• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::cuda;
47 
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49 
gemm(InputArray,InputArray,double,InputArray,double,OutputArray,int,Stream &)50 void cv::cuda::gemm(InputArray, InputArray, double, InputArray, double, OutputArray, int, Stream&) { throw_no_cuda(); }
51 
mulSpectrums(InputArray,InputArray,OutputArray,int,bool,Stream &)52 void cv::cuda::mulSpectrums(InputArray, InputArray, OutputArray, int, bool, Stream&) { throw_no_cuda(); }
mulAndScaleSpectrums(InputArray,InputArray,OutputArray,int,float,bool,Stream &)53 void cv::cuda::mulAndScaleSpectrums(InputArray, InputArray, OutputArray, int, float, bool, Stream&) { throw_no_cuda(); }
54 
dft(InputArray,OutputArray,Size,int,Stream &)55 void cv::cuda::dft(InputArray, OutputArray, Size, int, Stream&) { throw_no_cuda(); }
56 
createConvolution(Size)57 Ptr<Convolution> cv::cuda::createConvolution(Size) { throw_no_cuda(); return Ptr<Convolution>(); }
58 
59 #else /* !defined (HAVE_CUDA) */
60 
61 namespace
62 {
63     #define error_entry(entry)  { entry, #entry }
64 
65     struct ErrorEntry
66     {
67         int code;
68         const char* str;
69     };
70 
71     struct ErrorEntryComparer
72     {
73         int code;
ErrorEntryComparer__anon9ba760c90111::ErrorEntryComparer74         ErrorEntryComparer(int code_) : code(code_) {}
operator ()__anon9ba760c90111::ErrorEntryComparer75         bool operator()(const ErrorEntry& e) const { return e.code == code; }
76     };
77 
getErrorString(int code,const ErrorEntry * errors,size_t n)78     String getErrorString(int code, const ErrorEntry* errors, size_t n)
79     {
80         size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors;
81 
82         const char* msg = (idx != n) ? errors[idx].str : "Unknown error code";
83         String str = cv::format("%s [Code = %d]", msg, code);
84 
85         return str;
86     }
87 }
88 
89 #ifdef HAVE_CUBLAS
90     namespace
91     {
92         const ErrorEntry cublas_errors[] =
93         {
94             error_entry( CUBLAS_STATUS_SUCCESS ),
95             error_entry( CUBLAS_STATUS_NOT_INITIALIZED ),
96             error_entry( CUBLAS_STATUS_ALLOC_FAILED ),
97             error_entry( CUBLAS_STATUS_INVALID_VALUE ),
98             error_entry( CUBLAS_STATUS_ARCH_MISMATCH ),
99             error_entry( CUBLAS_STATUS_MAPPING_ERROR ),
100             error_entry( CUBLAS_STATUS_EXECUTION_FAILED ),
101             error_entry( CUBLAS_STATUS_INTERNAL_ERROR )
102         };
103 
104         const size_t cublas_error_num = sizeof(cublas_errors) / sizeof(cublas_errors[0]);
105 
___cublasSafeCall(cublasStatus_t err,const char * file,const int line,const char * func)106         static inline void ___cublasSafeCall(cublasStatus_t err, const char* file, const int line, const char* func)
107         {
108             if (CUBLAS_STATUS_SUCCESS != err)
109             {
110                 String msg = getErrorString(err, cublas_errors, cublas_error_num);
111                 cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
112             }
113         }
114     }
115 
116     #define cublasSafeCall(expr)  ___cublasSafeCall(expr, __FILE__, __LINE__, CV_Func)
117 #endif // HAVE_CUBLAS
118 
119 #ifdef HAVE_CUFFT
120     namespace
121     {
122         //////////////////////////////////////////////////////////////////////////
123         // CUFFT errors
124 
125         const ErrorEntry cufft_errors[] =
126         {
127             error_entry( CUFFT_INVALID_PLAN ),
128             error_entry( CUFFT_ALLOC_FAILED ),
129             error_entry( CUFFT_INVALID_TYPE ),
130             error_entry( CUFFT_INVALID_VALUE ),
131             error_entry( CUFFT_INTERNAL_ERROR ),
132             error_entry( CUFFT_EXEC_FAILED ),
133             error_entry( CUFFT_SETUP_FAILED ),
134             error_entry( CUFFT_INVALID_SIZE ),
135             error_entry( CUFFT_UNALIGNED_DATA )
136         };
137 
138         const int cufft_error_num = sizeof(cufft_errors) / sizeof(cufft_errors[0]);
139 
___cufftSafeCall(int err,const char * file,const int line,const char * func)140         void ___cufftSafeCall(int err, const char* file, const int line, const char* func)
141         {
142             if (CUFFT_SUCCESS != err)
143             {
144                 String msg = getErrorString(err, cufft_errors, cufft_error_num);
145                 cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
146             }
147         }
148     }
149 
150     #define cufftSafeCall(expr)  ___cufftSafeCall(expr, __FILE__, __LINE__, CV_Func)
151 
152 #endif
153 
154 ////////////////////////////////////////////////////////////////////////
155 // gemm
156 
gemm(InputArray _src1,InputArray _src2,double alpha,InputArray _src3,double beta,OutputArray _dst,int flags,Stream & stream)157 void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray _src3, double beta, OutputArray _dst, int flags, Stream& stream)
158 {
159 #ifndef HAVE_CUBLAS
160     (void) _src1;
161     (void) _src2;
162     (void) alpha;
163     (void) _src3;
164     (void) beta;
165     (void) _dst;
166     (void) flags;
167     (void) stream;
168     CV_Error(Error::StsNotImplemented, "The library was build without CUBLAS");
169 #else
170     // CUBLAS works with column-major matrices
171 
172     GpuMat src1 = getInputMat(_src1, stream);
173     GpuMat src2 = getInputMat(_src2, stream);
174     GpuMat src3 = getInputMat(_src3, stream);
175 
176     CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2 );
177     CV_Assert( src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()) );
178 
179     if (src1.depth() == CV_64F)
180     {
181         if (!deviceSupports(NATIVE_DOUBLE))
182             CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
183     }
184 
185     bool tr1 = (flags & GEMM_1_T) != 0;
186     bool tr2 = (flags & GEMM_2_T) != 0;
187     bool tr3 = (flags & GEMM_3_T) != 0;
188 
189     if (src1.type() == CV_64FC2)
190     {
191         if (tr1 || tr2 || tr3)
192             CV_Error(cv::Error::StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type");
193     }
194 
195     Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size();
196     Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size();
197     Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size();
198     Size dstSize(src2Size.width, src1Size.height);
199 
200     CV_Assert( src1Size.width == src2Size.height );
201     CV_Assert( src3.empty() || src3Size == dstSize );
202 
203     GpuMat dst = getOutputMat(_dst, dstSize, src1.type(), stream);
204 
205     if (beta != 0)
206     {
207         if (src3.empty())
208         {
209             dst.setTo(Scalar::all(0), stream);
210         }
211         else
212         {
213             if (tr3)
214             {
215                 cuda::transpose(src3, dst, stream);
216             }
217             else
218             {
219                 src3.copyTo(dst, stream);
220             }
221         }
222     }
223 
224     cublasHandle_t handle;
225     cublasSafeCall( cublasCreate_v2(&handle) );
226 
227     cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) );
228 
229     cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) );
230 
231     const float alphaf = static_cast<float>(alpha);
232     const float betaf = static_cast<float>(beta);
233 
234     const cuComplex alphacf = make_cuComplex(alphaf, 0);
235     const cuComplex betacf = make_cuComplex(betaf, 0);
236 
237     const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0);
238     const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0);
239 
240     cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N;
241     cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N;
242 
243     switch (src1.type())
244     {
245     case CV_32FC1:
246         cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
247             &alphaf,
248             src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)),
249             src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)),
250             &betaf,
251             dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) );
252         break;
253 
254     case CV_64FC1:
255         cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
256             &alpha,
257             src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)),
258             src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)),
259             &beta,
260             dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) );
261         break;
262 
263     case CV_32FC2:
264         cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
265             &alphacf,
266             src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)),
267             src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)),
268             &betacf,
269             dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) );
270         break;
271 
272     case CV_64FC2:
273         cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
274             &alphac,
275             src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)),
276             src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)),
277             &betac,
278             dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) );
279         break;
280     }
281 
282     cublasSafeCall( cublasDestroy_v2(handle) );
283 
284     syncOutput(dst, _dst, stream);
285 #endif
286 }
287 
288 //////////////////////////////////////////////////////////////////////////////
289 // dft
290 
dft(InputArray _src,OutputArray _dst,Size dft_size,int flags,Stream & stream)291 void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
292 {
293 #ifndef HAVE_CUFFT
294     (void) _src;
295     (void) _dst;
296     (void) dft_size;
297     (void) flags;
298     (void) stream;
299     throw_no_cuda();
300 #else
301     GpuMat src = getInputMat(_src, stream);
302 
303     CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );
304 
305     // We don't support unpacked output (in the case of real input)
306     CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );
307 
308     const bool is_1d_input       = (dft_size.height == 1) || (dft_size.width == 1);
309     const bool is_row_dft        = (flags & DFT_ROWS) != 0;
310     const bool is_scaled_dft     = (flags & DFT_SCALE) != 0;
311     const bool is_inverse        = (flags & DFT_INVERSE) != 0;
312     const bool is_complex_input  = src.channels() == 2;
313     const bool is_complex_output = !(flags & DFT_REAL_OUTPUT);
314 
315     // We don't support real-to-real transform
316     CV_Assert( is_complex_input || is_complex_output );
317 
318     // Make sure here we work with the continuous input,
319     // as CUFFT can't handle gaps
320     GpuMat src_cont;
321     if (src.isContinuous())
322     {
323         src_cont = src;
324     }
325     else
326     {
327         BufferPool pool(stream);
328         src_cont.allocator = pool.getAllocator();
329         createContinuous(src.rows, src.cols, src.type(), src_cont);
330         src.copyTo(src_cont, stream);
331     }
332 
333     Size dft_size_opt = dft_size;
334     if (is_1d_input && !is_row_dft)
335     {
336         // If the source matrix is single column handle it as single row
337         dft_size_opt.width = std::max(dft_size.width, dft_size.height);
338         dft_size_opt.height = std::min(dft_size.width, dft_size.height);
339     }
340 
341     CV_Assert( dft_size_opt.width > 1 );
342 
343     cufftType dft_type = CUFFT_R2C;
344     if (is_complex_input)
345         dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;
346 
347     cufftHandle plan;
348     if (is_1d_input || is_row_dft)
349         cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
350     else
351         cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );
352 
353     cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );
354 
355     if (is_complex_input)
356     {
357         if (is_complex_output)
358         {
359             createContinuous(dft_size, CV_32FC2, _dst);
360             GpuMat dst = _dst.getGpuMat();
361 
362             cufftSafeCall(cufftExecC2C(
363                     plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
364                     is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
365         }
366         else
367         {
368             createContinuous(dft_size, CV_32F, _dst);
369             GpuMat dst = _dst.getGpuMat();
370 
371             cufftSafeCall(cufftExecC2R(
372                     plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
373         }
374     }
375     else
376     {
377         // We could swap dft_size for efficiency. Here we must reflect it
378         if (dft_size == dft_size_opt)
379             createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
380         else
381             createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);
382 
383         GpuMat dst = _dst.getGpuMat();
384 
385         cufftSafeCall(cufftExecR2C(
386                 plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
387     }
388 
389     cufftSafeCall( cufftDestroy(plan) );
390 
391     if (is_scaled_dft)
392         cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);
393 
394 #endif
395 }
396 
397 //////////////////////////////////////////////////////////////////////////////
398 // Convolution
399 
400 #ifdef HAVE_CUFFT
401 
402 namespace
403 {
404     class ConvolutionImpl : public Convolution
405     {
406     public:
ConvolutionImpl(Size user_block_size_)407         explicit ConvolutionImpl(Size user_block_size_) : user_block_size(user_block_size_) {}
408 
409         void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null());
410 
411     private:
412         void create(Size image_size, Size templ_size);
413         static Size estimateBlockSize(Size result_size);
414 
415         Size result_size;
416         Size block_size;
417         Size user_block_size;
418         Size dft_size;
419         int spect_len;
420 
421         GpuMat image_spect, templ_spect, result_spect;
422         GpuMat image_block, templ_block, result_data;
423     };
424 
create(Size image_size,Size templ_size)425     void ConvolutionImpl::create(Size image_size, Size templ_size)
426     {
427         result_size = Size(image_size.width - templ_size.width + 1,
428                            image_size.height - templ_size.height + 1);
429 
430         block_size = user_block_size;
431         if (user_block_size.width == 0 || user_block_size.height == 0)
432             block_size = estimateBlockSize(result_size);
433 
434         dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
435         dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
436 
437         // CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
438         // see CUDA Toolkit 4.1 CUFFT Library Programming Guide
439         if (dft_size.width > 8192)
440             dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
441         if (dft_size.height > 8192)
442             dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
443 
444         // To avoid wasting time doing small DFTs
445         dft_size.width = std::max(dft_size.width, 512);
446         dft_size.height = std::max(dft_size.height, 512);
447 
448         createContinuous(dft_size, CV_32F, image_block);
449         createContinuous(dft_size, CV_32F, templ_block);
450         createContinuous(dft_size, CV_32F, result_data);
451 
452         spect_len = dft_size.height * (dft_size.width / 2 + 1);
453         createContinuous(1, spect_len, CV_32FC2, image_spect);
454         createContinuous(1, spect_len, CV_32FC2, templ_spect);
455         createContinuous(1, spect_len, CV_32FC2, result_spect);
456 
457         // Use maximum result matrix block size for the estimated DFT block size
458         block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
459         block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
460     }
461 
estimateBlockSize(Size result_size)462     Size ConvolutionImpl::estimateBlockSize(Size result_size)
463     {
464         int width = (result_size.width + 2) / 3;
465         int height = (result_size.height + 2) / 3;
466         width = std::min(width, result_size.width);
467         height = std::min(height, result_size.height);
468         return Size(width, height);
469     }
470 
convolve(InputArray _image,InputArray _templ,OutputArray _result,bool ccorr,Stream & _stream)471     void ConvolutionImpl::convolve(InputArray _image, InputArray _templ, OutputArray _result, bool ccorr, Stream& _stream)
472     {
473         GpuMat image = getInputMat(_image, _stream);
474         GpuMat templ = getInputMat(_templ, _stream);
475 
476         CV_Assert( image.type() == CV_32FC1 );
477         CV_Assert( templ.type() == CV_32FC1 );
478 
479         create(image.size(), templ.size());
480 
481         GpuMat result = getOutputMat(_result, result_size, CV_32FC1, _stream);
482 
483         cudaStream_t stream = StreamAccessor::getStream(_stream);
484 
485         cufftHandle planR2C, planC2R;
486         cufftSafeCall( cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) );
487         cufftSafeCall( cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) );
488 
489         cufftSafeCall( cufftSetStream(planR2C, stream) );
490         cufftSafeCall( cufftSetStream(planC2R, stream) );
491 
492         GpuMat templ_roi(templ.size(), CV_32FC1, templ.data, templ.step);
493         cuda::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
494                             templ_block.cols - templ_roi.cols, 0, Scalar(), _stream);
495 
496         cufftSafeCall( cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), templ_spect.ptr<cufftComplex>()) );
497 
498         // Process all blocks of the result matrix
499         for (int y = 0; y < result.rows; y += block_size.height)
500         {
501             for (int x = 0; x < result.cols; x += block_size.width)
502             {
503                 Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
504                                     std::min(y + dft_size.height, image.rows) - y);
505                 GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
506                                  image.step);
507                 cuda::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
508                                     0, image_block.cols - image_roi.cols, 0, Scalar(), _stream);
509 
510                 cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
511                                            image_spect.ptr<cufftComplex>()));
512                 cuda::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
513                                           1.f / dft_size.area(), ccorr, _stream);
514                 cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
515                                            result_data.ptr<cufftReal>()));
516 
517                 Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
518                                      std::min(y + block_size.height, result.rows) - y);
519                 GpuMat result_roi(result_roi_size, result.type(),
520                                   (void*)(result.ptr<float>(y) + x), result.step);
521                 GpuMat result_block(result_roi_size, result_data.type(),
522                                     result_data.ptr(), result_data.step);
523 
524                 result_block.copyTo(result_roi, _stream);
525             }
526         }
527 
528         cufftSafeCall( cufftDestroy(planR2C) );
529         cufftSafeCall( cufftDestroy(planC2R) );
530 
531         syncOutput(result, _result, _stream);
532     }
533 }
534 
535 #endif
536 
createConvolution(Size user_block_size)537 Ptr<Convolution> cv::cuda::createConvolution(Size user_block_size)
538 {
539 #ifndef HAVE_CUFFT
540     (void) user_block_size;
541     CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
542     return Ptr<Convolution>();
543 #else
544     return makePtr<ConvolutionImpl>(user_block_size);
545 #endif
546 }
547 
548 #endif /* !defined (HAVE_CUDA) */
549