1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49
gemm(InputArray,InputArray,double,InputArray,double,OutputArray,int,Stream &)50 void cv::cuda::gemm(InputArray, InputArray, double, InputArray, double, OutputArray, int, Stream&) { throw_no_cuda(); }
51
mulSpectrums(InputArray,InputArray,OutputArray,int,bool,Stream &)52 void cv::cuda::mulSpectrums(InputArray, InputArray, OutputArray, int, bool, Stream&) { throw_no_cuda(); }
mulAndScaleSpectrums(InputArray,InputArray,OutputArray,int,float,bool,Stream &)53 void cv::cuda::mulAndScaleSpectrums(InputArray, InputArray, OutputArray, int, float, bool, Stream&) { throw_no_cuda(); }
54
dft(InputArray,OutputArray,Size,int,Stream &)55 void cv::cuda::dft(InputArray, OutputArray, Size, int, Stream&) { throw_no_cuda(); }
56
createConvolution(Size)57 Ptr<Convolution> cv::cuda::createConvolution(Size) { throw_no_cuda(); return Ptr<Convolution>(); }
58
59 #else /* !defined (HAVE_CUDA) */
60
61 namespace
62 {
63 #define error_entry(entry) { entry, #entry }
64
65 struct ErrorEntry
66 {
67 int code;
68 const char* str;
69 };
70
71 struct ErrorEntryComparer
72 {
73 int code;
ErrorEntryComparer__anon9ba760c90111::ErrorEntryComparer74 ErrorEntryComparer(int code_) : code(code_) {}
operator ()__anon9ba760c90111::ErrorEntryComparer75 bool operator()(const ErrorEntry& e) const { return e.code == code; }
76 };
77
getErrorString(int code,const ErrorEntry * errors,size_t n)78 String getErrorString(int code, const ErrorEntry* errors, size_t n)
79 {
80 size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors;
81
82 const char* msg = (idx != n) ? errors[idx].str : "Unknown error code";
83 String str = cv::format("%s [Code = %d]", msg, code);
84
85 return str;
86 }
87 }
88
89 #ifdef HAVE_CUBLAS
90 namespace
91 {
92 const ErrorEntry cublas_errors[] =
93 {
94 error_entry( CUBLAS_STATUS_SUCCESS ),
95 error_entry( CUBLAS_STATUS_NOT_INITIALIZED ),
96 error_entry( CUBLAS_STATUS_ALLOC_FAILED ),
97 error_entry( CUBLAS_STATUS_INVALID_VALUE ),
98 error_entry( CUBLAS_STATUS_ARCH_MISMATCH ),
99 error_entry( CUBLAS_STATUS_MAPPING_ERROR ),
100 error_entry( CUBLAS_STATUS_EXECUTION_FAILED ),
101 error_entry( CUBLAS_STATUS_INTERNAL_ERROR )
102 };
103
104 const size_t cublas_error_num = sizeof(cublas_errors) / sizeof(cublas_errors[0]);
105
___cublasSafeCall(cublasStatus_t err,const char * file,const int line,const char * func)106 static inline void ___cublasSafeCall(cublasStatus_t err, const char* file, const int line, const char* func)
107 {
108 if (CUBLAS_STATUS_SUCCESS != err)
109 {
110 String msg = getErrorString(err, cublas_errors, cublas_error_num);
111 cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
112 }
113 }
114 }
115
116 #define cublasSafeCall(expr) ___cublasSafeCall(expr, __FILE__, __LINE__, CV_Func)
117 #endif // HAVE_CUBLAS
118
119 #ifdef HAVE_CUFFT
120 namespace
121 {
122 //////////////////////////////////////////////////////////////////////////
123 // CUFFT errors
124
125 const ErrorEntry cufft_errors[] =
126 {
127 error_entry( CUFFT_INVALID_PLAN ),
128 error_entry( CUFFT_ALLOC_FAILED ),
129 error_entry( CUFFT_INVALID_TYPE ),
130 error_entry( CUFFT_INVALID_VALUE ),
131 error_entry( CUFFT_INTERNAL_ERROR ),
132 error_entry( CUFFT_EXEC_FAILED ),
133 error_entry( CUFFT_SETUP_FAILED ),
134 error_entry( CUFFT_INVALID_SIZE ),
135 error_entry( CUFFT_UNALIGNED_DATA )
136 };
137
138 const int cufft_error_num = sizeof(cufft_errors) / sizeof(cufft_errors[0]);
139
___cufftSafeCall(int err,const char * file,const int line,const char * func)140 void ___cufftSafeCall(int err, const char* file, const int line, const char* func)
141 {
142 if (CUFFT_SUCCESS != err)
143 {
144 String msg = getErrorString(err, cufft_errors, cufft_error_num);
145 cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
146 }
147 }
148 }
149
150 #define cufftSafeCall(expr) ___cufftSafeCall(expr, __FILE__, __LINE__, CV_Func)
151
152 #endif
153
154 ////////////////////////////////////////////////////////////////////////
155 // gemm
156
gemm(InputArray _src1,InputArray _src2,double alpha,InputArray _src3,double beta,OutputArray _dst,int flags,Stream & stream)157 void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray _src3, double beta, OutputArray _dst, int flags, Stream& stream)
158 {
159 #ifndef HAVE_CUBLAS
160 (void) _src1;
161 (void) _src2;
162 (void) alpha;
163 (void) _src3;
164 (void) beta;
165 (void) _dst;
166 (void) flags;
167 (void) stream;
168 CV_Error(Error::StsNotImplemented, "The library was build without CUBLAS");
169 #else
170 // CUBLAS works with column-major matrices
171
172 GpuMat src1 = getInputMat(_src1, stream);
173 GpuMat src2 = getInputMat(_src2, stream);
174 GpuMat src3 = getInputMat(_src3, stream);
175
176 CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2 );
177 CV_Assert( src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()) );
178
179 if (src1.depth() == CV_64F)
180 {
181 if (!deviceSupports(NATIVE_DOUBLE))
182 CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
183 }
184
185 bool tr1 = (flags & GEMM_1_T) != 0;
186 bool tr2 = (flags & GEMM_2_T) != 0;
187 bool tr3 = (flags & GEMM_3_T) != 0;
188
189 if (src1.type() == CV_64FC2)
190 {
191 if (tr1 || tr2 || tr3)
192 CV_Error(cv::Error::StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type");
193 }
194
195 Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size();
196 Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size();
197 Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size();
198 Size dstSize(src2Size.width, src1Size.height);
199
200 CV_Assert( src1Size.width == src2Size.height );
201 CV_Assert( src3.empty() || src3Size == dstSize );
202
203 GpuMat dst = getOutputMat(_dst, dstSize, src1.type(), stream);
204
205 if (beta != 0)
206 {
207 if (src3.empty())
208 {
209 dst.setTo(Scalar::all(0), stream);
210 }
211 else
212 {
213 if (tr3)
214 {
215 cuda::transpose(src3, dst, stream);
216 }
217 else
218 {
219 src3.copyTo(dst, stream);
220 }
221 }
222 }
223
224 cublasHandle_t handle;
225 cublasSafeCall( cublasCreate_v2(&handle) );
226
227 cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) );
228
229 cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) );
230
231 const float alphaf = static_cast<float>(alpha);
232 const float betaf = static_cast<float>(beta);
233
234 const cuComplex alphacf = make_cuComplex(alphaf, 0);
235 const cuComplex betacf = make_cuComplex(betaf, 0);
236
237 const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0);
238 const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0);
239
240 cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N;
241 cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N;
242
243 switch (src1.type())
244 {
245 case CV_32FC1:
246 cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
247 &alphaf,
248 src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)),
249 src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)),
250 &betaf,
251 dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) );
252 break;
253
254 case CV_64FC1:
255 cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
256 &alpha,
257 src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)),
258 src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)),
259 &beta,
260 dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) );
261 break;
262
263 case CV_32FC2:
264 cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
265 &alphacf,
266 src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)),
267 src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)),
268 &betacf,
269 dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) );
270 break;
271
272 case CV_64FC2:
273 cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
274 &alphac,
275 src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)),
276 src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)),
277 &betac,
278 dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) );
279 break;
280 }
281
282 cublasSafeCall( cublasDestroy_v2(handle) );
283
284 syncOutput(dst, _dst, stream);
285 #endif
286 }
287
288 //////////////////////////////////////////////////////////////////////////////
289 // dft
290
dft(InputArray _src,OutputArray _dst,Size dft_size,int flags,Stream & stream)291 void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
292 {
293 #ifndef HAVE_CUFFT
294 (void) _src;
295 (void) _dst;
296 (void) dft_size;
297 (void) flags;
298 (void) stream;
299 throw_no_cuda();
300 #else
301 GpuMat src = getInputMat(_src, stream);
302
303 CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );
304
305 // We don't support unpacked output (in the case of real input)
306 CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );
307
308 const bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1);
309 const bool is_row_dft = (flags & DFT_ROWS) != 0;
310 const bool is_scaled_dft = (flags & DFT_SCALE) != 0;
311 const bool is_inverse = (flags & DFT_INVERSE) != 0;
312 const bool is_complex_input = src.channels() == 2;
313 const bool is_complex_output = !(flags & DFT_REAL_OUTPUT);
314
315 // We don't support real-to-real transform
316 CV_Assert( is_complex_input || is_complex_output );
317
318 // Make sure here we work with the continuous input,
319 // as CUFFT can't handle gaps
320 GpuMat src_cont;
321 if (src.isContinuous())
322 {
323 src_cont = src;
324 }
325 else
326 {
327 BufferPool pool(stream);
328 src_cont.allocator = pool.getAllocator();
329 createContinuous(src.rows, src.cols, src.type(), src_cont);
330 src.copyTo(src_cont, stream);
331 }
332
333 Size dft_size_opt = dft_size;
334 if (is_1d_input && !is_row_dft)
335 {
336 // If the source matrix is single column handle it as single row
337 dft_size_opt.width = std::max(dft_size.width, dft_size.height);
338 dft_size_opt.height = std::min(dft_size.width, dft_size.height);
339 }
340
341 CV_Assert( dft_size_opt.width > 1 );
342
343 cufftType dft_type = CUFFT_R2C;
344 if (is_complex_input)
345 dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;
346
347 cufftHandle plan;
348 if (is_1d_input || is_row_dft)
349 cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
350 else
351 cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );
352
353 cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );
354
355 if (is_complex_input)
356 {
357 if (is_complex_output)
358 {
359 createContinuous(dft_size, CV_32FC2, _dst);
360 GpuMat dst = _dst.getGpuMat();
361
362 cufftSafeCall(cufftExecC2C(
363 plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
364 is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
365 }
366 else
367 {
368 createContinuous(dft_size, CV_32F, _dst);
369 GpuMat dst = _dst.getGpuMat();
370
371 cufftSafeCall(cufftExecC2R(
372 plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
373 }
374 }
375 else
376 {
377 // We could swap dft_size for efficiency. Here we must reflect it
378 if (dft_size == dft_size_opt)
379 createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
380 else
381 createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);
382
383 GpuMat dst = _dst.getGpuMat();
384
385 cufftSafeCall(cufftExecR2C(
386 plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
387 }
388
389 cufftSafeCall( cufftDestroy(plan) );
390
391 if (is_scaled_dft)
392 cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);
393
394 #endif
395 }
396
397 //////////////////////////////////////////////////////////////////////////////
398 // Convolution
399
400 #ifdef HAVE_CUFFT
401
402 namespace
403 {
404 class ConvolutionImpl : public Convolution
405 {
406 public:
ConvolutionImpl(Size user_block_size_)407 explicit ConvolutionImpl(Size user_block_size_) : user_block_size(user_block_size_) {}
408
409 void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null());
410
411 private:
412 void create(Size image_size, Size templ_size);
413 static Size estimateBlockSize(Size result_size);
414
415 Size result_size;
416 Size block_size;
417 Size user_block_size;
418 Size dft_size;
419 int spect_len;
420
421 GpuMat image_spect, templ_spect, result_spect;
422 GpuMat image_block, templ_block, result_data;
423 };
424
create(Size image_size,Size templ_size)425 void ConvolutionImpl::create(Size image_size, Size templ_size)
426 {
427 result_size = Size(image_size.width - templ_size.width + 1,
428 image_size.height - templ_size.height + 1);
429
430 block_size = user_block_size;
431 if (user_block_size.width == 0 || user_block_size.height == 0)
432 block_size = estimateBlockSize(result_size);
433
434 dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
435 dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
436
437 // CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
438 // see CUDA Toolkit 4.1 CUFFT Library Programming Guide
439 if (dft_size.width > 8192)
440 dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
441 if (dft_size.height > 8192)
442 dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
443
444 // To avoid wasting time doing small DFTs
445 dft_size.width = std::max(dft_size.width, 512);
446 dft_size.height = std::max(dft_size.height, 512);
447
448 createContinuous(dft_size, CV_32F, image_block);
449 createContinuous(dft_size, CV_32F, templ_block);
450 createContinuous(dft_size, CV_32F, result_data);
451
452 spect_len = dft_size.height * (dft_size.width / 2 + 1);
453 createContinuous(1, spect_len, CV_32FC2, image_spect);
454 createContinuous(1, spect_len, CV_32FC2, templ_spect);
455 createContinuous(1, spect_len, CV_32FC2, result_spect);
456
457 // Use maximum result matrix block size for the estimated DFT block size
458 block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
459 block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
460 }
461
estimateBlockSize(Size result_size)462 Size ConvolutionImpl::estimateBlockSize(Size result_size)
463 {
464 int width = (result_size.width + 2) / 3;
465 int height = (result_size.height + 2) / 3;
466 width = std::min(width, result_size.width);
467 height = std::min(height, result_size.height);
468 return Size(width, height);
469 }
470
convolve(InputArray _image,InputArray _templ,OutputArray _result,bool ccorr,Stream & _stream)471 void ConvolutionImpl::convolve(InputArray _image, InputArray _templ, OutputArray _result, bool ccorr, Stream& _stream)
472 {
473 GpuMat image = getInputMat(_image, _stream);
474 GpuMat templ = getInputMat(_templ, _stream);
475
476 CV_Assert( image.type() == CV_32FC1 );
477 CV_Assert( templ.type() == CV_32FC1 );
478
479 create(image.size(), templ.size());
480
481 GpuMat result = getOutputMat(_result, result_size, CV_32FC1, _stream);
482
483 cudaStream_t stream = StreamAccessor::getStream(_stream);
484
485 cufftHandle planR2C, planC2R;
486 cufftSafeCall( cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) );
487 cufftSafeCall( cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) );
488
489 cufftSafeCall( cufftSetStream(planR2C, stream) );
490 cufftSafeCall( cufftSetStream(planC2R, stream) );
491
492 GpuMat templ_roi(templ.size(), CV_32FC1, templ.data, templ.step);
493 cuda::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
494 templ_block.cols - templ_roi.cols, 0, Scalar(), _stream);
495
496 cufftSafeCall( cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), templ_spect.ptr<cufftComplex>()) );
497
498 // Process all blocks of the result matrix
499 for (int y = 0; y < result.rows; y += block_size.height)
500 {
501 for (int x = 0; x < result.cols; x += block_size.width)
502 {
503 Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
504 std::min(y + dft_size.height, image.rows) - y);
505 GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
506 image.step);
507 cuda::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
508 0, image_block.cols - image_roi.cols, 0, Scalar(), _stream);
509
510 cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
511 image_spect.ptr<cufftComplex>()));
512 cuda::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
513 1.f / dft_size.area(), ccorr, _stream);
514 cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
515 result_data.ptr<cufftReal>()));
516
517 Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
518 std::min(y + block_size.height, result.rows) - y);
519 GpuMat result_roi(result_roi_size, result.type(),
520 (void*)(result.ptr<float>(y) + x), result.step);
521 GpuMat result_block(result_roi_size, result_data.type(),
522 result_data.ptr(), result_data.step);
523
524 result_block.copyTo(result_roi, _stream);
525 }
526 }
527
528 cufftSafeCall( cufftDestroy(planR2C) );
529 cufftSafeCall( cufftDestroy(planC2R) );
530
531 syncOutput(result, _result, _stream);
532 }
533 }
534
535 #endif
536
createConvolution(Size user_block_size)537 Ptr<Convolution> cv::cuda::createConvolution(Size user_block_size)
538 {
539 #ifndef HAVE_CUFFT
540 (void) user_block_size;
541 CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
542 return Ptr<Convolution>();
543 #else
544 return makePtr<ConvolutionImpl>(user_block_size);
545 #endif
546 }
547
548 #endif /* !defined (HAVE_CUDA) */
549