1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49
calcHist(InputArray,OutputArray,Stream &)50 void cv::cuda::calcHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
51
equalizeHist(InputArray,OutputArray,Stream &)52 void cv::cuda::equalizeHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
53
createCLAHE(double,cv::Size)54 cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double, cv::Size) { throw_no_cuda(); return cv::Ptr<cv::cuda::CLAHE>(); }
55
evenLevels(OutputArray,int,int,int,Stream &)56 void cv::cuda::evenLevels(OutputArray, int, int, int, Stream&) { throw_no_cuda(); }
57
histEven(InputArray,OutputArray,InputOutputArray,int,int,int,Stream &)58 void cv::cuda::histEven(InputArray, OutputArray, InputOutputArray, int, int, int, Stream&) { throw_no_cuda(); }
histEven(InputArray,GpuMat *,InputOutputArray,int *,int *,int *,Stream &)59 void cv::cuda::histEven(InputArray, GpuMat*, InputOutputArray, int*, int*, int*, Stream&) { throw_no_cuda(); }
60
histRange(InputArray,OutputArray,InputArray,InputOutputArray,Stream &)61 void cv::cuda::histRange(InputArray, OutputArray, InputArray, InputOutputArray, Stream&) { throw_no_cuda(); }
histRange(InputArray,GpuMat *,const GpuMat *,InputOutputArray,Stream &)62 void cv::cuda::histRange(InputArray, GpuMat*, const GpuMat*, InputOutputArray, Stream&) { throw_no_cuda(); }
63
64 #else /* !defined (HAVE_CUDA) */
65
66 ////////////////////////////////////////////////////////////////////////
67 // calcHist
68
69 namespace hist
70 {
71 void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream);
72 }
73
calcHist(InputArray _src,OutputArray _hist,Stream & stream)74 void cv::cuda::calcHist(InputArray _src, OutputArray _hist, Stream& stream)
75 {
76 GpuMat src = _src.getGpuMat();
77
78 CV_Assert( src.type() == CV_8UC1 );
79
80 _hist.create(1, 256, CV_32SC1);
81 GpuMat hist = _hist.getGpuMat();
82
83 hist.setTo(Scalar::all(0), stream);
84
85 hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
86 }
87
88 ////////////////////////////////////////////////////////////////////////
89 // equalizeHist
90
91 namespace hist
92 {
93 void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
94 }
95
equalizeHist(InputArray _src,OutputArray _dst,Stream & _stream)96 void cv::cuda::equalizeHist(InputArray _src, OutputArray _dst, Stream& _stream)
97 {
98 GpuMat src = _src.getGpuMat();
99
100 CV_Assert( src.type() == CV_8UC1 );
101
102 _dst.create(src.size(), src.type());
103 GpuMat dst = _dst.getGpuMat();
104
105 int intBufSize;
106 nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );
107
108 size_t bufSize = intBufSize + 2 * 256 * sizeof(int);
109
110 BufferPool pool(_stream);
111 GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1);
112
113 GpuMat hist(1, 256, CV_32SC1, buf.data);
114 GpuMat lut(1, 256, CV_32SC1, buf.data + 256 * sizeof(int));
115 GpuMat intBuf(1, intBufSize, CV_8UC1, buf.data + 2 * 256 * sizeof(int));
116
117 cuda::calcHist(src, hist, _stream);
118
119 cudaStream_t stream = StreamAccessor::getStream(_stream);
120 NppStreamHandler h(stream);
121
122 nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
123
124 hist::equalizeHist(src, dst, lut.ptr<int>(), stream);
125 }
126
127 ////////////////////////////////////////////////////////////////////////
128 // CLAHE
129
130 namespace clahe
131 {
132 void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
133 void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
134 }
135
136 namespace
137 {
138 class CLAHE_Impl : public cv::cuda::CLAHE
139 {
140 public:
141 CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
142
143 void apply(cv::InputArray src, cv::OutputArray dst);
144 void apply(InputArray src, OutputArray dst, Stream& stream);
145
146 void setClipLimit(double clipLimit);
147 double getClipLimit() const;
148
149 void setTilesGridSize(cv::Size tileGridSize);
150 cv::Size getTilesGridSize() const;
151
152 void collectGarbage();
153
154 private:
155 double clipLimit_;
156 int tilesX_;
157 int tilesY_;
158
159 GpuMat srcExt_;
160 GpuMat lut_;
161 };
162
CLAHE_Impl(double clipLimit,int tilesX,int tilesY)163 CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
164 clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
165 {
166 }
167
apply(cv::InputArray _src,cv::OutputArray _dst)168 void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
169 {
170 apply(_src, _dst, Stream::Null());
171 }
172
apply(InputArray _src,OutputArray _dst,Stream & s)173 void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
174 {
175 GpuMat src = _src.getGpuMat();
176
177 CV_Assert( src.type() == CV_8UC1 );
178
179 _dst.create( src.size(), src.type() );
180 GpuMat dst = _dst.getGpuMat();
181
182 const int histSize = 256;
183
184 ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
185
186 cudaStream_t stream = StreamAccessor::getStream(s);
187
188 cv::Size tileSize;
189 GpuMat srcForLut;
190
191 if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
192 {
193 tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
194 srcForLut = src;
195 }
196 else
197 {
198 #ifndef HAVE_OPENCV_CUDAARITHM
199 throw_no_cuda();
200 #else
201 cv::cuda::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
202 #endif
203
204 tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
205 srcForLut = srcExt_;
206 }
207
208 const int tileSizeTotal = tileSize.area();
209 const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
210
211 int clipLimit = 0;
212 if (clipLimit_ > 0.0)
213 {
214 clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
215 clipLimit = std::max(clipLimit, 1);
216 }
217
218 clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);
219
220 clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
221 }
222
setClipLimit(double clipLimit)223 void CLAHE_Impl::setClipLimit(double clipLimit)
224 {
225 clipLimit_ = clipLimit;
226 }
227
getClipLimit() const228 double CLAHE_Impl::getClipLimit() const
229 {
230 return clipLimit_;
231 }
232
setTilesGridSize(cv::Size tileGridSize)233 void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
234 {
235 tilesX_ = tileGridSize.width;
236 tilesY_ = tileGridSize.height;
237 }
238
getTilesGridSize() const239 cv::Size CLAHE_Impl::getTilesGridSize() const
240 {
241 return cv::Size(tilesX_, tilesY_);
242 }
243
collectGarbage()244 void CLAHE_Impl::collectGarbage()
245 {
246 srcExt_.release();
247 lut_.release();
248 }
249 }
250
createCLAHE(double clipLimit,cv::Size tileGridSize)251 cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double clipLimit, cv::Size tileGridSize)
252 {
253 return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
254 }
255
256 ////////////////////////////////////////////////////////////////////////
257 // NPP Histogram
258
259 namespace
260 {
261 typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
262 typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);
263
264 template<int SDEPTH> struct NppHistogramEvenFuncC1
265 {
266 typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
267
268 typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
269 int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
270 };
271 template<int SDEPTH> struct NppHistogramEvenFuncC4
272 {
273 typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
274
275 typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
276 Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
277 };
278
279 template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
280 struct NppHistogramEvenC1
281 {
282 typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;
283
hist__anonb17b4c3e0211::NppHistogramEvenC1284 static void hist(const GpuMat& src, OutputArray _hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
285 {
286 const int levels = histSize + 1;
287
288 _hist.create(1, histSize, CV_32S);
289 GpuMat hist = _hist.getGpuMat();
290
291 NppiSize sz;
292 sz.width = src.cols;
293 sz.height = src.rows;
294
295 int buf_size;
296 get_buf_size(sz, levels, &buf_size);
297
298 BufferPool pool(stream);
299 GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
300
301 NppStreamHandler h(stream);
302
303 nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
304 lowerLevel, upperLevel, buf.ptr<Npp8u>()) );
305
306 if (!stream)
307 cudaSafeCall( cudaDeviceSynchronize() );
308 }
309 };
310 template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
311 struct NppHistogramEvenC4
312 {
313 typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;
314
hist__anonb17b4c3e0211::NppHistogramEvenC4315 static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
316 {
317 int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
318 hist[0].create(1, histSize[0], CV_32S);
319 hist[1].create(1, histSize[1], CV_32S);
320 hist[2].create(1, histSize[2], CV_32S);
321 hist[3].create(1, histSize[3], CV_32S);
322
323 NppiSize sz;
324 sz.width = src.cols;
325 sz.height = src.rows;
326
327 Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
328
329 int buf_size;
330 get_buf_size(sz, levels, &buf_size);
331
332 BufferPool pool(stream);
333 GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
334
335 NppStreamHandler h(stream);
336
337 nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buf.ptr<Npp8u>()) );
338
339 if (!stream)
340 cudaSafeCall( cudaDeviceSynchronize() );
341 }
342 };
343
344 template<int SDEPTH> struct NppHistogramRangeFuncC1
345 {
346 typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
347 typedef Npp32s level_t;
348 enum {LEVEL_TYPE_CODE=CV_32SC1};
349
350 typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
351 const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
352 };
353 template<> struct NppHistogramRangeFuncC1<CV_32F>
354 {
355 typedef Npp32f src_t;
356 typedef Npp32f level_t;
357 enum {LEVEL_TYPE_CODE=CV_32FC1};
358
359 typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
360 const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
361 };
362 template<int SDEPTH> struct NppHistogramRangeFuncC4
363 {
364 typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
365 typedef Npp32s level_t;
366 enum {LEVEL_TYPE_CODE=CV_32SC1};
367
368 typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
369 const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
370 };
371 template<> struct NppHistogramRangeFuncC4<CV_32F>
372 {
373 typedef Npp32f src_t;
374 typedef Npp32f level_t;
375 enum {LEVEL_TYPE_CODE=CV_32FC1};
376
377 typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
378 const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
379 };
380
381 template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
382 struct NppHistogramRangeC1
383 {
384 typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
385 typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
386 enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
387
hist__anonb17b4c3e0211::NppHistogramRangeC1388 static void hist(const GpuMat& src, OutputArray _hist, const GpuMat& levels, Stream& stream)
389 {
390 CV_Assert( levels.type() == LEVEL_TYPE_CODE && levels.rows == 1 );
391
392 _hist.create(1, levels.cols - 1, CV_32S);
393 GpuMat hist = _hist.getGpuMat();
394
395 NppiSize sz;
396 sz.width = src.cols;
397 sz.height = src.rows;
398
399 int buf_size;
400 get_buf_size(sz, levels.cols, &buf_size);
401
402 BufferPool pool(stream);
403 GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
404
405 NppStreamHandler h(stream);
406
407 nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buf.ptr<Npp8u>()) );
408
409 if (stream == 0)
410 cudaSafeCall( cudaDeviceSynchronize() );
411 }
412 };
413 template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
414 struct NppHistogramRangeC4
415 {
416 typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
417 typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
418 enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
419
hist__anonb17b4c3e0211::NppHistogramRangeC4420 static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
421 {
422 CV_Assert( levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1 );
423 CV_Assert( levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1 );
424 CV_Assert( levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1 );
425 CV_Assert( levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1 );
426
427 hist[0].create(1, levels[0].cols - 1, CV_32S);
428 hist[1].create(1, levels[1].cols - 1, CV_32S);
429 hist[2].create(1, levels[2].cols - 1, CV_32S);
430 hist[3].create(1, levels[3].cols - 1, CV_32S);
431
432 Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
433 int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
434 const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};
435
436 NppiSize sz;
437 sz.width = src.cols;
438 sz.height = src.rows;
439
440 int buf_size;
441 get_buf_size(sz, nLevels, &buf_size);
442
443 BufferPool pool(stream);
444 GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
445
446 NppStreamHandler h(stream);
447
448 nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buf.ptr<Npp8u>()) );
449
450 if (stream == 0)
451 cudaSafeCall( cudaDeviceSynchronize() );
452 }
453 };
454 }
455
evenLevels(OutputArray _levels,int nLevels,int lowerLevel,int upperLevel,Stream & stream)456 void cv::cuda::evenLevels(OutputArray _levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream)
457 {
458 const int kind = _levels.kind();
459
460 _levels.create(1, nLevels, CV_32SC1);
461
462 Mat host_levels;
463 if (kind == _InputArray::CUDA_GPU_MAT)
464 host_levels.create(1, nLevels, CV_32SC1);
465 else
466 host_levels = _levels.getMat();
467
468 nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
469
470 if (kind == _InputArray::CUDA_GPU_MAT)
471 _levels.getGpuMatRef().upload(host_levels, stream);
472 }
473
474 namespace hist
475 {
476 void histEven8u(PtrStepSzb src, int* hist, int binCount, int lowerLevel, int upperLevel, cudaStream_t stream);
477 }
478
479 namespace
480 {
histEven8u(const GpuMat & src,GpuMat & hist,int histSize,int lowerLevel,int upperLevel,cudaStream_t stream)481 void histEven8u(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
482 {
483 hist.create(1, histSize, CV_32S);
484 cudaSafeCall( cudaMemsetAsync(hist.data, 0, histSize * sizeof(int), stream) );
485 hist::histEven8u(src, hist.ptr<int>(), histSize, lowerLevel, upperLevel, stream);
486 }
487 }
488
histEven(InputArray _src,OutputArray hist,int histSize,int lowerLevel,int upperLevel,Stream & stream)489 void cv::cuda::histEven(InputArray _src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
490 {
491 typedef void (*hist_t)(const GpuMat& src, OutputArray hist, int levels, int lowerLevel, int upperLevel, Stream& stream);
492 static const hist_t hist_callers[] =
493 {
494 NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
495 0,
496 NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
497 NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
498 };
499
500 GpuMat src = _src.getGpuMat();
501
502 if (src.depth() == CV_8U && deviceSupports(FEATURE_SET_COMPUTE_30))
503 {
504 histEven8u(src, hist.getGpuMatRef(), histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
505 return;
506 }
507
508 CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );
509
510 hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
511 }
512
histEven(InputArray _src,GpuMat hist[4],int histSize[4],int lowerLevel[4],int upperLevel[4],Stream & stream)513 void cv::cuda::histEven(InputArray _src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
514 {
515 typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4], Stream& stream);
516 static const hist_t hist_callers[] =
517 {
518 NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
519 0,
520 NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
521 NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
522 };
523
524 GpuMat src = _src.getGpuMat();
525
526 CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
527
528 hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
529 }
530
histRange(InputArray _src,OutputArray hist,InputArray _levels,Stream & stream)531 void cv::cuda::histRange(InputArray _src, OutputArray hist, InputArray _levels, Stream& stream)
532 {
533 typedef void (*hist_t)(const GpuMat& src, OutputArray hist, const GpuMat& levels, Stream& stream);
534 static const hist_t hist_callers[] =
535 {
536 NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
537 0,
538 NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
539 NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
540 0,
541 NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
542 };
543
544 GpuMat src = _src.getGpuMat();
545 GpuMat levels = _levels.getGpuMat();
546
547 CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1 );
548
549 hist_callers[src.depth()](src, hist, levels, stream);
550 }
551
histRange(InputArray _src,GpuMat hist[4],const GpuMat levels[4],Stream & stream)552 void cv::cuda::histRange(InputArray _src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
553 {
554 typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream);
555 static const hist_t hist_callers[] =
556 {
557 NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
558 0,
559 NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
560 NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
561 0,
562 NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
563 };
564
565 GpuMat src = _src.getGpuMat();
566
567 CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4 );
568
569 hist_callers[src.depth()](src, hist, levels, stream);
570 }
571
572 #endif /* !defined (HAVE_CUDA) */
573