• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Histogram Comparison {#tutorial_histogram_comparison}
2====================
3
4Goal
5----
6
7In this tutorial you will learn how to:
8
9-   Use the function @ref cv::compareHist to get a numerical parameter that express how well two
10    histograms match with each other.
11-   Use different metrics to compare histograms
12
13Theory
14------
15
16-   To compare two histograms ( \f$H_{1}\f$ and \f$H_{2}\f$ ), first we have to choose a *metric*
17    (\f$d(H_{1}, H_{2})\f$) to express how well both histograms match.
18-   OpenCV implements the function @ref cv::compareHist to perform a comparison. It also offers 4
19    different metrics to compute the matching:
20    -#  **Correlation ( CV_COMP_CORREL )**
21        \f[d(H_1,H_2) =  \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
22        where
23        \f[\bar{H_k} =  \frac{1}{N} \sum _J H_k(J)\f]
24        and \f$N\f$ is the total number of histogram bins.
25
26    -#  **Chi-Square ( CV_COMP_CHISQR )**
27        \f[d(H_1,H_2) =  \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f]
28
29    -#  **Intersection ( method=CV_COMP_INTERSECT )**
30        \f[d(H_1,H_2) =  \sum _I  \min (H_1(I), H_2(I))\f]
31
32    -#  **Bhattacharyya distance ( CV_COMP_BHATTACHARYYA )**
33        \f[d(H_1,H_2) =  \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f]
34
35Code
36----
37
38-   **What does this program do?**
39    -   Loads a *base image* and 2 *test images* to be compared with it.
40    -   Generate 1 image that is the lower half of the *base image*
41    -   Convert the images to HSV format
42    -   Calculate the H-S histogram for all the images and normalize them in order to compare them.
43    -   Compare the histogram of the *base image* with respect to the 2 test histograms, the
44        histogram of the lower half base image and with the same base image histogram.
45    -   Display the numerical matching parameters obtained.
46-   **Downloadable code**: Click
47    [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp)
48-   **Code at glance:**
49
50@include cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp
51
52Explanation
53-----------
54
55-#  Declare variables such as the matrices to store the base image and the two other images to
56    compare ( BGR and HSV )
57    @code{.cpp}
58    Mat src_base, hsv_base;
59    Mat src_test1, hsv_test1;
60    Mat src_test2, hsv_test2;
61    Mat hsv_half_down;
62    @endcode
63-#  Load the base image (src_base) and the other two test images:
64    @code{.cpp}
65    if( argc < 4 )
66      { printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
67        return -1;
68      }
69
70    src_base = imread( argv[1], 1 );
71    src_test1 = imread( argv[2], 1 );
72    src_test2 = imread( argv[3], 1 );
73    @endcode
74-#  Convert them to HSV format:
75    @code{.cpp}
76    cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
77    cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
78    cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV );
79    @endcode
80-#  Also, create an image of half the base image (in HSV format):
81    @code{.cpp}
82    hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
83    @endcode
84-#  Initialize the arguments to calculate the histograms (bins, ranges and channels H and S ).
85    @code{.cpp}
86    int h_bins = 50; int s_bins = 60;
87    int histSize[] = { h_bins, s_bins };
88
89    float h_ranges[] = { 0, 180 };
90    float s_ranges[] = { 0, 256 };
91
92    const float* ranges[] = { h_ranges, s_ranges };
93
94    int channels[] = { 0, 1 };
95    @endcode
96-#  Create the MatND objects to store the histograms:
97    @code{.cpp}
98    MatND hist_base;
99    MatND hist_half_down;
100    MatND hist_test1;
101    MatND hist_test2;
102    @endcode
103-#  Calculate the Histograms for the base image, the 2 test images and the half-down base image:
104    @code{.cpp}
105    calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
106    normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
107
108    calcHist( &hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false );
109    normalize( hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat() );
110
111    calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false );
112    normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() );
113
114    calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
115    normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
116    @endcode
117-#  Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base)
118    and the other histograms:
119    @code{.cpp}
120    for( int i = 0; i < 4; i++ )
121       { int compare_method = i;
122         double base_base = compareHist( hist_base, hist_base, compare_method );
123         double base_half = compareHist( hist_base, hist_half_down, compare_method );
124         double base_test1 = compareHist( hist_base, hist_test1, compare_method );
125         double base_test2 = compareHist( hist_base, hist_test2, compare_method );
126
127        printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
128      }
129    @endcode
130
131Results
132-------
133
134-#  We use as input the following images:
135    ![Base_0](images/Histogram_Comparison_Source_0.jpg)
136    ![Test_1](images/Histogram_Comparison_Source_1.jpg)
137    ![Test_2](images/Histogram_Comparison_Source_2.jpg)
138    where the first one is the base (to be compared to the others), the other 2 are the test images.
139    We will also compare the first image with respect to itself and with respect of half the base
140    image.
141
142-#  We should expect a perfect match when we compare the base image histogram with itself. Also,
143    compared with the histogram of half the base image, it should present a high match since both
144    are from the same source. For the other two test images, we can observe that they have very
145    different lighting conditions, so the matching should not be very good:
146
147-#  Here the numeric results:
148      *Method*        |  Base - Base |  Base - Half |  Base - Test 1 |  Base - Test 2
149    ----------------- | ------------ | ------------ | -------------- | ---------------
150      *Correlation*   |  1.000000    |  0.930766    |  0.182073      |  0.120447
151      *Chi-square*    |  0.000000    |  4.940466    |  21.184536     |  49.273437
152      *Intersection*  |  24.391548   |  14.959809   |  3.889029      |  5.775088
153      *Bhattacharyya* |  0.000000    |  0.222609    |  0.646576      |  0.801869
154    For the *Correlation* and *Intersection* methods, the higher the metric, the more accurate the
155    match. As we can see, the match *base-base* is the highest of all as expected. Also we can observe
156    that the match *base-half* is the second best match (as we predicted). For the other two metrics,
157    the less the result, the better the match. We can observe that the matches between the test 1 and
158    test 2 with respect to the base are worse, which again, was expected.
159