27034 <threshold>-9.3798413872718811e-003</threshold> 27035 <left_val>-0.1187245026230812</left_val> 27036 <right_val>0.0791080594062805</right_val></_></_> 27037 <_> 27038 <!-- tree 53 --> 27039 <_> 27040 <!-- root node --> 27041 <feature> 27042 <rects> 27043 <_>16 5 6 13 -1.</_> 27044 <_>16 5 3 13 2.</_></rects> 27045 <tilted>0</tilted></feature> 27046 <threshold>-0.0549264103174210</threshold> 27047 <left_val>0.1438207030296326</left_val> 27048 <right_val>-0.0300722699612379</right_val></_></_> 27049 <_> 27050 <!-- tree 54 --> 27051 <_> 27052 <!-- root node --> 27053 <feature> 27054 <rects> 27055 <_>0 5 6 13 -1.</_> 27056 <_>3 5 3 13 2.</_></rects> 27057 <tilted>0</tilted></feature> 27058 <threshold>-4.4219079427421093e-003</threshold> 27059 <left_val>0.1066642999649048</left_val> 27060 <right_val>-0.1083810031414032</right_val></_></_> 27061 <_> 27062 <!-- tree 55 --> 27063 <_> 27064 <!-- root node --> 27065 <feature> 27066 <rects> 27067 <_>4 10 18 2 -1.</_> 27068 <_>4 10 9 2 2.</_></rects> 27069 <tilted>0</tilted></feature> 27070 <threshold>1.0763059835880995e-003</threshold> 27071 <left_val>0.0273809898644686</left_val> 27072 <right_val>-0.0554460510611534</right_val></_></_> 27073 <_> 27074 <!-- tree 56 --> 27075 <_> 27076 <!-- root node --> 27077 <feature> 27078 <rects> 27079 <_>0 7 21 7 -1.</_> 27080 <_>7 7 7 7 3.</_></rects> 27081 <tilted>0</tilted></feature> 27082 <threshold>-0.0725140124559402</threshold> 27083 <left_val>-0.1089344993233681</left_val> 27084 <right_val>0.1009754016995430</right_val></_></_> 27085 <_> 27086 <!-- tree 57 --> 27087 <_> 27088 <!-- root node --> 27089 <feature> 27090 <rects> 27091 <_>5 6 12 12 -1.</_> 27092 <_>9 6 4 12 3.</_></rects> 27093 <tilted>0</tilted></feature> 27094 <threshold>-0.1647219061851502</threshold> 27095 <left_val>0.3036536872386932</left_val> 27096 <right_val>-0.0436662100255489</right_val></_></_> 27097 <_> 27098 <!-- tree 58 --> 27099 <_> 27100 <!-- root node --> 27101 <feature> 27102 <rects> 27103 <_>10 4 10 3 -1.</_> 27104 <_>9 5 10 1 3.</_></rects> 27105 <tilted>1</tilted></feature> 27106 <threshold>0.0798378065228462</threshold> 27107 <left_val>-0.0108286803588271</left_val> 27108 <right_val>0.8997743725776672</right_val></_></_> 27109 <_> 27110 <!-- tree 59 --> 27111 <_> 27112 <!-- root node --> 27113 <feature> 27114 <rects> 27115 <_>9 9 9 7 -1.</_> 27116 <_>12 9 3 7 3.</_></rects> 27117 <tilted>0</tilted></feature> 27118 <threshold>-5.2413612138479948e-004</threshold> 27119 <left_val>0.0852306336164474</left_val> 27120 <right_val>-0.1205397993326187</right_val></_></_> 27121 <_> 27122 <!-- tree 60 --> 27123 <_> 27124 <!-- root node --> 27125 <feature> 27126 <rects> 27127 <_>11 5 9 4 -1.</_> 27128 <_>14 8 3 4 3.</_></rects> 27129 <tilted>1</tilted></feature> 27130 <threshold>-0.0216322708874941</threshold> 27131 <left_val>-0.2109203934669495</left_val> 27132 <right_val>0.0655825436115265</right_val></_></_> 27133 <_> 27134 <!-- tree 61 --> 27135 <_> 27136 <!-- root node --> 27137 <feature> 27138 <rects> 27139 <_>12 3 3 10 -1.</_> 27140 <_>12 3 3 5 2.</_></rects> 27141 <tilted>1</tilted></feature> 27142 <threshold>0.1269153058528900</threshold> 27143 <left_val>-4.5935749076306820e-003</left_val> 27144 <right_val>0.4508964121341705</right_val></_></_> 27145 <_> 27146 <!-- tree 62 --> 27147 <_> 27148 <!-- root node --> 27149 <feature> 27150 <rects> 27151 <_>8 3 12 2 -1.</_> 27152 <_>8 3 6 2 2.</_></rects> 27153 <tilted>1</tilted></feature> 27154 <threshold>0.0954723507165909</threshold> 27155 <left_val>-0.0207988992333412</left_val> 27156 <right_val>0.5247465968132019</right_val></_></_> 27157 <_> 27158 <!-- tree 63 --> 27159 <_> 27160 <!-- root node --> 27161 <feature> 27162 <rects> 27163 <_>14 6 4 8 -1.</_> 27164 <_>14 10 4 4 2.</_></rects> 27165 <tilted>0</tilted></feature> 27166 <threshold>-0.0829360783100128</threshold> 27167 <left_val>0.8497673869132996</left_val> 27168 <right_val>-5.0510508008301258e-003</right_val></_></_> 27169 <_> 27170 <!-- tree 64 --> 27171 <_> 27172 <!-- root node --> 27173 <feature> 27174 <rects> 27175 <_>4 6 4 8 -1.</_> 27176 <_>4 10 4 4 2.</_></rects> 27177 <tilted>0</tilted></feature> 27178 <threshold>7.7482969500124454e-003</threshold> 27179 <left_val>-0.0553182885050774</left_val> 27180 <right_val>0.1714583039283752</right_val></_></_> 27181 <_> 27182 <!-- tree 65 --> 27183 <_> 27184 <!-- root node --> 27185 <feature> 27186 <rects> 27187 <_>6 0 11 12 -1.</_> 27188 <_>6 3 11 6 2.</_></rects> 27189 <tilted>0</tilted></feature> 27190 <threshold>-0.0217684395611286</threshold> 27191 <left_val>-0.1594793051481247</left_val> 27192 <right_val>0.0608737990260124</right_val></_></_> 27193 <_> 27194 <!-- tree 66 --> 27195 <_> 27196 <!-- root node --> 27197 <feature> 27198 <rects> 27199 <_>8 0 6 6 -1.</_> 27200 <_>8 3 6 3 2.</_></rects> 27201 <tilted>0</tilted></feature> 27202 <threshold>-1.1072609777329490e-004</threshold> 27203 <left_val>0.0788772925734520</left_val> 27204 <right_val>-0.1317763030529022</right_val></_></_> 27205 <_> 27206 <!-- tree 67 --> 27207 <_> 27208 <!-- root node --> 27209 <feature> 27210 <rects> 27211 <_>10 0 10 4 -1.</_> 27212 <_>10 0 5 4 2.</_></rects> 27213 <tilted>0</tilted></feature> 27214 <threshold>3.1122909858822823e-003</threshold> 27215 <left_val>-0.0430468395352364</left_val> 27216 <right_val>0.0623925812542439</right_val></_></_> 27217 <_> 27218 <!-- tree 68 --> 27219 <_> 27220 <!-- root node --> 27221 <feature> 27222 <rects> 27223 <_>2 0 10 4 -1.</_> 27224 <_>7 0 5 4 2.</_></rects> 27225 <tilted>0</tilted></feature> 27226 <threshold>-2.8692940250039101e-003</threshold> 27227 <left_val>0.1374697983264923</left_val> 27228 <right_val>-0.0804942175745964</right_val></_></_> 27229 <_> 27230 <!-- tree 69 --> 27231 <_> 27232 <!-- root node --> 27233 <feature> 27234 <rects> 27235 <_>10 3 8 8 -1.</_> 27236 <_>14 3 4 4 2.</_> 27237 <_>10 7 4 4 2.</_></rects> 27238 <tilted>0</tilted></feature> 27239 <threshold>0.1057576015591621</threshold> 27240 <left_val>1.0569440200924873e-003</left_val> 27241 <right_val>-0.9999381899833679</right_val></_></_> 27242 <_> 27243 <!-- tree 70 --> 27244 <_> 27245 <!-- root node --> 27246 <feature> 27247 <rects> 27248 <_>4 3 8 8 -1.</_> 27249 <_>4 3 4 4 2.</_> 27250 <_>8 7 4 4 2.</_></rects> 27251 <tilted>0</tilted></feature> 27252 <threshold>0.0461926795542240</threshold> 27253 <left_val>0.0172280203551054</left_val> 27254 <right_val>-0.5260491967201233</right_val></_></_> 27255 <_> 27256 <!-- tree 71 --> 27257 <_> 27258 <!-- root node --> 27259 <feature> 27260 <rects> 27261 <_>2 9 18 5 -1.</_> 27262 <_>8 9 6 5 3.</_></rects> 27263 <tilted>0</tilted></feature> 27264 <threshold>-0.2547619044780731</threshold> 27265 <left_val>-0.6292729973793030</left_val> 27266 <right_val>0.0136986197903752</right_val></_></_> 27267 <_> 27268 <!-- tree 72 --> 27269 <_> 27270 <!-- root node --> 27271 <feature> 27272 <rects> 27273 <_>0 15 16 3 -1.</_> 27274 <_>0 16 16 1 3.</_></rects> 27275 <tilted>0</tilted></feature> 27276 <threshold>-2.7374029159545898e-003</threshold> 27277 <left_val>0.1274753957986832</left_val> 27278 <right_val>-0.0695915222167969</right_val></_></_> 27279 <_> 27280 <!-- tree 73 --> 27281 <_> 27282 <!-- root node --> 27283 <feature> 27284 <rects> 27285 <_>6 16 12 2 -1.</_> 27286 <_>6 17 12 1 2.</_></rects> 27287 <tilted>0</tilted></feature> 27288 <threshold>2.1854760125279427e-003</threshold> 27289 <left_val>0.0418547615408897</left_val> 27290 <right_val>-0.2648145854473114</right_val></_></_> 27291 <_> 27292 <!-- tree 74 --> 27293 <_> 27294 <!-- root node --> 27295 <feature> 27296 <rects> 27297 <_>3 0 4 8 -1.</_> 27298 <_>3 4 4 4 2.</_></rects> 27299 <tilted>0</tilted></feature> 27300 <threshold>-0.0240507107228041</threshold> 27301 <left_val>-0.2619110941886902</left_val> 27302 <right_val>0.0344899408519268</right_val></_></_> 27303 <_> 27304 <!-- tree 75 --> 27305 <_> 27306 <!-- root node --> 27307 <feature> 27308 <rects> 27309 <_>15 6 6 6 -1.</_> 27310 <_>13 8 6 2 3.</_></rects> 27311 <tilted>1</tilted></feature> 27312 <threshold>0.1021142974495888</threshold> 27313 <left_val>-0.0153028601780534</left_val> 27314 <right_val>0.3999275863170624</right_val></_></_> 27315 <_> 27316 <!-- tree 76 --> 27317 <_> 27318 <!-- root node --> 27319 <feature> 27320 <rects> 27321 <_>7 6 6 6 -1.</_> 27322 <_>9 8 2 6 3.</_></rects> 27323 <tilted>1</tilted></feature> 27324 <threshold>0.1028165966272354</threshold> 27325 <left_val>-0.0290206708014011</left_val> 27326 <right_val>0.3688715994358063</right_val></_></_> 27327 <_> 27328 <!-- tree 77 --> 27329 <_> 27330 <!-- root node --> 27331 <feature> 27332 <rects> 27333 <_>13 12 6 6 -1.</_> 27334 <_>13 14 6 2 3.</_></rects> 27335 <tilted>0</tilted></feature> 27336 <threshold>0.0392064899206162</threshold> 27337 <left_val>8.9045017957687378e-003</left_val> 27338 <right_val>-0.4324299991130829</right_val></_></_> 27339 <_> 27340 <!-- tree 78 --> 27341 <_> 27342 <!-- root node --> 27343 <feature> 27344 <rects> 27345 <_>3 12 6 6 -1.</_> 27346 <_>3 14 6 2 3.</_></rects> 27347 <tilted>0</tilted></feature> 27348 <threshold>-0.0378308594226837</threshold> 27349 <left_val>-0.6273121237754822</left_val> 27350 <right_val>0.0148828299716115</right_val></_></_> 27351 <_> 27352 <!-- tree 79 --> 27353 <_> 27354 <!-- root node --> 27355 <feature> 27356 <rects> 27357 <_>8 13 14 4 -1.</_> 27358 <_>8 14 14 2 2.</_></rects> 27359 <tilted>0</tilted></feature> 27360 <threshold>0.0125078903511167</threshold> 27361 <left_val>-0.0178650598973036</left_val> 27362 <right_val>0.1415614038705826</right_val></_></_> 27363 <_> 27364 <!-- tree 80 --> 27365 <_> 27366 <!-- root node --> 27367 <feature> 27368 <rects> 27369 <_>0 13 14 4 -1.</_> 27370 <_>0 14 14 2 2.</_></rects> 27371 <tilted>0</tilted></feature> 27372 <threshold>-0.0154775902628899</threshold> 27373 <left_val>0.3167665004730225</left_val> 27374 <right_val>-0.0335108302533627</right_val></_></_> 27375 <_> 27376 <!-- tree 81 --> 27377 <_> 27378 <!-- root node --> 27379 <feature> 27380 <rects> 27381 <_>3 13 17 2 -1.</_> 27382 <_>3 14 17 1 2.</_></rects> 27383 <tilted>0</tilted></feature> 27384 <threshold>-4.5885699801146984e-003</threshold> 27385 <left_val>-0.1522215008735657</left_val> 27386 <right_val>0.0732118636369705</right_val></_></_> 27387 <_> 27388 <!-- tree 82 --> 27389 <_> 27390 <!-- root node --> 27391 <feature> 27392 <rects> 27393 <_>4 6 12 4 -1.</_> 27394 <_>8 6 4 4 3.</_></rects> 27395 <tilted>0</tilted></feature> 27396 <threshold>-0.0205059703439474</threshold> 27397 <left_val>0.1172538027167320</left_val> 27398 <right_val>-0.0974579229950905</right_val></_></_> 27399 <_> 27400 <!-- tree 83 --> 27401 <_> 27402 <!-- root node --> 27403 <feature> 27404 <rects> 27405 <_>8 7 9 4 -1.</_> 27406 <_>11 7 3 4 3.</_></rects> 27407 <tilted>0</tilted></feature> 27408 <threshold>-0.1309832036495209</threshold> 27409 <left_val>0.5433806777000427</left_val> 27410 <right_val>-5.8803129941225052e-003</right_val></_></_> 27411 <_> 27412 <!-- tree 84 --> 27413 <_> 27414 <!-- root node --> 27415 <feature> 27416 <rects> 27417 <_>10 0 6 8 -1.</_> 27418 <_>8 2 6 4 2.</_></rects> 27419 <tilted>1</tilted></feature> 27420 <threshold>0.0478882789611816</threshold> 27421 <left_val>-0.0271208100020885</left_val> 27422 <right_val>0.3572363853454590</right_val></_></_> 27423 <_> 27424 <!-- tree 85 --> 27425 <_> 27426 <!-- root node --> 27427 <feature> 27428 <rects> 27429 <_>9 2 12 12 -1.</_> 27430 <_>9 6 12 4 3.</_></rects> 27431 <tilted>0</tilted></feature> 27432 <threshold>0.2544153034687042</threshold> 27433 <left_val>2.5680949911475182e-003</left_val> 27434 <right_val>-0.9998825788497925</right_val></_></_> 27435 <_> 27436 <!-- tree 86 --> 27437 <_> 27438 <!-- root node --> 27439 <feature> 27440 <rects> 27441 <_>11 0 6 3 -1.</_> 27442 <_>10 1 6 1 3.</_></rects> 27443 <tilted>1</tilted></feature> 27444 <threshold>2.0652529783546925e-003</threshold> 27445 <left_val>-0.0942550003528595</left_val> 27446 <right_val>0.1006835997104645</right_val></_></_> 27447 <_> 27448 <!-- tree 87 --> 27449 <_> 27450 <!-- root node --> 27451 <feature> 27452 <rects> 27453 <_>13 1 3 7 -1.</_> 27454 <_>14 2 1 7 3.</_></rects> 27455 <tilted>1</tilted></feature> 27456 <threshold>0.0301417801529169</threshold> 27457 <left_val>-0.0159845203161240</left_val> 27458 <right_val>0.2420950978994370</right_val></_></_> 27459 <_> 27460 <!-- tree 88 --> 27461 <_> 27462 <!-- root node --> 27463 <feature> 27464 <rects> 27465 <_>2 3 12 9 -1.</_> 27466 <_>6 6 4 3 9.</_></rects> 27467 <tilted>0</tilted></feature> 27468 <threshold>0.1230550035834312</threshold> 27469 <left_val>0.0439024604856968</left_val> 27470 <right_val>-0.2904686033725739</right_val></_></_> 27471 <_> 27472 <!-- tree 89 --> 27473 <_> 27474 <!-- root node --> 27475 <feature> 27476 <rects> 27477 <_>19 2 3 12 -1.</_> 27478 <_>20 3 1 12 3.</_></rects> 27479 <tilted>1</tilted></feature> 27480 <threshold>0.0114368898794055</threshold> 27481 <left_val>0.0318267010152340</left_val> 27482 <right_val>-0.1056960970163345</right_val></_></_> 27483 <_> 27484 <!-- tree 90 --> 27485 <_> 27486 <!-- root node --> 27487 <feature> 27488 <rects> 27489 <_>3 5 12 5 -1.</_> 27490 <_>7 5 4 5 3.</_></rects> 27491 <tilted>0</tilted></feature> 27492 <threshold>0.0142296599224210</threshold> 27493 <left_val>-0.0645187273621559</left_val> 27494 <right_val>0.1617898941040039</right_val></_></_> 27495 <_> 27496 <!-- tree 91 --> 27497 <_> 27498 <!-- root node --> 27499 <feature> 27500 <rects> 27501 <_>13 1 3 7 -1.</_> 27502 <_>14 2 1 7 3.</_></rects> 27503 <tilted>1</tilted></feature> 27504 <threshold>-0.0198080390691757</threshold> 27505 <left_val>0.2090989947319031</left_val> 27506 <right_val>-0.0272454600781202</right_val></_></_> 27507 <_> 27508 <!-- tree 92 --> 27509 <_> 27510 <!-- root node --> 27511 <feature> 27512 <rects> 27513 <_>9 1 7 3 -1.</_> 27514 <_>8 2 7 1 3.</_></rects> 27515 <tilted>1</tilted></feature> 27516 <threshold>-0.0326347090303898</threshold> 27517 <left_val>-0.4626514911651611</left_val> 27518 <right_val>0.0238779895007610</right_val></_></_> 27519 <_> 27520 <!-- tree 93 --> 27521 <_> 27522 <!-- root node --> 27523 <feature> 27524 <rects> 27525 <_>9 7 8 6 -1.</_> 27526 <_>13 7 4 3 2.</_> 27527 <_>9 10 4 3 2.</_></rects> 27528 <tilted>0</tilted></feature> 27529 <threshold>0.0815682113170624</threshold> 27530 <left_val>-0.0109838200733066</left_val> 27531 <right_val>0.7451753020286560</right_val></_></_> 27532 <_> 27533 <!-- tree 94 --> 27534 <_> 27535 <!-- root node --> 27536 <feature> 27537 <rects> 27538 <_>4 14 14 4 -1.</_> 27539 <_>4 15 14 2 2.</_></rects> 27540 <tilted>0</tilted></feature> 27541 <threshold>1.7331159906461835e-003</threshold> 27542 <left_val>0.0628325790166855</left_val> 27543 <right_val>-0.1580016016960144</right_val></_></_> 27544 <_> 27545 <!-- tree 95 --> 27546 <_> 27547 <!-- root node --> 27548 <feature> 27549 <rects> 27550 <_>10 14 6 4 -1.</_> 27551 <_>10 14 3 4 2.</_></rects> 27552 <tilted>0</tilted></feature> 27553 <threshold>4.1524558328092098e-003</threshold> 27554 <left_val>0.0285209491848946</left_val> 27555 <right_val>-0.0839238166809082</right_val></_></_> 27556 <_> 27557 <!-- tree 96 --> 27558 <_> 27559 <!-- root node --> 27560 <feature> 27561 <rects> 27562 <_>6 14 6 4 -1.</_> 27563 <_>9 14 3 4 2.</_></rects> 27564 <tilted>0</tilted></feature> 27565 <threshold>2.0917340589221567e-004</threshold> 27566 <left_val>-0.1653665006160736</left_val> 27567 <right_val>0.0831703767180443</right_val></_></_> 27568 <_> 27569 <!-- tree 97 --> 27570 <_> 27571 <!-- root node --> 27572 <feature> 27573 <rects> 27574 <_>14 0 4 16 -1.</_> 27575 <_>16 0 2 8 2.</_> 27576 <_>14 8 2 8 2.</_></rects> 27577 <tilted>0</tilted></feature> 27578 <threshold>-6.9550168700516224e-004</threshold> 27579 <left_val>0.0572988986968994</left_val> 27580 <right_val>-0.0986681282520294</right_val></_></_> 27581 <_> 27582 <!-- tree 98 --> 27583 <_> 27584 <!-- root node --> 27585 <feature> 27586 <rects> 27587 <_>0 15 20 3 -1.</_> 27588 <_>5 15 10 3 2.</_></rects> 27589 <tilted>0</tilted></feature> 27590 <threshold>0.1011473014950752</threshold> 27591 <left_val>-0.0270318593829870</left_val> 27592 <right_val>0.5093728899955750</right_val></_></_> 27593 <_> 27594 <!-- tree 99 --> 27595 <_> 27596 <!-- root node --> 27597 <feature> 27598 <rects> 27599 <_>16 5 3 13 -1.</_> 27600 <_>17 5 1 13 3.</_></rects> 27601 <tilted>0</tilted></feature> 27602 <threshold>0.0203715302050114</threshold> 27603 <left_val>-0.0159913394600153</left_val> 27604 <right_val>0.2111019045114517</right_val></_></_> 27605 <_> 27606 <!-- tree 100 --> 27607 <_> 27608 <!-- root node --> 27609 <feature> 27610 <rects> 27611 <_>2 6 13 8 -1.</_> 27612 <_>2 10 13 4 2.</_></rects> 27613 <tilted>0</tilted></feature> 27614 <threshold>0.1949035972356796</threshold> 27615 <left_val>0.0111691495403647</left_val> 27616 <right_val>-0.8062657713890076</right_val></_></_> 27617 <_> 27618 <!-- tree 101 --> 27619 <_> 27620 <!-- root node --> 27621 <feature> 27622 <rects> 27623 <_>16 5 3 13 -1.</_> 27624 <_>17 5 1 13 3.</_></rects> 27625 <tilted>0</tilted></feature> 27626 <threshold>-1.5187750104814768e-003</threshold> 27627 <left_val>0.0886704325675964</left_val> 27628 <right_val>-0.0657796934247017</right_val></_></_> 27629 <_> 27630 <!-- tree 102 --> 27631 <_> 27632 <!-- root node --> 27633 <feature> 27634 <rects> 27635 <_>7 12 7 4 -1.</_> 27636 <_>7 14 7 2 2.</_></rects> 27637 <tilted>0</tilted></feature> 27638 <threshold>-2.2300280761555769e-005</threshold> 27639 <left_val>0.0702371001243591</left_val> 27640 <right_val>-0.1365679949522018</right_val></_></_> 27641 <_> 27642 <!-- tree 103 --> 27643 <_> 27644 <!-- root node --> 27645 <feature> 27646 <rects> 27647 <_>15 1 4 9 -1.</_> 27648 <_>15 4 4 3 3.</_></rects> 27649 <tilted>0</tilted></feature> 27650 <threshold>7.0241810753941536e-003</threshold> 27651 <left_val>0.0452642701566219</left_val> 27652 <right_val>-0.1224663034081459</right_val></_></_> 27653 <_> 27654 <!-- tree 104 --> 27655 <_> 27656 <!-- root node --> 27657 <feature> 27658 <rects> 27659 <_>0 4 16 2 -1.</_> 27660 <_>0 5 16 1 2.</_></rects> 27661 <tilted>0</tilted></feature> 27662 <threshold>-5.8513730764389038e-003</threshold> 27663 <left_val>0.1454869955778122</left_val> 27664 <right_val>-0.0775128677487373</right_val></_></_> 27665 <_> 27666 <!-- tree 105 --> 27667 <_> 27668 <!-- root node --> 27669 <feature> 27670 <rects> 27671 <_>8 4 12 2 -1.</_> 27672 <_>8 5 12 1 2.</_></rects> 27673 <tilted>0</tilted></feature> 27674 <threshold>-0.0122288698330522</threshold> 27675 <left_val>-0.1576232016086578</left_val> 27676 <right_val>0.0330916009843349</right_val></_></_> 27677 <_> 27678 <!-- tree 106 --> 27679 <_> 27680 <!-- root node --> 27681 <feature> 27682 <rects> 27683 <_>6 3 9 15 -1.</_> 27684 <_>9 8 3 5 9.</_></rects> 27685 <tilted>0</tilted></feature> 27686 <threshold>-0.2747533917427063</threshold> 27687 <left_val>0.4141589999198914</left_val> 27688 <right_val>-0.0233061797916889</right_val></_></_> 27689 <_> 27690 <!-- tree 107 --> 27691 <_> 27692 <!-- root node --> 27693 <feature> 27694 <rects> 27695 <_>12 3 3 8 -1.</_> 27696 <_>12 7 3 4 2.</_></rects> 27697 <tilted>0</tilted></feature> 27698 <threshold>-8.3073312416672707e-003</threshold> 27699 <left_val>-0.0661589726805687</left_val> 27700 <right_val>0.0454233698546886</right_val></_></_> 27701 <_> 27702 <!-- tree 108 --> 27703 <_> 27704 <!-- root node --> 27705 <feature> 27706 <rects> 27707 <_>5 6 12 4 -1.</_> 27708 <_>5 6 6 2 2.</_> 27709 <_>11 8 6 2 2.</_></rects> 27710 <tilted>0</tilted></feature> 27711 <threshold>0.0149670997634530</threshold> 27712 <left_val>0.0395800210535526</left_val> 27713 <right_val>-0.2447497993707657</right_val></_></_> 27714 <_> 27715 <!-- tree 109 --> 27716 <_> 27717 <!-- root node --> 27718 <feature> 27719 <rects> 27720 <_>16 3 3 14 -1.</_> 27721 <_>17 3 1 14 3.</_></rects> 27722 <tilted>0</tilted></feature> 27723 <threshold>3.5121920518577099e-003</threshold> 27724 <left_val>-0.0326085910201073</left_val> 27725 <right_val>0.0720805525779724</right_val></_></_> 27726 <_> 27727 <!-- tree 110 --> 27728 <_> 27729 <!-- root node --> 27730 <feature> 27731 <rects> 27732 <_>3 3 3 14 -1.</_> 27733 <_>4 3 1 14 3.</_></rects> 27734 <tilted>0</tilted></feature> 27735 <threshold>6.0676191933453083e-003</threshold> 27736 <left_val>-0.0662842467427254</left_val> 27737 <right_val>0.1645577996969223</right_val></_></_> 27738 <_> 27739 <!-- tree 111 --> 27740 <_> 27741 <!-- root node --> 27742 <feature> 27743 <rects> 27744 <_>0 4 22 4 -1.</_> 27745 <_>11 4 11 2 2.</_> 27746 <_>0 6 11 2 2.</_></rects> 27747 <tilted>0</tilted></feature> 27748 <threshold>-6.0948841273784637e-003</threshold> 27749 <left_val>-0.1678411960601807</left_val> 27750 <right_val>0.0680977478623390</right_val></_></_> 27751 <_> 27752 <!-- tree 112 --> 27753 <_> 27754 <!-- root node --> 27755 <feature> 27756 <rects> 27757 <_>1 4 4 9 -1.</_> 27758 <_>1 7 4 3 3.</_></rects> 27759 <tilted>0</tilted></feature> 27760 <threshold>-4.4710501097142696e-003</threshold> 27761 <left_val>0.1434886008501053</left_val> 27762 <right_val>-0.0752860531210899</right_val></_></_> 27763 <_> 27764 <!-- tree 113 --> 27765 <_> 27766 <!-- root node --> 27767 <feature> 27768 <rects> 27769 <_>7 13 12 4 -1.</_> 27770 <_>7 15 12 2 2.</_></rects> 27771 <tilted>0</tilted></feature> 27772 <threshold>0.0276299994438887</threshold> 27773 <left_val>-6.0715568251907825e-003</left_val> 27774 <right_val>0.4623529911041260</right_val></_></_> 27775 <_> 27776 <!-- tree 114 --> 27777 <_> 27778 <!-- root node --> 27779 <feature> 27780 <rects> 27781 <_>3 13 12 4 -1.</_> 27782 <_>3 15 12 2 2.</_></rects> 27783 <tilted>0</tilted></feature> 27784 <threshold>-4.1778348386287689e-003</threshold> 27785 <left_val>-0.0944801867008209</left_val> 27786 <right_val>0.1026868969202042</right_val></_></_> 27787 <_> 27788 <!-- tree 115 --> 27789 <_> 27790 <!-- root node --> 27791 <feature> 27792 <rects> 27793 <_>11 14 6 4 -1.</_> 27794 <_>11 16 6 2 2.</_></rects> 27795 <tilted>0</tilted></feature> 27796 <threshold>-1.4997010293882340e-004</threshold> 27797 <left_val>0.0459039695560932</left_val> 27798 <right_val>-0.1268998980522156</right_val></_></_> 27799 <_> 27800 <!-- tree 116 --> 27801 <_> 27802 <!-- root node --> 27803 <feature> 27804 <rects> 27805 <_>1 0 13 3 -1.</_> 27806 <_>1 1 13 1 3.</_></rects> 27807 <tilted>0</tilted></feature> 27808 <threshold>9.3421656638383865e-003</threshold> 27809 <left_val>-0.0478513501584530</left_val> 27810 <right_val>0.2377692013978958</right_val></_></_> 27811 <_> 27812 <!-- tree 117 --> 27813 <_> 27814 <!-- root node --> 27815 <feature> 27816 <rects> 27817 <_>11 0 6 4 -1.</_> 27818 <_>11 2 6 2 2.</_></rects> 27819 <tilted>0</tilted></feature> 27820 <threshold>-9.0454798191785812e-003</threshold> 27821 <left_val>-0.1488175988197327</left_val> 27822 <right_val>0.0257176607847214</right_val></_></_> 27823 <_> 27824 <!-- tree 118 --> 27825 <_> 27826 <!-- root node --> 27827 <feature> 27828 <rects> 27829 <_>4 14 14 4 -1.</_> 27830 <_>4 14 7 2 2.</_> 27831 <_>11 16 7 2 2.</_></rects> 27832 <tilted>0</tilted></feature> 27833 <threshold>-1.0563050163909793e-003</threshold> 27834 <left_val>-0.1246521994471550</left_val> 27835 <right_val>0.0821189433336258</right_val></_></_> 27836 <_> 27837 <!-- tree 119 --> 27838 <_> 27839 <!-- root node --> 27840 <feature> 27841 <rects> 27842 <_>6 0 12 2 -1.</_> 27843 <_>6 1 12 1 2.</_></rects> 27844 <tilted>0</tilted></feature> 27845 <threshold>-0.0156021695584059</threshold> 27846 <left_val>0.3047155141830444</left_val> 27847 <right_val>-0.0245032906532288</right_val></_></_> 27848 <_> 27849 <!-- tree 120 --> 27850 <_> 27851 <!-- root node --> 27852 <feature> 27853 <rects> 27854 <_>5 0 6 4 -1.</_> 27855 <_>5 2 6 2 2.</_></rects> 27856 <tilted>0</tilted></feature> 27857 <threshold>-8.9588612318038940e-003</threshold> 27858 <left_val>-0.2362405955791473</left_val> 27859 <right_val>0.0462901405990124</right_val></_></_> 27860 <_> 27861 <!-- tree 121 --> 27862 <_> 27863 <!-- root node --> 27864 <feature> 27865 <rects> 27866 <_>11 0 3 6 -1.</_> 27867 <_>12 1 1 6 3.</_></rects> 27868 <tilted>1</tilted></feature> 27869 <threshold>-7.6452922075986862e-003</threshold> 27870 <left_val>0.1139314025640488</left_val> 27871 <right_val>-0.0265730600804091</right_val></_></_> 27872 <_> 27873 <!-- tree 122 --> 27874 <_> 27875 <!-- root node --> 27876 <feature> 27877 <rects> 27878 <_>11 0 6 3 -1.</_> 27879 <_>10 1 6 1 3.</_></rects> 27880 <tilted>1</tilted></feature> 27881 <threshold>-0.0192949008196592</threshold> 27882 <left_val>0.2882001996040344</left_val> 27883 <right_val>-0.0359068810939789</right_val></_></_> 27884 <_> 27885 <!-- tree 123 --> 27886 <_> 27887 <!-- root node --> 27888 <feature> 27889 <rects> 27890 <_>7 12 8 6 -1.</_> 27891 <_>9 12 4 6 2.</_></rects> 27892 <tilted>0</tilted></feature> 27893 <threshold>8.6250286549329758e-003</threshold> 27894 <left_val>0.0610060207545757</left_val> 27895 <right_val>-0.1683263033628464</right_val></_></_> 27896 <_> 27897 <!-- tree 124 --> 27898 <_> 27899 <!-- root node --> 27900 <feature> 27901 <rects> 27902 <_>1 1 5 10 -1.</_> 27903 <_>1 6 5 5 2.</_></rects> 27904 <tilted>0</tilted></feature> 27905 <threshold>0.0258834902197123</threshold> 27906 <left_val>-0.0401428490877151</left_val> 27907 <right_val>0.2326312065124512</right_val></_></_> 27908 <_> 27909 <!-- tree 125 --> 27910 <_> 27911 <!-- root node --> 27912 <feature> 27913 <rects> 27914 <_>13 0 2 12 -1.</_> 27915 <_>13 6 2 6 2.</_></rects> 27916 <tilted>0</tilted></feature> 27917 <threshold>-0.0749461129307747</threshold> 27918 <left_val>0.7116879820823669</left_val> 27919 <right_val>-6.0237408615648746e-003</right_val></_></_> 27920 <_> 27921 <!-- tree 126 --> 27922 <_> 27923 <!-- root node --> 27924 <feature> 27925 <rects> 27926 <_>7 0 2 12 -1.</_> 27927 <_>7 6 2 6 2.</_></rects> 27928 <tilted>0</tilted></feature> 27929 <threshold>-2.6808120310306549e-004</threshold> 27930 <left_val>0.0777179002761841</left_val> 27931 <right_val>-0.1535875052213669</right_val></_></_> 27932 <_> 27933 <!-- tree 127 --> 27934 <_> 27935 <!-- root node --> 27936 <feature> 27937 <rects> 27938 <_>12 1 8 14 -1.</_> 27939 <_>16 1 4 7 2.</_> 27940 <_>12 8 4 7 2.</_></rects> 27941 <tilted>0</tilted></feature> 27942 <threshold>0.0610414408147335</threshold> 27943 <left_val>-0.0340701602399349</left_val> 27944 <right_val>0.2583329081535339</right_val></_></_> 27945 <_> 27946 <!-- tree 128 --> 27947 <_> 27948 <!-- root node --> 27949 <feature> 27950 <rects> 27951 <_>1 0 8 10 -1.</_> 27952 <_>1 0 4 5 2.</_> 27953 <_>5 5 4 5 2.</_></rects> 27954 <tilted>0</tilted></feature> 27955 <threshold>-4.7920648939907551e-003</threshold> 27956 <left_val>-0.1507782936096191</left_val> 27957 <right_val>0.0845772400498390</right_val></_></_> 27958 <_> 27959 <!-- tree 129 --> 27960 <_> 27961 <!-- root node --> 27962 <feature> 27963 <rects> 27964 <_>6 6 16 4 -1.</_> 27965 <_>10 6 8 4 2.</_></rects> 27966 <tilted>0</tilted></feature> 27967 <threshold>-0.1261063069105148</threshold> 27968 <left_val>-0.4840453863143921</left_val> 27969 <right_val>8.6965439841151237e-003</right_val></_></_> 27970 <_> 27971 <!-- tree 130 --> 27972 <_> 27973 <!-- root node --> 27974 <feature> 27975 <rects> 27976 <_>1 14 13 2 -1.</_> 27977 <_>1 15 13 1 2.</_></rects> 27978 <tilted>0</tilted></feature> 27979 <threshold>-0.0228792708367109</threshold> 27980 <left_val>0.6773418784141541</left_val> 27981 <right_val>-0.0148561000823975</right_val></_></_> 27982 <_> 27983 <!-- tree 131 --> 27984 <_> 27985 <!-- root node --> 27986 <feature> 27987 <rects> 27988 <_>2 7 20 3 -1.</_> 27989 <_>7 7 10 3 2.</_></rects> 27990 <tilted>0</tilted></feature> 27991 <threshold>-6.2760512810200453e-004</threshold> 27992 <left_val>0.0509103499352932</left_val> 27993 <right_val>-0.1407644003629684</right_val></_></_> 27994 <_> 27995 <!-- tree 132 --> 27996 <_> 27997 <!-- root node --> 27998 <feature> 27999 <rects> 28000 <_>11 2 9 4 -1.</_> 28001 <_>14 5 3 4 3.</_></rects> 28002 <tilted>1</tilted></feature> 28003 <threshold>-0.0105431796982884</threshold> 28004 <left_val>-0.0907072499394417</left_val> 28005 <right_val>0.1128190010786057</right_val></_></_> 28006 <_> 28007 <!-- tree 133 --> 28008 <_> 28009 <!-- root node --> 28010 <feature> 28011 <rects> 28012 <_>6 5 13 2 -1.</_> 28013 <_>6 6 13 1 2.</_></rects> 28014 <tilted>0</tilted></feature> 28015 <threshold>-2.4953829124569893e-003</threshold> 28016 <left_val>0.0895237624645233</left_val> 28017 <right_val>-0.0755412876605988</right_val></_></_> 28018 <_> 28019 <!-- tree 134 --> 28020 <_> 28021 <!-- root node --> 28022 <feature> 28023 <rects> 28024 <_>3 0 6 15 -1.</_> 28025 <_>6 0 3 15 2.</_></rects> 28026 <tilted>0</tilted></feature> 28027 <threshold>0.0609861500561237</threshold> 28028 <left_val>-0.0320069789886475</left_val> 28029 <right_val>0.3300091028213501</right_val></_></_></trees> 28030 <stage_threshold>-30.6014995574951170</stage_threshold> 28031 <parent>27</parent> 28032 <next>-1</next></_> 28033 <_> 28034 <!-- stage 29 --> 28035 <trees> 28036 <_> 28037 <!-- tree 0 --> 28038 <_> 28039 <!-- root node --> 28040 <feature> 28041 <rects> 28042 <_>3 12 8 6 -1.</_> 28043 <_>5 12 4 6 2.</_></rects> 28044 <tilted>0</tilted></feature> 28045 <threshold>-0.0412418097257614</threshold> 28046 <left_val>0.2484184056520462</left_val> 28047 <right_val>-0.0698791295289993</right_val></_></_> 28048 <_> 28049 <!-- tree 1 --> 28050 <_> 28051 <!-- root node --> 28052 <feature> 28053 <rects> 28054 <_>13 1 4 7 -1.</_> 28055 <_>14 2 2 7 2.</_></rects> 28056 <tilted>1</tilted></feature> 28057 <threshold>-0.0746634975075722</threshold> 28058 <left_val>-0.7543368935585022</left_val> 28059 <right_val>4.0493709966540337e-003</right_val></_></_> 28060 <_> 28061 <!-- tree 2 --> 28062 <_> 28063 <!-- root node --> 28064 <feature> 28065 <rects> 28066 <_>9 1 7 4 -1.</_> 28067 <_>8 2 7 2 2.</_></rects> 28068 <tilted>1</tilted></feature> 28069 <threshold>-0.0238036792725325</threshold> 28070 <left_val>0.2431309968233109</left_val> 28071 <right_val>-0.0452839285135269</right_val></_></_> 28072 <_> 28073 <!-- tree 3 --> 28074 <_> 28075 <!-- root node --> 28076 <feature> 28077 <rects> 28078 <_>11 11 6 4 -1.</_> 28079 <_>11 13 6 2 2.</_></rects> 28080 <tilted>0</tilted></feature> 28081 <threshold>0.0320286191999912</threshold> 28082 <left_val>-0.0122305396944284</left_val> 28083 <right_val>0.3981122076511383</right_val></_></_> 28084 <_> 28085 <!-- tree 4 --> 28086 <_> 28087 <!-- root node --> 28088 <feature> 28089 <rects> 28090 <_>0 12 8 6 -1.</_> 28091 <_>0 12 4 3 2.</_> 28092 <_>4 15 4 3 2.</_></rects> 28093 <tilted>0</tilted></feature> 28094 <threshold>3.8454410969279706e-004</threshold> 28095 <left_val>0.0692448392510414</left_val> 28096 <right_val>-0.1728879958391190</right_val></_></_> 28097 <_> 28098 <!-- tree 5 --> 28099 <_> 28100 <!-- root node --> 28101 <feature> 28102 <rects> 28103 <_>11 11 6 4 -1.</_> 28104 <_>11 13 6 2 2.</_></rects> 28105 <tilted>0</tilted></feature> 28106 <threshold>-2.0599530544131994e-003</threshold> 28107 <left_val>0.0450832508504391</left_val> 28108 <right_val>-0.0638244822621346</right_val></_></_> 28109 <_> 28110 <!-- tree 6 --> 28111 <_> 28112 <!-- root node --> 28113 <feature> 28114 <rects> 28115 <_>2 6 6 12 -1.</_> 28116 <_>2 6 3 6 2.</_> 28117 <_>5 12 3 6 2.</_></rects> 28118 <tilted>0</tilted></feature> 28119 <threshold>0.0591745004057884</threshold> 28120 <left_val>0.0137560898438096</left_val> 28121 <right_val>0.5806397795677185</right_val></_></_> 28122 <_> 28123 <!-- tree 7 --> 28124 <_> 28125 <!-- root node --> 28126 <feature> 28127 <rects> 28128 <_>11 11 6 4 -1.</_> 28129 <_>11 13 6 2 2.</_></rects> 28130 <tilted>0</tilted></feature> 28131 <threshold>-8.1204501911997795e-003</threshold> 28132 <left_val>-0.0790601968765259</left_val> 28133 <right_val>0.0320978797972202</right_val></_></_> 28134 <_> 28135 <!-- tree 8 --> 28136 <_> 28137 <!-- root node --> 28138 <feature> 28139 <rects> 28140 <_>5 11 9 4 -1.</_> 28141 <_>8 11 3 4 3.</_></rects> 28142 <tilted>0</tilted></feature> 28143 <threshold>-5.4362448863685131e-003</threshold> 28144 <left_val>0.0802850127220154</left_val> 28145 <right_val>-0.1388078927993774</right_val></_></_> 28146 <_> 28147 <!-- tree 9 --> 28148 <_> 28149 <!-- root node --> 28150 <feature> 28151 <rects> 28152 <_>8 13 9 5 -1.</_> 28153 <_>11 13 3 5 3.</_></rects> 28154 <tilted>0</tilted></feature> 28155 <threshold>0.0407687798142433</threshold> 28156 <left_val>0.0352651290595531</left_val> 28157 <right_val>-0.1682104021310806</right_val></_></_> 28158 <_> 28159 <!-- tree 10 --> 28160 <_> 28161 <!-- root node --> 28162 <feature> 28163 <rects> 28164 <_>3 15 8 3 -1.</_> 28165 <_>7 15 4 3 2.</_></rects> 28166 <tilted>0</tilted></feature> 28167 <threshold>-0.0107057699933648</threshold> 28168 <left_val>-0.1322779953479767</left_val> 28169 <right_val>0.0971477031707764</right_val></_></_> 28170 <_> 28171 <!-- tree 11 --> 28172 <_> 28173 <!-- root node --> 28174 <feature> 28175 <rects> 28176 <_>4 12 14 6 -1.</_> 28177 <_>11 12 7 3 2.</_> 28178 <_>4 15 7 3 2.</_></rects> 28179 <tilted>0</tilted></feature> 28180 <threshold>-2.1374409552663565e-003</threshold> 28181 <left_val>-0.1113512963056564</left_val> 28182 <right_val>0.1050119996070862</right_val></_></_> 28183 <_> 28184 <!-- tree 12 --> 28185 <_> 28186 <!-- root node --> 28187 <feature> 28188 <rects> 28189 <_>2 15 8 3 -1.</_> 28190 <_>6 15 4 3 2.</_></rects> 28191 <tilted>0</tilted></feature> 28192 <threshold>-6.0069030150771141e-003</threshold> 28193 <left_val>0.0797014236450195</left_val> 28194 <right_val>-0.1450355052947998</right_val></_></_> 28195 <_> 28196 <!-- tree 13 --> 28197 <_> 28198 <!-- root node --> 28199 <feature> 28200 <rects> 28201 <_>11 11 6 4 -1.</_> 28202 <_>11 13 6 2 2.</_></rects> 28203 <tilted>0</tilted></feature> 28204 <threshold>6.8584359250962734e-003</threshold> 28205 <left_val>-0.0286291707307100</left_val> 28206 <right_val>0.1549434959888458</right_val></_></_> 28207 <_> 28208 <!-- tree 14 --> 28209 <_> 28210 <!-- root node --> 28211 <feature> 28212 <rects> 28213 <_>6 5 6 7 -1.</_> 28214 <_>8 5 2 7 3.</_></rects> 28215 <tilted>0</tilted></feature> 28216 <threshold>8.4308702498674393e-003</threshold> 28217 <left_val>-0.0687258765101433</left_val> 28218 <right_val>0.1357143968343735</right_val></_></_> 28219 <_> 28220 <!-- tree 15 --> 28221 <_> 28222 <!-- root node --> 28223 <feature> 28224 <rects> 28225 <_>8 4 9 12 -1.</_> 28226 <_>11 8 3 4 9.</_></rects> 28227 <tilted>0</tilted></feature> 28228 <threshold>-0.0319182090461254</threshold> 28229 <left_val>-0.0900216475129128</left_val> 28230 <right_val>0.0701727569103241</right_val></_></_> 28231 <_> 28232 <!-- tree 16 --> 28233 <_> 28234 <!-- root node --> 28235 <feature> 28236 <rects> 28237 <_>5 4 9 12 -1.</_> 28238 <_>8 8 3 4 9.</_></rects> 28239 <tilted>0</tilted></feature> 28240 <threshold>0.1434696018695831</threshold> 28241 <left_val>0.0379361994564533</left_val> 28242 <right_val>-0.3384973108768463</right_val></_></_> 28243 <_> 28244 <!-- tree 17 --> 28245 <_> 28246 <!-- root node --> 28247 <feature> 28248 <rects> 28249 <_>14 12 6 4 -1.</_> 28250 <_>14 14 6 2 2.</_></rects> 28251 <tilted>0</tilted></feature> 28252 <threshold>-0.0535015314817429</threshold> 28253 <left_val>-1.</left_val> 28254 <right_val>-1.3069049455225468e-003</right_val></_></_> 28255 <_> 28256 <!-- tree 18 --> 28257 <_> 28258 <!-- root node --> 28259 <feature> 28260 <rects> 28261 <_>2 12 6 4 -1.</_> 28262 <_>2 14 6 2 2.</_></rects> 28263 <tilted>0</tilted></feature> 28264 <threshold>-4.3198501225560904e-004</threshold> 28265 <left_val>0.0631404593586922</left_val> 28266 <right_val>-0.1489108055830002</right_val></_></_> 28267 <_> 28268 <!-- tree 19 --> 28269 <_> 28270 <!-- root node --> 28271 <feature> 28272 <rects> 28273 <_>9 6 6 8 -1.</_> 28274 <_>11 6 2 8 3.</_></rects> 28275 <tilted>0</tilted></feature> 28276 <threshold>-0.0368255116045475</threshold> 28277 <left_val>0.1641896069049835</left_val> 28278 <right_val>-0.0365471988916397</right_val></_></_> 28279 <_> 28280 <!-- tree 20 --> 28281 <_> 28282 <!-- root node --> 28283 <feature> 28284 <rects> 28285 <_>7 4 8 6 -1.</_> 28286 <_>7 6 8 2 3.</_></rects> 28287 <tilted>0</tilted></feature> 28288 <threshold>-0.0932306125760078</threshold> 28289 <left_val>-0.8185548186302185</left_val> 28290 <right_val>0.0104887299239635</right_val></_></_> 28291 <_> 28292 <!-- tree 21 --> 28293 <_> 28294 <!-- root node --> 28295 <feature> 28296 <rects> 28297 <_>13 7 6 4 -1.</_> 28298 <_>13 7 6 2 2.</_></rects> 28299 <tilted>1</tilted></feature> 28300 <threshold>-7.5886500999331474e-003</threshold> 28301 <left_val>0.0961899235844612</left_val> 28302 <right_val>-0.0323927290737629</right_val></_></_> 28303 <_> 28304 <!-- tree 22 --> 28305 <_> 28306 <!-- root node --> 28307 <feature> 28308 <rects> 28309 <_>10 2 12 3 -1.</_> 28310 <_>9 3 12 1 3.</_></rects> 28311 <tilted>1</tilted></feature> 28312 <threshold>1.9316580146551132e-003</threshold> 28313 <left_val>-0.0971334576606750</left_val> 28314 <right_val>0.0968365371227264</right_val></_></_> 28315 <_> 28316 <!-- tree 23 --> 28317 <_> 28318 <!-- root node --> 28319 <feature> 28320 <rects> 28321 <_>12 4 6 6 -1.</_> 28322 <_>14 6 2 6 3.</_></rects> 28323 <tilted>1</tilted></feature> 28324 <threshold>-0.1761084944009781</threshold> 28325 <left_val>-1.</left_val> 28326 <right_val>3.9064860902726650e-004</right_val></_></_> 28327 <_> 28328 <!-- tree 24 --> 28329 <_> 28330 <!-- root node --> 28331 <feature> 28332 <rects> 28333 <_>10 4 6 6 -1.</_> 28334 <_>8 6 6 2 3.</_></rects> 28335 <tilted>1</tilted></feature> 28336 <threshold>-4.5753358863294125e-003</threshold> 28337 <left_val>-0.1424594074487686</left_val> 28338 <right_val>0.0726295337080956</right_val></_></_> 28339 <_> 28340 <!-- tree 25 --> 28341 <_> 28342 <!-- root node --> 28343 <feature> 28344 <rects> 28345 <_>11 5 3 9 -1.</_> 28346 <_>12 6 1 9 3.</_></rects> 28347 <tilted>1</tilted></feature> 28348 <threshold>-0.0715556964278221</threshold> 28349 <left_val>0.7012476921081543</left_val> 28350 <right_val>-8.1192785874009132e-003</right_val></_></_> 28351 <_> 28352 <!-- tree 26 --> 28353 <_> 28354 <!-- root node --> 28355 <feature> 28356 <rects> 28357 <_>4 0 16 2 -1.</_> 28358 <_>4 0 16 1 2.</_></rects> 28359 <tilted>1</tilted></feature> 28360 <threshold>-5.1939189434051514e-003</threshold> 28361 <left_val>-0.1759340018033981</left_val> 28362 <right_val>0.0669202581048012</right_val></_></_> 28363 <_> 28364 <!-- tree 27 --> 28365 <_> 28366 <!-- root node --> 28367 <feature> 28368 <rects> 28369 <_>12 12 8 3 -1.</_> 28370 <_>12 12 4 3 2.</_></rects> 28371 <tilted>0</tilted></feature> 28372 <threshold>9.7410175949335098e-003</threshold> 28373 <left_val>-0.0406328588724136</left_val> 28374 <right_val>0.1536626964807510</right_val></_></_> 28375 <_> 28376 <!-- tree 28 --> 28377 <_> 28378 <!-- root node --> 28379 <feature> 28380 <rects> 28381 <_>10 0 12 6 -1.</_> 28382 <_>13 3 6 6 2.</_></rects> 28383 <tilted>1</tilted></feature> 28384 <threshold>-0.0191977303475142</threshold> 28385 <left_val>0.0884047225117683</left_val> 28386 <right_val>-0.1111958995461464</right_val></_></_> 28387 <_> 28388 <!-- tree 29 --> 28389 <_> 28390 <!-- root node --> 28391 <feature> 28392 <rects> 28393 <_>9 2 4 6 -1.</_> 28394 <_>9 5 4 3 2.</_></rects> 28395 <tilted>0</tilted></feature> 28396 <threshold>7.7713979408144951e-003</threshold> 28397 <left_val>-0.0515310801565647</left_val> 28398 <right_val>0.2334187030792236</right_val></_></_> 28399 <_> 28400 <!-- tree 30 --> 28401 <_> 28402 <!-- root node --> 28403 <feature> 28404 <rects> 28405 <_>0 2 18 9 -1.</_> 28406 <_>6 5 6 3 9.</_></rects> 28407 <tilted>0</tilted></feature> 28408 <threshold>0.0467417798936367</threshold> 28409 <left_val>0.0586589500308037</left_val> 28410 <right_val>-0.2182534039020538</right_val></_></_> 28411 <_> 28412 <!-- tree 31 --> 28413 <_> 28414 <!-- root node --> 28415 <feature> 28416 <rects> 28417 <_>16 2 3 9 -1.</_> 28418 <_>17 3 1 9 3.</_></rects> 28419 <tilted>1</tilted></feature> 28420 <threshold>-0.0670518204569817</threshold> 28421 <left_val>-0.7696895003318787</left_val> 28422 <right_val>2.2733330260962248e-003</right_val></_></_> 28423 <_> 28424 <!-- tree 32 --> 28425 <_> 28426 <!-- root node --> 28427 <feature> 28428 <rects> 28429 <_>6 2 9 3 -1.</_> 28430 <_>5 3 9 1 3.</_></rects> 28431 <tilted>1</tilted></feature> 28432 <threshold>0.0104036098346114</threshold> 28433 <left_val>-0.0572082698345184</left_val> 28434 <right_val>0.1987476944923401</right_val></_></_> 28435 <_> 28436 <!-- tree 33 --> 28437 <_> 28438 <!-- root node --> 28439 <feature> 28440 <rects> 28441 <_>10 1 12 4 -1.</_> 28442 <_>14 1 4 4 3.</_></rects> 28443 <tilted>0</tilted></feature> 28444 <threshold>0.0681366175413132</threshold> 28445 <left_val>0.0109247500076890</left_val> 28446 <right_val>-0.2351476997137070</right_val></_></_> 28447 <_> 28448 <!-- tree 34 --> 28449 <_> 28450 <!-- root node --> 28451 <feature> 28452 <rects> 28453 <_>0 1 12 4 -1.</_> 28454 <_>4 1 4 4 3.</_></rects> 28455 <tilted>0</tilted></feature> 28456 <threshold>5.5462731979787350e-003</threshold> 28457 <left_val>0.0764302089810371</left_val> 28458 <right_val>-0.1504815071821213</right_val></_></_> 28459 <_> 28460 <!-- tree 35 --> 28461 <_> 28462 <!-- root node --> 28463 <feature> 28464 <rects> 28465 <_>6 14 12 4 -1.</_> 28466 <_>12 14 6 2 2.</_> 28467 <_>6 16 6 2 2.</_></rects> 28468 <tilted>0</tilted></feature> 28469 <threshold>0.0358278900384903</threshold> 28470 <left_val>5.2330200560390949e-003</left_val> 28471 <right_val>-0.9050955772399902</right_val></_></_> 28472 <_> 28473 <!-- tree 36 --> 28474 <_> 28475 <!-- root node --> 28476 <feature> 28477 <rects> 28478 <_>4 2 13 3 -1.</_> 28479 <_>4 3 13 1 3.</_></rects> 28480 <tilted>0</tilted></feature> 28481 <threshold>0.0100990803912282</threshold> 28482 <left_val>-0.0494383499026299</left_val> 28483 <right_val>0.1923664957284927</right_val></_></_> 28484 <_> 28485 <!-- tree 37 --> 28486 <_> 28487 <!-- root node --> 28488 <feature> 28489 <rects> 28490 <_>7 2 13 3 -1.</_> 28491 <_>7 3 13 1 3.</_></rects> 28492 <tilted>0</tilted></feature> 28493 <threshold>-7.3000352131202817e-004</threshold> 28494 <left_val>0.0800386890769005</left_val> 28495 <right_val>-0.0598758608102798</right_val></_></_> 28496 <_> 28497 <!-- tree 38 --> 28498 <_> 28499 <!-- root node --> 28500 <feature> 28501 <rects> 28502 <_>1 12 20 2 -1.</_> 28503 <_>11 12 10 2 2.</_></rects> 28504 <tilted>0</tilted></feature> 28505 <threshold>-0.0626273080706596</threshold> 28506 <left_val>-0.6877195239067078</left_val> 28507 <right_val>0.0144093399867415</right_val></_></_> 28508 <_> 28509 <!-- tree 39 --> 28510 <_> 28511 <!-- root node --> 28512 <feature> 28513 <rects> 28514 <_>5 2 12 3 -1.</_> 28515 <_>9 2 4 3 3.</_></rects> 28516 <tilted>0</tilted></feature> 28517 <threshold>4.1463607922196388e-003</threshold> 28518 <left_val>0.0620688796043396</left_val> 28519 <right_val>-0.1413860023021698</right_val></_></_> 28520 <_> 28521 <!-- tree 40 --> 28522 <_> 28523 <!-- root node --> 28524 <feature> 28525 <rects> 28526 <_>4 8 14 9 -1.</_> 28527 <_>11 8 7 9 2.</_></rects> 28528 <tilted>0</tilted></feature> 28529 <threshold>-0.1413605958223343</threshold> 28530 <left_val>0.5943986773490906</left_val> 28531 <right_val>-0.0169105306267738</right_val></_></_> 28532 <_> 28533 <!-- tree 41 --> 28534 <_> 28535 <!-- root node --> 28536 <feature> 28537 <rects> 28538 <_>10 2 4 8 -1.</_> 28539 <_>10 2 2 8 2.</_></rects> 28540 <tilted>0</tilted></feature> 28541 <threshold>0.0701470673084259</threshold> 28542 <left_val>3.5781029146164656e-003</left_val> 28543 <right_val>-0.8454138040542603</right_val></_></_> 28544 <_> 28545 <!-- tree 42 --> 28546 <_> 28547 <!-- root node --> 28548 <feature> 28549 <rects> 28550 <_>8 2 4 8 -1.</_> 28551 <_>10 2 2 8 2.</_></rects> 28552 <tilted>0</tilted></feature> 28553 <threshold>1.8181180348619819e-003</threshold> 28554 <left_val>-0.0590311288833618</left_val> 28555 <right_val>0.1770997941493988</right_val></_></_> 28556 <_> 28557 <!-- tree 43 --> 28558 <_> 28559 <!-- root node --> 28560 <feature> 28561 <rects> 28562 <_>16 1 2 16 -1.</_> 28563 <_>16 9 2 8 2.</_></rects> 28564 <tilted>0</tilted></feature> 28565 <threshold>0.0631495416164398</threshold> 28566 <left_val>-7.9691512510180473e-003</left_val> 28567 <right_val>0.2457547038793564</right_val></_></_> 28568 <_> 28569 <!-- tree 44 --> 28570 <_> 28571 <!-- root node --> 28572 <feature> 28573 <rects> 28574 <_>2 8 9 4 -1.</_> 28575 <_>5 8 3 4 3.</_></rects> 28576 <tilted>0</tilted></feature> 28577 <threshold>1.7065559513866901e-003</threshold> 28578 <left_val>-0.1377667933702469</left_val> 28579 <right_val>0.0722865983843803</right_val></_></_> 28580 <_> 28581 <!-- tree 45 --> 28582 <_> 28583 <!-- root node --> 28584 <feature> 28585 <rects> 28586 <_>16 1 2 16 -1.</_> 28587 <_>16 9 2 8 2.</_></rects> 28588 <tilted>0</tilted></feature> 28589 <threshold>-0.0418441593647003</threshold> 28590 <left_val>-0.1020454987883568</left_val> 28591 <right_val>0.0194128807634115</right_val></_></_> 28592 <_> 28593 <!-- tree 46 --> 28594 <_> 28595 <!-- root node --> 28596 <feature> 28597 <rects> 28598 <_>4 1 2 16 -1.</_> 28599 <_>4 9 2 8 2.</_></rects> 28600 <tilted>0</tilted></feature> 28601 <threshold>0.0618760287761688</threshold> 28602 <left_val>0.0175725705921650</left_val> 28603 <right_val>-0.5961120128631592</right_val></_></_> 28604 <_> 28605 <!-- tree 47 --> 28606 <_> 28607 <!-- root node --> 28608 <feature> 28609 <rects> 28610 <_>10 7 8 6 -1.</_> 28611 <_>14 7 4 3 2.</_> 28612 <_>10 10 4 3 2.</_></rects> 28613 <tilted>0</tilted></feature> 28614 <threshold>0.0862066075205803</threshold> 28615 <left_val>-8.3246696740388870e-003</left_val> 28616 <right_val>0.5927473902702332</right_val></_></_> 28617 <_> 28618 <!-- tree 48 --> 28619 <_> 28620 <!-- root node --> 28621 <feature> 28622 <rects> 28623 <_>4 7 8 6 -1.</_> 28624 <_>4 7 4 3 2.</_> 28625 <_>8 10 4 3 2.</_></rects> 28626 <tilted>0</tilted></feature> 28627 <threshold>0.0155612500384450</threshold> 28628 <left_val>0.0559087917208672</left_val> 28629 <right_val>-0.2017468065023422</right_val></_></_> 28630 <_> 28631 <!-- tree 49 --> 28632 <_> 28633 <!-- root node --> 28634 <feature> 28635 <rects> 28636 <_>12 8 2 7 -1.</_> 28637 <_>12 8 1 7 2.</_></rects> 28638 <tilted>1</tilted></feature> 28639 <threshold>1.9683360587805510e-003</threshold> 28640 <left_val>0.0841097831726074</left_val> 28641 <right_val>-0.0951142832636833</right_val></_></_> 28642 <_> 28643 <!-- tree 50 --> 28644 <_> 28645 <!-- root node --> 28646 <feature> 28647 <rects> 28648 <_>5 8 6 8 -1.</_> 28649 <_>5 8 3 4 2.</_> 28650 <_>8 12 3 4 2.</_></rects> 28651 <tilted>0</tilted></feature> 28652 <threshold>-3.2295130658894777e-003</threshold> 28653 <left_val>0.1985978931188583</left_val> 28654 <right_val>-0.0603710412979126</right_val></_></_> 28655 <_> 28656 <!-- tree 51 --> 28657 <_> 28658 <!-- root node --> 28659 <feature> 28660 <rects> 28661 <_>12 8 2 7 -1.</_> 28662 <_>12 8 1 7 2.</_></rects> 28663 <tilted>1</tilted></feature> 28664 <threshold>0.0438614599406719</threshold> 28665 <left_val>-7.5495638884603977e-003</left_val> 28666 <right_val>0.2778531014919281</right_val></_></_> 28667 <_> 28668 <!-- tree 52 --> 28669 <_> 28670 <!-- root node --> 28671 <feature> 28672 <rects> 28673 <_>10 8 7 2 -1.</_> 28674 <_>10 8 7 1 2.</_></rects> 28675 <tilted>1</tilted></feature> 28676 <threshold>-7.1588042192161083e-004</threshold> 28677 <left_val>0.1067167967557907</left_val> 28678 <right_val>-0.1160534024238586</right_val></_></_> 28679 <_> 28680 <!-- tree 53 --> 28681 <_> 28682 <!-- root node --> 28683 <feature> 28684 <rects> 28685 <_>5 9 13 8 -1.</_> 28686 <_>5 11 13 4 2.</_></rects> 28687 <tilted>0</tilted></feature> 28688 <threshold>-0.0115850800648332</threshold> 28689 <left_val>0.1392320990562439</left_val> 28690 <right_val>-0.0726817175745964</right_val></_></_> 28691 <_> 28692 <!-- tree 54 --> 28693 <_> 28694 <!-- root node --> 28695 <feature> 28696 <rects> 28697 <_>7 9 4 9 -1.</_> 28698 <_>9 9 2 9 2.</_></rects> 28699 <tilted>0</tilted></feature> 28700 <threshold>-0.0241320300847292</threshold> 28701 <left_val>-0.3434329926967621</left_val> 28702 <right_val>0.0285876393318176</right_val></_></_> 28703 <_> 28704 <!-- tree 55 --> 28705 <_> 28706 <!-- root node --> 28707 <feature> 28708 <rects> 28709 <_>9 6 6 10 -1.</_> 28710 <_>11 6 2 10 3.</_></rects> 28711 <tilted>0</tilted></feature> 28712 <threshold>-5.9670167975127697e-003</threshold> 28713 <left_val>0.0628549680113792</left_val> 28714 <right_val>-0.0632379129528999</right_val></_></_> 28715 <_> 28716 <!-- tree 56 --> 28717 <_> 28718 <!-- root node --> 28719 <feature> 28720 <rects> 28721 <_>7 6 6 10 -1.</_> 28722 <_>9 6 2 10 3.</_></rects> 28723 <tilted>0</tilted></feature> 28724 <threshold>-0.0572982616722584</threshold> 28725 <left_val>0.3351210057735443</left_val> 28726 <right_val>-0.0344256795942783</right_val></_></_> 28727 <_> 28728 <!-- tree 57 --> 28729 <_> 28730 <!-- root node --> 28731 <feature> 28732 <rects> 28733 <_>6 0 14 6 -1.</_> 28734 <_>13 0 7 3 2.</_> 28735 <_>6 3 7 3 2.</_></rects> 28736 <tilted>0</tilted></feature> 28737 <threshold>-0.1444053053855896</threshold> 28738 <left_val>-1.</left_val> 28739 <right_val>-2.0486500579863787e-004</right_val></_></_> 28740 <_> 28741 <!-- tree 58 --> 28742 <_> 28743 <!-- root node --> 28744 <feature> 28745 <rects> 28746 <_>2 0 14 6 -1.</_> 28747 <_>2 0 7 3 2.</_> 28748 <_>9 3 7 3 2.</_></rects> 28749 <tilted>0</tilted></feature> 28750 <threshold>-0.0161520093679428</threshold> 28751 <left_val>-0.1801726073026657</left_val> 28752 <right_val>0.0606980808079243</right_val></_></_> 28753 <_> 28754 <!-- tree 59 --> 28755 <_> 28756 <!-- root node --> 28757 <feature> 28758 <rects> 28759 <_>3 6 16 3 -1.</_> 28760 <_>3 7 16 1 3.</_></rects> 28761 <tilted>0</tilted></feature> 28762 <threshold>3.1132341246120632e-004</threshold> 28763 <left_val>-0.0873939692974091</left_val> 28764 <right_val>0.1081447973847389</right_val></_></_> 28765 <_> 28766 <!-- tree 60 --> 28767 <_> 28768 <!-- root node --> 28769 <feature> 28770 <rects> 28771 <_>1 6 15 3 -1.</_> 28772 <_>1 7 15 1 3.</_></rects> 28773 <tilted>0</tilted></feature> 28774 <threshold>-3.4905138891190290e-003</threshold> 28775 <left_val>0.1308909952640533</left_val> 28776 <right_val>-0.0825025066733360</right_val></_></_> 28777 <_> 28778 <!-- tree 61 --> 28779 <_> 28780 <!-- root node --> 28781 <feature> 28782 <rects> 28783 <_>8 5 8 4 -1.</_> 28784 <_>8 7 8 2 2.</_></rects> 28785 <tilted>0</tilted></feature> 28786 <threshold>-0.0510782003402710</threshold> 28787 <left_val>-0.6674498915672302</left_val> 28788 <right_val>9.7670806571841240e-003</right_val></_></_> 28789 <_> 28790 <!-- tree 62 --> 28791 <_> 28792 <!-- root node --> 28793 <feature> 28794 <rects> 28795 <_>2 4 12 10 -1.</_> 28796 <_>8 4 6 10 2.</_></rects> 28797 <tilted>0</tilted></feature> 28798 <threshold>0.2302789986133575</threshold> 28799 <left_val>8.9318687096238136e-003</left_val> 28800 <right_val>-0.8889254927635193</right_val></_></_> 28801 <_> 28802 <!-- tree 63 --> 28803 <_> 28804 <!-- root node --> 28805 <feature> 28806 <rects> 28807 <_>7 0 14 16 -1.</_> 28808 <_>7 0 7 16 2.</_></rects> 28809 <tilted>0</tilted></feature> 28810 <threshold>0.0332602895796299</threshold> 28811 <left_val>-0.0388468205928802</left_val> 28812 <right_val>0.1187155023217201</right_val></_></_> 28813 <_> 28814 <!-- tree 64 --> 28815 <_> 28816 <!-- root node --> 28817 <feature> 28818 <rects> 28819 <_>1 1 18 3 -1.</_> 28820 <_>10 1 9 3 2.</_></rects> 28821 <tilted>0</tilted></feature> 28822 <threshold>3.6332090385258198e-003</threshold> 28823 <left_val>-0.0818652883172035</left_val> 28824 <right_val>0.1200636997818947</right_val></_></_> 28825 <_> 28826 <!-- tree 65 --> 28827 <_> 28828 <!-- root node --> 28829 <feature> 28830 <rects> 28831 <_>8 8 12 2 -1.</_> 28832 <_>8 8 6 2 2.</_></rects> 28833 <tilted>0</tilted></feature> 28834 <threshold>-1.3659459364134818e-004</threshold> 28835 <left_val>0.0290940403938293</left_val> 28836 <right_val>-0.0864127129316330</right_val></_></_> 28837 <_> 28838 <!-- tree 66 --> 28839 <_> 28840 <!-- root node --> 28841 <feature> 28842 <rects> 28843 <_>8 1 6 4 -1.</_> 28844 <_>11 1 3 4 2.</_></rects> 28845 <tilted>0</tilted></feature> 28846 <threshold>4.2663831263780594e-003</threshold> 28847 <left_val>0.0596425905823708</left_val> 28848 <right_val>-0.1677787005901337</right_val></_></_> 28849 <_> 28850 <!-- tree 67 --> 28851 <_> 28852 <!-- root node --> 28853 <feature> 28854 <rects> 28855 <_>11 0 4 10 -1.</_> 28856 <_>12 1 2 10 2.</_></rects> 28857 <tilted>1</tilted></feature> 28858 <threshold>-0.0377263687551022</threshold> 28859 <left_val>0.2520141899585724</left_val> 28860 <right_val>-0.0114804599434137</right_val></_></_> 28861 <_> 28862 <!-- tree 68 --> 28863 <_> 28864 <!-- root node --> 28865 <feature> 28866 <rects> 28867 <_>11 0 10 4 -1.</_> 28868 <_>10 1 10 2 2.</_></rects> 28869 <tilted>1</tilted></feature> 28870 <threshold>-0.0377239510416985</threshold> 28871 <left_val>0.3615080118179321</left_val> 28872 <right_val>-0.0251649804413319</right_val></_></_> 28873 <_> 28874 <!-- tree 69 --> 28875 <_> 28876 <!-- root node --> 28877 <feature> 28878 <rects> 28879 <_>13 7 9 4 -1.</_> 28880 <_>16 7 3 4 3.</_></rects> 28881 <tilted>0</tilted></feature> 28882 <threshold>-0.0352175310254097</threshold> 28883 <left_val>-0.2076825946569443</left_val> 28884 <right_val>0.0156594999134541</right_val></_></_> 28885 <_> 28886 <!-- tree 70 --> 28887 <_> 28888 <!-- root node --> 28889 <feature> 28890 <rects> 28891 <_>11 1 6 2 -1.</_> 28892 <_>11 1 6 1 2.</_></rects> 28893 <tilted>1</tilted></feature> 28894 <threshold>-0.0262501500546932</threshold> 28895 <left_val>0.6436303853988648</left_val> 28896 <right_val>-0.0139710800722241</right_val></_></_> 28897 <_> 28898 <!-- tree 71 --> 28899 <_> 28900 <!-- root node --> 28901 <feature> 28902 <rects> 28903 <_>8 8 12 2 -1.</_> 28904 <_>8 8 6 2 2.</_></rects> 28905 <tilted>0</tilted></feature> 28906 <threshold>0.0711328312754631</threshold> 28907 <left_val>5.0701410509645939e-003</left_val> 28908 <right_val>-0.8105366826057434</right_val></_></_> 28909 <_> 28910 <!-- tree 72 --> 28911 <_> 28912 <!-- root node --> 28913 <feature> 28914 <rects> 28915 <_>7 12 6 5 -1.</_> 28916 <_>10 12 3 5 2.</_></rects> 28917 <tilted>0</tilted></feature> 28918 <threshold>2.8358760755509138e-003</threshold> 28919 <left_val>0.0800347328186035</left_val> 28920 <right_val>-0.1176605001091957</right_val></_></_> 28921 <_> 28922 <!-- tree 73 --> 28923 <_> 28924 <!-- root node --> 28925 <feature> 28926 <rects> 28927 <_>10 7 9 11 -1.</_> 28928 <_>13 7 3 11 3.</_></rects> 28929 <tilted>0</tilted></feature> 28930 <threshold>3.4837881103157997e-003</threshold> 28931 <left_val>0.0697094574570656</left_val> 28932 <right_val>-0.1213672012090683</right_val></_></_> 28933 <_> 28934 <!-- tree 74 --> 28935 <_> 28936 <!-- root node --> 28937 <feature> 28938 <rects> 28939 <_>6 15 8 3 -1.</_> 28940 <_>10 15 4 3 2.</_></rects> 28941 <tilted>0</tilted></feature> 28942 <threshold>2.9538539820350707e-005</threshold> 28943 <left_val>-0.1709052026271820</left_val> 28944 <right_val>0.0700920671224594</right_val></_></_> 28945 <_> 28946 <!-- tree 75 --> 28947 <_> 28948 <!-- root node --> 28949 <feature> 28950 <rects> 28951 <_>19 3 2 12 -1.</_> 28952 <_>19 3 1 12 2.</_></rects> 28953 <tilted>0</tilted></feature> 28954 <threshold>0.0263452306389809</threshold> 28955 <left_val>-0.0110464496538043</left_val> 28956 <right_val>0.3546783924102783</right_val></_></_> 28957 <_> 28958 <!-- tree 76 --> 28959 <_> 28960 <!-- root node --> 28961 <feature> 28962 <rects> 28963 <_>1 3 2 12 -1.</_> 28964 <_>2 3 1 12 2.</_></rects> 28965 <tilted>0</tilted></feature> 28966 <threshold>3.3180779428221285e-004</threshold> 28967 <left_val>-0.0897638499736786</left_val> 28968 <right_val>0.1040273979306221</right_val></_></_> 28969 <_> 28970 <!-- tree 77 --> 28971 <_> 28972 <!-- root node --> 28973 <feature> 28974 <rects> 28975 <_>11 1 9 10 -1.</_> 28976 <_>14 1 3 10 3.</_></rects> 28977 <tilted>0</tilted></feature> 28978 <threshold>9.9607985466718674e-003</threshold> 28979 <left_val>-0.1057467013597488</left_val> 28980 <right_val>0.0874811634421349</right_val></_></_> 28981 <_> 28982 <!-- tree 78 --> 28983 <_> 28984 <!-- root node --> 28985 <feature> 28986 <rects> 28987 <_>1 3 16 6 -1.</_> 28988 <_>5 3 8 6 2.</_></rects> 28989 <tilted>0</tilted></feature> 28990 <threshold>0.0690684765577316</threshold> 28991 <left_val>-0.0231357607990503</left_val> 28992 <right_val>0.3776597976684570</right_val></_></_> 28993 <_> 28994 <!-- tree 79 --> 28995 <_> 28996 <!-- root node --> 28997 <feature> 28998 <rects> 28999 <_>7 1 12 12 -1.</_> 29000 <_>11 1 4 12 3.</_></rects> 29001 <tilted>0</tilted></feature> 29002 <threshold>-0.0338048711419106</threshold> 29003 <left_val>-0.0800529271364212</left_val> 29004 <right_val>0.0661719888448715</right_val></_></_> 29005 <_> 29006 <!-- tree 80 --> 29007 <_> 29008 <!-- root node --> 29009 <feature> 29010 <rects> 29011 <_>2 8 12 2 -1.</_> 29012 <_>8 8 6 2 2.</_></rects> 29013 <tilted>0</tilted></feature> 29014 <threshold>-2.1103899925947189e-003</threshold> 29015 <left_val>0.0729132369160652</left_val> 29016 <right_val>-0.1698666960000992</right_val></_></_> 29017 <_> 29018 <!-- tree 81 --> 29019 <_> 29020 <!-- root node --> 29021 <feature> 29022 <rects> 29023 <_>14 7 3 10 -1.</_> 29024 <_>14 12 3 5 2.</_></rects> 29025 <tilted>0</tilted></feature> 29026 <threshold>0.0716755837202072</threshold> 29027 <left_val>-0.0226680207997561</left_val> 29028 <right_val>0.4375745952129364</right_val></_></_> 29029 <_> 29030 <!-- tree 82 --> 29031 <_> 29032 <!-- root node --> 29033 <feature> 29034 <rects> 29035 <_>1 15 18 3 -1.</_> 29036 <_>10 15 9 3 2.</_></rects> 29037 <tilted>0</tilted></feature> 29038 <threshold>-0.0176371298730373</threshold> 29039 <left_val>0.1471055001020432</left_val> 29040 <right_val>-0.0776481479406357</right_val></_></_> 29041 <_> 29042 <!-- tree 83 --> 29043 <_> 29044 <!-- root node --> 29045 <feature> 29046 <rects> 29047 <_>9 0 13 3 -1.</_> 29048 <_>9 1 13 1 3.</_></rects> 29049 <tilted>0</tilted></feature> 29050 <threshold>2.1559430751949549e-003</threshold> 29051 <left_val>-0.0445614792406559</left_val> 29052 <right_val>0.0806162506341934</right_val></_></_> 29053 <_> 29054 <!-- tree 84 --> 29055 <_> 29056 <!-- root node --> 29057 <feature> 29058 <rects> 29059 <_>5 0 12 3 -1.</_> 29060 <_>5 1 12 1 3.</_></rects> 29061 <tilted>0</tilted></feature> 29062 <threshold>-2.9923371039330959e-003</threshold> 29063 <left_val>0.1601323038339615</left_val> 29064 <right_val>-0.0726281702518463</right_val></_></_> 29065 <_> 29066 <!-- tree 85 --> 29067 <_> 29068 <!-- root node --> 29069 <feature> 29070 <rects> 29071 <_>12 1 2 15 -1.</_> 29072 <_>12 1 1 15 2.</_></rects> 29073 <tilted>0</tilted></feature> 29074 <threshold>-0.0283516198396683</threshold> 29075 <left_val>-0.2483552992343903</left_val> 29076 <right_val>7.8493626788258553e-003</right_val></_></_> 29077 <_> 29078 <!-- tree 86 --> 29079 <_> 29080 <!-- root node --> 29081 <feature> 29082 <rects> 29083 <_>8 1 2 15 -1.</_> 29084 <_>9 1 1 15 2.</_></rects> 29085 <tilted>0</tilted></feature> 29086 <threshold>-5.3842412307858467e-003</threshold> 29087 <left_val>-0.1329039037227631</left_val> 29088 <right_val>0.0786153525114059</right_val></_></_> 29089 <_> 29090 <!-- tree 87 --> 29091 <_> 29092 <!-- root node --> 29093 <feature> 29094 <rects> 29095 <_>12 2 3 13 -1.</_> 29096 <_>13 2 1 13 3.</_></rects> 29097 <tilted>0</tilted></feature> 29098 <threshold>0.0165137201547623</threshold> 29099 <left_val>-0.0308675803244114</left_val> 29100 <right_val>0.2291049957275391</right_val></_></_> 29101 <_> 29102 <!-- tree 88 --> 29103 <_> 29104 <!-- root node --> 29105 <feature> 29106 <rects> 29107 <_>1 6 4 8 -1.</_> 29108 <_>3 6 2 8 2.</_></rects> 29109 <tilted>0</tilted></feature> 29110 <threshold>-0.0234800595790148</threshold> 29111 <left_val>-0.3465690016746521</left_val> 29112 <right_val>0.0284779109060764</right_val></_></_> 29113 <_> 29114 <!-- tree 89 --> 29115 <_> 29116 <!-- root node --> 29117 <feature> 29118 <rects> 29119 <_>17 1 4 12 -1.</_> 29120 <_>19 1 2 6 2.</_> 29121 <_>17 7 2 6 2.</_></rects> 29122 <tilted>0</tilted></feature> 29123 <threshold>0.0648044571280479</threshold> 29124 <left_val>3.2681180164217949e-003</left_val> 29125 <right_val>-0.8184831738471985</right_val></_></_> 29126 <_> 29127 <!-- tree 90 --> 29128 <_> 29129 <!-- root node --> 29130 <feature> 29131 <rects> 29132 <_>1 1 4 12 -1.</_> 29133 <_>1 1 2 6 2.</_> 29134 <_>3 7 2 6 2.</_></rects> 29135 <tilted>0</tilted></feature> 29136 <threshold>2.9363438952714205e-003</threshold> 29137 <left_val>0.0683719962835312</left_val> 29138 <right_val>-0.1603825986385346</right_val></_></_> 29139 <_> 29140 <!-- tree 91 --> 29141 <_> 29142 <!-- root node --> 29143 <feature> 29144 <rects> 29145 <_>17 0 4 7 -1.</_> 29146 <_>17 0 2 7 2.</_></rects> 29147 <tilted>0</tilted></feature> 29148 <threshold>0.0193526390939951</threshold> 29149 <left_val>0.0123308096081018</left_val> 29150 <right_val>-0.1775151044130325</right_val></_></_> 29151 <_> 29152 <!-- tree 92 --> 29153 <_> 29154 <!-- root node --> 29155 <feature> 29156 <rects> 29157 <_>1 0 4 7 -1.</_> 29158 <_>3 0 2 7 2.</_></rects> 29159 <tilted>0</tilted></feature> 29160 <threshold>-1.4157049590721726e-003</threshold> 29161 <left_val>0.1624874025583267</left_val> 29162 <right_val>-0.0848219692707062</right_val></_></_> 29163 <_> 29164 <!-- tree 93 --> 29165 <_> 29166 <!-- root node --> 29167 <feature> 29168 <rects> 29169 <_>12 2 3 13 -1.</_> 29170 <_>13 2 1 13 3.</_></rects> 29171 <tilted>0</tilted></feature> 29172 <threshold>-0.0321656800806522</threshold> 29173 <left_val>0.2549557983875275</left_val> 29174 <right_val>-0.0153878200799227</right_val></_></_> 29175 <_> 29176 <!-- tree 94 --> 29177 <_> 29178 <!-- root node --> 29179 <feature> 29180 <rects> 29181 <_>7 4 5 9 -1.</_> 29182 <_>7 7 5 3 3.</_></rects> 29183 <tilted>0</tilted></feature> 29184 <threshold>0.0998839288949966</threshold> 29185 <left_val>0.0116309802979231</left_val> 29186 <right_val>-0.8693922162055969</right_val></_></_> 29187 <_> 29188 <!-- tree 95 --> 29189 <_> 29190 <!-- root node --> 29191 <feature> 29192 <rects> 29193 <_>12 2 3 13 -1.</_> 29194 <_>13 2 1 13 3.</_></rects> 29195 <tilted>0</tilted></feature> 29196 <threshold>-8.5509859491139650e-004</threshold> 29197 <left_val>0.0375091396272182</left_val> 29198 <right_val>-0.0413151308894157</right_val></_></_> 29199 <_> 29200 <!-- tree 96 --> 29201 <_> 29202 <!-- root node --> 29203 <feature> 29204 <rects> 29205 <_>7 2 3 13 -1.</_> 29206 <_>8 2 1 13 3.</_></rects> 29207 <tilted>0</tilted></feature> 29208 <threshold>0.0199486799538136</threshold> 29209 <left_val>-0.0332114398479462</left_val> 29210 <right_val>0.2654669880867004</right_val></_></_> 29211 <_> 29212 <!-- tree 97 --> 29213 <_> 29214 <!-- root node --> 29215 <feature> 29216 <rects> 29217 <_>3 5 17 4 -1.</_> 29218 <_>3 6 17 2 2.</_></rects> 29219 <tilted>0</tilted></feature> 29220 <threshold>-0.0168213602155447</threshold> 29221 <left_val>-0.1950453072786331</left_val> 29222 <right_val>0.0455782711505890</right_val></_></_> 29223 <_> 29224 <!-- tree 98 --> 29225 <_> 29226 <!-- root node --> 29227 <feature> 29228 <rects> 29229 <_>2 3 18 3 -1.</_> 29230 <_>2 4 18 1 3.</_></rects> 29231 <tilted>0</tilted></feature> 29232 <threshold>-0.0816850811243057</threshold> 29233 <left_val>0.8082371950149536</left_val> 29234 <right_val>-0.0100283799692988</right_val></_></_> 29235 <_> 29236 <!-- tree 99 --> 29237 <_> 29238 <!-- root node --> 29239 <feature> 29240 <rects> 29241 <_>11 11 6 4 -1.</_> 29242 <_>11 13 6 2 2.</_></rects> 29243 <tilted>0</tilted></feature> 29244 <threshold>-3.9467110764235258e-004</threshold> 29245 <left_val>0.0378688685595989</left_val> 29246 <right_val>-0.0743217021226883</right_val></_></_> 29247 <_> 29248 <!-- tree 100 --> 29249 <_> 29250 <!-- root node --> 29251 <feature> 29252 <rects> 29253 <_>5 11 6 4 -1.</_> 29254 <_>5 13 6 2 2.</_></rects> 29255 <tilted>0</tilted></feature> 29256 <threshold>-0.0419395789504051</threshold> 29257 <left_val>-0.7531027197837830</left_val> 29258 <right_val>0.0124947801232338</right_val></_></_> 29259 <_> 29260 <!-- tree 101 --> 29261 <_> 29262 <!-- root node --> 29263 <feature> 29264 <rects> 29265 <_>15 5 6 4 -1.</_> 29266 <_>15 5 6 2 2.</_></rects> 29267 <tilted>1</tilted></feature> 29268 <threshold>0.1231978014111519</threshold> 29269 <left_val>1.5212129801511765e-003</left_val> 29270 <right_val>-0.8745682835578919</right_val></_></_> 29271 <_> 29272 <!-- tree 102 --> 29273 <_> 29274 <!-- root node --> 29275 <feature> 29276 <rects> 29277 <_>7 5 4 6 -1.</_> 29278 <_>7 5 2 6 2.</_></rects> 29279 <tilted>1</tilted></feature> 29280 <threshold>4.3162349611520767e-003</threshold> 29281 <left_val>0.0959173664450645</left_val> 29282 <right_val>-0.0982868820428848</right_val></_></_> 29283 <_> 29284 <!-- tree 103 --> 29285 <_> 29286 <!-- root node --> 29287 <feature> 29288 <rects> 29289 <_>13 1 8 8 -1.</_> 29290 <_>15 1 4 8 2.</_></rects> 29291 <tilted>0</tilted></feature> 29292 <threshold>1.7064419807866216e-003</threshold> 29293 <left_val>-0.0672838464379311</left_val> 29294 <right_val>0.0583726689219475</right_val></_></_> 29295 <_> 29296 <!-- tree 104 --> 29297 <_> 29298 <!-- root node --> 29299 <feature> 29300 <rects> 29301 <_>3 1 12 12 -1.</_> 29302 <_>7 1 4 12 3.</_></rects> 29303 <tilted>0</tilted></feature> 29304 <threshold>0.0688534975051880</threshold> 29305 <left_val>0.0398532710969448</left_val> 29306 <right_val>-0.2701404094696045</right_val></_></_> 29307 <_> 29308 <!-- tree 105 --> 29309 <_> 29310 <!-- root node --> 29311 <feature> 29312 <rects> 29313 <_>14 2 4 12 -1.</_> 29314 <_>14 2 2 12 2.</_></rects> 29315 <tilted>0</tilted></feature> 29316 <threshold>1.5133110573515296e-003</threshold> 29317 <left_val>0.0368038304150105</left_val> 29318 <right_val>-0.0786387771368027</right_val></_></_> 29319 <_> 29320 <!-- tree 106 --> 29321 <_> 29322 <!-- root node --> 29323 <feature> 29324 <rects> 29325 <_>4 2 4 12 -1.</_> 29326 <_>6 2 2 12 2.</_></rects> 29327 <tilted>0</tilted></feature> 29328 <threshold>0.0166717004030943</threshold> 29329 <left_val>-0.0522084794938564</left_val> 29330 <right_val>0.2547613978385925</right_val></_></_> 29331 <_> 29332 <!-- tree 107 --> 29333 <_> 29334 <!-- root node --> 29335 <feature> 29336 <rects> 29337 <_>15 0 2 14 -1.</_> 29338 <_>15 0 1 14 2.</_></rects> 29339 <tilted>0</tilted></feature> 29340 <threshold>-2.4927379563450813e-003</threshold> 29341 <left_val>-0.0683529227972031</left_val> 29342 <right_val>0.0391825288534164</right_val></_></_> 29343 <_> 29344 <!-- tree 108 --> 29345 <_> 29346 <!-- root node --> 29347 <feature> 29348 <rects> 29349 <_>5 0 2 14 -1.</_> 29350 <_>6 0 1 14 2.</_></rects> 29351 <tilted>0</tilted></feature> 29352 <threshold>1.7946650041267276e-003</threshold> 29353 <left_val>0.0756416171789169</left_val> 29354 <right_val>-0.1844301968812943</right_val></_></_> 29355 <_> 29356 <!-- tree 109 --> 29357 <_> 29358 <!-- root node --> 29359 <feature> 29360 <rects> 29361 <_>15 1 7 15 -1.</_> 29362 <_>15 6 7 5 3.</_></rects> 29363 <tilted>0</tilted></feature> 29364 <threshold>0.0657645165920258</threshold> 29365 <left_val>-0.0279573798179626</left_val> 29366 <right_val>0.1377072930335999</right_val></_></_> 29367 <_> 29368 <!-- tree 110 --> 29369 <_> 29370 <!-- root node --> 29371 <feature> 29372 <rects> 29373 <_>6 1 7 6 -1.</_> 29374 <_>4 3 7 2 3.</_></rects> 29375 <tilted>1</tilted></feature> 29376 <threshold>-0.0324156284332275</threshold> 29377 <left_val>0.2495771944522858</left_val> 29378 <right_val>-0.0384017415344715</right_val></_></_> 29379 <_> 29380 <!-- tree 111 --> 29381 <_> 29382 <!-- root node --> 29383 <feature> 29384 <rects> 29385 <_>1 4 20 14 -1.</_> 29386 <_>11 4 10 7 2.</_> 29387 <_>1 11 10 7 2.</_></rects> 29388 <tilted>0</tilted></feature> 29389 <threshold>0.1598522067070007</threshold> 29390 <left_val>0.0231395307928324</left_val> 29391 <right_val>-0.4587697982788086</right_val></_></_> 29392 <_> 29393 <!-- tree 112 --> 29394 <_> 29395 <!-- root node --> 29396 <feature> 29397 <rects> 29398 <_>1 2 6 8 -1.</_> 29399 <_>3 2 2 8 3.</_></rects> 29400 <tilted>0</tilted></feature> 29401 <threshold>0.0330030508339405</threshold> 29402 <left_val>-0.0285496506839991</left_val> 29403 <right_val>0.3648226857185364</right_val></_></_> 29404 <_> 29405 <!-- tree 113 --> 29406 <_> 29407 <!-- root node --> 29408 <feature> 29409 <rects> 29410 <_>15 0 2 13 -1.</_> 29411 <_>15 0 1 13 2.</_></rects> 29412 <tilted>0</tilted></feature> 29413 <threshold>8.3292415365576744e-003</threshold> 29414 <left_val>0.0234221108257771</left_val> 29415 <right_val>-0.1299273967742920</right_val></_></_> 29416 <_> 29417 <!-- tree 114 --> 29418 <_> 29419 <!-- root node --> 29420 <feature> 29421 <rects> 29422 <_>2 1 9 10 -1.</_> 29423 <_>5 1 3 10 3.</_></rects> 29424 <tilted>0</tilted></feature> 29425 <threshold>-0.1470738053321838</threshold> 29426 <left_val>-1.</left_val> 29427 <right_val>0.0103427702561021</right_val></_></_> 29428 <_> 29429 <!-- tree 115 --> 29430 <_> 29431 <!-- root node --> 29432 <feature> 29433 <rects> 29434 <_>9 9 6 6 -1.</_> 29435 <_>11 9 2 6 3.</_></rects> 29436 <tilted>0</tilted></feature> 29437 <threshold>0.1062593013048172</threshold> 29438 <left_val>2.8901589103043079e-003</left_val> 29439 <right_val>-0.6210510134696960</right_val></_></_> 29440 <_> 29441 <!-- tree 116 --> 29442 <_> 29443 <!-- root node --> 29444 <feature> 29445 <rects> 29446 <_>5 5 8 4 -1.</_> 29447 <_>5 5 8 2 2.</_></rects> 29448 <tilted>1</tilted></feature> 29449 <threshold>0.0479050017893314</threshold> 29450 <left_val>-0.0254373103380203</left_val> 29451 <right_val>0.3859503865242004</right_val></_></_> 29452 <_> 29453 <!-- tree 117 --> 29454 <_> 29455 <!-- root node --> 29456 <feature> 29457 <rects> 29458 <_>5 8 14 4 -1.</_> 29459 <_>5 9 14 2 2.</_></rects> 29460 <tilted>0</tilted></feature> 29461 <threshold>0.0435629487037659</threshold> 29462 <left_val>0.0129636703059077</left_val> 29463 <right_val>-0.3157450854778290</right_val></_></_> 29464 <_> 29465 <!-- tree 118 --> 29466 <_> 29467 <!-- root node --> 29468 <feature> 29469 <rects> 29470 <_>0 7 20 2 -1.</_> 29471 <_>10 7 10 2 2.</_></rects> 29472 <tilted>0</tilted></feature> 29473 <threshold>-0.0664015114307404</threshold> 29474 <left_val>0.3718433976173401</left_val> 29475 <right_val>-0.0242482293397188</right_val></_></_> 29476 <_> 29477 <!-- tree 119 --> 29478 <_> 29479 <!-- root node --> 29480 <feature> 29481 <rects> 29482 <_>8 0 10 10 -1.</_> 29483 <_>8 0 5 10 2.</_></rects> 29484 <tilted>0</tilted></feature> 29485 <threshold>1.0357169667258859e-003</threshold> 29486 <left_val>-0.0338571593165398</left_val> 29487 <right_val>0.0728181377053261</right_val></_></_> 29488 <_> 29489 <!-- tree 120 --> 29490 <_> 29491 <!-- root node --> 29492 <feature> 29493 <rects> 29494 <_>4 0 10 10 -1.</_> 29495 <_>9 0 5 10 2.</_></rects> 29496 <tilted>0</tilted></feature> 29497 <threshold>-0.1001026034355164</threshold> 29498 <left_val>-0.2616243064403534</left_val> 29499 <right_val>0.0405613481998444</right_val></_></_> 29500 <_> 29501 <!-- tree 121 --> 29502 <_> 29503 <!-- root node --> 29504 <feature> 29505 <rects> 29506 <_>5 1 15 10 -1.</_> 29507 <_>10 1 5 10 3.</_></rects> 29508 <tilted>0</tilted></feature> 29509 <threshold>-0.1402942985296249</threshold> 29510 <left_val>0.1618638038635254</left_val> 29511 <right_val>-0.0374638698995113</right_val></_></_> 29512 <_> 29513 <!-- tree 122 --> 29514 <_> 29515 <!-- root node --> 29516 <feature> 29517 <rects> 29518 <_>0 9 18 4 -1.</_> 29519 <_>0 10 18 2 2.</_></rects> 29520 <tilted>0</tilted></feature> 29521 <threshold>-0.0366291813552380</threshold> 29522 <left_val>-0.3798868954181671</left_val> 29523 <right_val>0.0224937591701746</right_val></_></_> 29524 <_> 29525 <!-- tree 123 --> 29526 <_> 29527 <!-- root node --> 29528 <feature> 29529 <rects> 29530 <_>8 8 10 6 -1.</_> 29531 <_>8 10 10 2 3.</_></rects> 29532 <tilted>0</tilted></feature> 29533 <threshold>0.1852793991565704</threshold> 29534 <left_val>-3.4648380242288113e-003</left_val> 29535 <right_val>0.9997292160987854</right_val></_></_> 29536 <_> 29537 <!-- tree 124 --> 29538 <_> 29539 <!-- root node --> 29540 <feature> 29541 <rects> 29542 <_>4 8 10 6 -1.</_> 29543 <_>4 10 10 2 3.</_></rects> 29544 <tilted>0</tilted></feature> 29545 <threshold>0.0134529303759336</threshold> 29546 <left_val>0.0661910176277161</left_val> 29547 <right_val>-0.1520805060863495</right_val></_></_> 29548 <_> 29549 <!-- tree 125 --> 29550 <_> 29551 <!-- root node --> 29552 <feature> 29553 <rects> 29554 <_>11 6 10 12 -1.</_> 29555 <_>11 10 10 4 3.</_></rects> 29556 <tilted>0</tilted></feature> 29557 <threshold>0.0846280604600906</threshold> 29558 <left_val>-0.0321342609822750</left_val> 29559 <right_val>0.2287780046463013</right_val></_></_> 29560 <_> 29561 <!-- tree 126 --> 29562 <_> 29563 <!-- root node --> 29564 <feature> 29565 <rects> 29566 <_>8 5 4 8 -1.</_> 29567 <_>8 5 4 4 2.</_></rects> 29568 <tilted>1</tilted></feature> 29569 <threshold>-0.0875683724880219</threshold> 29570 <left_val>0.4322968125343323</left_val> 29571 <right_val>-0.0247350297868252</right_val></_></_> 29572 <_> 29573 <!-- tree 127 --> 29574 <_> 29575 <!-- root node --> 29576 <feature> 29577 <rects> 29578 <_>17 8 5 6 -1.</_> 29579 <_>17 11 5 3 2.</_></rects> 29580 <tilted>0</tilted></feature> 29581 <threshold>0.0265023391693830</threshold> 29582 <left_val>0.0235266294330359</left_val> 29583 <right_val>-0.2984949946403503</right_val></_></_> 29584 <_> 29585 <!-- tree 128 --> 29586 <_> 29587 <!-- root node --> 29588 <feature> 29589 <rects> 29590 <_>8 11 4 7 -1.</_> 29591 <_>10 11 2 7 2.</_></rects> 29592 <tilted>0</tilted></feature> 29593 <threshold>-0.0182730592787266</threshold> 29594 <left_val>0.5087803006172180</left_val> 29595 <right_val>-0.0197359491139650</right_val></_></_> 29596 <_> 29597 <!-- tree 129 --> 29598 <_> 29599 <!-- root node --> 29600 <feature> 29601 <rects> 29602 <_>9 5 12 3 -1.</_> 29603 <_>9 6 12 1 3.</_></rects> 29604 <tilted>0</tilted></feature> 29605 <threshold>-1.1995369568467140e-003</threshold> 29606 <left_val>0.0748677626252174</left_val> 29607 <right_val>-0.0738613903522491</right_val></_></_> 29608 <_> 29609 <!-- tree 130 --> 29610 <_> 29611 <!-- root node --> 29612 <feature> 29613 <rects> 29614 <_>2 9 13 3 -1.</_> 29615 <_>2 10 13 1 3.</_></rects> 29616 <tilted>0</tilted></feature> 29617 <threshold>0.0313812308013439</threshold> 29618 <left_val>-0.0262804795056582</left_val> 29619 <right_val>0.3658395111560822</right_val></_></_> 29620 <_> 29621 <!-- tree 131 --> 29622 <_> 29623 <!-- root node --> 29624 <feature> 29625 <rects> 29626 <_>3 13 16 3 -1.</_> 29627 <_>3 13 8 3 2.</_></rects> 29628 <tilted>0</tilted></feature> 29629 <threshold>0.0231786705553532</threshold> 29630 <left_val>0.0371552594006062</left_val> 29631 <right_val>-0.2546856999397278</right_val></_></_> 29632 <_> 29633 <!-- tree 132 --> 29634 <_> 29635 <!-- root node --> 29636 <feature> 29637 <rects> 29638 <_>5 12 8 4 -1.</_> 29639 <_>9 12 4 4 2.</_></rects> 29640 <tilted>0</tilted></feature> 29641 <threshold>-0.0136446999385953</threshold> 29642 <left_val>0.2071769982576370</left_val> 29643 <right_val>-0.0427927710115910</right_val></_></_> 29644 <_> 29645 <!-- tree 133 --> 29646 <_> 29647 <!-- root node --> 29648 <feature> 29649 <rects> 29650 <_>14 8 6 9 -1.</_> 29651 <_>14 11 6 3 3.</_></rects> 29652 <tilted>0</tilted></feature> 29653 <threshold>7.8315278515219688e-003</threshold> 29654 <left_val>0.0360285192728043</left_val> 29655 <right_val>-0.0803370401263237</right_val></_></_> 29656 <_> 29657 <!-- tree 134 --> 29658 <_> 29659 <!-- root node --> 29660 <feature> 29661 <rects> 29662 <_>4 10 12 3 -1.</_> 29663 <_>4 11 12 1 3.</_></rects> 29664 <tilted>0</tilted></feature> 29665 <threshold>-0.0100357802584767</threshold> 29666 <left_val>-0.2225376963615418</left_val> 29667 <right_val>0.0429500304162502</right_val></_></_> 29668 <_> 29669 <!-- tree 135 --> 29670 <_> 29671 <!-- root node --> 29672 <feature> 29673 <rects> 29674 <_>6 7 11 9 -1.</_> 29675 <_>6 10 11 3 3.</_></rects> 29676 <tilted>0</tilted></feature> 29677 <threshold>-0.0511321313679218</threshold> 29678 <left_val>0.3058665096759796</left_val> 29679 <right_val>-0.0270545892417431</right_val></_></_> 29680 <_> 29681 <!-- tree 136 --> 29682 <_> 29683 <!-- root node --> 29684 <feature> 29685 <rects> 29686 <_>4 1 9 4 -1.</_> 29687 <_>7 4 3 4 3.</_></rects> 29688 <tilted>1</tilted></feature> 29689 <threshold>-0.0695447027683258</threshold> 29690 <left_val>0.3468846082687378</left_val> 29691 <right_val>-0.0317362211644650</right_val></_></_> 29692 <_> 29693 <!-- tree 137 --> 29694 <_> 29695 <!-- root node --> 29696 <feature> 29697 <rects> 29698 <_>12 1 9 9 -1.</_> 29699 <_>15 1 3 9 3.</_></rects> 29700 <tilted>0</tilted></feature> 29701 <threshold>-0.0240793600678444</threshold> 29702 <left_val>0.1329156011343002</left_val> 29703 <right_val>-0.0302777793258429</right_val></_></_> 29704 <_> 29705 <!-- tree 138 --> 29706 <_> 29707 <!-- root node --> 29708 <feature> 29709 <rects> 29710 <_>1 1 9 9 -1.</_> 29711 <_>4 1 3 9 3.</_></rects> 29712 <tilted>0</tilted></feature> 29713 <threshold>-6.6630518995225430e-003</threshold> 29714 <left_val>-0.1847348064184189</left_val> 29715 <right_val>0.0787502527236938</right_val></_></_> 29716 <_> 29717 <!-- tree 139 --> 29718 <_> 29719 <!-- root node --> 29720 <feature> 29721 <rects> 29722 <_>14 1 6 6 -1.</_> 29723 <_>16 1 2 6 3.</_></rects> 29724 <tilted>0</tilted></feature> 29725 <threshold>0.0431476905941963</threshold> 29726 <left_val>-9.1566536575555801e-003</left_val> 29727 <right_val>0.2948581874370575</right_val></_></_> 29728 <_> 29729 <!-- tree 140 --> 29730 <_> 29731 <!-- root node --> 29732 <feature> 29733 <rects> 29734 <_>4 6 4 6 -1.</_> 29735 <_>6 6 2 6 2.</_></rects> 29736 <tilted>0</tilted></feature> 29737 <threshold>-0.0138083398342133</threshold> 29738 <left_val>-0.2847915887832642</left_val> 29739 <right_val>0.0326221883296967</right_val></_></_> 29740 <_> 29741 <!-- tree 141 --> 29742 <_> 29743 <!-- root node --> 29744 <feature> 29745 <rects> 29746 <_>7 5 12 7 -1.</_> 29747 <_>10 5 6 7 2.</_></rects> 29748 <tilted>0</tilted></feature> 29749 <threshold>0.1635189950466156</threshold> 29750 <left_val>-3.7377059925347567e-003</left_val> 29751 <right_val>0.5604218244552612</right_val></_></_> 29752 <_> 29753 <!-- tree 142 --> 29754 <_> 29755 <!-- root node --> 29756 <feature> 29757 <rects> 29758 <_>3 5 12 7 -1.</_> 29759 <_>6 5 6 7 2.</_></rects> 29760 <tilted>0</tilted></feature> 29761 <threshold>-0.0240861494094133</threshold> 29762 <left_val>0.1584143042564392</left_val> 29763 <right_val>-0.0662945136427879</right_val></_></_></trees> 29764 <stage_threshold>-30.5550003051757810</stage_threshold> 29765 <parent>28</parent> 29766 <next>-1</next></_></stages></haarcascade_upperbody> 29767</opencv_storage> 29768